mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 17:01:10 +01:00
5249 lines
244 KiB
Rust
5249 lines
244 KiB
Rust
// This file is Copyright its original authors, visible in version control
|
|
// history.
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! The top-level channel management and payment tracking stuff lives here.
|
|
//!
|
|
//! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
|
|
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
|
|
//! upon reconnect to the relevant peer(s).
|
|
//!
|
|
//! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
|
|
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
|
|
//! imply it needs to fail HTLCs/payments/channels it manages).
|
|
//!
|
|
|
|
use bitcoin::blockdata::block::{Block, BlockHeader};
|
|
use bitcoin::blockdata::transaction::Transaction;
|
|
use bitcoin::blockdata::constants::genesis_block;
|
|
use bitcoin::network::constants::Network;
|
|
|
|
use bitcoin::hashes::{Hash, HashEngine};
|
|
use bitcoin::hashes::hmac::{Hmac, HmacEngine};
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
|
|
use bitcoin::hashes::cmp::fixed_time_eq;
|
|
use bitcoin::hash_types::{BlockHash, Txid};
|
|
|
|
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
|
|
use bitcoin::secp256k1::Secp256k1;
|
|
use bitcoin::secp256k1::ecdh::SharedSecret;
|
|
use bitcoin::secp256k1;
|
|
|
|
use chain;
|
|
use chain::{Confirm, Watch, BestBlock};
|
|
use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
|
|
use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
|
|
use chain::transaction::{OutPoint, TransactionData};
|
|
// Since this struct is returned in `list_channels` methods, expose it here in case users want to
|
|
// construct one themselves.
|
|
use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
|
|
pub use ln::channel::CounterpartyForwardingInfo;
|
|
use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
|
|
use ln::features::{InitFeatures, NodeFeatures};
|
|
use routing::router::{Route, RouteHop};
|
|
use ln::msgs;
|
|
use ln::msgs::NetAddress;
|
|
use ln::onion_utils;
|
|
use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
|
|
use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
|
|
use util::config::UserConfig;
|
|
use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
|
|
use util::{byte_utils, events};
|
|
use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
|
|
use util::chacha20::{ChaCha20, ChaChaReader};
|
|
use util::logger::Logger;
|
|
use util::errors::APIError;
|
|
|
|
use prelude::*;
|
|
use core::{cmp, mem};
|
|
use core::cell::RefCell;
|
|
use std::io::{Cursor, Read};
|
|
use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
|
|
use core::sync::atomic::{AtomicUsize, Ordering};
|
|
use core::time::Duration;
|
|
#[cfg(any(test, feature = "allow_wallclock_use"))]
|
|
use std::time::Instant;
|
|
use core::ops::Deref;
|
|
use bitcoin::hashes::hex::ToHex;
|
|
|
|
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
|
|
//
|
|
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
|
|
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
|
|
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
|
|
//
|
|
// Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
|
|
// Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
|
|
// with it to track where it came from (in case of onwards-forward error), waiting a random delay
|
|
// before we forward it.
|
|
//
|
|
// We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
|
|
// relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
|
|
// to either fail-backwards or fulfill the HTLC backwards along the relevant path).
|
|
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
|
|
// our payment, which we can use to decode errors or inform the user that the payment was sent.
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
enum PendingHTLCRouting {
|
|
Forward {
|
|
onion_packet: msgs::OnionPacket,
|
|
short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
|
|
},
|
|
Receive {
|
|
payment_data: msgs::FinalOnionHopData,
|
|
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
|
|
},
|
|
ReceiveKeysend {
|
|
payment_preimage: PaymentPreimage,
|
|
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
|
|
},
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) struct PendingHTLCInfo {
|
|
routing: PendingHTLCRouting,
|
|
incoming_shared_secret: [u8; 32],
|
|
payment_hash: PaymentHash,
|
|
pub(super) amt_to_forward: u64,
|
|
pub(super) outgoing_cltv_value: u32,
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum HTLCFailureMsg {
|
|
Relay(msgs::UpdateFailHTLC),
|
|
Malformed(msgs::UpdateFailMalformedHTLC),
|
|
}
|
|
|
|
/// Stores whether we can't forward an HTLC or relevant forwarding info
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum PendingHTLCStatus {
|
|
Forward(PendingHTLCInfo),
|
|
Fail(HTLCFailureMsg),
|
|
}
|
|
|
|
pub(super) enum HTLCForwardInfo {
|
|
AddHTLC {
|
|
forward_info: PendingHTLCInfo,
|
|
|
|
// These fields are produced in `forward_htlcs()` and consumed in
|
|
// `process_pending_htlc_forwards()` for constructing the
|
|
// `HTLCSource::PreviousHopData` for failed and forwarded
|
|
// HTLCs.
|
|
prev_short_channel_id: u64,
|
|
prev_htlc_id: u64,
|
|
prev_funding_outpoint: OutPoint,
|
|
},
|
|
FailHTLC {
|
|
htlc_id: u64,
|
|
err_packet: msgs::OnionErrorPacket,
|
|
},
|
|
}
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[derive(Clone, PartialEq)]
|
|
pub(crate) struct HTLCPreviousHopData {
|
|
short_channel_id: u64,
|
|
htlc_id: u64,
|
|
incoming_packet_shared_secret: [u8; 32],
|
|
|
|
// This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
|
|
// channel with a preimage provided by the forward channel.
|
|
outpoint: OutPoint,
|
|
}
|
|
|
|
struct ClaimableHTLC {
|
|
prev_hop: HTLCPreviousHopData,
|
|
value: u64,
|
|
/// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
|
|
/// payment_secret which prevents path-probing attacks and can associate different HTLCs which
|
|
/// are part of the same payment.
|
|
payment_data: msgs::FinalOnionHopData,
|
|
cltv_expiry: u32,
|
|
}
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[derive(Clone, PartialEq)]
|
|
pub(crate) enum HTLCSource {
|
|
PreviousHopData(HTLCPreviousHopData),
|
|
OutboundRoute {
|
|
path: Vec<RouteHop>,
|
|
session_priv: SecretKey,
|
|
/// Technically we can recalculate this from the route, but we cache it here to avoid
|
|
/// doing a double-pass on route when we get a failure back
|
|
first_hop_htlc_msat: u64,
|
|
},
|
|
}
|
|
#[cfg(test)]
|
|
impl HTLCSource {
|
|
pub fn dummy() -> Self {
|
|
HTLCSource::OutboundRoute {
|
|
path: Vec::new(),
|
|
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
|
|
first_hop_htlc_msat: 0,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum HTLCFailReason {
|
|
LightningError {
|
|
err: msgs::OnionErrorPacket,
|
|
},
|
|
Reason {
|
|
failure_code: u16,
|
|
data: Vec<u8>,
|
|
}
|
|
}
|
|
|
|
type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
|
|
|
|
/// Error type returned across the channel_state mutex boundary. When an Err is generated for a
|
|
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
|
|
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
|
|
/// channel_state lock. We then return the set of things that need to be done outside the lock in
|
|
/// this struct and call handle_error!() on it.
|
|
|
|
struct MsgHandleErrInternal {
|
|
err: msgs::LightningError,
|
|
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
|
|
}
|
|
impl MsgHandleErrInternal {
|
|
#[inline]
|
|
fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err: err.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
#[inline]
|
|
fn ignore_no_close(err: String) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err,
|
|
action: msgs::ErrorAction::IgnoreError,
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_no_close(err: msgs::LightningError) -> Self {
|
|
Self { err, shutdown_finish: None }
|
|
}
|
|
#[inline]
|
|
fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err: err.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: Some((shutdown_res, channel_update)),
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: match err {
|
|
ChannelError::Ignore(msg) => LightningError {
|
|
err: msg,
|
|
action: msgs::ErrorAction::IgnoreError,
|
|
},
|
|
ChannelError::Close(msg) => LightningError {
|
|
err: msg.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: msg
|
|
},
|
|
},
|
|
},
|
|
ChannelError::CloseDelayBroadcast(msg) => LightningError {
|
|
err: msg.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: msg
|
|
},
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
|
|
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
|
|
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
|
|
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
|
|
const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
|
|
|
|
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
|
|
/// be sent in the order they appear in the return value, however sometimes the order needs to be
|
|
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
|
|
/// they were originally sent). In those cases, this enum is also returned.
|
|
#[derive(Clone, PartialEq)]
|
|
pub(super) enum RAACommitmentOrder {
|
|
/// Send the CommitmentUpdate messages first
|
|
CommitmentFirst,
|
|
/// Send the RevokeAndACK message first
|
|
RevokeAndACKFirst,
|
|
}
|
|
|
|
// Note this is only exposed in cfg(test):
|
|
pub(super) struct ChannelHolder<Signer: Sign> {
|
|
pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
|
|
pub(super) short_to_id: HashMap<u64, [u8; 32]>,
|
|
/// short channel id -> forward infos. Key of 0 means payments received
|
|
/// Note that while this is held in the same mutex as the channels themselves, no consistency
|
|
/// guarantees are made about the existence of a channel with the short id here, nor the short
|
|
/// ids in the PendingHTLCInfo!
|
|
pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
|
|
/// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
|
|
/// Note that while this is held in the same mutex as the channels themselves, no consistency
|
|
/// guarantees are made about the channels given here actually existing anymore by the time you
|
|
/// go to read them!
|
|
claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
|
|
/// Messages to send to peers - pushed to in the same lock that they are generated in (except
|
|
/// for broadcast messages, where ordering isn't as strict).
|
|
pub(super) pending_msg_events: Vec<MessageSendEvent>,
|
|
}
|
|
|
|
/// Events which we process internally but cannot be procsesed immediately at the generation site
|
|
/// for some reason. They are handled in timer_tick_occurred, so may be processed with
|
|
/// quite some time lag.
|
|
enum BackgroundEvent {
|
|
/// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
|
|
/// commitment transaction.
|
|
ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
|
|
}
|
|
|
|
/// State we hold per-peer. In the future we should put channels in here, but for now we only hold
|
|
/// the latest Init features we heard from the peer.
|
|
struct PeerState {
|
|
latest_features: InitFeatures,
|
|
}
|
|
|
|
/// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
|
|
/// actually ours and not some duplicate HTLC sent to us by a node along the route.
|
|
///
|
|
/// For users who don't want to bother doing their own payment preimage storage, we also store that
|
|
/// here.
|
|
struct PendingInboundPayment {
|
|
/// The payment secret that the sender must use for us to accept this payment
|
|
payment_secret: PaymentSecret,
|
|
/// Time at which this HTLC expires - blocks with a header time above this value will result in
|
|
/// this payment being removed.
|
|
expiry_time: u64,
|
|
/// Arbitrary identifier the user specifies (or not)
|
|
user_payment_id: u64,
|
|
// Other required attributes of the payment, optionally enforced:
|
|
payment_preimage: Option<PaymentPreimage>,
|
|
min_value_msat: Option<u64>,
|
|
}
|
|
|
|
/// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
|
|
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
|
|
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
|
|
/// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
|
|
/// issues such as overly long function definitions. Note that the ChannelManager can take any
|
|
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
|
|
/// concrete type of the KeysManager.
|
|
pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
|
|
|
|
/// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
|
|
/// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
|
|
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
|
|
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
|
|
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
|
|
/// helps with issues such as long function definitions. Note that the ChannelManager can take any
|
|
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
|
|
/// concrete type of the KeysManager.
|
|
pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
|
|
|
|
/// Manager which keeps track of a number of channels and sends messages to the appropriate
|
|
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
|
|
///
|
|
/// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
|
|
/// to individual Channels.
|
|
///
|
|
/// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
|
|
/// all peers during write/read (though does not modify this instance, only the instance being
|
|
/// serialized). This will result in any channels which have not yet exchanged funding_created (ie
|
|
/// called funding_transaction_generated for outbound channels).
|
|
///
|
|
/// Note that you can be a bit lazier about writing out ChannelManager than you can be with
|
|
/// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
|
|
/// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
|
|
/// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
|
|
/// the serialization process). If the deserialized version is out-of-date compared to the
|
|
/// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
|
|
/// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
|
|
///
|
|
/// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
|
|
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
|
|
/// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
|
|
/// block_connected() to step towards your best block) upon deserialization before using the
|
|
/// object!
|
|
///
|
|
/// Note that ChannelManager is responsible for tracking liveness of its channels and generating
|
|
/// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
|
|
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
|
|
/// offline for a full minute. In order to track this, you must call
|
|
/// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
|
|
///
|
|
/// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
|
|
/// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
|
|
/// essentially you should default to using a SimpleRefChannelManager, and use a
|
|
/// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
|
|
/// you're using lightning-net-tokio.
|
|
pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
default_configuration: UserConfig,
|
|
genesis_hash: BlockHash,
|
|
fee_estimator: F,
|
|
chain_monitor: M,
|
|
tx_broadcaster: T,
|
|
|
|
#[cfg(test)]
|
|
pub(super) best_block: RwLock<BestBlock>,
|
|
#[cfg(not(test))]
|
|
best_block: RwLock<BestBlock>,
|
|
secp_ctx: Secp256k1<secp256k1::All>,
|
|
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
|
|
#[cfg(not(any(test, feature = "_test_utils")))]
|
|
channel_state: Mutex<ChannelHolder<Signer>>,
|
|
|
|
/// Storage for PaymentSecrets and any requirements on future inbound payments before we will
|
|
/// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
|
|
/// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
|
|
/// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
|
|
/// Locked *after* channel_state.
|
|
pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
|
|
|
|
/// The session_priv bytes of outbound payments which are pending resolution.
|
|
/// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
|
|
/// (if the channel has been force-closed), however we track them here to prevent duplicative
|
|
/// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
|
|
/// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
|
|
/// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
|
|
/// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
|
|
/// after reloading from disk while replaying blocks against ChannelMonitors.
|
|
///
|
|
/// Locked *after* channel_state.
|
|
pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
|
|
|
|
our_network_key: SecretKey,
|
|
our_network_pubkey: PublicKey,
|
|
|
|
/// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
|
|
/// value increases strictly since we don't assume access to a time source.
|
|
last_node_announcement_serial: AtomicUsize,
|
|
|
|
/// The highest block timestamp we've seen, which is usually a good guess at the current time.
|
|
/// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
|
|
/// very far in the past, and can only ever be up to two hours in the future.
|
|
highest_seen_timestamp: AtomicUsize,
|
|
|
|
/// The bulk of our storage will eventually be here (channels and message queues and the like).
|
|
/// If we are connected to a peer we always at least have an entry here, even if no channels
|
|
/// are currently open with that peer.
|
|
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
|
|
/// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
|
|
/// new channel.
|
|
per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
|
|
|
|
pending_events: Mutex<Vec<events::Event>>,
|
|
pending_background_events: Mutex<Vec<BackgroundEvent>>,
|
|
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
|
|
/// Essentially just when we're serializing ourselves out.
|
|
/// Taken first everywhere where we are making changes before any other locks.
|
|
/// When acquiring this lock in read mode, rather than acquiring it directly, call
|
|
/// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
|
|
/// PersistenceNotifier the lock contains sends out a notification when the lock is released.
|
|
total_consistency_lock: RwLock<()>,
|
|
|
|
persistence_notifier: PersistenceNotifier,
|
|
|
|
keys_manager: K,
|
|
|
|
logger: L,
|
|
}
|
|
|
|
/// Chain-related parameters used to construct a new `ChannelManager`.
|
|
///
|
|
/// Typically, the block-specific parameters are derived from the best block hash for the network,
|
|
/// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
|
|
/// are not needed when deserializing a previously constructed `ChannelManager`.
|
|
#[derive(Clone, Copy, PartialEq)]
|
|
pub struct ChainParameters {
|
|
/// The network for determining the `chain_hash` in Lightning messages.
|
|
pub network: Network,
|
|
|
|
/// The hash and height of the latest block successfully connected.
|
|
///
|
|
/// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
|
|
pub best_block: BestBlock,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
enum NotifyOption {
|
|
DoPersist,
|
|
SkipPersist,
|
|
}
|
|
|
|
/// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
|
|
/// desirable to notify any listeners on `await_persistable_update_timeout`/
|
|
/// `await_persistable_update` when new updates are available for persistence. Therefore, this
|
|
/// struct is responsible for locking the total consistency lock and, upon going out of scope,
|
|
/// sending the aforementioned notification (since the lock being released indicates that the
|
|
/// updates are ready for persistence).
|
|
///
|
|
/// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
|
|
/// notify or not based on whether relevant changes have been made, providing a closure to
|
|
/// `optionally_notify` which returns a `NotifyOption`.
|
|
struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
|
|
persistence_notifier: &'a PersistenceNotifier,
|
|
should_persist: F,
|
|
// We hold onto this result so the lock doesn't get released immediately.
|
|
_read_guard: RwLockReadGuard<'a, ()>,
|
|
}
|
|
|
|
impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
|
|
fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
|
|
PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
|
|
}
|
|
|
|
fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
|
|
let read_guard = lock.read().unwrap();
|
|
|
|
PersistenceNotifierGuard {
|
|
persistence_notifier: notifier,
|
|
should_persist: persist_check,
|
|
_read_guard: read_guard,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
|
|
fn drop(&mut self) {
|
|
if (self.should_persist)() == NotifyOption::DoPersist {
|
|
self.persistence_notifier.notify();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The amount of time in blocks we require our counterparty wait to claim their money (ie time
|
|
/// between when we, or our watchtower, must check for them having broadcast a theft transaction).
|
|
///
|
|
/// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
|
|
///
|
|
/// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
|
|
pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
|
|
/// The amount of time in blocks we're willing to wait to claim money back to us. This matches
|
|
/// the maximum required amount in lnd as of March 2021.
|
|
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
|
|
|
|
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
|
|
/// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
|
|
///
|
|
/// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
|
|
///
|
|
/// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
|
|
// This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
|
|
// i.e. the node we forwarded the payment on to should always have enough room to reliably time out
|
|
// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
|
|
// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
|
|
pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
|
|
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
|
|
|
|
/// Minimum CLTV difference between the current block height and received inbound payments.
|
|
/// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
|
|
/// this value.
|
|
// Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
|
|
// any payments to succeed. Further, we don't want payments to fail if a block was found while
|
|
// a payment was being routed, so we add an extra block to be safe.
|
|
pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
|
|
|
|
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
|
|
// ie that if the next-hop peer fails the HTLC within
|
|
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
|
|
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
|
|
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
|
|
// LATENCY_GRACE_PERIOD_BLOCKS.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
|
|
|
|
// Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
|
|
// ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
|
|
|
|
/// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
|
|
/// to better separate parameters.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct ChannelCounterparty {
|
|
/// The node_id of our counterparty
|
|
pub node_id: PublicKey,
|
|
/// The Features the channel counterparty provided upon last connection.
|
|
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
|
|
/// many routing-relevant features are present in the init context.
|
|
pub features: InitFeatures,
|
|
/// The value, in satoshis, that must always be held in the channel for our counterparty. This
|
|
/// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
|
|
/// claiming at least this value on chain.
|
|
///
|
|
/// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
|
|
///
|
|
/// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
|
|
pub unspendable_punishment_reserve: u64,
|
|
/// Information on the fees and requirements that the counterparty requires when forwarding
|
|
/// payments to us through this channel.
|
|
pub forwarding_info: Option<CounterpartyForwardingInfo>,
|
|
}
|
|
|
|
/// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct ChannelDetails {
|
|
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
|
|
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
|
|
/// Note that this means this value is *not* persistent - it can change once during the
|
|
/// lifetime of the channel.
|
|
pub channel_id: [u8; 32],
|
|
/// Parameters which apply to our counterparty. See individual fields for more information.
|
|
pub counterparty: ChannelCounterparty,
|
|
/// The Channel's funding transaction output, if we've negotiated the funding transaction with
|
|
/// our counterparty already.
|
|
///
|
|
/// Note that, if this has been set, `channel_id` will be equivalent to
|
|
/// `funding_txo.unwrap().to_channel_id()`.
|
|
pub funding_txo: Option<OutPoint>,
|
|
/// The position of the funding transaction in the chain. None if the funding transaction has
|
|
/// not yet been confirmed and the channel fully opened.
|
|
pub short_channel_id: Option<u64>,
|
|
/// The value, in satoshis, of this channel as appears in the funding output
|
|
pub channel_value_satoshis: u64,
|
|
/// The value, in satoshis, that must always be held in the channel for us. This value ensures
|
|
/// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
|
|
/// this value on chain.
|
|
///
|
|
/// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
///
|
|
/// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
|
|
pub unspendable_punishment_reserve: Option<u64>,
|
|
/// The user_id passed in to create_channel, or 0 if the channel was inbound.
|
|
pub user_id: u64,
|
|
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
|
|
/// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
/// available for inclusion in new outbound HTLCs). This further does not include any pending
|
|
/// outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
///
|
|
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
|
|
/// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
|
|
/// should be able to spend nearly this amount.
|
|
pub outbound_capacity_msat: u64,
|
|
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
|
|
/// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
/// available for inclusion in new inbound HTLCs).
|
|
/// Note that there are some corner cases not fully handled here, so the actual available
|
|
/// inbound capacity may be slightly higher than this.
|
|
///
|
|
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
|
|
/// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
|
|
/// However, our counterparty should be able to spend nearly this amount.
|
|
pub inbound_capacity_msat: u64,
|
|
/// The number of required confirmations on the funding transaction before the funding will be
|
|
/// considered "locked". This number is selected by the channel fundee (i.e. us if
|
|
/// [`is_outbound`] is *not* set), and can be selected for inbound channels with
|
|
/// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
|
|
/// [`ChannelHandshakeLimits::max_minimum_depth`].
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
///
|
|
/// [`is_outbound`]: ChannelDetails::is_outbound
|
|
/// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
|
|
/// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
|
|
pub confirmations_required: Option<u32>,
|
|
/// The number of blocks (after our commitment transaction confirms) that we will need to wait
|
|
/// until we can claim our funds after we force-close the channel. During this time our
|
|
/// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
|
|
/// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
|
|
/// time to claim our non-HTLC-encumbered funds.
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
pub force_close_spend_delay: Option<u16>,
|
|
/// True if the channel was initiated (and thus funded) by us.
|
|
pub is_outbound: bool,
|
|
/// True if the channel is confirmed, funding_locked messages have been exchanged, and the
|
|
/// channel is not currently being shut down. `funding_locked` message exchange implies the
|
|
/// required confirmation count has been reached (and we were connected to the peer at some
|
|
/// point after the funding transaction received enough confirmations). The required
|
|
/// confirmation count is provided in [`confirmations_required`].
|
|
///
|
|
/// [`confirmations_required`]: ChannelDetails::confirmations_required
|
|
pub is_funding_locked: bool,
|
|
/// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
|
|
/// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
|
|
///
|
|
/// This is a strict superset of `is_funding_locked`.
|
|
pub is_usable: bool,
|
|
/// True if this channel is (or will be) publicly-announced.
|
|
pub is_public: bool,
|
|
}
|
|
|
|
/// If a payment fails to send, it can be in one of several states. This enum is returned as the
|
|
/// Err() type describing which state the payment is in, see the description of individual enum
|
|
/// states for more.
|
|
#[derive(Clone, Debug)]
|
|
pub enum PaymentSendFailure {
|
|
/// A parameter which was passed to send_payment was invalid, preventing us from attempting to
|
|
/// send the payment at all. No channel state has been changed or messages sent to peers, and
|
|
/// once you've changed the parameter at error, you can freely retry the payment in full.
|
|
ParameterError(APIError),
|
|
/// A parameter in a single path which was passed to send_payment was invalid, preventing us
|
|
/// from attempting to send the payment at all. No channel state has been changed or messages
|
|
/// sent to peers, and once you've changed the parameter at error, you can freely retry the
|
|
/// payment in full.
|
|
///
|
|
/// The results here are ordered the same as the paths in the route object which was passed to
|
|
/// send_payment.
|
|
PathParameterError(Vec<Result<(), APIError>>),
|
|
/// All paths which were attempted failed to send, with no channel state change taking place.
|
|
/// You can freely retry the payment in full (though you probably want to do so over different
|
|
/// paths than the ones selected).
|
|
AllFailedRetrySafe(Vec<APIError>),
|
|
/// Some paths which were attempted failed to send, though possibly not all. At least some
|
|
/// paths have irrevocably committed to the HTLC and retrying the payment in full would result
|
|
/// in over-/re-payment.
|
|
///
|
|
/// The results here are ordered the same as the paths in the route object which was passed to
|
|
/// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
|
|
/// retried (though there is currently no API with which to do so).
|
|
///
|
|
/// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
|
|
/// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
|
|
/// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
|
|
/// with the latest update_id.
|
|
PartialFailure(Vec<Result<(), APIError>>),
|
|
}
|
|
|
|
macro_rules! handle_error {
|
|
($self: ident, $internal: expr, $counterparty_node_id: expr) => {
|
|
match $internal {
|
|
Ok(msg) => Ok(msg),
|
|
Err(MsgHandleErrInternal { err, shutdown_finish }) => {
|
|
#[cfg(debug_assertions)]
|
|
{
|
|
// In testing, ensure there are no deadlocks where the lock is already held upon
|
|
// entering the macro.
|
|
assert!($self.channel_state.try_lock().is_ok());
|
|
}
|
|
|
|
let mut msg_events = Vec::with_capacity(2);
|
|
|
|
if let Some((shutdown_res, update_option)) = shutdown_finish {
|
|
$self.finish_force_close_channel(shutdown_res);
|
|
if let Some(update) = update_option {
|
|
msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
|
|
log_error!($self.logger, "{}", err.err);
|
|
if let msgs::ErrorAction::IgnoreError = err.action {
|
|
} else {
|
|
msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: $counterparty_node_id,
|
|
action: err.action.clone()
|
|
});
|
|
}
|
|
|
|
if !msg_events.is_empty() {
|
|
$self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
|
|
}
|
|
|
|
// Return error in case higher-API need one
|
|
Err(err)
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
|
|
macro_rules! convert_chan_err {
|
|
($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
|
|
match $err {
|
|
ChannelError::Ignore(msg) => {
|
|
(false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
|
|
},
|
|
ChannelError::Close(msg) => {
|
|
log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
|
|
if let Some(short_id) = $channel.get_short_channel_id() {
|
|
$short_to_id.remove(&short_id);
|
|
}
|
|
let shutdown_res = $channel.force_shutdown(true);
|
|
(true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
|
|
},
|
|
ChannelError::CloseDelayBroadcast(msg) => {
|
|
log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
|
|
if let Some(short_id) = $channel.get_short_channel_id() {
|
|
$short_to_id.remove(&short_id);
|
|
}
|
|
let shutdown_res = $channel.force_shutdown(false);
|
|
(true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! break_chan_entry {
|
|
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
|
|
if drop {
|
|
$entry.remove_entry();
|
|
}
|
|
break Err(res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! try_chan_entry {
|
|
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
|
|
if drop {
|
|
$entry.remove_entry();
|
|
}
|
|
return Err(res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! handle_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
|
|
};
|
|
($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $chan_id: expr) => {
|
|
match $err {
|
|
ChannelMonitorUpdateErr::PermanentFailure => {
|
|
log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
|
|
if let Some(short_id) = $chan.get_short_channel_id() {
|
|
$short_to_id.remove(&short_id);
|
|
}
|
|
// TODO: $failed_fails is dropped here, which will cause other channels to hit the
|
|
// chain in a confused state! We need to move them into the ChannelMonitor which
|
|
// will be responsible for failing backwards once things confirm on-chain.
|
|
// It's ok that we drop $failed_forwards here - at this point we'd rather they
|
|
// broadcast HTLC-Timeout and pay the associated fees to get their funds back than
|
|
// us bother trying to claim it just to forward on to another peer. If we're
|
|
// splitting hairs we'd prefer to claim payments that were to us, but we haven't
|
|
// given up the preimage yet, so might as well just wait until the payment is
|
|
// retried, avoiding the on-chain fees.
|
|
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id,
|
|
$chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
|
|
(res, true)
|
|
},
|
|
ChannelMonitorUpdateErr::TemporaryFailure => {
|
|
log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
|
|
log_bytes!($chan_id[..]),
|
|
if $resend_commitment && $resend_raa {
|
|
match $action_type {
|
|
RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
|
|
RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
|
|
}
|
|
} else if $resend_commitment { "commitment" }
|
|
else if $resend_raa { "RAA" }
|
|
else { "nothing" },
|
|
(&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
|
|
(&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
|
|
if !$resend_commitment {
|
|
debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
|
|
}
|
|
if !$resend_raa {
|
|
debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
|
|
}
|
|
$chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
|
|
(Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
|
|
},
|
|
}
|
|
};
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { {
|
|
let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $entry.key());
|
|
if drop {
|
|
$entry.remove_entry();
|
|
}
|
|
res
|
|
} };
|
|
}
|
|
|
|
macro_rules! return_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
|
|
};
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
|
|
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
|
|
}
|
|
}
|
|
|
|
// Does not break in case of TemporaryFailure!
|
|
macro_rules! maybe_break_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
|
|
(e, ChannelMonitorUpdateErr::PermanentFailure) => {
|
|
break e;
|
|
},
|
|
(_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! handle_chan_restoration_locked {
|
|
($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
|
|
$raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
|
|
$pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
|
|
let mut htlc_forwards = None;
|
|
let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
|
|
|
|
let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
|
|
let chanmon_update_is_none = chanmon_update.is_none();
|
|
let res = loop {
|
|
let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
|
|
if !forwards.is_empty() {
|
|
htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
|
|
$channel_entry.get().get_funding_txo().unwrap(), forwards));
|
|
}
|
|
|
|
if chanmon_update.is_some() {
|
|
// On reconnect, we, by definition, only resend a funding_locked if there have been
|
|
// no commitment updates, so the only channel monitor update which could also be
|
|
// associated with a funding_locked would be the funding_created/funding_signed
|
|
// monitor update. That monitor update failing implies that we won't send
|
|
// funding_locked until it's been updated, so we can't have a funding_locked and a
|
|
// monitor update here (so we don't bother to handle it correctly below).
|
|
assert!($funding_locked.is_none());
|
|
// A channel monitor update makes no sense without either a funding_locked or a
|
|
// commitment update to process after it. Since we can't have a funding_locked, we
|
|
// only bother to handle the monitor-update + commitment_update case below.
|
|
assert!($commitment_update.is_some());
|
|
}
|
|
|
|
if let Some(msg) = $funding_locked {
|
|
// Similar to the above, this implies that we're letting the funding_locked fly
|
|
// before it should be allowed to.
|
|
assert!(chanmon_update.is_none());
|
|
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
|
|
node_id: counterparty_node_id,
|
|
msg,
|
|
});
|
|
if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
|
|
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: counterparty_node_id,
|
|
msg: announcement_sigs,
|
|
});
|
|
}
|
|
$channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
|
|
}
|
|
|
|
let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
|
|
if let Some(monitor_update) = chanmon_update {
|
|
// We only ever broadcast a funding transaction in response to a funding_signed
|
|
// message and the resulting monitor update. Thus, on channel_reestablish
|
|
// message handling we can't have a funding transaction to broadcast. When
|
|
// processing a monitor update finishing resulting in a funding broadcast, we
|
|
// cannot have a second monitor update, thus this case would indicate a bug.
|
|
assert!(funding_broadcastable.is_none());
|
|
// Given we were just reconnected or finished updating a channel monitor, the
|
|
// only case where we can get a new ChannelMonitorUpdate would be if we also
|
|
// have some commitment updates to send as well.
|
|
assert!($commitment_update.is_some());
|
|
if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
|
|
// channel_reestablish doesn't guarantee the order it returns is sensical
|
|
// for the messages it returns, but if we're setting what messages to
|
|
// re-transmit on monitor update success, we need to make sure it is sane.
|
|
let mut order = $order;
|
|
if $raa.is_none() {
|
|
order = RAACommitmentOrder::CommitmentFirst;
|
|
}
|
|
break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
|
|
}
|
|
}
|
|
|
|
macro_rules! handle_cs { () => {
|
|
if let Some(update) = $commitment_update {
|
|
$channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: counterparty_node_id,
|
|
updates: update,
|
|
});
|
|
}
|
|
} }
|
|
macro_rules! handle_raa { () => {
|
|
if let Some(revoke_and_ack) = $raa {
|
|
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: counterparty_node_id,
|
|
msg: revoke_and_ack,
|
|
});
|
|
}
|
|
} }
|
|
match $order {
|
|
RAACommitmentOrder::CommitmentFirst => {
|
|
handle_cs!();
|
|
handle_raa!();
|
|
},
|
|
RAACommitmentOrder::RevokeAndACKFirst => {
|
|
handle_raa!();
|
|
handle_cs!();
|
|
},
|
|
}
|
|
if let Some(tx) = funding_broadcastable {
|
|
log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
|
|
$self.tx_broadcaster.broadcast_transaction(&tx);
|
|
}
|
|
break Ok(());
|
|
};
|
|
|
|
if chanmon_update_is_none {
|
|
// If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
|
|
// above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
|
|
// should *never* end up calling back to `chain_monitor.update_channel()`.
|
|
assert!(res.is_ok());
|
|
}
|
|
|
|
(htlc_forwards, res, counterparty_node_id)
|
|
} }
|
|
}
|
|
|
|
macro_rules! post_handle_chan_restoration {
|
|
($self: ident, $locked_res: expr) => { {
|
|
let (htlc_forwards, res, counterparty_node_id) = $locked_res;
|
|
|
|
let _ = handle_error!($self, res, counterparty_node_id);
|
|
|
|
if let Some(forwards) = htlc_forwards {
|
|
$self.forward_htlcs(&mut [forwards][..]);
|
|
}
|
|
} }
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
/// Constructs a new ChannelManager to hold several channels and route between them.
|
|
///
|
|
/// This is the main "logic hub" for all channel-related actions, and implements
|
|
/// ChannelMessageHandler.
|
|
///
|
|
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
|
|
///
|
|
/// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
|
|
///
|
|
/// Users need to notify the new ChannelManager when a new block is connected or
|
|
/// disconnected using its `block_connected` and `block_disconnected` methods, starting
|
|
/// from after `params.latest_hash`.
|
|
pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
|
|
let mut secp_ctx = Secp256k1::new();
|
|
secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
|
|
|
|
ChannelManager {
|
|
default_configuration: config.clone(),
|
|
genesis_hash: genesis_block(params.network).header.block_hash(),
|
|
fee_estimator: fee_est,
|
|
chain_monitor,
|
|
tx_broadcaster,
|
|
|
|
best_block: RwLock::new(params.best_block),
|
|
|
|
channel_state: Mutex::new(ChannelHolder{
|
|
by_id: HashMap::new(),
|
|
short_to_id: HashMap::new(),
|
|
forward_htlcs: HashMap::new(),
|
|
claimable_htlcs: HashMap::new(),
|
|
pending_msg_events: Vec::new(),
|
|
}),
|
|
pending_inbound_payments: Mutex::new(HashMap::new()),
|
|
pending_outbound_payments: Mutex::new(HashSet::new()),
|
|
|
|
our_network_key: keys_manager.get_node_secret(),
|
|
our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
|
|
secp_ctx,
|
|
|
|
last_node_announcement_serial: AtomicUsize::new(0),
|
|
highest_seen_timestamp: AtomicUsize::new(0),
|
|
|
|
per_peer_state: RwLock::new(HashMap::new()),
|
|
|
|
pending_events: Mutex::new(Vec::new()),
|
|
pending_background_events: Mutex::new(Vec::new()),
|
|
total_consistency_lock: RwLock::new(()),
|
|
persistence_notifier: PersistenceNotifier::new(),
|
|
|
|
keys_manager,
|
|
|
|
logger,
|
|
}
|
|
}
|
|
|
|
/// Gets the current configuration applied to all new channels, as
|
|
pub fn get_current_default_configuration(&self) -> &UserConfig {
|
|
&self.default_configuration
|
|
}
|
|
|
|
/// Creates a new outbound channel to the given remote node and with the given value.
|
|
///
|
|
/// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
|
|
/// tracking of which events correspond with which create_channel call. Note that the
|
|
/// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
|
|
/// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
|
|
/// otherwise ignored.
|
|
///
|
|
/// If successful, will generate a SendOpenChannel message event, so you should probably poll
|
|
/// PeerManager::process_events afterwards.
|
|
///
|
|
/// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
|
|
/// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
|
|
///
|
|
/// Note that we do not check if you are currently connected to the given peer. If no
|
|
/// connection is available, the outbound `open_channel` message may fail to send, resulting in
|
|
/// the channel eventually being silently forgotten.
|
|
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
|
|
if channel_value_satoshis < 1000 {
|
|
return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
|
|
}
|
|
|
|
let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
|
|
let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
|
|
let res = channel.get_open_channel(self.genesis_hash.clone());
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
// We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
|
|
debug_assert!(&self.total_consistency_lock.try_write().is_err());
|
|
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
match channel_state.by_id.entry(channel.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
if cfg!(feature = "fuzztarget") {
|
|
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
|
|
} else {
|
|
panic!("RNG is bad???");
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
|
|
node_id: their_network_key,
|
|
msg: res,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
|
|
let mut res = Vec::new();
|
|
{
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
res.reserve(channel_state.by_id.len());
|
|
for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
|
|
let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
|
|
let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
|
|
channel.get_holder_counterparty_selected_channel_reserve_satoshis();
|
|
res.push(ChannelDetails {
|
|
channel_id: (*channel_id).clone(),
|
|
counterparty: ChannelCounterparty {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
features: InitFeatures::empty(),
|
|
unspendable_punishment_reserve: to_remote_reserve_satoshis,
|
|
forwarding_info: channel.counterparty_forwarding_info(),
|
|
},
|
|
funding_txo: channel.get_funding_txo(),
|
|
short_channel_id: channel.get_short_channel_id(),
|
|
channel_value_satoshis: channel.get_value_satoshis(),
|
|
unspendable_punishment_reserve: to_self_reserve_satoshis,
|
|
inbound_capacity_msat,
|
|
outbound_capacity_msat,
|
|
user_id: channel.get_user_id(),
|
|
confirmations_required: channel.minimum_depth(),
|
|
force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
|
|
is_outbound: channel.is_outbound(),
|
|
is_funding_locked: channel.is_usable(),
|
|
is_usable: channel.is_live(),
|
|
is_public: channel.should_announce(),
|
|
});
|
|
}
|
|
}
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for chan in res.iter_mut() {
|
|
if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
|
|
chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Gets the list of open channels, in random order. See ChannelDetail field documentation for
|
|
/// more information.
|
|
pub fn list_channels(&self) -> Vec<ChannelDetails> {
|
|
self.list_channels_with_filter(|_| true)
|
|
}
|
|
|
|
/// Gets the list of usable channels, in random order. Useful as an argument to
|
|
/// get_route to ensure non-announced channels are used.
|
|
///
|
|
/// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
|
|
/// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
|
|
/// are.
|
|
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
|
|
// Note we use is_live here instead of usable which leads to somewhat confused
|
|
// internal/external nomenclature, but that's ok cause that's probably what the user
|
|
// really wanted anyway.
|
|
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
|
|
}
|
|
|
|
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
|
|
/// will be accepted on the given channel, and after additional timeout/the closing of all
|
|
/// pending HTLCs, the channel will be closed on chain.
|
|
///
|
|
/// May generate a SendShutdown message event on success, which should be relayed.
|
|
pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let (mut failed_htlcs, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: chan_entry.get().get_counterparty_node_id(),
|
|
msg: shutdown_msg
|
|
});
|
|
if chan_entry.get().is_shutdown() {
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(failed_htlcs, Some(chan_entry.remove_entry().1))
|
|
} else { (failed_htlcs, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
|
|
}
|
|
};
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
let chan_update = if let Some(chan) = chan_option {
|
|
self.get_channel_update_for_broadcast(&chan).ok()
|
|
} else { None };
|
|
|
|
if let Some(update) = chan_update {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[inline]
|
|
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
|
|
let (monitor_update_option, mut failed_htlcs) = shutdown_res;
|
|
log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
if let Some((funding_txo, monitor_update)) = monitor_update_option {
|
|
// There isn't anything we can do if we get an update failure - we're already
|
|
// force-closing. The monitor update on the required in-memory copy should broadcast
|
|
// the latest local state, which is the best we can do anyway. Thus, it is safe to
|
|
// ignore the result here.
|
|
let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
|
|
}
|
|
}
|
|
|
|
fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
|
|
let mut chan = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
|
|
if let Some(node_id) = peer_node_id {
|
|
if chan.get().get_counterparty_node_id() != *node_id {
|
|
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
|
|
}
|
|
}
|
|
if let Some(short_id) = chan.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
chan.remove_entry().1
|
|
} else {
|
|
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
|
|
}
|
|
};
|
|
log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
|
|
self.finish_force_close_channel(chan.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
|
|
Ok(chan.get_counterparty_node_id())
|
|
}
|
|
|
|
/// Force closes a channel, immediately broadcasting the latest local commitment transaction to
|
|
/// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
|
|
pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
match self.force_close_channel_with_peer(channel_id, None) {
|
|
Ok(counterparty_node_id) => {
|
|
self.channel_state.lock().unwrap().pending_msg_events.push(
|
|
events::MessageSendEvent::HandleError {
|
|
node_id: counterparty_node_id,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
|
|
},
|
|
}
|
|
);
|
|
Ok(())
|
|
},
|
|
Err(e) => Err(e)
|
|
}
|
|
}
|
|
|
|
/// Force close all channels, immediately broadcasting the latest local commitment transaction
|
|
/// for each to the chain and rejecting new HTLCs on each.
|
|
pub fn force_close_all_channels(&self) {
|
|
for chan in self.list_channels() {
|
|
let _ = self.force_close_channel(&chan.channel_id);
|
|
}
|
|
}
|
|
|
|
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
|
|
macro_rules! return_malformed_err {
|
|
($msg: expr, $err_code: expr) => {
|
|
{
|
|
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
|
|
failure_code: $err_code,
|
|
})), self.channel_state.lock().unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Err(_) = msg.onion_routing_packet.public_key {
|
|
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
|
|
}
|
|
|
|
let shared_secret = {
|
|
let mut arr = [0; 32];
|
|
arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
|
|
arr
|
|
};
|
|
let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
|
|
|
|
if msg.onion_routing_packet.version != 0 {
|
|
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
|
|
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
|
|
//the hash doesn't really serve any purpose - in the case of hashing all data, the
|
|
//receiving node would have to brute force to figure out which version was put in the
|
|
//packet by the node that send us the message, in the case of hashing the hop_data, the
|
|
//node knows the HMAC matched, so they already know what is there...
|
|
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
|
|
}
|
|
|
|
let mut hmac = HmacEngine::<Sha256>::new(&mu);
|
|
hmac.input(&msg.onion_routing_packet.hop_data);
|
|
hmac.input(&msg.payment_hash.0[..]);
|
|
if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
|
|
return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
|
|
}
|
|
|
|
let mut channel_state = None;
|
|
macro_rules! return_err {
|
|
($msg: expr, $err_code: expr, $data: expr) => {
|
|
{
|
|
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
if channel_state.is_none() {
|
|
channel_state = Some(self.channel_state.lock().unwrap());
|
|
}
|
|
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
|
|
})), channel_state.unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
|
|
let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
|
|
let (next_hop_data, next_hop_hmac) = {
|
|
match msgs::OnionHopData::read(&mut chacha_stream) {
|
|
Err(err) => {
|
|
let error_code = match err {
|
|
msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
|
|
msgs::DecodeError::UnknownRequiredFeature|
|
|
msgs::DecodeError::InvalidValue|
|
|
msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
|
|
_ => 0x2000 | 2, // Should never happen
|
|
};
|
|
return_err!("Unable to decode our hop data", error_code, &[0;0]);
|
|
},
|
|
Ok(msg) => {
|
|
let mut hmac = [0; 32];
|
|
if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
|
|
return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
|
|
}
|
|
(msg, hmac)
|
|
},
|
|
}
|
|
};
|
|
|
|
let pending_forward_info = if next_hop_hmac == [0; 32] {
|
|
#[cfg(test)]
|
|
{
|
|
// In tests, make sure that the initial onion pcket data is, at least, non-0.
|
|
// We could do some fancy randomness test here, but, ehh, whatever.
|
|
// This checks for the issue where you can calculate the path length given the
|
|
// onion data as all the path entries that the originator sent will be here
|
|
// as-is (and were originally 0s).
|
|
// Of course reverse path calculation is still pretty easy given naive routing
|
|
// algorithms, but this fixes the most-obvious case.
|
|
let mut next_bytes = [0; 32];
|
|
chacha_stream.read_exact(&mut next_bytes).unwrap();
|
|
assert_ne!(next_bytes[..], [0; 32][..]);
|
|
chacha_stream.read_exact(&mut next_bytes).unwrap();
|
|
assert_ne!(next_bytes[..], [0; 32][..]);
|
|
}
|
|
|
|
// OUR PAYMENT!
|
|
// final_expiry_too_soon
|
|
// We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
|
|
// HTLC_FAIL_BACK_BUFFER blocks to go.
|
|
// Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
|
|
// before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
|
|
if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
|
|
return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
|
|
}
|
|
// final_incorrect_htlc_amount
|
|
if next_hop_data.amt_to_forward > msg.amount_msat {
|
|
return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
|
|
}
|
|
// final_incorrect_cltv_expiry
|
|
if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
|
|
return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
|
|
}
|
|
|
|
let payment_data = match next_hop_data.format {
|
|
msgs::OnionHopDataFormat::Legacy { .. } => None,
|
|
msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
|
|
msgs::OnionHopDataFormat::FinalNode { payment_data, .. } => payment_data,
|
|
};
|
|
|
|
if payment_data.is_none() {
|
|
return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
|
|
}
|
|
|
|
// Note that we could obviously respond immediately with an update_fulfill_htlc
|
|
// message, however that would leak that we are the recipient of this payment, so
|
|
// instead we stay symmetric with the forwarding case, only responding (after a
|
|
// delay) once they've send us a commitment_signed!
|
|
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Receive {
|
|
payment_data: payment_data.unwrap(),
|
|
incoming_cltv_expiry: msg.cltv_expiry,
|
|
},
|
|
payment_hash: msg.payment_hash.clone(),
|
|
incoming_shared_secret: shared_secret,
|
|
amt_to_forward: next_hop_data.amt_to_forward,
|
|
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
|
|
})
|
|
} else {
|
|
let mut new_packet_data = [0; 20*65];
|
|
let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
|
|
#[cfg(debug_assertions)]
|
|
{
|
|
// Check two things:
|
|
// a) that the behavior of our stream here will return Ok(0) even if the TLV
|
|
// read above emptied out our buffer and the unwrap() wont needlessly panic
|
|
// b) that we didn't somehow magically end up with extra data.
|
|
let mut t = [0; 1];
|
|
debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
|
|
}
|
|
// Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
|
|
// fill the onion hop data we'll forward to our next-hop peer.
|
|
chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
|
|
|
|
let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
|
|
|
|
let blinding_factor = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&new_pubkey.serialize()[..]);
|
|
sha.input(&shared_secret);
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
|
|
Err(e)
|
|
} else { Ok(new_pubkey) };
|
|
|
|
let outgoing_packet = msgs::OnionPacket {
|
|
version: 0,
|
|
public_key,
|
|
hop_data: new_packet_data,
|
|
hmac: next_hop_hmac.clone(),
|
|
};
|
|
|
|
let short_channel_id = match next_hop_data.format {
|
|
msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
|
|
msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
|
|
msgs::OnionHopDataFormat::FinalNode { .. } => {
|
|
return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
|
|
},
|
|
};
|
|
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Forward {
|
|
onion_packet: outgoing_packet,
|
|
short_channel_id,
|
|
},
|
|
payment_hash: msg.payment_hash.clone(),
|
|
incoming_shared_secret: shared_secret,
|
|
amt_to_forward: next_hop_data.amt_to_forward,
|
|
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
|
|
})
|
|
};
|
|
|
|
channel_state = Some(self.channel_state.lock().unwrap());
|
|
if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
|
|
// If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
|
|
// with a short_channel_id of 0. This is important as various things later assume
|
|
// short_channel_id is non-0 in any ::Forward.
|
|
if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
|
|
let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
|
|
if let Some((err, code, chan_update)) = loop {
|
|
let forwarding_id = match id_option {
|
|
None => { // unknown_next_peer
|
|
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
|
|
},
|
|
Some(id) => id.clone(),
|
|
};
|
|
|
|
let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
|
|
|
|
if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
|
|
// Note that the behavior here should be identical to the above block - we
|
|
// should NOT reveal the existence or non-existence of a private channel if
|
|
// we don't allow forwards outbound over them.
|
|
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
|
|
}
|
|
|
|
// Note that we could technically not return an error yet here and just hope
|
|
// that the connection is reestablished or monitor updated by the time we get
|
|
// around to doing the actual forward, but better to fail early if we can and
|
|
// hopefully an attacker trying to path-trace payments cannot make this occur
|
|
// on a small/per-node/per-channel scale.
|
|
if !chan.is_live() { // channel_disabled
|
|
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
|
|
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
|
|
.and_then(|prop_fee| { (prop_fee / 1000000)
|
|
.checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
|
|
if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
|
|
break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
|
|
break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
let cur_height = self.best_block.read().unwrap().height() + 1;
|
|
// Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
|
|
// packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
|
|
if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
|
|
break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
|
|
break Some(("CLTV expiry is too far in the future", 21, None));
|
|
}
|
|
// In theory, we would be safe against unintentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
|
|
// But, to be safe against policy reception, we use a longer delay.
|
|
if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
|
|
break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
|
|
}
|
|
|
|
break None;
|
|
}
|
|
{
|
|
let mut res = Vec::with_capacity(8 + 128);
|
|
if let Some(chan_update) = chan_update {
|
|
if code == 0x1000 | 11 || code == 0x1000 | 12 {
|
|
res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
|
|
}
|
|
else if code == 0x1000 | 13 {
|
|
res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
|
|
}
|
|
else if code == 0x1000 | 20 {
|
|
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
|
|
res.extend_from_slice(&byte_utils::be16_to_array(0));
|
|
}
|
|
res.extend_from_slice(&chan_update.encode_with_len()[..]);
|
|
}
|
|
return_err!(err, code, &res[..]);
|
|
}
|
|
}
|
|
}
|
|
|
|
(pending_forward_info, channel_state.unwrap())
|
|
}
|
|
|
|
/// Gets the current channel_update for the given channel. This first checks if the channel is
|
|
/// public, and thus should be called whenever the result is going to be passed out in a
|
|
/// [`MessageSendEvent::BroadcastChannelUpdate`] event.
|
|
///
|
|
/// May be called with channel_state already locked!
|
|
fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
if !chan.should_announce() {
|
|
return Err(LightningError {
|
|
err: "Cannot broadcast a channel_update for a private channel".to_owned(),
|
|
action: msgs::ErrorAction::IgnoreError
|
|
});
|
|
}
|
|
log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
|
|
self.get_channel_update_for_unicast(chan)
|
|
}
|
|
|
|
/// Gets the current channel_update for the given channel. This does not check if the channel
|
|
/// is public (only returning an Err if the channel does not yet have an assigned short_id),
|
|
/// and thus MUST NOT be called unless the recipient of the resulting message has already
|
|
/// provided evidence that they know about the existence of the channel.
|
|
/// May be called with channel_state already locked!
|
|
fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
|
|
let short_channel_id = match chan.get_short_channel_id() {
|
|
None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
|
|
Some(id) => id,
|
|
};
|
|
|
|
let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
|
|
|
|
let unsigned = msgs::UnsignedChannelUpdate {
|
|
chain_hash: self.genesis_hash,
|
|
short_channel_id,
|
|
timestamp: chan.get_update_time_counter(),
|
|
flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
|
|
cltv_expiry_delta: chan.get_cltv_expiry_delta(),
|
|
htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
|
|
htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
|
|
fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
|
|
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
|
|
excess_data: Vec::new(),
|
|
};
|
|
|
|
let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
|
|
let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
|
|
|
|
Ok(msgs::ChannelUpdate {
|
|
signature: sig,
|
|
contents: unsigned
|
|
})
|
|
}
|
|
|
|
// Only public for testing, this should otherwise never be called direcly
|
|
pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
|
|
log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
|
|
let prng_seed = self.keys_manager.get_secure_random_bytes();
|
|
let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
|
|
let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
|
|
|
|
let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
|
|
.map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
|
|
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
|
|
if onion_utils::route_size_insane(&onion_payloads) {
|
|
return Err(APIError::RouteError{err: "Route size too large considering onion data"});
|
|
}
|
|
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
|
|
|
|
let err: Result<(), _> = loop {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
|
|
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
|
|
Some(id) => id.clone(),
|
|
};
|
|
|
|
let channel_state = &mut *channel_lock;
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
|
|
match {
|
|
if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
|
|
return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
|
|
}
|
|
if !chan.get().is_live() {
|
|
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
|
|
}
|
|
break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
|
|
path: path.clone(),
|
|
session_priv: session_priv.clone(),
|
|
first_hop_htlc_msat: htlc_msat,
|
|
}, onion_packet, &self.logger), channel_state, chan)
|
|
} {
|
|
Some((update_add, commitment_signed, monitor_update)) => {
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
|
|
// Note that MonitorUpdateFailed here indicates (per function docs)
|
|
// that we will resend the commitment update once monitor updating
|
|
// is restored. Therefore, we must return an error indicating that
|
|
// it is unsafe to retry the payment wholesale, which we do in the
|
|
// send_payment check for MonitorUpdateFailed, below.
|
|
return Err(APIError::MonitorUpdateFailed);
|
|
}
|
|
|
|
log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: path.first().unwrap().pubkey,
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: vec![update_add],
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed,
|
|
},
|
|
});
|
|
},
|
|
None => {},
|
|
}
|
|
} else { unreachable!(); }
|
|
return Ok(());
|
|
};
|
|
|
|
match handle_error!(self, err, path.first().unwrap().pubkey) {
|
|
Ok(_) => unreachable!(),
|
|
Err(e) => {
|
|
Err(APIError::ChannelUnavailable { err: e.err })
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Sends a payment along a given route.
|
|
///
|
|
/// Value parameters are provided via the last hop in route, see documentation for RouteHop
|
|
/// fields for more info.
|
|
///
|
|
/// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
|
|
/// payment), we don't do anything to stop you! We always try to ensure that if the provided
|
|
/// next hop knows the preimage to payment_hash they can claim an additional amount as
|
|
/// specified in the last hop in the route! Thus, you should probably do your own
|
|
/// payment_preimage tracking (which you should already be doing as they represent "proof of
|
|
/// payment") and prevent double-sends yourself.
|
|
///
|
|
/// May generate SendHTLCs message(s) event on success, which should be relayed.
|
|
///
|
|
/// Each path may have a different return value, and PaymentSendValue may return a Vec with
|
|
/// each entry matching the corresponding-index entry in the route paths, see
|
|
/// PaymentSendFailure for more info.
|
|
///
|
|
/// In general, a path may raise:
|
|
/// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
|
|
/// node public key) is specified.
|
|
/// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
|
|
/// (including due to previous monitor update failure or new permanent monitor update
|
|
/// failure).
|
|
/// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
|
|
/// relevant updates.
|
|
///
|
|
/// Note that depending on the type of the PaymentSendFailure the HTLC may have been
|
|
/// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
|
|
/// different route unless you intend to pay twice!
|
|
///
|
|
/// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
|
|
/// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
|
|
/// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
|
|
/// must not contain multiple paths as multi-path payments require a recipient-provided
|
|
/// payment_secret.
|
|
/// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
|
|
/// bit set (either as required or as available). If multiple paths are present in the Route,
|
|
/// we assume the invoice had the basic_mpp feature set.
|
|
pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
|
|
if route.paths.len() < 1 {
|
|
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
|
|
}
|
|
if route.paths.len() > 10 {
|
|
// This limit is completely arbitrary - there aren't any real fundamental path-count
|
|
// limits. After we support retrying individual paths we should likely bump this, but
|
|
// for now more than 10 paths likely carries too much one-path failure.
|
|
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
|
|
}
|
|
let mut total_value = 0;
|
|
let our_node_id = self.get_our_node_id();
|
|
let mut path_errs = Vec::with_capacity(route.paths.len());
|
|
'path_check: for path in route.paths.iter() {
|
|
if path.len() < 1 || path.len() > 20 {
|
|
path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
|
|
continue 'path_check;
|
|
}
|
|
for (idx, hop) in path.iter().enumerate() {
|
|
if idx != path.len() - 1 && hop.pubkey == our_node_id {
|
|
path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
|
|
continue 'path_check;
|
|
}
|
|
}
|
|
total_value += path.last().unwrap().fee_msat;
|
|
path_errs.push(Ok(()));
|
|
}
|
|
if path_errs.iter().any(|e| e.is_err()) {
|
|
return Err(PaymentSendFailure::PathParameterError(path_errs));
|
|
}
|
|
|
|
let cur_height = self.best_block.read().unwrap().height() + 1;
|
|
let mut results = Vec::new();
|
|
for path in route.paths.iter() {
|
|
results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
|
|
}
|
|
let mut has_ok = false;
|
|
let mut has_err = false;
|
|
for res in results.iter() {
|
|
if res.is_ok() { has_ok = true; }
|
|
if res.is_err() { has_err = true; }
|
|
if let &Err(APIError::MonitorUpdateFailed) = res {
|
|
// MonitorUpdateFailed is inherently unsafe to retry, so we call it a
|
|
// PartialFailure.
|
|
has_err = true;
|
|
has_ok = true;
|
|
break;
|
|
}
|
|
}
|
|
if has_err && has_ok {
|
|
Err(PaymentSendFailure::PartialFailure(results))
|
|
} else if has_err {
|
|
Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Handles the generation of a funding transaction, optionally (for tests) with a function
|
|
/// which checks the correctness of the funding transaction given the associated channel.
|
|
fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
|
|
(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
|
|
let (chan, msg) = {
|
|
let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
|
|
Some(mut chan) => {
|
|
let funding_txo = find_funding_output(&chan, &funding_transaction)?;
|
|
|
|
(chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
|
|
.map_err(|e| if let ChannelError::Close(msg) = e {
|
|
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
|
|
} else { unreachable!(); })
|
|
, chan)
|
|
},
|
|
None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
|
|
};
|
|
match handle_error!(self, res, chan.get_counterparty_node_id()) {
|
|
Ok(funding_msg) => {
|
|
(chan, funding_msg)
|
|
},
|
|
Err(_) => { return Err(APIError::ChannelUnavailable {
|
|
err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
|
|
}) },
|
|
}
|
|
};
|
|
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
msg,
|
|
});
|
|
match channel_state.by_id.entry(chan.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
panic!("Generated duplicate funding txid?");
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(chan);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
|
|
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
|
|
Ok(OutPoint { txid: tx.txid(), index: output_index })
|
|
})
|
|
}
|
|
|
|
/// Call this upon creation of a funding transaction for the given channel.
|
|
///
|
|
/// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
|
|
/// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
|
|
///
|
|
/// Panics if a funding transaction has already been provided for this channel.
|
|
///
|
|
/// May panic if the output found in the funding transaction is duplicative with some other
|
|
/// channel (note that this should be trivially prevented by using unique funding transaction
|
|
/// keys per-channel).
|
|
///
|
|
/// Do NOT broadcast the funding transaction yourself. When we have safely received our
|
|
/// counterparty's signature the funding transaction will automatically be broadcast via the
|
|
/// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
|
|
///
|
|
/// Note that this includes RBF or similar transaction replacement strategies - lightning does
|
|
/// not currently support replacing a funding transaction on an existing channel. Instead,
|
|
/// create a new channel with a conflicting funding transaction.
|
|
///
|
|
/// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
|
|
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
for inp in funding_transaction.input.iter() {
|
|
if inp.witness.is_empty() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
|
|
});
|
|
}
|
|
}
|
|
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
|
|
let mut output_index = None;
|
|
let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
|
|
for (idx, outp) in tx.output.iter().enumerate() {
|
|
if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
|
|
if output_index.is_some() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Multiple outputs matched the expected script and value".to_owned()
|
|
});
|
|
}
|
|
if idx > u16::max_value() as usize {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
|
|
});
|
|
}
|
|
output_index = Some(idx as u16);
|
|
}
|
|
}
|
|
if output_index.is_none() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
|
|
});
|
|
}
|
|
Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
|
|
})
|
|
}
|
|
|
|
fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
|
|
if !chan.should_announce() {
|
|
log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
|
|
return None
|
|
}
|
|
|
|
let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
|
|
Ok(res) => res,
|
|
Err(_) => return None, // Only in case of state precondition violations eg channel is closing
|
|
};
|
|
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
|
|
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
|
|
|
|
Some(msgs::AnnouncementSignatures {
|
|
channel_id: chan.channel_id(),
|
|
short_channel_id: chan.get_short_channel_id().unwrap(),
|
|
node_signature: our_node_sig,
|
|
bitcoin_signature: our_bitcoin_sig,
|
|
})
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
// Messages of up to 64KB should never end up more than half full with addresses, as that would
|
|
// be absurd. We ensure this by checking that at least 500 (our stated public contract on when
|
|
// broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
|
|
// message...
|
|
const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
// ...by failing to compile if the number of addresses that would be half of a message is
|
|
// smaller than 500:
|
|
const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
|
|
|
|
/// Regenerates channel_announcements and generates a signed node_announcement from the given
|
|
/// arguments, providing them in corresponding events via
|
|
/// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
|
|
/// on-chain. This effectively re-broadcasts all channel announcements and sends our node
|
|
/// announcement to ensure that the lightning P2P network is aware of the channels we have and
|
|
/// our network addresses.
|
|
///
|
|
/// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
|
|
/// node to humans. They carry no in-protocol meaning.
|
|
///
|
|
/// `addresses` represent the set (possibly empty) of socket addresses on which this node
|
|
/// accepts incoming connections. These will be included in the node_announcement, publicly
|
|
/// tying these addresses together and to this node. If you wish to preserve user privacy,
|
|
/// addresses should likely contain only Tor Onion addresses.
|
|
///
|
|
/// Panics if `addresses` is absurdly large (more than 500).
|
|
///
|
|
/// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
|
|
pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
if addresses.len() > 500 {
|
|
panic!("More than half the message size was taken up by public addresses!");
|
|
}
|
|
|
|
// While all existing nodes handle unsorted addresses just fine, the spec requires that
|
|
// addresses be sorted for future compatibility.
|
|
addresses.sort_by_key(|addr| addr.get_id());
|
|
|
|
let announcement = msgs::UnsignedNodeAnnouncement {
|
|
features: NodeFeatures::known(),
|
|
timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
|
|
node_id: self.get_our_node_id(),
|
|
rgb, alias, addresses,
|
|
excess_address_data: Vec::new(),
|
|
excess_data: Vec::new(),
|
|
};
|
|
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
|
|
let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
|
|
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
let mut announced_chans = false;
|
|
for (_, chan) in channel_state.by_id.iter() {
|
|
if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
|
|
msg,
|
|
update_msg: match self.get_channel_update_for_broadcast(chan) {
|
|
Ok(msg) => msg,
|
|
Err(_) => continue,
|
|
},
|
|
});
|
|
announced_chans = true;
|
|
} else {
|
|
// If the channel is not public or has not yet reached funding_locked, check the
|
|
// next channel. If we don't yet have any public channels, we'll skip the broadcast
|
|
// below as peers may not accept it without channels on chain first.
|
|
}
|
|
}
|
|
|
|
if announced_chans {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
|
|
msg: msgs::NodeAnnouncement {
|
|
signature: node_announce_sig,
|
|
contents: announcement
|
|
},
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Processes HTLCs which are pending waiting on random forward delay.
|
|
///
|
|
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
|
|
/// Will likely generate further events.
|
|
pub fn process_pending_htlc_forwards(&self) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut new_events = Vec::new();
|
|
let mut failed_forwards = Vec::new();
|
|
let mut handle_errors = Vec::new();
|
|
{
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
|
|
if short_chan_id != 0 {
|
|
let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
|
|
Some(chan_id) => chan_id.clone(),
|
|
None => {
|
|
failed_forwards.reserve(pending_forwards.len());
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
|
|
prev_funding_outpoint } => {
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
|
|
});
|
|
failed_forwards.push((htlc_source, forward_info.payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
|
|
));
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
// Channel went away before we could fail it. This implies
|
|
// the channel is now on chain and our counterparty is
|
|
// trying to broadcast the HTLC-Timeout, but that's their
|
|
// problem, not ours.
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
};
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
|
|
let mut add_htlc_msgs = Vec::new();
|
|
let mut fail_htlc_msgs = Vec::new();
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Forward {
|
|
onion_packet, ..
|
|
}, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
|
|
prev_funding_outpoint } => {
|
|
log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
});
|
|
match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
|
|
Err(e) => {
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
|
|
} else {
|
|
panic!("Stated return value requirements in send_htlc() were not met");
|
|
}
|
|
let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
|
|
failed_forwards.push((htlc_source, payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
|
|
));
|
|
continue;
|
|
},
|
|
Ok(update_add) => {
|
|
match update_add {
|
|
Some(msg) => { add_htlc_msgs.push(msg); },
|
|
None => {
|
|
// Nothing to do here...we're waiting on a remote
|
|
// revoke_and_ack before we can add anymore HTLCs. The Channel
|
|
// will automatically handle building the update_add_htlc and
|
|
// commitment_signed messages when we can.
|
|
// TODO: Do some kind of timer to set the channel as !is_live()
|
|
// as we don't really want others relying on us relaying through
|
|
// this channel currently :/.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
HTLCForwardInfo::AddHTLC { .. } => {
|
|
panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
|
|
},
|
|
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
|
|
log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
|
|
match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
|
|
Err(e) => {
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
|
|
} else {
|
|
panic!("Stated return value requirements in get_update_fail_htlc() were not met");
|
|
}
|
|
// fail-backs are best-effort, we probably already have one
|
|
// pending, and if not that's OK, if not, the channel is on
|
|
// the chain and sending the HTLC-Timeout is their problem.
|
|
continue;
|
|
},
|
|
Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
|
|
Ok(None) => {
|
|
// Nothing to do here...we're waiting on a remote
|
|
// revoke_and_ack before we can update the commitment
|
|
// transaction. The Channel will automatically handle
|
|
// building the update_fail_htlc and commitment_signed
|
|
// messages when we can.
|
|
// We don't need any kind of timer here as they should fail
|
|
// the channel onto the chain if they can't get our
|
|
// update_fail_htlc in time, it's not our problem.
|
|
}
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
|
|
let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
// We surely failed send_commitment due to bad keys, in that case
|
|
// close channel and then send error message to peer.
|
|
let counterparty_node_id = chan.get().get_counterparty_node_id();
|
|
let err: Result<(), _> = match e {
|
|
ChannelError::Ignore(_) => {
|
|
panic!("Stated return value requirements in send_commitment() were not met");
|
|
},
|
|
ChannelError::Close(msg) => {
|
|
log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
|
|
let (channel_id, mut channel) = chan.remove_entry();
|
|
if let Some(short_id) = channel.get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
|
|
},
|
|
ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
|
|
};
|
|
handle_errors.push((counterparty_node_id, err));
|
|
continue;
|
|
}
|
|
};
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
|
|
continue;
|
|
}
|
|
log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
|
|
add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_counterparty_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: add_htlc_msgs,
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: fail_htlc_msgs,
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed: commitment_msg,
|
|
},
|
|
});
|
|
}
|
|
} else {
|
|
unreachable!();
|
|
}
|
|
} else {
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
|
|
incoming_shared_secret, payment_hash, amt_to_forward, .. },
|
|
prev_funding_outpoint } => {
|
|
let claimable_htlc = ClaimableHTLC {
|
|
prev_hop: HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
},
|
|
value: amt_to_forward,
|
|
payment_data: payment_data.clone(),
|
|
cltv_expiry: incoming_cltv_expiry,
|
|
};
|
|
|
|
macro_rules! fail_htlc {
|
|
($htlc: expr) => {
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(
|
|
&byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
|
|
);
|
|
failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: $htlc.prev_hop.short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: $htlc.prev_hop.htlc_id,
|
|
incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
|
|
}), payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
|
|
));
|
|
}
|
|
}
|
|
|
|
// Check that the payment hash and secret are known. Note that we
|
|
// MUST take care to handle the "unknown payment hash" and
|
|
// "incorrect payment secret" cases here identically or we'd expose
|
|
// that we are the ultimate recipient of the given payment hash.
|
|
// Further, we must not expose whether we have any other HTLCs
|
|
// associated with the same payment_hash pending or not.
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
match payment_secrets.entry(payment_hash) {
|
|
hash_map::Entry::Vacant(_) => {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc);
|
|
},
|
|
hash_map::Entry::Occupied(inbound_payment) => {
|
|
if inbound_payment.get().payment_secret != payment_data.payment_secret {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc);
|
|
} else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
|
|
log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
|
|
fail_htlc!(claimable_htlc);
|
|
} else {
|
|
let mut total_value = 0;
|
|
let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
|
|
.or_insert(Vec::new());
|
|
htlcs.push(claimable_htlc);
|
|
for htlc in htlcs.iter() {
|
|
total_value += htlc.value;
|
|
if htlc.payment_data.total_msat != payment_data.total_msat {
|
|
log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
|
|
log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
|
|
total_value = msgs::MAX_VALUE_MSAT;
|
|
}
|
|
if total_value >= msgs::MAX_VALUE_MSAT { break; }
|
|
}
|
|
if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
|
|
log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
|
|
log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
|
|
for htlc in htlcs.iter() {
|
|
fail_htlc!(htlc);
|
|
}
|
|
} else if total_value == payment_data.total_msat {
|
|
new_events.push(events::Event::PaymentReceived {
|
|
payment_hash,
|
|
payment_preimage: inbound_payment.get().payment_preimage,
|
|
payment_secret: payment_data.payment_secret,
|
|
amt: total_value,
|
|
user_payment_id: inbound_payment.get().user_payment_id,
|
|
});
|
|
// Only ever generate at most one PaymentReceived
|
|
// per registered payment_hash, even if it isn't
|
|
// claimed.
|
|
inbound_payment.remove_entry();
|
|
} else {
|
|
// Nothing to do - we haven't reached the total
|
|
// payment value yet, wait until we receive more
|
|
// MPP parts.
|
|
}
|
|
}
|
|
},
|
|
};
|
|
},
|
|
HTLCForwardInfo::AddHTLC { .. } => {
|
|
panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
panic!("Got pending fail of our own HTLC");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
|
|
}
|
|
|
|
for (counterparty_node_id, err) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, counterparty_node_id);
|
|
}
|
|
|
|
if new_events.is_empty() { return }
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
events.append(&mut new_events);
|
|
}
|
|
|
|
/// Free the background events, generally called from timer_tick_occurred.
|
|
///
|
|
/// Exposed for testing to allow us to process events quickly without generating accidental
|
|
/// BroadcastChannelUpdate events in timer_tick_occurred.
|
|
///
|
|
/// Expects the caller to have a total_consistency_lock read lock.
|
|
fn process_background_events(&self) -> bool {
|
|
let mut background_events = Vec::new();
|
|
mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
|
|
if background_events.is_empty() {
|
|
return false;
|
|
}
|
|
|
|
for event in background_events.drain(..) {
|
|
match event {
|
|
BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
|
|
// The channel has already been closed, so no use bothering to care about the
|
|
// monitor updating completing.
|
|
let _ = self.chain_monitor.update_channel(funding_txo, update);
|
|
},
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
/// Process background events, for functional testing
|
|
pub fn test_process_background_events(&self) {
|
|
self.process_background_events();
|
|
}
|
|
|
|
/// If a peer is disconnected we mark any channels with that peer as 'disabled'.
|
|
/// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
|
|
/// to inform the network about the uselessness of these channels.
|
|
///
|
|
/// This method handles all the details, and must be called roughly once per minute.
|
|
///
|
|
/// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
|
|
pub fn timer_tick_occurred(&self) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut should_persist = NotifyOption::SkipPersist;
|
|
if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
|
|
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
for (_, chan) in channel_state.by_id.iter_mut() {
|
|
match chan.channel_update_status() {
|
|
ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
|
|
ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
|
|
ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
|
|
ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
|
|
ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
should_persist = NotifyOption::DoPersist;
|
|
chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
|
|
},
|
|
ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
should_persist = NotifyOption::DoPersist;
|
|
chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
|
|
},
|
|
_ => {},
|
|
}
|
|
}
|
|
|
|
should_persist
|
|
});
|
|
}
|
|
|
|
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
|
|
/// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
|
|
/// along the path (including in our own channel on which we received it).
|
|
/// Returns false if no payment was found to fail backwards, true if the process of failing the
|
|
/// HTLC backwards has been started.
|
|
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut channel_state = Some(self.channel_state.lock().unwrap());
|
|
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
|
|
if let Some(mut sources) = removed_source {
|
|
for htlc in sources.drain(..) {
|
|
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
|
|
self.best_block.read().unwrap().height()));
|
|
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
|
|
HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
|
|
}
|
|
true
|
|
} else { false }
|
|
}
|
|
|
|
// Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
|
|
// failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
|
|
// be surfaced to the user.
|
|
fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
|
|
for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
|
|
match htlc_src {
|
|
HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
|
|
let (failure_code, onion_failure_data) =
|
|
match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
|
|
hash_map::Entry::Occupied(chan_entry) => {
|
|
if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
|
|
(0x1000|7, upd.encode_with_len())
|
|
} else {
|
|
(0x4000|10, Vec::new())
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
|
|
};
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
self.fail_htlc_backwards_internal(channel_state,
|
|
htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
|
|
},
|
|
HTLCSource::OutboundRoute { session_priv, .. } => {
|
|
if {
|
|
let mut session_priv_bytes = [0; 32];
|
|
session_priv_bytes.copy_from_slice(&session_priv[..]);
|
|
self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
|
|
} {
|
|
self.pending_events.lock().unwrap().push(
|
|
events::Event::PaymentFailed {
|
|
payment_hash,
|
|
rejected_by_dest: false,
|
|
#[cfg(test)]
|
|
error_code: None,
|
|
#[cfg(test)]
|
|
error_data: None,
|
|
}
|
|
)
|
|
} else {
|
|
log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
|
|
}
|
|
},
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Fails an HTLC backwards to the sender of it to us.
|
|
/// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
|
|
/// There are several callsites that do stupid things like loop over a list of payment_hashes
|
|
/// to fail and take the channel_state lock for each iteration (as we take ownership and may
|
|
/// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
|
|
/// still-available channels.
|
|
fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
|
|
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
|
|
//identify whether we sent it or not based on the (I presume) very different runtime
|
|
//between the branches here. We should make this async and move it into the forward HTLCs
|
|
//timer handling.
|
|
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// from block_connected which may run during initialization prior to the chain_monitor
|
|
// being fully configured. See the docs for `ChannelManagerReadArgs` for more.
|
|
match source {
|
|
HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
|
|
if {
|
|
let mut session_priv_bytes = [0; 32];
|
|
session_priv_bytes.copy_from_slice(&session_priv[..]);
|
|
!self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
|
|
} {
|
|
log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
|
|
return;
|
|
}
|
|
log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
|
|
mem::drop(channel_state_lock);
|
|
match &onion_error {
|
|
&HTLCFailReason::LightningError { ref err } => {
|
|
#[cfg(test)]
|
|
let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
|
|
#[cfg(not(test))]
|
|
let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
|
|
// TODO: If we decided to blame ourselves (or one of our channels) in
|
|
// process_onion_failure we should close that channel as it implies our
|
|
// next-hop is needlessly blaming us!
|
|
if let Some(update) = channel_update {
|
|
self.channel_state.lock().unwrap().pending_msg_events.push(
|
|
events::MessageSendEvent::PaymentFailureNetworkUpdate {
|
|
update,
|
|
}
|
|
);
|
|
}
|
|
self.pending_events.lock().unwrap().push(
|
|
events::Event::PaymentFailed {
|
|
payment_hash: payment_hash.clone(),
|
|
rejected_by_dest: !payment_retryable,
|
|
#[cfg(test)]
|
|
error_code: onion_error_code,
|
|
#[cfg(test)]
|
|
error_data: onion_error_data
|
|
}
|
|
);
|
|
},
|
|
&HTLCFailReason::Reason {
|
|
#[cfg(test)]
|
|
ref failure_code,
|
|
#[cfg(test)]
|
|
ref data,
|
|
.. } => {
|
|
// we get a fail_malformed_htlc from the first hop
|
|
// TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
|
|
// failures here, but that would be insufficient as get_route
|
|
// generally ignores its view of our own channels as we provide them via
|
|
// ChannelDetails.
|
|
// TODO: For non-temporary failures, we really should be closing the
|
|
// channel here as we apparently can't relay through them anyway.
|
|
self.pending_events.lock().unwrap().push(
|
|
events::Event::PaymentFailed {
|
|
payment_hash: payment_hash.clone(),
|
|
rejected_by_dest: path.len() == 1,
|
|
#[cfg(test)]
|
|
error_code: Some(*failure_code),
|
|
#[cfg(test)]
|
|
error_data: Some(data.clone()),
|
|
}
|
|
);
|
|
}
|
|
}
|
|
},
|
|
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
|
|
let err_packet = match onion_error {
|
|
HTLCFailReason::Reason { failure_code, data } => {
|
|
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
|
|
let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
|
|
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
|
|
},
|
|
HTLCFailReason::LightningError { err } => {
|
|
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
|
|
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
|
|
}
|
|
};
|
|
|
|
let mut forward_event = None;
|
|
if channel_state_lock.forward_htlcs.is_empty() {
|
|
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
|
|
}
|
|
match channel_state_lock.forward_htlcs.entry(short_channel_id) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
|
|
}
|
|
}
|
|
mem::drop(channel_state_lock);
|
|
if let Some(time) = forward_event {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable: time
|
|
});
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides a payment preimage in response to a PaymentReceived event, returning true and
|
|
/// generating message events for the net layer to claim the payment, if possible. Thus, you
|
|
/// should probably kick the net layer to go send messages if this returns true!
|
|
///
|
|
/// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
|
|
/// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
|
|
/// event matches your expectation. If you fail to do so and call this method, you may provide
|
|
/// the sender "proof-of-payment" when they did not fulfill the full expected payment.
|
|
///
|
|
/// May panic if called except in response to a PaymentReceived event.
|
|
///
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
|
|
pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut channel_state = Some(self.channel_state.lock().unwrap());
|
|
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
|
|
if let Some(mut sources) = removed_source {
|
|
assert!(!sources.is_empty());
|
|
|
|
// If we are claiming an MPP payment, we have to take special care to ensure that each
|
|
// channel exists before claiming all of the payments (inside one lock).
|
|
// Note that channel existance is sufficient as we should always get a monitor update
|
|
// which will take care of the real HTLC claim enforcement.
|
|
//
|
|
// If we find an HTLC which we would need to claim but for which we do not have a
|
|
// channel, we will fail all parts of the MPP payment. While we could wait and see if
|
|
// the sender retries the already-failed path(s), it should be a pretty rare case where
|
|
// we got all the HTLCs and then a channel closed while we were waiting for the user to
|
|
// provide the preimage, so worrying too much about the optimal handling isn't worth
|
|
// it.
|
|
let mut valid_mpp = true;
|
|
for htlc in sources.iter() {
|
|
if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
|
|
valid_mpp = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
let mut errs = Vec::new();
|
|
let mut claimed_any_htlcs = false;
|
|
for htlc in sources.drain(..) {
|
|
if !valid_mpp {
|
|
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
|
|
self.best_block.read().unwrap().height()));
|
|
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
|
|
HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
|
|
} else {
|
|
match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
|
|
Err(Some(e)) => {
|
|
if let msgs::ErrorAction::IgnoreError = e.1.err.action {
|
|
// We got a temporary failure updating monitor, but will claim the
|
|
// HTLC when the monitor updating is restored (or on chain).
|
|
log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
|
|
claimed_any_htlcs = true;
|
|
} else { errs.push(e); }
|
|
},
|
|
Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
|
|
Ok(()) => claimed_any_htlcs = true,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've done the entire above loop in one lock, we can handle any errors
|
|
// which were generated.
|
|
channel_state.take();
|
|
|
|
for (counterparty_node_id, err) in errs.drain(..) {
|
|
let res: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, res, counterparty_node_id);
|
|
}
|
|
|
|
claimed_any_htlcs
|
|
} else { false }
|
|
}
|
|
|
|
fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
|
|
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
|
|
let channel_state = &mut **channel_state_lock;
|
|
let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
|
|
Some(chan_id) => chan_id.clone(),
|
|
None => {
|
|
return Err(None)
|
|
}
|
|
};
|
|
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
|
|
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
|
|
match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
|
|
Ok((msgs, monitor_option)) => {
|
|
if let Some(monitor_update) = monitor_option {
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
if was_frozen_for_monitor {
|
|
assert!(msgs.is_none());
|
|
} else {
|
|
return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
|
|
}
|
|
}
|
|
}
|
|
if let Some((msg, commitment_signed)) = msgs {
|
|
log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
|
|
log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_counterparty_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: vec![msg],
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed,
|
|
}
|
|
});
|
|
}
|
|
return Ok(())
|
|
},
|
|
Err(e) => {
|
|
// TODO: Do something with e?
|
|
// This should only occur if we are claiming an HTLC at the same time as the
|
|
// HTLC is being failed (eg because a block is being connected and this caused
|
|
// an HTLC to time out). This should, of course, only occur if the user is the
|
|
// one doing the claiming (as it being a part of a peer claim would imply we're
|
|
// about to lose funds) and only if the lock in claim_funds was dropped as a
|
|
// previous HTLC was failed (thus not for an MPP payment).
|
|
debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
|
|
return Err(None)
|
|
},
|
|
}
|
|
} else { unreachable!(); }
|
|
}
|
|
|
|
fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
|
|
match source {
|
|
HTLCSource::OutboundRoute { session_priv, .. } => {
|
|
mem::drop(channel_state_lock);
|
|
if {
|
|
let mut session_priv_bytes = [0; 32];
|
|
session_priv_bytes.copy_from_slice(&session_priv[..]);
|
|
self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
|
|
} {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PaymentSent {
|
|
payment_preimage
|
|
});
|
|
} else {
|
|
log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
|
|
}
|
|
},
|
|
HTLCSource::PreviousHopData(hop_data) => {
|
|
let prev_outpoint = hop_data.outpoint;
|
|
if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
|
|
Ok(()) => Ok(()),
|
|
Err(None) => {
|
|
let preimage_update = ChannelMonitorUpdate {
|
|
update_id: CLOSED_CHANNEL_UPDATE_ID,
|
|
updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
|
|
payment_preimage: payment_preimage.clone(),
|
|
}],
|
|
};
|
|
// We update the ChannelMonitor on the backward link, after
|
|
// receiving an offchain preimage event from the forward link (the
|
|
// event being update_fulfill_htlc).
|
|
if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
|
|
log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
|
|
payment_preimage, e);
|
|
}
|
|
Ok(())
|
|
},
|
|
Err(Some(res)) => Err(res),
|
|
} {
|
|
mem::drop(channel_state_lock);
|
|
let res: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, res, counterparty_node_id);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Gets the node_id held by this ChannelManager
|
|
pub fn get_our_node_id(&self) -> PublicKey {
|
|
self.our_network_pubkey.clone()
|
|
}
|
|
|
|
/// Restores a single, given channel to normal operation after a
|
|
/// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
|
|
/// operation.
|
|
///
|
|
/// All ChannelMonitor updates up to and including highest_applied_update_id must have been
|
|
/// fully committed in every copy of the given channels' ChannelMonitors.
|
|
///
|
|
/// Note that there is no effect to calling with a highest_applied_update_id other than the
|
|
/// current latest ChannelMonitorUpdate and one call to this function after multiple
|
|
/// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
|
|
/// exists largely only to prevent races between this and concurrent update_monitor calls.
|
|
///
|
|
/// Thus, the anticipated use is, at a high level:
|
|
/// 1) You register a chain::Watch with this ChannelManager,
|
|
/// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
|
|
/// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
|
|
/// any time it cannot do so instantly,
|
|
/// 3) update(s) are applied to each remote copy of a ChannelMonitor,
|
|
/// 4) once all remote copies are updated, you call this function with the update_id that
|
|
/// completed, and once it is the latest the Channel will be re-enabled.
|
|
pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let chan_restoration_res;
|
|
let mut pending_failures = {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
|
|
hash_map::Entry::Occupied(chan) => chan,
|
|
hash_map::Entry::Vacant(_) => return,
|
|
};
|
|
if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
|
|
return;
|
|
}
|
|
|
|
let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
|
|
let channel_update = if funding_locked.is_some() && channel.get().is_usable() && !channel.get().should_announce() {
|
|
// We only send a channel_update in the case where we are just now sending a
|
|
// funding_locked and the channel is in a usable state. Further, we rely on the
|
|
// normal announcement_signatures process to send a channel_update for public
|
|
// channels, only generating a unicast channel_update if this is a private channel.
|
|
Some(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: channel.get().get_counterparty_node_id(),
|
|
msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
|
|
})
|
|
} else { None };
|
|
chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, None, pending_forwards, funding_broadcastable, funding_locked);
|
|
if let Some(upd) = channel_update {
|
|
channel_state.pending_msg_events.push(upd);
|
|
}
|
|
pending_failures
|
|
};
|
|
post_handle_chan_restoration!(self, chan_restoration_res);
|
|
for failure in pending_failures.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
|
|
}
|
|
}
|
|
|
|
fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
|
|
if msg.chain_hash != self.genesis_hash {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
|
|
.map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(channel.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
|
|
hash_map::Entry::Vacant(entry) => {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: channel.get_accept_channel(),
|
|
});
|
|
entry.insert(channel);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
|
|
let (value, output_script, user_id) = {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.temporary_channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
|
|
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
|
|
}
|
|
};
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::FundingGenerationReady {
|
|
temporary_channel_id: msg.temporary_channel_id,
|
|
channel_value_satoshis: value,
|
|
output_script,
|
|
user_channel_id: user_id,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
|
|
let ((funding_msg, monitor), mut chan) = {
|
|
let best_block = *self.best_block.read().unwrap();
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
|
|
}
|
|
(try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
|
|
}
|
|
};
|
|
// Because we have exclusive ownership of the channel here we can release the channel_state
|
|
// lock before watch_channel
|
|
if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
|
|
match e {
|
|
ChannelMonitorUpdateErr::PermanentFailure => {
|
|
// Note that we reply with the new channel_id in error messages if we gave up on the
|
|
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
|
|
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
|
|
// any messages referencing a previously-closed channel anyway.
|
|
// We do not do a force-close here as that would generate a monitor update for
|
|
// a monitor that we didn't manage to store (and that we don't care about - we
|
|
// don't respond with the funding_signed so the channel can never go on chain).
|
|
let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
|
|
assert!(failed_htlcs.is_empty());
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
|
|
},
|
|
ChannelMonitorUpdateErr::TemporaryFailure => {
|
|
// There's no problem signing a counterparty's funding transaction if our monitor
|
|
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
|
|
// accepted payment from yet. We do, however, need to wait to send our funding_locked
|
|
// until we have persisted our monitor.
|
|
chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
|
|
},
|
|
}
|
|
}
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(funding_msg.channel_id) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: funding_msg,
|
|
});
|
|
e.insert(chan);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let funding_tx = {
|
|
let best_block = *self.best_block.read().unwrap();
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
|
|
Ok(update) => update,
|
|
Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
|
|
};
|
|
if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
|
|
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
|
|
}
|
|
funding_tx
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
|
|
self.tx_broadcaster.broadcast_transaction(&funding_tx);
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
|
|
if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
|
|
log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
|
|
// If we see locking block before receiving remote funding_locked, we broadcast our
|
|
// announcement_sigs at remote funding_locked reception. If we receive remote
|
|
// funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
|
|
// block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
|
|
// the order of the events but our peer may not receive it due to disconnection. The specs
|
|
// lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
|
|
// connection in the future if simultaneous misses by both peers due to network/hardware
|
|
// failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
|
|
// to be received, from then sigs are going to be flood to the whole network.
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: announcement_sigs,
|
|
});
|
|
} else if chan.get().is_usable() {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
|
|
});
|
|
}
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
|
|
let (mut dropped_htlcs, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
|
|
if let Some(msg) = shutdown {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if chan_entry.get().is_shutdown() {
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(dropped_htlcs, Some(chan_entry.remove_entry().1))
|
|
} else { (dropped_htlcs, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
for htlc_source in dropped_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let (tx, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if tx.is_some() {
|
|
// We're done with this channel, we've got a signed closing transaction and
|
|
// will send the closing_signed back to the remote peer upon return. This
|
|
// also implies there are no pending HTLCs left on the channel, so we can
|
|
// fully delete it from tracking (the channel monitor is still around to
|
|
// watch for old state broadcasts)!
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(tx, Some(chan_entry.remove_entry().1))
|
|
} else { (tx, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
if let Some(broadcast_tx) = tx {
|
|
log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
|
|
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
|
|
}
|
|
if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
|
|
//determine the state of the payment based on our response/if we forward anything/the time
|
|
//we take to respond. We should take care to avoid allowing such an attack.
|
|
//
|
|
//TODO: There exists a further attack where a node may garble the onion data, forward it to
|
|
//us repeatedly garbled in different ways, and compare our error messages, which are
|
|
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
|
|
//but we should prevent it anyway.
|
|
|
|
let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
|
|
let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
|
|
// Ensure error_code has the UPDATE flag set, since by default we send a
|
|
// channel update along as part of failing the HTLC.
|
|
assert!((error_code & 0x1000) != 0);
|
|
// If the update_add is completely bogus, the call will Err and we will close,
|
|
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
|
|
// want to reject the new HTLC and fail it backwards instead of forwarding.
|
|
match pending_forward_info {
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
|
|
let reason = if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
|
|
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
|
|
let mut res = Vec::with_capacity(8 + 128);
|
|
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
|
|
res.extend_from_slice(&byte_utils::be16_to_array(0));
|
|
res.extend_from_slice(&upd.encode_with_len()[..]);
|
|
res
|
|
}[..])
|
|
} else {
|
|
// The only case where we'd be unable to
|
|
// successfully get a channel update is if the
|
|
// channel isn't in the fully-funded state yet,
|
|
// implying our counterparty is trying to route
|
|
// payments over the channel back to themselves
|
|
// (cause no one else should know the short_id
|
|
// is a lightning channel yet). We should have
|
|
// no problem just calling this
|
|
// unknown_next_peer (0x4000|10).
|
|
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
|
|
};
|
|
let msg = msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason
|
|
};
|
|
PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
|
|
},
|
|
_ => pending_forward_info
|
|
}
|
|
};
|
|
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let htlc_source = {
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
if (msg.failure_code & 0x8000) == 0 {
|
|
let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
|
|
try_chan_entry!(self, Err(chan_err), channel_state, chan);
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
|
|
match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
|
|
Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
|
|
Err((Some(update), e)) => {
|
|
assert!(chan.get().is_awaiting_monitor_update());
|
|
let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
|
|
try_chan_entry!(self, Err(e), channel_state, chan);
|
|
unreachable!();
|
|
},
|
|
Ok(res) => res
|
|
};
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
|
|
//TODO: Rebroadcast closing_signed if present on monitor update restoration
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: revoke_and_ack,
|
|
});
|
|
if let Some(msg) = commitment_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: counterparty_node_id.clone(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed: msg,
|
|
},
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
|
|
for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
|
|
let mut forward_event = None;
|
|
if !pending_forwards.is_empty() {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
if channel_state.forward_htlcs.is_empty() {
|
|
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
|
|
}
|
|
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
|
|
match channel_state.forward_htlcs.entry(match forward_info.routing {
|
|
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
|
|
PendingHTLCRouting::Receive { .. } => 0,
|
|
PendingHTLCRouting::ReceiveKeysend { .. } => 0,
|
|
}) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
|
|
prev_htlc_id, forward_info });
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
|
|
prev_htlc_id, forward_info }));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
match forward_event {
|
|
Some(time) => {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable: time
|
|
});
|
|
}
|
|
None => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
|
|
let mut htlcs_to_fail = Vec::new();
|
|
let res = loop {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
|
|
let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
|
|
break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
|
|
htlcs_to_fail = htlcs_to_fail_in;
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
if was_frozen_for_monitor {
|
|
assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
|
|
break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
|
|
} else {
|
|
if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
|
|
break Err(e);
|
|
} else { unreachable!(); }
|
|
}
|
|
}
|
|
if let Some(updates) = commitment_update {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: counterparty_node_id.clone(),
|
|
updates,
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
|
|
},
|
|
hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
|
|
match res {
|
|
Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
|
|
for failure in pending_failures.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
|
|
}
|
|
self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
|
|
Ok(())
|
|
},
|
|
Err(e) => Err(e)
|
|
}
|
|
}
|
|
|
|
fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
if !chan.get().is_usable() {
|
|
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
|
|
}
|
|
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
|
|
msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
|
|
// Note that announcement_signatures fails if the channel cannot be announced,
|
|
// so get_channel_update_for_broadcast will never fail by the time we get here.
|
|
update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
|
|
});
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
|
|
fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
|
|
Some(chan_id) => chan_id.clone(),
|
|
None => {
|
|
// It's not a local channel
|
|
return Ok(NotifyOption::SkipPersist)
|
|
}
|
|
};
|
|
match channel_state.by_id.entry(chan_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
if chan.get().should_announce() {
|
|
// If the announcement is about a channel of ours which is public, some
|
|
// other peer may simply be forwarding all its gossip to us. Don't provide
|
|
// a scary-looking error message and return Ok instead.
|
|
return Ok(NotifyOption::SkipPersist);
|
|
}
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
|
|
}
|
|
let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
|
|
let msg_from_node_one = msg.contents.flags & 1 == 0;
|
|
if were_node_one == msg_from_node_one {
|
|
return Ok(NotifyOption::SkipPersist);
|
|
} else {
|
|
try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(_) => unreachable!()
|
|
}
|
|
Ok(NotifyOption::DoPersist)
|
|
}
|
|
|
|
fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
|
|
let chan_restoration_res;
|
|
let (htlcs_failed_forward, need_lnd_workaround) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
|
|
}
|
|
// Currently, we expect all holding cell update_adds to be dropped on peer
|
|
// disconnect, so Channel's reestablish will never hand us any holding cell
|
|
// freed HTLCs to fail backwards. If in the future we no longer drop pending
|
|
// add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
|
|
let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
|
|
try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
|
|
let mut channel_update = None;
|
|
if let Some(msg) = shutdown {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
} else if chan.get().is_usable() {
|
|
// If the channel is in a usable state (ie the channel is not being shut
|
|
// down), send a unicast channel_update to our counterparty to make sure
|
|
// they have the latest channel parameters.
|
|
channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: chan.get().get_counterparty_node_id(),
|
|
msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
|
|
});
|
|
}
|
|
let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
|
|
chan_restoration_res = handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked);
|
|
if let Some(upd) = channel_update {
|
|
channel_state.pending_msg_events.push(upd);
|
|
}
|
|
(htlcs_failed_forward, need_lnd_workaround)
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
};
|
|
post_handle_chan_restoration!(self, chan_restoration_res);
|
|
self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
|
|
|
|
if let Some(funding_locked_msg) = need_lnd_workaround {
|
|
self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Begin Update fee process. Allowed only on an outbound channel.
|
|
/// If successful, will generate a UpdateHTLCs event, so you should probably poll
|
|
/// PeerManager::process_events afterwards.
|
|
/// Note: This API is likely to change!
|
|
/// (C-not exported) Cause its doc(hidden) anyway
|
|
#[doc(hidden)]
|
|
pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let counterparty_node_id;
|
|
let err: Result<(), _> = loop {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(channel_id) {
|
|
hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if !chan.get().is_outbound() {
|
|
return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
|
|
}
|
|
if chan.get().is_awaiting_monitor_update() {
|
|
return Err(APIError::MonitorUpdateFailed);
|
|
}
|
|
if !chan.get().is_live() {
|
|
return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
|
|
}
|
|
counterparty_node_id = chan.get().get_counterparty_node_id();
|
|
if let Some((update_fee, commitment_signed, monitor_update)) =
|
|
break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
|
|
{
|
|
if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
unimplemented!();
|
|
}
|
|
log_debug!(self.logger, "Updating fee resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_counterparty_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: Some(update_fee),
|
|
commitment_signed,
|
|
},
|
|
});
|
|
}
|
|
},
|
|
}
|
|
return Ok(())
|
|
};
|
|
|
|
match handle_error!(self, err, counterparty_node_id) {
|
|
Ok(_) => unreachable!(),
|
|
Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
|
|
}
|
|
}
|
|
|
|
/// Process pending events from the `chain::Watch`, returning whether any events were processed.
|
|
fn process_pending_monitor_events(&self) -> bool {
|
|
let mut failed_channels = Vec::new();
|
|
let pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
|
|
let has_pending_monitor_events = !pending_monitor_events.is_empty();
|
|
for monitor_event in pending_monitor_events {
|
|
match monitor_event {
|
|
MonitorEvent::HTLCEvent(htlc_update) => {
|
|
if let Some(preimage) = htlc_update.payment_preimage {
|
|
log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
|
|
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
|
|
} else {
|
|
log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
},
|
|
MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let by_id = &mut channel_state.by_id;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
failed_channels.push(chan.force_shutdown(false));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
pending_msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
|
|
},
|
|
});
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
|
|
has_pending_monitor_events
|
|
}
|
|
|
|
/// Check the holding cell in each channel and free any pending HTLCs in them if possible.
|
|
/// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
|
|
/// update was applied.
|
|
///
|
|
/// This should only apply to HTLCs which were added to the holding cell because we were
|
|
/// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
|
|
/// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
|
|
/// code to inform them of a channel monitor update.
|
|
fn check_free_holding_cells(&self) -> bool {
|
|
let mut has_monitor_update = false;
|
|
let mut failed_htlcs = Vec::new();
|
|
let mut handle_errors = Vec::new();
|
|
{
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let by_id = &mut channel_state.by_id;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
|
|
by_id.retain(|channel_id, chan| {
|
|
match chan.maybe_free_holding_cell_htlcs(&self.logger) {
|
|
Ok((commitment_opt, holding_cell_failed_htlcs)) => {
|
|
if !holding_cell_failed_htlcs.is_empty() {
|
|
failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
|
|
}
|
|
if let Some((commitment_update, monitor_update)) = commitment_opt {
|
|
if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
|
|
has_monitor_update = true;
|
|
let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), channel_id);
|
|
handle_errors.push((chan.get_counterparty_node_id(), res));
|
|
if close_channel { return false; }
|
|
} else {
|
|
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
updates: commitment_update,
|
|
});
|
|
}
|
|
}
|
|
true
|
|
},
|
|
Err(e) => {
|
|
let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
|
|
handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
|
|
!close_channel
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
let has_update = has_monitor_update || !failed_htlcs.is_empty();
|
|
for (failures, channel_id) in failed_htlcs.drain(..) {
|
|
self.fail_holding_cell_htlcs(failures, channel_id);
|
|
}
|
|
|
|
for (counterparty_node_id, err) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, counterparty_node_id);
|
|
}
|
|
|
|
has_update
|
|
}
|
|
|
|
/// Handle a list of channel failures during a block_connected or block_disconnected call,
|
|
/// pushing the channel monitor update (if any) to the background events queue and removing the
|
|
/// Channel object.
|
|
fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
|
|
for mut failure in failed_channels.drain(..) {
|
|
// Either a commitment transactions has been confirmed on-chain or
|
|
// Channel::block_disconnected detected that the funding transaction has been
|
|
// reorganized out of the main chain.
|
|
// We cannot broadcast our latest local state via monitor update (as
|
|
// Channel::force_shutdown tries to make us do) as we may still be in initialization,
|
|
// so we track the update internally and handle it when the user next calls
|
|
// timer_tick_occurred, guaranteeing we're running normally.
|
|
if let Some((funding_txo, update)) = failure.0.take() {
|
|
assert_eq!(update.updates.len(), 1);
|
|
if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
|
|
assert!(should_broadcast);
|
|
} else { unreachable!(); }
|
|
self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
|
|
}
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
}
|
|
|
|
fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
|
|
assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
|
|
|
|
let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
match payment_secrets.entry(payment_hash) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(PendingInboundPayment {
|
|
payment_secret, min_value_msat, user_payment_id, payment_preimage,
|
|
// We assume that highest_seen_timestamp is pretty close to the current time -
|
|
// its updated when we receive a new block with the maximum time we've seen in
|
|
// a header. It should never be more than two hours in the future.
|
|
// Thus, we add two hours here as a buffer to ensure we absolutely
|
|
// never fail a payment too early.
|
|
// Note that we assume that received blocks have reasonably up-to-date
|
|
// timestamps.
|
|
expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
|
|
});
|
|
},
|
|
hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
|
|
}
|
|
Ok(payment_secret)
|
|
}
|
|
|
|
/// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
|
|
/// to pay us.
|
|
///
|
|
/// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
|
|
/// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
|
|
///
|
|
/// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
|
|
/// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
|
|
/// passed directly to [`claim_funds`].
|
|
///
|
|
/// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
|
|
///
|
|
/// [`claim_funds`]: Self::claim_funds
|
|
/// [`PaymentReceived`]: events::Event::PaymentReceived
|
|
/// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
|
|
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
|
|
pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
|
|
let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
|
|
(payment_hash,
|
|
self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
|
|
.expect("RNG Generated Duplicate PaymentHash"))
|
|
}
|
|
|
|
/// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
|
|
/// stored external to LDK.
|
|
///
|
|
/// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
|
|
/// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
|
|
/// the `min_value_msat` provided here, if one is provided.
|
|
///
|
|
/// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
|
|
/// method may return an Err if another payment with the same payment_hash is still pending.
|
|
///
|
|
/// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
|
|
/// allow tracking of which events correspond with which calls to this and
|
|
/// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
|
|
/// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
|
|
/// with invoice metadata stored elsewhere.
|
|
///
|
|
/// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
|
|
/// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
|
|
/// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
|
|
/// sender "proof-of-payment" unless they have paid the required amount.
|
|
///
|
|
/// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
|
|
/// in excess of the current time. This should roughly match the expiry time set in the invoice.
|
|
/// After this many seconds, we will remove the inbound payment, resulting in any attempts to
|
|
/// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
|
|
/// invoices when no timeout is set.
|
|
///
|
|
/// Note that we use block header time to time-out pending inbound payments (with some margin
|
|
/// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
|
|
/// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
|
|
/// If you need exact expiry semantics, you should enforce them upon receipt of
|
|
/// [`PaymentReceived`].
|
|
///
|
|
/// Pending inbound payments are stored in memory and in serialized versions of this
|
|
/// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
|
|
/// space is limited, you may wish to rate-limit inbound payment creation.
|
|
///
|
|
/// May panic if `invoice_expiry_delta_secs` is greater than one year.
|
|
///
|
|
/// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
|
|
/// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
|
|
///
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
/// [`PaymentReceived`]: events::Event::PaymentReceived
|
|
/// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
|
|
pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
|
|
self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
|
|
}
|
|
|
|
#[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
|
|
pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
|
|
let events = core::cell::RefCell::new(Vec::new());
|
|
let event_handler = |event| events.borrow_mut().push(event);
|
|
self.process_pending_events(&event_handler);
|
|
events.into_inner()
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
|
|
let events = RefCell::new(Vec::new());
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut result = NotifyOption::SkipPersist;
|
|
|
|
// TODO: This behavior should be documented. It's unintuitive that we query
|
|
// ChannelMonitors when clearing other events.
|
|
if self.process_pending_monitor_events() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
if self.check_free_holding_cells() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
let mut pending_events = Vec::new();
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
|
|
|
|
if !pending_events.is_empty() {
|
|
events.replace(pending_events);
|
|
}
|
|
|
|
result
|
|
});
|
|
events.into_inner()
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
|
|
where
|
|
M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
/// Processes events that must be periodically handled.
|
|
///
|
|
/// An [`EventHandler`] may safely call back to the provider in order to handle an event.
|
|
/// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
|
|
///
|
|
/// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
|
|
/// when processed, an [`EventHandler`] must be able to handle previously seen events when
|
|
/// restarting from an old state.
|
|
fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut result = NotifyOption::SkipPersist;
|
|
|
|
// TODO: This behavior should be documented. It's unintuitive that we query
|
|
// ChannelMonitors when clearing other events.
|
|
if self.process_pending_monitor_events() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
let mut pending_events = std::mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
|
|
if !pending_events.is_empty() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
for event in pending_events.drain(..) {
|
|
handler.handle_event(event);
|
|
}
|
|
|
|
result
|
|
});
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
|
|
where
|
|
M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn block_connected(&self, block: &Block, height: u32) {
|
|
{
|
|
let best_block = self.best_block.read().unwrap();
|
|
assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
|
|
"Blocks must be connected in chain-order - the connected header must build on the last connected header");
|
|
assert_eq!(best_block.height(), height - 1,
|
|
"Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
|
|
}
|
|
|
|
let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
|
|
self.transactions_confirmed(&block.header, &txdata, height);
|
|
self.best_block_updated(&block.header, height);
|
|
}
|
|
|
|
fn block_disconnected(&self, header: &BlockHeader, height: u32) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let new_height = height - 1;
|
|
{
|
|
let mut best_block = self.best_block.write().unwrap();
|
|
assert_eq!(best_block.block_hash(), header.block_hash(),
|
|
"Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
|
|
assert_eq!(best_block.height(), height,
|
|
"Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
|
|
*best_block = BestBlock::new(header.prev_blockhash, new_height)
|
|
}
|
|
|
|
self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
|
|
where
|
|
M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let block_hash = header.block_hash();
|
|
log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
|
|
}
|
|
|
|
fn best_block_updated(&self, header: &BlockHeader, height: u32) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let block_hash = header.block_hash();
|
|
log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
*self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
|
|
|
|
self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
|
|
|
|
macro_rules! max_time {
|
|
($timestamp: expr) => {
|
|
loop {
|
|
// Update $timestamp to be the max of its current value and the block
|
|
// timestamp. This should keep us close to the current time without relying on
|
|
// having an explicit local time source.
|
|
// Just in case we end up in a race, we loop until we either successfully
|
|
// update $timestamp or decide we don't need to.
|
|
let old_serial = $timestamp.load(Ordering::Acquire);
|
|
if old_serial >= header.time as usize { break; }
|
|
if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
max_time!(self.last_node_announcement_serial);
|
|
max_time!(self.highest_seen_timestamp);
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
payment_secrets.retain(|_, inbound_payment| {
|
|
inbound_payment.expiry_time > header.time as u64
|
|
});
|
|
}
|
|
|
|
fn get_relevant_txids(&self) -> Vec<Txid> {
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
let mut res = Vec::with_capacity(channel_state.short_to_id.len());
|
|
for chan in channel_state.by_id.values() {
|
|
if let Some(funding_txo) = chan.get_funding_txo() {
|
|
res.push(funding_txo.txid);
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
fn transaction_unconfirmed(&self, txid: &Txid) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.do_chain_event(None, |channel| {
|
|
if let Some(funding_txo) = channel.get_funding_txo() {
|
|
if funding_txo.txid == *txid {
|
|
channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
|
|
} else { Ok((None, Vec::new())) }
|
|
} else { Ok((None, Vec::new())) }
|
|
});
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
|
|
where
|
|
M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
/// Calls a function which handles an on-chain event (blocks dis/connected, transactions
|
|
/// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
|
|
/// the function.
|
|
fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
|
|
(&self, height_opt: Option<u32>, f: FN) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let mut failed_channels = Vec::new();
|
|
let mut timed_out_htlcs = Vec::new();
|
|
{
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
channel_state.by_id.retain(|_, channel| {
|
|
let res = f(channel);
|
|
if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
|
|
for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
|
|
let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
|
|
timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
|
|
failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
|
|
data: chan_update,
|
|
}));
|
|
}
|
|
if let Some(funding_locked) = chan_res {
|
|
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg: funding_locked,
|
|
});
|
|
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
|
|
log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
|
|
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg: announcement_sigs,
|
|
});
|
|
} else if channel.is_usable() {
|
|
log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures but with private channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg: self.get_channel_update_for_unicast(channel).unwrap(),
|
|
});
|
|
} else {
|
|
log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
|
|
}
|
|
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
|
|
}
|
|
} else if let Err(e) = res {
|
|
if let Some(short_id) = channel.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
// It looks like our counterparty went on-chain or funding transaction was
|
|
// reorged out of the main chain. Close the channel.
|
|
failed_channels.push(channel.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
pending_msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage { msg: e },
|
|
});
|
|
return false;
|
|
}
|
|
true
|
|
});
|
|
|
|
if let Some(height) = height_opt {
|
|
channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
|
|
htlcs.retain(|htlc| {
|
|
// If height is approaching the number of blocks we think it takes us to get
|
|
// our commitment transaction confirmed before the HTLC expires, plus the
|
|
// number of blocks we generally consider it to take to do a commitment update,
|
|
// just give up on it and fail the HTLC.
|
|
if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
|
|
timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
|
|
failure_code: 0x4000 | 15,
|
|
data: htlc_msat_height_data
|
|
}));
|
|
false
|
|
} else { true }
|
|
});
|
|
!htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
|
|
});
|
|
}
|
|
}
|
|
|
|
self.handle_init_event_channel_failures(failed_channels);
|
|
|
|
for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
|
|
}
|
|
}
|
|
|
|
/// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
|
|
/// indicating whether persistence is necessary. Only one listener on
|
|
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
|
|
/// up.
|
|
/// Note that the feature `allow_wallclock_use` must be enabled to use this function.
|
|
#[cfg(any(test, feature = "allow_wallclock_use"))]
|
|
pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
|
|
self.persistence_notifier.wait_timeout(max_wait)
|
|
}
|
|
|
|
/// Blocks until ChannelManager needs to be persisted. Only one listener on
|
|
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
|
|
/// up.
|
|
pub fn await_persistable_update(&self) {
|
|
self.persistence_notifier.wait()
|
|
}
|
|
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
pub fn get_persistence_condvar_value(&self) -> bool {
|
|
let mutcond = &self.persistence_notifier.persistence_lock;
|
|
let &(ref mtx, _) = mutcond;
|
|
let guard = mtx.lock().unwrap();
|
|
*guard
|
|
}
|
|
|
|
/// Gets the latest best block which was connected either via the [`chain::Listen`] or
|
|
/// [`chain::Confirm`] interfaces.
|
|
pub fn current_best_block(&self) -> BestBlock {
|
|
self.best_block.read().unwrap().clone()
|
|
}
|
|
}
|
|
|
|
impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
|
|
ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
|
|
persist
|
|
} else {
|
|
NotifyOption::SkipPersist
|
|
}
|
|
});
|
|
}
|
|
|
|
fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let mut failed_channels = Vec::new();
|
|
let mut no_channels_remain = true;
|
|
{
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
if no_connection_possible {
|
|
log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_counterparty_node_id() == *counterparty_node_id {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
failed_channels.push(chan.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
} else {
|
|
log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_counterparty_node_id() == *counterparty_node_id {
|
|
chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
|
|
if chan.is_shutdown() {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
return false;
|
|
} else {
|
|
no_channels_remain = false;
|
|
}
|
|
}
|
|
true
|
|
})
|
|
}
|
|
pending_msg_events.retain(|msg| {
|
|
match msg {
|
|
&events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
|
|
&events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
|
|
&events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
|
|
&events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
|
|
&events::MessageSendEvent::SendShortIdsQuery { .. } => false,
|
|
&events::MessageSendEvent::SendReplyChannelRange { .. } => false,
|
|
}
|
|
});
|
|
}
|
|
if no_channels_remain {
|
|
self.per_peer_state.write().unwrap().remove(counterparty_node_id);
|
|
}
|
|
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
}
|
|
|
|
fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
|
|
log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
{
|
|
let mut peer_state_lock = self.per_peer_state.write().unwrap();
|
|
match peer_state_lock.entry(counterparty_node_id.clone()) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(Mutex::new(PeerState {
|
|
latest_features: init_msg.features.clone(),
|
|
}));
|
|
},
|
|
hash_map::Entry::Occupied(e) => {
|
|
e.get().lock().unwrap().latest_features = init_msg.features.clone();
|
|
},
|
|
}
|
|
}
|
|
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_counterparty_node_id() == *counterparty_node_id {
|
|
if !chan.have_received_message() {
|
|
// If we created this (outbound) channel while we were disconnected from the
|
|
// peer we probably failed to send the open_channel message, which is now
|
|
// lost. We can't have had anything pending related to this channel, so we just
|
|
// drop it.
|
|
false
|
|
} else {
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
msg: chan.get_channel_reestablish(&self.logger),
|
|
});
|
|
true
|
|
}
|
|
} else { true }
|
|
});
|
|
//TODO: Also re-broadcast announcement_signatures
|
|
}
|
|
|
|
fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
if msg.channel_id == [0; 32] {
|
|
for chan in self.list_channels() {
|
|
if chan.counterparty.node_id == *counterparty_node_id {
|
|
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
|
|
let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
|
|
}
|
|
}
|
|
} else {
|
|
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
|
|
let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
|
|
/// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
|
|
struct PersistenceNotifier {
|
|
/// Users won't access the persistence_lock directly, but rather wait on its bool using
|
|
/// `wait_timeout` and `wait`.
|
|
persistence_lock: (Mutex<bool>, Condvar),
|
|
}
|
|
|
|
impl PersistenceNotifier {
|
|
fn new() -> Self {
|
|
Self {
|
|
persistence_lock: (Mutex::new(false), Condvar::new()),
|
|
}
|
|
}
|
|
|
|
fn wait(&self) {
|
|
loop {
|
|
let &(ref mtx, ref cvar) = &self.persistence_lock;
|
|
let mut guard = mtx.lock().unwrap();
|
|
if *guard {
|
|
*guard = false;
|
|
return;
|
|
}
|
|
guard = cvar.wait(guard).unwrap();
|
|
let result = *guard;
|
|
if result {
|
|
*guard = false;
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(any(test, feature = "allow_wallclock_use"))]
|
|
fn wait_timeout(&self, max_wait: Duration) -> bool {
|
|
let current_time = Instant::now();
|
|
loop {
|
|
let &(ref mtx, ref cvar) = &self.persistence_lock;
|
|
let mut guard = mtx.lock().unwrap();
|
|
if *guard {
|
|
*guard = false;
|
|
return true;
|
|
}
|
|
guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
|
|
// Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
|
|
// desired wait time has actually passed, and if not then restart the loop with a reduced wait
|
|
// time. Note that this logic can be highly simplified through the use of
|
|
// `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
|
|
// 1.42.0.
|
|
let elapsed = current_time.elapsed();
|
|
let result = *guard;
|
|
if result || elapsed >= max_wait {
|
|
*guard = false;
|
|
return result;
|
|
}
|
|
match max_wait.checked_sub(elapsed) {
|
|
None => return result,
|
|
Some(_) => continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
|
|
fn notify(&self) {
|
|
let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
|
|
let mut persistence_lock = persist_mtx.lock().unwrap();
|
|
*persistence_lock = true;
|
|
mem::drop(persistence_lock);
|
|
cnd.notify_all();
|
|
}
|
|
}
|
|
|
|
const SERIALIZATION_VERSION: u8 = 1;
|
|
const MIN_SERIALIZATION_VERSION: u8 = 1;
|
|
|
|
impl_writeable_tlv_based_enum!(PendingHTLCRouting,
|
|
(0, Forward) => {
|
|
(0, onion_packet, required),
|
|
(2, short_channel_id, required),
|
|
},
|
|
(1, Receive) => {
|
|
(0, payment_data, required),
|
|
(2, incoming_cltv_expiry, required),
|
|
},
|
|
(2, ReceiveKeysend) => {
|
|
(0, payment_preimage, required),
|
|
(2, incoming_cltv_expiry, required),
|
|
},
|
|
;);
|
|
|
|
impl_writeable_tlv_based!(PendingHTLCInfo, {
|
|
(0, routing, required),
|
|
(2, incoming_shared_secret, required),
|
|
(4, payment_hash, required),
|
|
(6, amt_to_forward, required),
|
|
(8, outgoing_cltv_value, required)
|
|
});
|
|
|
|
impl_writeable_tlv_based_enum!(HTLCFailureMsg, ;
|
|
(0, Relay),
|
|
(1, Malformed),
|
|
);
|
|
impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
|
|
(0, Forward),
|
|
(1, Fail),
|
|
);
|
|
|
|
impl_writeable_tlv_based!(HTLCPreviousHopData, {
|
|
(0, short_channel_id, required),
|
|
(2, outpoint, required),
|
|
(4, htlc_id, required),
|
|
(6, incoming_packet_shared_secret, required)
|
|
});
|
|
|
|
impl_writeable_tlv_based!(ClaimableHTLC, {
|
|
(0, prev_hop, required),
|
|
(2, value, required),
|
|
(4, payment_data, required),
|
|
(6, cltv_expiry, required),
|
|
});
|
|
|
|
impl_writeable_tlv_based_enum!(HTLCSource,
|
|
(0, OutboundRoute) => {
|
|
(0, session_priv, required),
|
|
(2, first_hop_htlc_msat, required),
|
|
(4, path, vec_type),
|
|
}, ;
|
|
(1, PreviousHopData)
|
|
);
|
|
|
|
impl_writeable_tlv_based_enum!(HTLCFailReason,
|
|
(0, LightningError) => {
|
|
(0, err, required),
|
|
},
|
|
(1, Reason) => {
|
|
(0, failure_code, required),
|
|
(2, data, vec_type),
|
|
},
|
|
;);
|
|
|
|
impl_writeable_tlv_based_enum!(HTLCForwardInfo,
|
|
(0, AddHTLC) => {
|
|
(0, forward_info, required),
|
|
(2, prev_short_channel_id, required),
|
|
(4, prev_htlc_id, required),
|
|
(6, prev_funding_outpoint, required),
|
|
},
|
|
(1, FailHTLC) => {
|
|
(0, htlc_id, required),
|
|
(2, err_packet, required),
|
|
},
|
|
;);
|
|
|
|
impl_writeable_tlv_based!(PendingInboundPayment, {
|
|
(0, payment_secret, required),
|
|
(2, expiry_time, required),
|
|
(4, user_payment_id, required),
|
|
(6, payment_preimage, required),
|
|
(8, min_value_msat, required),
|
|
});
|
|
|
|
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
let _consistency_lock = self.total_consistency_lock.write().unwrap();
|
|
|
|
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
|
|
|
|
self.genesis_hash.write(writer)?;
|
|
{
|
|
let best_block = self.best_block.read().unwrap();
|
|
best_block.height().write(writer)?;
|
|
best_block.block_hash().write(writer)?;
|
|
}
|
|
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
let mut unfunded_channels = 0;
|
|
for (_, channel) in channel_state.by_id.iter() {
|
|
if !channel.is_funding_initiated() {
|
|
unfunded_channels += 1;
|
|
}
|
|
}
|
|
((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
|
|
for (_, channel) in channel_state.by_id.iter() {
|
|
if channel.is_funding_initiated() {
|
|
channel.write(writer)?;
|
|
}
|
|
}
|
|
|
|
(channel_state.forward_htlcs.len() as u64).write(writer)?;
|
|
for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
|
|
short_channel_id.write(writer)?;
|
|
(pending_forwards.len() as u64).write(writer)?;
|
|
for forward in pending_forwards {
|
|
forward.write(writer)?;
|
|
}
|
|
}
|
|
|
|
(channel_state.claimable_htlcs.len() as u64).write(writer)?;
|
|
for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
|
|
payment_hash.write(writer)?;
|
|
(previous_hops.len() as u64).write(writer)?;
|
|
for htlc in previous_hops.iter() {
|
|
htlc.write(writer)?;
|
|
}
|
|
}
|
|
|
|
let per_peer_state = self.per_peer_state.write().unwrap();
|
|
(per_peer_state.len() as u64).write(writer)?;
|
|
for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
|
|
peer_pubkey.write(writer)?;
|
|
let peer_state = peer_state_mutex.lock().unwrap();
|
|
peer_state.latest_features.write(writer)?;
|
|
}
|
|
|
|
let events = self.pending_events.lock().unwrap();
|
|
(events.len() as u64).write(writer)?;
|
|
for event in events.iter() {
|
|
event.write(writer)?;
|
|
}
|
|
|
|
let background_events = self.pending_background_events.lock().unwrap();
|
|
(background_events.len() as u64).write(writer)?;
|
|
for event in background_events.iter() {
|
|
match event {
|
|
BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
|
|
0u8.write(writer)?;
|
|
funding_txo.write(writer)?;
|
|
monitor_update.write(writer)?;
|
|
},
|
|
}
|
|
}
|
|
|
|
(self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
|
|
(self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
|
|
|
|
let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
|
|
(pending_inbound_payments.len() as u64).write(writer)?;
|
|
for (hash, pending_payment) in pending_inbound_payments.iter() {
|
|
hash.write(writer)?;
|
|
pending_payment.write(writer)?;
|
|
}
|
|
|
|
let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
|
|
(pending_outbound_payments.len() as u64).write(writer)?;
|
|
for session_priv in pending_outbound_payments.iter() {
|
|
session_priv.write(writer)?;
|
|
}
|
|
|
|
write_tlv_fields!(writer, {});
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Arguments for the creation of a ChannelManager that are not deserialized.
|
|
///
|
|
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
|
|
/// is:
|
|
/// 1) Deserialize all stored ChannelMonitors.
|
|
/// 2) Deserialize the ChannelManager by filling in this struct and calling:
|
|
/// <(BlockHash, ChannelManager)>::read(reader, args)
|
|
/// This may result in closing some Channels if the ChannelMonitor is newer than the stored
|
|
/// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
|
|
/// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
|
|
/// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
|
|
/// ChannelMonitor::get_funding_txo().
|
|
/// 4) Reconnect blocks on your ChannelMonitors.
|
|
/// 5) Disconnect/connect blocks on the ChannelManager.
|
|
/// 6) Move the ChannelMonitors into your local chain::Watch.
|
|
///
|
|
/// Note that the ordering of #4-6 is not of importance, however all three must occur before you
|
|
/// call any other methods on the newly-deserialized ChannelManager.
|
|
///
|
|
/// Note that because some channels may be closed during deserialization, it is critical that you
|
|
/// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
|
|
/// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
|
|
/// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
|
|
/// not force-close the same channels but consider them live), you may end up revoking a state for
|
|
/// which you've already broadcasted the transaction.
|
|
pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
/// The keys provider which will give us relevant keys. Some keys will be loaded during
|
|
/// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
|
|
/// signing data.
|
|
pub keys_manager: K,
|
|
|
|
/// The fee_estimator for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the FeeEstimator will be made during deserialization.
|
|
pub fee_estimator: F,
|
|
/// The chain::Watch for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the chain::Watch will be made during deserialization. It is assumed that
|
|
/// you have deserialized ChannelMonitors separately and will add them to your
|
|
/// chain::Watch after deserializing this ChannelManager.
|
|
pub chain_monitor: M,
|
|
|
|
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
|
|
/// used to broadcast the latest local commitment transactions of channels which must be
|
|
/// force-closed during deserialization.
|
|
pub tx_broadcaster: T,
|
|
/// The Logger for use in the ChannelManager and which may be used to log information during
|
|
/// deserialization.
|
|
pub logger: L,
|
|
/// Default settings used for new channels. Any existing channels will continue to use the
|
|
/// runtime settings which were stored when the ChannelManager was serialized.
|
|
pub default_config: UserConfig,
|
|
|
|
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
|
|
/// value.get_funding_txo() should be the key).
|
|
///
|
|
/// If a monitor is inconsistent with the channel state during deserialization the channel will
|
|
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
|
|
/// is true for missing channels as well. If there is a monitor missing for which we find
|
|
/// channel data Err(DecodeError::InvalidValue) will be returned.
|
|
///
|
|
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
|
|
/// this struct.
|
|
///
|
|
/// (C-not exported) because we have no HashMap bindings
|
|
pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
|
|
}
|
|
|
|
impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
|
|
ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
/// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
|
|
/// HashMap for you. This is primarily useful for C bindings where it is not practical to
|
|
/// populate a HashMap directly from C.
|
|
pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
|
|
mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
|
|
Self {
|
|
keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
|
|
channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
|
|
// SipmleArcChannelManager type:
|
|
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
|
|
let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
|
|
Ok((blockhash, Arc::new(chan_manager)))
|
|
}
|
|
}
|
|
|
|
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
|
|
where M::Target: chain::Watch<Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<Signer = Signer>,
|
|
F::Target: FeeEstimator,
|
|
L::Target: Logger,
|
|
{
|
|
fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
|
|
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
|
|
|
|
let genesis_hash: BlockHash = Readable::read(reader)?;
|
|
let best_block_height: u32 = Readable::read(reader)?;
|
|
let best_block_hash: BlockHash = Readable::read(reader)?;
|
|
|
|
let mut failed_htlcs = Vec::new();
|
|
|
|
let channel_count: u64 = Readable::read(reader)?;
|
|
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
for _ in 0..channel_count {
|
|
let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
|
|
let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
|
|
funding_txo_set.insert(funding_txo.clone());
|
|
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
|
|
if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
|
|
channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
|
|
channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
|
|
// If the channel is ahead of the monitor, return InvalidValue:
|
|
log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
|
|
log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
|
|
log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
|
|
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
|
|
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
|
|
log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
|
|
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
|
|
return Err(DecodeError::InvalidValue);
|
|
} else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
|
|
channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
|
|
channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
|
|
// But if the channel is behind of the monitor, close the channel:
|
|
let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
|
|
failed_htlcs.append(&mut new_failed_htlcs);
|
|
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
|
|
} else {
|
|
if let Some(short_channel_id) = channel.get_short_channel_id() {
|
|
short_to_id.insert(short_channel_id, channel.channel_id());
|
|
}
|
|
by_id.insert(channel.channel_id(), channel);
|
|
}
|
|
} else {
|
|
log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
|
|
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
|
|
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
|
|
log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
|
|
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
|
|
if !funding_txo_set.contains(funding_txo) {
|
|
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
|
|
}
|
|
}
|
|
|
|
const MAX_ALLOC_SIZE: usize = 1024 * 64;
|
|
let forward_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
|
|
for _ in 0..forward_htlcs_count {
|
|
let short_channel_id = Readable::read(reader)?;
|
|
let pending_forwards_count: u64 = Readable::read(reader)?;
|
|
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
|
|
for _ in 0..pending_forwards_count {
|
|
pending_forwards.push(Readable::read(reader)?);
|
|
}
|
|
forward_htlcs.insert(short_channel_id, pending_forwards);
|
|
}
|
|
|
|
let claimable_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
|
|
for _ in 0..claimable_htlcs_count {
|
|
let payment_hash = Readable::read(reader)?;
|
|
let previous_hops_len: u64 = Readable::read(reader)?;
|
|
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
|
|
for _ in 0..previous_hops_len {
|
|
previous_hops.push(Readable::read(reader)?);
|
|
}
|
|
claimable_htlcs.insert(payment_hash, previous_hops);
|
|
}
|
|
|
|
let peer_count: u64 = Readable::read(reader)?;
|
|
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
|
|
for _ in 0..peer_count {
|
|
let peer_pubkey = Readable::read(reader)?;
|
|
let peer_state = PeerState {
|
|
latest_features: Readable::read(reader)?,
|
|
};
|
|
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
|
|
}
|
|
|
|
let event_count: u64 = Readable::read(reader)?;
|
|
let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
|
|
for _ in 0..event_count {
|
|
match MaybeReadable::read(reader)? {
|
|
Some(event) => pending_events_read.push(event),
|
|
None => continue,
|
|
}
|
|
}
|
|
|
|
let background_event_count: u64 = Readable::read(reader)?;
|
|
let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
|
|
for _ in 0..background_event_count {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
|
|
_ => return Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
|
|
let last_node_announcement_serial: u32 = Readable::read(reader)?;
|
|
let highest_seen_timestamp: u32 = Readable::read(reader)?;
|
|
|
|
let pending_inbound_payment_count: u64 = Readable::read(reader)?;
|
|
let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
|
|
for _ in 0..pending_inbound_payment_count {
|
|
if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
let pending_outbound_payments_count: u64 = Readable::read(reader)?;
|
|
let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
|
|
for _ in 0..pending_outbound_payments_count {
|
|
if !pending_outbound_payments.insert(Readable::read(reader)?) {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
read_tlv_fields!(reader, {});
|
|
|
|
let mut secp_ctx = Secp256k1::new();
|
|
secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
|
|
|
|
let channel_manager = ChannelManager {
|
|
genesis_hash,
|
|
fee_estimator: args.fee_estimator,
|
|
chain_monitor: args.chain_monitor,
|
|
tx_broadcaster: args.tx_broadcaster,
|
|
|
|
best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
|
|
|
|
channel_state: Mutex::new(ChannelHolder {
|
|
by_id,
|
|
short_to_id,
|
|
forward_htlcs,
|
|
claimable_htlcs,
|
|
pending_msg_events: Vec::new(),
|
|
}),
|
|
pending_inbound_payments: Mutex::new(pending_inbound_payments),
|
|
pending_outbound_payments: Mutex::new(pending_outbound_payments),
|
|
|
|
our_network_key: args.keys_manager.get_node_secret(),
|
|
our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
|
|
secp_ctx,
|
|
|
|
last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
|
|
highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
|
|
|
|
per_peer_state: RwLock::new(per_peer_state),
|
|
|
|
pending_events: Mutex::new(pending_events_read),
|
|
pending_background_events: Mutex::new(pending_background_events_read),
|
|
total_consistency_lock: RwLock::new(()),
|
|
persistence_notifier: PersistenceNotifier::new(),
|
|
|
|
keys_manager: args.keys_manager,
|
|
logger: args.logger,
|
|
default_configuration: args.default_config,
|
|
};
|
|
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
|
|
//TODO: Broadcast channel update for closed channels, but only after we've made a
|
|
//connection or two.
|
|
|
|
Ok((best_block_hash.clone(), channel_manager))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use ln::channelmanager::PersistenceNotifier;
|
|
use sync::Arc;
|
|
use core::sync::atomic::{AtomicBool, Ordering};
|
|
use std::thread;
|
|
use core::time::Duration;
|
|
use ln::functional_test_utils::*;
|
|
use ln::features::InitFeatures;
|
|
use ln::msgs::ChannelMessageHandler;
|
|
|
|
#[cfg(feature = "std")]
|
|
#[test]
|
|
fn test_wait_timeout() {
|
|
let persistence_notifier = Arc::new(PersistenceNotifier::new());
|
|
let thread_notifier = Arc::clone(&persistence_notifier);
|
|
|
|
let exit_thread = Arc::new(AtomicBool::new(false));
|
|
let exit_thread_clone = exit_thread.clone();
|
|
thread::spawn(move || {
|
|
loop {
|
|
let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
|
|
let mut persistence_lock = persist_mtx.lock().unwrap();
|
|
*persistence_lock = true;
|
|
cnd.notify_all();
|
|
|
|
if exit_thread_clone.load(Ordering::SeqCst) {
|
|
break
|
|
}
|
|
}
|
|
});
|
|
|
|
// Check that we can block indefinitely until updates are available.
|
|
let _ = persistence_notifier.wait();
|
|
|
|
// Check that the PersistenceNotifier will return after the given duration if updates are
|
|
// available.
|
|
loop {
|
|
if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
|
|
break
|
|
}
|
|
}
|
|
|
|
exit_thread.store(true, Ordering::SeqCst);
|
|
|
|
// Check that the PersistenceNotifier will return after the given duration even if no updates
|
|
// are available.
|
|
loop {
|
|
if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_notify_limits() {
|
|
// Check that a few cases which don't require the persistence of a new ChannelManager,
|
|
// indeed, do not cause the persistence of a new ChannelManager.
|
|
let chanmon_cfgs = create_chanmon_cfgs(3);
|
|
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
|
|
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
|
|
|
|
let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
|
|
|
|
// We check that the channel info nodes have doesn't change too early, even though we try
|
|
// to connect messages with new values
|
|
chan.0.contents.fee_base_msat *= 2;
|
|
chan.1.contents.fee_base_msat *= 2;
|
|
let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
|
|
let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
|
|
|
|
// The first two nodes (which opened a channel) should now require fresh persistence
|
|
assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
// ... but the last node should not.
|
|
assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
// After persisting the first two nodes they should no longer need fresh persistence.
|
|
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
|
|
// Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
|
|
// about the channel.
|
|
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
|
|
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
|
|
assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
|
|
// The nodes which are a party to the channel should also ignore messages from unrelated
|
|
// parties.
|
|
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
|
|
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
|
|
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
|
|
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
|
|
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
|
|
// At this point the channel info given by peers should still be the same.
|
|
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
|
|
// An earlier version of handle_channel_update didn't check the directionality of the
|
|
// update message and would always update the local fee info, even if our peer was
|
|
// (spuriously) forwarding us our own channel_update.
|
|
let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
|
|
let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
|
|
let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
|
|
|
|
// First deliver each peers' own message, checking that the node doesn't need to be
|
|
// persisted and that its channel info remains the same.
|
|
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
|
|
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
|
|
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
|
|
// Finally, deliver the other peers' message, ensuring each node needs to be persisted and
|
|
// the channel info has updated.
|
|
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
|
|
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
|
|
assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
|
|
assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
}
|
|
}
|
|
|
|
#[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
|
|
pub mod bench {
|
|
use chain::Listen;
|
|
use chain::chainmonitor::ChainMonitor;
|
|
use chain::channelmonitor::Persist;
|
|
use chain::keysinterface::{KeysManager, InMemorySigner};
|
|
use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
|
|
use ln::features::{InitFeatures, InvoiceFeatures};
|
|
use ln::functional_test_utils::*;
|
|
use ln::msgs::ChannelMessageHandler;
|
|
use routing::network_graph::NetworkGraph;
|
|
use routing::router::get_route;
|
|
use util::test_utils;
|
|
use util::config::UserConfig;
|
|
use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
|
|
|
|
use bitcoin::hashes::Hash;
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::{Block, BlockHeader, Transaction, TxOut};
|
|
|
|
use sync::{Arc, Mutex};
|
|
|
|
use test::Bencher;
|
|
|
|
struct NodeHolder<'a, P: Persist<InMemorySigner>> {
|
|
node: &'a ChannelManager<InMemorySigner,
|
|
&'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
|
|
&'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
|
|
&'a test_utils::TestLogger, &'a P>,
|
|
&'a test_utils::TestBroadcaster, &'a KeysManager,
|
|
&'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[bench]
|
|
fn bench_sends(bench: &mut Bencher) {
|
|
bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
|
|
}
|
|
|
|
pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
|
|
// Do a simple benchmark of sending a payment back and forth between two nodes.
|
|
// Note that this is unrealistic as each payment send will require at least two fsync
|
|
// calls per node.
|
|
let network = bitcoin::Network::Testnet;
|
|
let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
|
|
|
|
let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
|
|
let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
|
|
|
|
let mut config: UserConfig = Default::default();
|
|
config.own_channel_config.minimum_depth = 1;
|
|
|
|
let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
|
|
let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
|
|
let seed_a = [1u8; 32];
|
|
let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
|
|
let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
|
|
network,
|
|
best_block: BestBlock::from_genesis(network),
|
|
});
|
|
let node_a_holder = NodeHolder { node: &node_a };
|
|
|
|
let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
|
|
let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
|
|
let seed_b = [2u8; 32];
|
|
let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
|
|
let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
|
|
network,
|
|
best_block: BestBlock::from_genesis(network),
|
|
});
|
|
let node_b_holder = NodeHolder { node: &node_b };
|
|
|
|
node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
|
|
node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
|
|
node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
|
|
|
|
let tx;
|
|
if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
|
|
tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
|
|
value: 8_000_000, script_pubkey: output_script,
|
|
}]};
|
|
node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
|
|
} else { panic!(); }
|
|
|
|
node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
|
|
node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
|
|
|
|
assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
|
|
|
|
let block = Block {
|
|
header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
|
|
txdata: vec![tx],
|
|
};
|
|
Listen::block_connected(&node_a, &block, 1);
|
|
Listen::block_connected(&node_b, &block, 1);
|
|
|
|
node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
|
|
let msg_events = node_a.get_and_clear_pending_msg_events();
|
|
assert_eq!(msg_events.len(), 2);
|
|
match msg_events[0] {
|
|
MessageSendEvent::SendFundingLocked { ref msg, .. } => {
|
|
node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
|
|
get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
|
|
},
|
|
_ => panic!(),
|
|
}
|
|
match msg_events[1] {
|
|
MessageSendEvent::SendChannelUpdate { .. } => {},
|
|
_ => panic!(),
|
|
}
|
|
|
|
let dummy_graph = NetworkGraph::new(genesis_hash);
|
|
|
|
let mut payment_count: u64 = 0;
|
|
macro_rules! send_payment {
|
|
($node_a: expr, $node_b: expr) => {
|
|
let usable_channels = $node_a.list_usable_channels();
|
|
let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
|
|
Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
|
|
|
|
let mut payment_preimage = PaymentPreimage([0; 32]);
|
|
payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
|
|
payment_count += 1;
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
|
|
let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
|
|
|
|
$node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
|
|
let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
|
|
$node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
|
|
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
|
|
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
|
|
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
|
|
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
|
|
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
|
|
|
|
expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
|
|
expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
|
|
assert!($node_b.claim_funds(payment_preimage));
|
|
|
|
match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
|
|
MessageSendEvent::UpdateHTLCs { node_id, updates } => {
|
|
assert_eq!(node_id, $node_a.get_our_node_id());
|
|
$node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
|
|
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
|
|
},
|
|
_ => panic!("Failed to generate claim event"),
|
|
}
|
|
|
|
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
|
|
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
|
|
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
|
|
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
|
|
|
|
expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
|
|
}
|
|
}
|
|
|
|
bench.iter(|| {
|
|
send_payment!(node_a, node_b);
|
|
send_payment!(node_b, node_a);
|
|
});
|
|
}
|
|
}
|