rust-lightning/lightning-c-bindings/cbindgen.toml
Matt Corallo 1af8a464b4 Add all the manually-generated bits for the c-bindings crate
Including:
 * A script to automatically generate all the rest,
 * Cargo.toml and cbindgen.toml,
 * manually-written wrapper types for a few types
2020-09-10 22:03:32 -04:00

552 lines
17 KiB
TOML

# The language to output bindings in
#
# possible values: "C", "C++"
#
# default: "C++"
language = "C"
# Options for wrapping the contents of the header:
# An optional string of text to output at the beginning of the generated file
# default: doesn't emit anything
header = "/* Text to put at the beginning of the generated file. Probably a license. */"
# An optional string of text to output at the end of the generated file
# default: doesn't emit anything
trailer = "/* Text to put at the end of the generated file */"
# An optional name to use as an include guard
# default: doesn't emit an include guard
# include_guard = "mozilla_wr_bindings_h"
# An optional string of text to output between major sections of the generated
# file as a warning against manual editing
#
# default: doesn't emit anything
autogen_warning = "/* Warning, this file is autogenerated by cbindgen. Don't modify this manually. */"
# Whether to include a comment with the version of cbindgen used to generate the file
# default: false
include_version = true
# An optional namespace to output around the generated bindings
# default: doesn't emit a namespace
namespace = "LDK"
# An optional list of namespaces to output around the generated bindings
# default: []
namespaces = []
# An optional list of namespaces to declare as using with "using namespace"
# default: []
using_namespaces = []
# A list of sys headers to #include (with angle brackets)
# default: []
# sys_includes = ["stdio", "string"]
# sys_includes = ["stdint"]
# A list of headers to #include (with quotes)
# default: []
# includes = ["my_great_lib.h"]
# Whether cbindgen's default C/C++ standard imports should be suppressed. These
# imports are included by default because our generated headers tend to require
# them (e.g. for uint32_t). Currently, the generated imports are:
#
# * for C: <stdarg.h>, <stdbool.h>, <stdint.h>, <stdlib.h>, <uchar.h>
#
# * for C++: <cstdarg>, <cstdint>, <cstdlib>, <new>, <cassert> (depending on config)
#
# default: false
no_includes = false
# Code Style Options
# The style to use for curly braces
#
# possible values: "SameLine", "NextLine"
#
# default: "SameLine"
braces = "SameLine"
# The desired length of a line to use when formatting lines
# default: 100
line_length = 80
# The amount of spaces to indent by
# default: 2
tab_width = 3
# How the generated documentation should be commented.
#
# possible values:
# * "c": /* like this */
# * "c99": // like this
# * "c++": /// like this
# * "doxy": like C, but with leading *'s on each line
# * "auto": "c++" if that's the language, "doxy" otherwise
#
# default: "auto"
documentation_style = "doxy"
# Codegen Options
# When generating a C header, the kind of declaration style to use for structs
# or enums.
#
# possible values:
# * "type": typedef struct { ... } MyType;
# * "tag": struct MyType { ... };
# * "both": typedef struct MyType { ... } MyType;
#
# default: "both"
style = "both"
# A list of substitutions for converting cfg's to ifdefs. cfgs which aren't
# defined here will just be discarded.
#
# e.g.
# `#[cfg(target = "freebsd")] ...`
# becomes
# `#if defined(DEFINE_FREEBSD) ... #endif`
[defines]
"target_os = freebsd" = "DEFINE_FREEBSD"
"feature = serde" = "DEFINE_SERDE"
[export]
# A list of additional items to always include in the generated bindings if they're
# found but otherwise don't appear to be used by the public API.
#
# default: []
# include = ["MyOrphanStruct", "MyGreatTypeRename"]
# A list of items to not include in the generated bindings
# default: []
# exclude = ["Bad"]
# A prefix to add before the name of every item
# default: no prefix is added
prefix = "LDK"
# Types of items that we'll generate. If empty, then all types of item are emitted.
#
# possible items: (TODO: explain these in detail)
# * "constants":
# * "globals":
# * "enums":
# * "structs":
# * "unions":
# * "typedefs":
# * "opaque":
# * "functions":
#
# default: []
item_types = ["constants", "globals", "enums", "structs", "unions", "typedefs", "opaque", "functions"]
# Whether applying rules in export.rename prevents export.prefix from applying.
#
# e.g. given this toml:
#
# [export]
# prefix = "capi_"
# [export.rename]
# "MyType" = "my_cool_type"
#
# You get the following results:
#
# renaming_overrides_prefixing = true:
# "MyType" => "my_cool_type"
#
# renaming_overrides_prefixing = false:
# "MyType => capi_my_cool_type"
#
# default: false
renaming_overrides_prefixing = true
# Table of name conversions to apply to item names (lhs becomes rhs)
# [export.rename]
# "MyType" = "my_cool_type"
# "my_function" = "BetterFunctionName"
# Table of things to prepend to the body of any struct, union, or enum that has the
# given name. This can be used to add things like methods which don't change ABI,
# mark fields private, etc
[export.pre_body]
"MyType" = """
MyType() = delete;
private:
"""
# Table of things to append to the body of any struct, union, or enum that has the
# given name. This can be used to add things like methods which don't change ABI.
[export.body]
"MyType" = """
void cppMethod() const;
"""
[layout]
# A string that should come before the name of any type which has been marked
# as `#[repr(packed)]`. For instance, "__attribute__((packed))" would be a
# reasonable value if targeting gcc/clang. A more portable solution would
# involve emitting the name of a macro which you define in a platform-specific
# way. e.g. "PACKED"
#
# default: `#[repr(packed)]` types will be treated as opaque, since it would
# be unsafe for C callers to use a incorrectly laid-out union.
packed = "PACKED"
# A string that should come before the name of any type which has been marked
# as `#[repr(align(n))]`. This string must be a function-like macro which takes
# a single argument (the requested alignment, `n`). For instance, a macro
# `#define`d as `ALIGNED(n)` in `header` which translates to
# `__attribute__((aligned(n)))` would be a reasonable value if targeting
# gcc/clang.
#
# default: `#[repr(align(n))]` types will be treated as opaque, since it
# could be unsafe for C callers to use a incorrectly-aligned union.
aligned_n = "ALIGNED"
[fn]
# An optional prefix to put before every function declaration
# default: no prefix added
# prefix = "WR_START_FUNC"
# An optional postfix to put after any function declaration
# default: no postix added
# postfix = "WR_END_FUNC"
# How to format function arguments
#
# possible values:
# * "horizontal": place all arguments on the same line
# * "vertical": place each argument on its own line
# * "auto": only use vertical if horizontal would exceed line_length
#
# default: "auto"
args = "horizontal"
# An optional string that should prefix function declarations which have been
# marked as `#[must_use]`. For instance, "__attribute__((warn_unused_result))"
# would be a reasonable value if targeting gcc/clang. A more portable solution
# would involve emitting the name of a macro which you define in a
# platform-specific way. e.g. "MUST_USE_FUNC"
# default: nothing is emitted for must_use functions
must_use = "MUST_USE_RES"
# An optional string that, if present, will be used to generate Swift function
# and method signatures for generated functions, for example "CF_SWIFT_NAME".
# If no such macro is available in your toolchain, you can define one using the
# `header` option in cbindgen.toml
# default: no swift_name function attributes are generated
# swift_name_macro = "CF_SWIFT_NAME"
# A rule to use to rename function argument names. The renaming assumes the input
# is the Rust standard snake_case, however it accepts all the different rename_args
# inputs. This means many options here are no-ops or redundant.
#
# possible values (that actually do something):
# * "CamelCase": my_arg => myArg
# * "PascalCase": my_arg => MyArg
# * "GeckoCase": my_arg => aMyArg
# * "ScreamingSnakeCase": my_arg => MY_ARG
# * "None": apply no renaming
#
# technically possible values (that shouldn't have a purpose here):
# * "SnakeCase": apply no renaming
# * "LowerCase": apply no renaming (actually applies to_lowercase, is this bug?)
# * "UpperCase": same as ScreamingSnakeCase in this context
# * "QualifiedScreamingSnakeCase" => same as ScreamingSnakeCase in this context
#
# default: "None"
rename_args = "None"
# This rule specifies if the order of functions will be sorted in some way.
#
# "Name": sort by the name of the function
# "None": keep order in which the functions have been parsed
#
# default: "Name"
sort_by = "None"
[struct]
# A rule to use to rename struct field names. The renaming assumes the input is
# the Rust standard snake_case, however it acccepts all the different rename_args
# inputs. This means many options here are no-ops or redundant.
#
# possible values (that actually do something):
# * "CamelCase": my_arg => myArg
# * "PascalCase": my_arg => MyArg
# * "GeckoCase": my_arg => mMyArg
# * "ScreamingSnakeCase": my_arg => MY_ARG
# * "None": apply no renaming
#
# technically possible values (that shouldn't have a purpose here):
# * "SnakeCase": apply no renaming
# * "LowerCase": apply no renaming (actually applies to_lowercase, is this bug?)
# * "UpperCase": same as ScreamingSnakeCase in this context
# * "QualifiedScreamingSnakeCase" => same as ScreamingSnakeCase in this context
#
# default: "None"
rename_fields = "None"
# An optional string that should come before the name of any struct which has been
# marked as `#[must_use]`. For instance, "__attribute__((warn_unused))"
# would be a reasonable value if targeting gcc/clang. A more portable solution
# would involve emitting the name of a macro which you define in a
# platform-specific way. e.g. "MUST_USE_STRUCT"
#
# default: nothing is emitted for must_use structs
must_use = "MUST_USE_STRUCT"
# Whether a Rust type with associated consts should emit those consts inside the
# type's body. Otherwise they will be emitted trailing and with the type's name
# prefixed. This does nothing if the target is C, or if
# [const]allow_static_const = false
#
# default: false
# associated_constants_in_body: false
# Whether to derive a simple constructor that takes a value for every field.
# default: false
derive_constructor = true
# Whether to derive an operator== for all structs
# default: false
derive_eq = false
# Whether to derive an operator!= for all structs
# default: false
derive_neq = false
# Whether to derive an operator< for all structs
# default: false
derive_lt = false
# Whether to derive an operator<= for all structs
# default: false
derive_lte = false
# Whether to derive an operator> for all structs
# default: false
derive_gt = false
# Whether to derive an operator>= for all structs
# default: false
derive_gte = false
[enum]
# A rule to use to rename enum variants, and the names of any fields those
# variants have. This should probably be split up into two separate options, but
# for now, they're the same! See the documentation for `[struct]rename_fields`
# for how this applies to fields. Renaming of the variant assumes that the input
# is the Rust standard PascalCase. In the case of QualifiedScreamingSnakeCase,
# it also assumed that the enum's name is PascalCase.
#
# possible values (that actually do something):
# * "CamelCase": MyVariant => myVariant
# * "SnakeCase": MyVariant => my_variant
# * "ScreamingSnakeCase": MyVariant => MY_VARIANT
# * "QualifiedScreamingSnakeCase": MyVariant => ENUM_NAME_MY_VARIANT
# * "LowerCase": MyVariant => myvariant
# * "UpperCase": MyVariant => MYVARIANT
# * "None": apply no renaming
#
# technically possible values (that shouldn't have a purpose for the variants):
# * "PascalCase": apply no renaming
# * "GeckoCase": apply no renaming
#
# default: "None"
rename_variants = "None"
# Whether an extra "sentinel" enum variant should be added to all generated enums.
# Firefox uses this for their IPC serialization library.
#
# WARNING: if the sentinel is ever passed into Rust, behaviour will be Undefined.
# Rust does not know about this value, and will assume it cannot happen.
#
# default: false
add_sentinel = true
# Whether enum variant names should be prefixed with the name of the enum.
# default: false
prefix_with_name = true
# Whether to emit enums using "enum class" when targeting C++.
# default: true
enum_class = true
# Whether to generate static `::MyVariant(..)` constructors and `bool IsMyVariant()`
# methods for enums with fields.
#
# default: false
derive_helper_methods = false
# Whether to generate `const MyVariant& AsMyVariant() const` methods for enums with fields.
# default: false
derive_const_casts = false
# Whether to generate `MyVariant& AsMyVariant()` methods for enums with fields
# default: false
derive_mut_casts = false
# The name of the macro/function to use for asserting `IsMyVariant()` in the body of
# derived `AsMyVariant()` cast methods.
#
# default: "assert" (but also causes `<cassert>` to be included by default)
cast_assert_name = "MOZ_RELEASE_ASSERT"
# An optional string that should come before the name of any enum which has been
# marked as `#[must_use]`. For instance, "__attribute__((warn_unused))"
# would be a reasonable value if targeting gcc/clang. A more portable solution
# would involve emitting the name of a macro which you define in a
# platform-specific way. e.g. "MUST_USE_ENUM"
#
# Note that this refers to the *output* type. That means this will not apply to an enum
# with fields, as it will be emitted as a struct. `[struct]must_use` will apply there.
#
# default: nothing is emitted for must_use enums
must_use = "MUST_USE_ENUM"
# Whether enums with fields should generate destructors. This exists so that generic
# enums can be properly instantiated with payloads that are C++ types with
# destructors. This isn't necessary for structs because C++ has rules to
# automatically derive the correct constructors and destructors for those types.
#
# Care should be taken with this option, as Rust and C++ cannot
# properly interoperate with eachother's notions of destructors. Also, this may
# change the ABI for the type. Either your destructor-full enums must live
# exclusively within C++, or they must only be passed by-reference between
# C++ and Rust.
#
# default: false
derive_tagged_enum_destructor = false
# Whether enums with fields should generate copy-constructor. See the discussion on
# derive_tagged_enum_destructor for why this is both useful and very dangerous.
#
# default: false
derive_tagged_enum_copy_constructor = false
# Whether enums with fields should generate copy-assignment operators.
#
# This depends on also deriving copy-constructors, and it is highly encouraged
# for this to be set to true.
#
# default: false
derive_tagged_enum_copy_assignment = false
# Whether enums with fields should generate an empty, private destructor.
# This allows the auto-generated constructor functions to compile, if there are
# non-trivially constructible members. This falls in the same family of
# dangerousness as `derive_tagged_enum_copy_constructor` and co.
#
# default: false
private_default_tagged_enum_constructor = false
[const]
# Whether a generated constant can be a static const in C++ mode. I have no
# idea why you would turn this off.
#
# default: true
allow_static_const = true
# Whether a generated constant can be constexpr in C++ mode.
#
# default: false
[macro_expansion]
# Whether bindings should be generated for instances of the bitflags! macro.
# default: false
bitflags = true
# Options for how your Rust library should be parsed
[parse]
# Whether to parse dependent crates and include their types in the output
# default: false
parse_deps = true
# A white list of crate names that are allowed to be parsed. If this is defined,
# only crates found in this list will ever be parsed.
#
# default: there is no whitelist (NOTE: this is the opposite of [])
include = ["webrender", "webrender_traits"]
# A black list of crate names that are not allowed to be parsed.
# default: []
exclude = ["libc"]
# Whether to use a new temporary target directory when running `rustc --pretty=expanded`.
# This may be required for some build processes.
#
# default: false
clean = false
# Which crates other than the top-level binding crate we should generate
# bindings for.
#
# default: []
extra_bindings = ["my_awesome_dep"]
[parse.expand]
# A list of crate names that should be run through `cargo expand` before
# parsing to expand any macros. Note that if a crate is named here, it
# will always be parsed, even if the blacklist/whitelist says it shouldn't be.
#
# default: []
crates = ["euclid"]
# If enabled, use the `--all-features` option when expanding. Ignored when
# `features` is set. For backwards-compatibility, this is forced on if
# `expand = ["euclid"]` shorthand is used.
#
# default: false
all_features = false
# When `all_features` is disabled and this is also disabled, use the
# `--no-default-features` option when expanding.
#
# default: true
default_features = true
# A list of feature names that should be used when running `cargo expand`. This
# combines with `default_features` like in your `Cargo.toml`. Note that the features
# listed here are features for the current crate being built, *not* the crates
# being expanded. The crate's `Cargo.toml` must take care of enabling the
# appropriate features in its dependencies
#
# default: []
features = ["cbindgen"]