rust-lightning/src/ln/peer_handler.rs
Matt Corallo b4fc5b65e0 Fix pre-noise peer disconnect panic on non-Err disconnect
366e79615b fixed the same crash for
Errs that come up during handshake, but was incomplete and should
have just dropped the node_id being different based on
inbound/outbound. This patch does so and actually fixes the issue.

Found by fuzzer.
2018-11-18 12:59:02 -05:00

1145 lines
52 KiB
Rust

//! Top level peer message handling and socket handling logic lives here.
//!
//! Instead of actually servicing sockets ourselves we require that you implement the
//! SocketDescriptor interface and use that to receive actions which you should perform on the
//! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
//! call into the provided message handlers (probably a ChannelManager and Router) with messages
//! they should handle, and encoding/sending response messages.
use secp256k1::key::{SecretKey,PublicKey};
use ln::msgs;
use util::ser::{Writeable, Writer, Readable};
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
use util::byte_utils;
use util::events::{MessageSendEvent};
use util::logger::Logger;
use std::collections::{HashMap,hash_map,HashSet,LinkedList};
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{cmp,error,hash,fmt};
/// Provides references to trait impls which handle different types of messages.
pub struct MessageHandler {
/// A message handler which handles messages specific to channels. Usually this is just a
/// ChannelManager object.
pub chan_handler: Arc<msgs::ChannelMessageHandler>,
/// A message handler which handles messages updating our knowledge of the network channel
/// graph. Usually this is just a Router object.
pub route_handler: Arc<msgs::RoutingMessageHandler>,
}
/// Provides an object which can be used to send data to and which uniquely identifies a connection
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
/// implement Hash to meet the PeerManager API.
///
/// For efficiency, Clone should be relatively cheap for this type.
///
/// You probably want to just extend an int and put a file descriptor in a struct and implement
/// send_data. Note that if you are using a higher-level net library that may close() itself, be
/// careful to ensure you don't have races whereby you might register a new connection with an fd
/// the same as a yet-to-be-disconnect_event()-ed.
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
/// Attempts to send some data from the given Vec starting at the given offset to the peer.
/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
/// Note that in the disconnected case, a disconnect_event must still fire and further write
/// attempts may occur until that time.
///
/// If the returned size is smaller than data.len() - write_offset, a write_available event must
/// trigger the next time more data can be written. Additionally, until the a send_data event
/// completes fully, no further read_events should trigger on the same peer!
///
/// If a read_event on this descriptor had previously returned true (indicating that read
/// events should be paused to prevent DoS in the send buffer), resume_read may be set
/// indicating that read events on this descriptor should resume. A resume_read of false does
/// *not* imply that further read events should be paused.
fn send_data(&mut self, data: &Vec<u8>, write_offset: usize, resume_read: bool) -> usize;
/// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
/// more calls to write_event, read_event or disconnect_event may be made with this descriptor.
/// No disconnect_event should be generated as a result of this call, though obviously races
/// may occur whereby disconnect_socket is called after a call to disconnect_event but prior to
/// that event completing.
fn disconnect_socket(&mut self);
}
/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
/// generate no further read/write_events for the descriptor, only triggering a single
/// disconnect_event (unless it was provided in response to a new_*_connection event, in which case
/// no such disconnect_event must be generated and the socket be silently disconencted).
pub struct PeerHandleError {
/// Used to indicate that we probably can't make any future connections to this peer, implying
/// we should go ahead and force-close any channels we have with it.
no_connection_possible: bool,
}
impl fmt::Debug for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
}
}
impl fmt::Display for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
}
}
impl error::Error for PeerHandleError {
fn description(&self) -> &str {
"Peer Sent Invalid Data"
}
}
enum InitSyncTracker{
NoSyncRequested,
ChannelsSyncing(u64),
NodesSyncing(PublicKey),
}
struct Peer {
channel_encryptor: PeerChannelEncryptor,
outbound: bool,
their_node_id: Option<PublicKey>,
their_global_features: Option<msgs::GlobalFeatures>,
their_local_features: Option<msgs::LocalFeatures>,
pending_outbound_buffer: LinkedList<Vec<u8>>,
pending_outbound_buffer_first_msg_offset: usize,
awaiting_write_event: bool,
pending_read_buffer: Vec<u8>,
pending_read_buffer_pos: usize,
pending_read_is_header: bool,
sync_status: InitSyncTracker,
}
impl Peer {
/// Returns true if the the channel announcements/updates for the given channel should be
/// forwarded to this peer.
/// If we are sending our routing table to this peer and we have not yet sent channel
/// announcements/updates for the given channel_id then we will send it when we get to that
/// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
/// sent the old versions, we should send the update, and so return true here.
fn should_forward_channel(&self, channel_id: u64)->bool{
match self.sync_status {
InitSyncTracker::NoSyncRequested => true,
InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
InitSyncTracker::NodesSyncing(_) => true,
}
}
}
struct PeerHolder<Descriptor: SocketDescriptor> {
peers: HashMap<Descriptor, Peer>,
/// Added to by do_read_event for cases where we pushed a message onto the send buffer but
/// didn't call do_attempt_write_data to avoid reentrancy. Cleared in process_events()
peers_needing_send: HashSet<Descriptor>,
/// Only add to this set when noise completes:
node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
}
struct MutPeerHolder<'a, Descriptor: SocketDescriptor + 'a> {
peers: &'a mut HashMap<Descriptor, Peer>,
peers_needing_send: &'a mut HashSet<Descriptor>,
node_id_to_descriptor: &'a mut HashMap<PublicKey, Descriptor>,
}
impl<Descriptor: SocketDescriptor> PeerHolder<Descriptor> {
fn borrow_parts(&mut self) -> MutPeerHolder<Descriptor> {
MutPeerHolder {
peers: &mut self.peers,
peers_needing_send: &mut self.peers_needing_send,
node_id_to_descriptor: &mut self.node_id_to_descriptor,
}
}
}
/// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
/// events into messages which it passes on to its MessageHandlers.
pub struct PeerManager<Descriptor: SocketDescriptor> {
message_handler: MessageHandler,
peers: Mutex<PeerHolder<Descriptor>>,
our_node_secret: SecretKey,
initial_syncs_sent: AtomicUsize,
logger: Arc<Logger>,
}
struct VecWriter(Vec<u8>);
impl Writer for VecWriter {
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
self.0.extend_from_slice(buf);
Ok(())
}
fn size_hint(&mut self, size: usize) {
self.0.reserve_exact(size);
}
}
macro_rules! encode_msg {
($msg: expr, $msg_code: expr) => {{
let mut msg = VecWriter(Vec::new());
($msg_code as u16).write(&mut msg).unwrap();
$msg.write(&mut msg).unwrap();
msg.0
}}
}
//TODO: Really should do something smarter for this
const INITIAL_SYNCS_TO_SEND: usize = 5;
/// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
/// PeerIds may repeat, but only after disconnect_event() has been called.
impl<Descriptor: SocketDescriptor> PeerManager<Descriptor> {
/// Constructs a new PeerManager with the given message handlers and node_id secret key
pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey, logger: Arc<Logger>) -> PeerManager<Descriptor> {
PeerManager {
message_handler: message_handler,
peers: Mutex::new(PeerHolder {
peers: HashMap::new(),
peers_needing_send: HashSet::new(),
node_id_to_descriptor: HashMap::new()
}),
our_node_secret: our_node_secret,
initial_syncs_sent: AtomicUsize::new(0),
logger,
}
}
/// Get the list of node ids for peers which have completed the initial handshake.
///
/// For outbound connections, this will be the same as the their_node_id parameter passed in to
/// new_outbound_connection, however entries will only appear once the initial handshake has
/// completed and we are sure the remote peer has the private key for the given node_id.
pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
let peers = self.peers.lock().unwrap();
peers.peers.values().filter_map(|p| {
if !p.channel_encryptor.is_ready_for_encryption() || p.their_global_features.is_none() {
return None;
}
p.their_node_id
}).collect()
}
/// Indicates a new outbound connection has been established to a node with the given node_id.
/// Note that if an Err is returned here you MUST NOT call disconnect_event for the new
/// descriptor but must disconnect the connection immediately.
///
/// Returns a small number of bytes to send to the remote node (currently always 50).
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet has a
/// disconnect_event.
pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone());
let res = peer_encryptor.get_act_one().to_vec();
let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
outbound: true,
their_node_id: None,
their_global_features: None,
their_local_features: None,
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(res)
}
/// Indicates a new inbound connection has been established.
///
/// May refuse the connection by returning an Err, but will never write bytes to the remote end
/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
/// call disconnect_event for the new descriptor but must disconnect the connection
/// immediately.
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet has a
/// disconnect_event.
pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
outbound: false,
their_node_id: None,
their_global_features: None,
their_local_features: None,
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(())
}
fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
macro_rules! encode_and_send_msg {
($msg: expr, $msg_code: expr) => {
{
log_trace!(self, "Encoding and sending sync update message of type {} to {}", $msg_code, log_pubkey!(peer.their_node_id.unwrap()));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg, $msg_code)[..]));
}
}
}
const MSG_BUFF_SIZE: usize = 10;
while !peer.awaiting_write_event {
if peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE {
match peer.sync_status {
InitSyncTracker::NoSyncRequested => {},
InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
let steps = ((MSG_BUFF_SIZE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
let all_messages = self.message_handler.route_handler.get_next_channel_announcements(0, steps);
for &(ref announce, ref update_a, ref update_b) in all_messages.iter() {
encode_and_send_msg!(announce, 256);
encode_and_send_msg!(update_a, 258);
encode_and_send_msg!(update_b, 258);
peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
}
},
InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
for msg in all_messages.iter() {
encode_and_send_msg!(msg, 256);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
InitSyncTracker::NodesSyncing(key) => {
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
for msg in all_messages.iter() {
encode_and_send_msg!(msg, 256);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
}
}
if {
let next_buff = match peer.pending_outbound_buffer.front() {
None => return,
Some(buff) => buff,
};
let should_be_reading = peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE;
let data_sent = descriptor.send_data(next_buff, peer.pending_outbound_buffer_first_msg_offset, should_be_reading);
peer.pending_outbound_buffer_first_msg_offset += data_sent;
if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
} {
peer.pending_outbound_buffer_first_msg_offset = 0;
peer.pending_outbound_buffer.pop_front();
} else {
peer.awaiting_write_event = true;
}
}
}
/// Indicates that there is room to write data to the given socket descriptor.
///
/// May return an Err to indicate that the connection should be closed.
///
/// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
/// new_*\_connection) before returning. Thus, be very careful with reentrancy issues! The
/// invariants around calling write_event in case a write did not fully complete must still
/// hold - be ready to call write_event again if a write call generated here isn't sufficient!
/// Panics if the descriptor was not previously registered in a new_\*_connection event.
pub fn write_event(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
let mut peers = self.peers.lock().unwrap();
match peers.peers.get_mut(descriptor) {
None => panic!("Descriptor for write_event is not already known to PeerManager"),
Some(peer) => {
peer.awaiting_write_event = false;
self.do_attempt_write_data(descriptor, peer);
}
};
Ok(())
}
/// Indicates that data was read from the given socket descriptor.
///
/// May return an Err to indicate that the connection should be closed.
///
/// Will *not* call back into send_data on any descriptors to avoid reentrancy complexity.
/// Thus, however, you almost certainly want to call process_events() after any read_event to
/// generate send_data calls to handle responses.
///
/// If Ok(true) is returned, further read_events should not be triggered until a write_event on
/// this file descriptor has resume_read set (preventing DoS issues in the send buffer).
///
/// Panics if the descriptor was not previously registered in a new_*_connection event.
pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
match self.do_read_event(peer_descriptor, data) {
Ok(res) => Ok(res),
Err(e) => {
self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
Err(e)
}
}
}
fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
let pause_read = {
let mut peers_lock = self.peers.lock().unwrap();
let peers = peers_lock.borrow_parts();
let pause_read = match peers.peers.get_mut(peer_descriptor) {
None => panic!("Descriptor for read_event is not already known to PeerManager"),
Some(peer) => {
assert!(peer.pending_read_buffer.len() > 0);
assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
let mut read_pos = 0;
while read_pos < data.len() {
{
let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
read_pos += data_to_copy;
peer.pending_read_buffer_pos += data_to_copy;
}
if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
peer.pending_read_buffer_pos = 0;
macro_rules! encode_and_send_msg {
($msg: expr, $msg_code: expr) => {
{
log_trace!(self, "Encoding and sending message of type {} to {}", $msg_code, log_pubkey!(peer.their_node_id.unwrap()));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg, $msg_code)[..]));
peers.peers_needing_send.insert(peer_descriptor.clone());
}
}
}
macro_rules! try_potential_handleerror {
($thing: expr) => {
match $thing {
Ok(x) => x,
Err(e) => {
if let Some(action) = e.action {
match action {
msgs::ErrorAction::DisconnectPeer { msg: _ } => {
//TODO: Try to push msg
log_trace!(self, "Got Err handling message, disconnecting peer because {}", e.err);
return Err(PeerHandleError{ no_connection_possible: false });
},
msgs::ErrorAction::IgnoreError => {
log_trace!(self, "Got Err handling message, ignoring because {}", e.err);
continue;
},
msgs::ErrorAction::SendErrorMessage { msg } => {
log_trace!(self, "Got Err handling message, sending Error message because {}", e.err);
encode_and_send_msg!(msg, 17);
continue;
},
}
} else {
log_debug!(self, "Got Err handling message, action not yet filled in: {}", e.err);
return Err(PeerHandleError{ no_connection_possible: false });
}
}
};
}
}
macro_rules! try_potential_decodeerror {
($thing: expr) => {
match $thing {
Ok(x) => x,
Err(e) => {
match e {
msgs::DecodeError::UnknownVersion => return Err(PeerHandleError{ no_connection_possible: false }),
msgs::DecodeError::UnknownRequiredFeature => {
log_debug!(self, "Got a channel/node announcement with an known required feature flag, you may want to udpate!");
continue;
},
msgs::DecodeError::InvalidValue => return Err(PeerHandleError{ no_connection_possible: false }),
msgs::DecodeError::ShortRead => return Err(PeerHandleError{ no_connection_possible: false }),
msgs::DecodeError::ExtraAddressesPerType => {
log_debug!(self, "Error decoding message, ignoring due to lnd spec incompatibility. See https://github.com/lightningnetwork/lnd/issues/1407");
continue;
},
msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError{ no_connection_possible: false }),
msgs::DecodeError::Io(_) => return Err(PeerHandleError{ no_connection_possible: false }),
}
}
};
}
}
macro_rules! insert_node_id {
() => {
match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
hash_map::Entry::Occupied(_) => {
log_trace!(self, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
return Err(PeerHandleError{ no_connection_possible: false })
},
hash_map::Entry::Vacant(entry) => {
log_trace!(self, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
entry.insert(peer_descriptor.clone())
},
};
}
}
let next_step = peer.channel_encryptor.get_noise_step();
match next_step {
NextNoiseStep::ActOne => {
let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_key(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec();
peer.pending_outbound_buffer.push_back(act_two);
peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
},
NextNoiseStep::ActTwo => {
let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
peer.pending_outbound_buffer.push_back(act_three.to_vec());
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id!();
let mut local_features = msgs::LocalFeatures::new();
if self.initial_syncs_sent.load(Ordering::Acquire) < INITIAL_SYNCS_TO_SEND {
self.initial_syncs_sent.fetch_add(1, Ordering::AcqRel);
local_features.set_initial_routing_sync();
}
encode_and_send_msg!(msgs::Init {
global_features: msgs::GlobalFeatures::new(),
local_features,
}, 16);
},
NextNoiseStep::ActThree => {
let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id!();
},
NextNoiseStep::NoiseComplete => {
if peer.pending_read_is_header {
let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
if msg_len < 2 { // Need at least the message type tag
return Err(PeerHandleError{ no_connection_possible: false });
}
peer.pending_read_is_header = false;
} else {
let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
assert!(msg_data.len() >= 2);
// Reset read buffer
peer.pending_read_buffer = [0; 18].to_vec();
peer.pending_read_is_header = true;
let msg_type = byte_utils::slice_to_be16(&msg_data[0..2]);
log_trace!(self, "Received message of type {} from {}", msg_type, log_pubkey!(peer.their_node_id.unwrap()));
if msg_type != 16 && peer.their_global_features.is_none() {
// Need an init message as first message
log_trace!(self, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
return Err(PeerHandleError{ no_connection_possible: false });
}
let mut reader = ::std::io::Cursor::new(&msg_data[2..]);
match msg_type {
// Connection control:
16 => {
let msg = try_potential_decodeerror!(msgs::Init::read(&mut reader));
if msg.global_features.requires_unknown_bits() {
log_info!(self, "Peer global features required unknown version bits");
return Err(PeerHandleError{ no_connection_possible: true });
}
if msg.local_features.requires_unknown_bits() {
log_info!(self, "Peer local features required unknown version bits");
return Err(PeerHandleError{ no_connection_possible: true });
}
if msg.local_features.requires_data_loss_protect() {
log_info!(self, "Peer local features required data_loss_protect");
return Err(PeerHandleError{ no_connection_possible: true });
}
if msg.local_features.requires_upfront_shutdown_script() {
log_info!(self, "Peer local features required upfront_shutdown_script");
return Err(PeerHandleError{ no_connection_possible: true });
}
if peer.their_global_features.is_some() {
return Err(PeerHandleError{ no_connection_possible: false });
}
log_info!(self, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, unkown local flags: {}, unknown global flags: {}",
if msg.local_features.supports_data_loss_protect() { "supported" } else { "not supported"},
if msg.local_features.initial_routing_sync() { "requested" } else { "not requested" },
if msg.local_features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
if msg.local_features.supports_unknown_bits() { "present" } else { "none" },
if msg.global_features.supports_unknown_bits() { "present" } else { "none" });
if msg.local_features.initial_routing_sync() {
peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
peers.peers_needing_send.insert(peer_descriptor.clone());
}
peer.their_global_features = Some(msg.global_features);
peer.their_local_features = Some(msg.local_features);
if !peer.outbound {
let mut local_features = msgs::LocalFeatures::new();
if self.initial_syncs_sent.load(Ordering::Acquire) < INITIAL_SYNCS_TO_SEND {
self.initial_syncs_sent.fetch_add(1, Ordering::AcqRel);
local_features.set_initial_routing_sync();
}
encode_and_send_msg!(msgs::Init {
global_features: msgs::GlobalFeatures::new(),
local_features,
}, 16);
}
self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap());
},
17 => {
let msg = try_potential_decodeerror!(msgs::ErrorMessage::read(&mut reader));
let mut data_is_printable = true;
for b in msg.data.bytes() {
if b < 32 || b > 126 {
data_is_printable = false;
break;
}
}
if data_is_printable {
log_debug!(self, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
} else {
log_debug!(self, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
}
self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
if msg.channel_id == [0; 32] {
return Err(PeerHandleError{ no_connection_possible: true });
}
},
18 => {
let msg = try_potential_decodeerror!(msgs::Ping::read(&mut reader));
if msg.ponglen < 65532 {
let resp = msgs::Pong { byteslen: msg.ponglen };
encode_and_send_msg!(resp, 19);
}
},
19 => {
try_potential_decodeerror!(msgs::Pong::read(&mut reader));
},
// Channel control:
32 => {
let msg = try_potential_decodeerror!(msgs::OpenChannel::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), &msg));
},
33 => {
let msg = try_potential_decodeerror!(msgs::AcceptChannel::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), &msg));
},
34 => {
let msg = try_potential_decodeerror!(msgs::FundingCreated::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg));
},
35 => {
let msg = try_potential_decodeerror!(msgs::FundingSigned::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg));
},
36 => {
let msg = try_potential_decodeerror!(msgs::FundingLocked::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg));
},
38 => {
let msg = try_potential_decodeerror!(msgs::Shutdown::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg));
},
39 => {
let msg = try_potential_decodeerror!(msgs::ClosingSigned::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg));
},
128 => {
let msg = try_potential_decodeerror!(msgs::UpdateAddHTLC::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg));
},
130 => {
let msg = try_potential_decodeerror!(msgs::UpdateFulfillHTLC::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg));
},
131 => {
let msg = try_potential_decodeerror!(msgs::UpdateFailHTLC::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg));
},
135 => {
let msg = try_potential_decodeerror!(msgs::UpdateFailMalformedHTLC::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg));
},
132 => {
let msg = try_potential_decodeerror!(msgs::CommitmentSigned::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg));
},
133 => {
let msg = try_potential_decodeerror!(msgs::RevokeAndACK::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg));
},
134 => {
let msg = try_potential_decodeerror!(msgs::UpdateFee::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg));
},
136 => {
let msg = try_potential_decodeerror!(msgs::ChannelReestablish::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg));
},
// Routing control:
259 => {
let msg = try_potential_decodeerror!(msgs::AnnouncementSignatures::read(&mut reader));
try_potential_handleerror!(self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg));
},
256 => {
let msg = try_potential_decodeerror!(msgs::ChannelAnnouncement::read(&mut reader));
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_announcement(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
},
257 => {
let msg = try_potential_decodeerror!(msgs::NodeAnnouncement::read(&mut reader));
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_node_announcement(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
},
258 => {
let msg = try_potential_decodeerror!(msgs::ChannelUpdate::read(&mut reader));
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_update(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
},
_ => {
if (msg_type & 1) == 0 {
return Err(PeerHandleError{ no_connection_possible: true });
}
},
}
}
}
}
}
}
self.do_attempt_write_data(peer_descriptor, peer);
peer.pending_outbound_buffer.len() > 10 // pause_read
}
};
pause_read
};
Ok(pause_read)
}
/// Checks for any events generated by our handlers and processes them. Includes sending most
/// response messages as well as messages generated by calls to handler functions directly (eg
/// functions like ChannelManager::process_pending_htlc_forward or send_payment).
pub fn process_events(&self) {
{
// TODO: There are some DoS attacks here where you can flood someone's outbound send
// buffer by doing things like announcing channels on another node. We should be willing to
// drop optional-ish messages when send buffers get full!
let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
let mut peers_lock = self.peers.lock().unwrap();
let peers = peers_lock.borrow_parts();
for event in events_generated.drain(..) {
macro_rules! get_peer_for_forwarding {
($node_id: expr, $handle_no_such_peer: block) => {
{
let descriptor = match peers.node_id_to_descriptor.get($node_id) {
Some(descriptor) => descriptor.clone(),
None => {
$handle_no_such_peer;
continue;
},
};
match peers.peers.get_mut(&descriptor) {
Some(peer) => {
if peer.their_global_features.is_none() {
$handle_no_such_peer;
continue;
}
(descriptor, peer)
},
None => panic!("Inconsistent peers set state!"),
}
}
}
}
match event {
MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
log_trace!(self, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 33)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
log_trace!(self, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 32)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
log_trace!(self, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id),
log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 34)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
log_trace!(self, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 35)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
log_trace!(self, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 36)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
log_trace!(self, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 259)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
log_trace!(self, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
log_pubkey!(node_id),
update_add_htlcs.len(),
update_fulfill_htlcs.len(),
update_fail_htlcs.len(),
log_bytes!(commitment_signed.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
for msg in update_add_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 128)));
}
for msg in update_fulfill_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 130)));
}
for msg in update_fail_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 131)));
}
for msg in update_fail_malformed_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 135)));
}
if let &Some(ref msg) = update_fee {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 134)));
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed, 132)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
log_trace!(self, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 133)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
log_trace!(self, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 39)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
log_trace!(self, "Handling Shutdown event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 38)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
log_trace!(self, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 136)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
log_trace!(self, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() {
let encoded_msg = encode_msg!(msg, 256);
let encoded_update_msg = encode_msg!(update_msg, 258);
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_global_features.is_none() ||
!peer.should_forward_channel(msg.contents.short_channel_id) {
continue
}
match peer.their_node_id {
None => continue,
Some(their_node_id) => {
if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
continue
}
}
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..]));
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
}
}
},
MessageSendEvent::BroadcastChannelUpdate { ref msg } => {
log_trace!(self, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
if self.message_handler.route_handler.handle_channel_update(msg).is_ok() {
let encoded_msg = encode_msg!(msg, 258);
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_global_features.is_none() ||
!peer.should_forward_channel(msg.contents.short_channel_id) {
continue
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
}
}
},
MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
},
MessageSendEvent::HandleError { ref node_id, ref action } => {
if let Some(ref action) = *action {
match *action {
msgs::ErrorAction::DisconnectPeer { ref msg } => {
if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
peers.peers_needing_send.remove(&descriptor);
if let Some(mut peer) = peers.peers.remove(&descriptor) {
if let Some(ref msg) = *msg {
log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 17)));
// This isn't guaranteed to work, but if there is enough free
// room in the send buffer, put the error message there...
self.do_attempt_write_data(&mut descriptor, &mut peer);
} else {
log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
}
}
descriptor.disconnect_socket();
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
}
},
msgs::ErrorAction::IgnoreError => {},
msgs::ErrorAction::SendErrorMessage { ref msg } => {
log_trace!(self, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 17)));
self.do_attempt_write_data(&mut descriptor, peer);
},
}
} else {
log_error!(self, "Got no-action HandleError Event in peer_handler for node {}, no such events should ever be generated!", log_pubkey!(node_id));
}
}
}
}
for mut descriptor in peers.peers_needing_send.drain() {
match peers.peers.get_mut(&descriptor) {
Some(peer) => self.do_attempt_write_data(&mut descriptor, peer),
None => panic!("Inconsistent peers set state!"),
}
}
}
}
/// Indicates that the given socket descriptor's connection is now closed.
///
/// This must be called even if a PeerHandleError was given for a read_event or write_event,
/// but must NOT be called if a PeerHandleError was provided out of a new_\*\_connection event!
///
/// Panics if the descriptor was not previously registered in a successful new_*_connection event.
pub fn disconnect_event(&self, descriptor: &Descriptor) {
self.disconnect_event_internal(descriptor, false);
}
fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
let mut peers = self.peers.lock().unwrap();
peers.peers_needing_send.remove(descriptor);
let peer_option = peers.peers.remove(descriptor);
match peer_option {
None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
Some(peer) => {
match peer.their_node_id {
Some(node_id) => {
peers.node_id_to_descriptor.remove(&node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
},
None => {}
}
}
};
}
}
#[cfg(test)]
mod tests {
use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
use ln::msgs;
use util::events;
use util::test_utils;
use util::logger::Logger;
use secp256k1::Secp256k1;
use secp256k1::key::{SecretKey, PublicKey};
use rand::{thread_rng, Rng};
use std::sync::{Arc};
#[derive(PartialEq, Eq, Clone, Hash)]
struct FileDescriptor {
fd: u16,
}
impl SocketDescriptor for FileDescriptor {
fn send_data(&mut self, data: &Vec<u8>, write_offset: usize, _resume_read: bool) -> usize {
assert!(write_offset < data.len());
data.len() - write_offset
}
fn disconnect_socket(&mut self) {}
}
fn create_network(peer_count: usize) -> Vec<PeerManager<FileDescriptor>> {
let secp_ctx = Secp256k1::new();
let mut peers = Vec::new();
let mut rng = thread_rng();
let logger : Arc<Logger> = Arc::new(test_utils::TestLogger::new());
for _ in 0..peer_count {
let chan_handler = test_utils::TestChannelMessageHandler::new();
let router = test_utils::TestRoutingMessageHandler::new();
let node_id = {
let mut key_slice = [0;32];
rng.fill_bytes(&mut key_slice);
SecretKey::from_slice(&secp_ctx, &key_slice).unwrap()
};
let msg_handler = MessageHandler { chan_handler: Arc::new(chan_handler), route_handler: Arc::new(router) };
let peer = PeerManager::new(msg_handler, node_id, Arc::clone(&logger));
peers.push(peer);
}
peers
}
fn establish_connection(peer_a: &PeerManager<FileDescriptor>, peer_b: &PeerManager<FileDescriptor>) {
let secp_ctx = Secp256k1::new();
let their_id = PublicKey::from_secret_key(&secp_ctx, &peer_b.our_node_secret);
let fd = FileDescriptor { fd: 1};
peer_a.new_inbound_connection(fd.clone()).unwrap();
peer_a.peers.lock().unwrap().node_id_to_descriptor.insert(their_id, fd.clone());
}
#[test]
fn test_disconnect_peer() {
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
// push an DisconnectPeer event to remove the node flagged by id
let mut peers = create_network(2);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
let secp_ctx = Secp256k1::new();
let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
let chan_handler = test_utils::TestChannelMessageHandler::new();
chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
node_id: their_id,
action: Some(msgs::ErrorAction::DisconnectPeer { msg: None }),
});
assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
peers[0].message_handler.chan_handler = Arc::new(chan_handler);
peers[0].process_events();
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
}
}