rust-lightning/lightning/src/ln/channelmanager.rs
Valentine Wallace f1aba79521
Add phantom shared secret to HTLCPreviousHopData
This also fixes a bug where we were failing back phantom payments with the
wrong scid, causing them to never actually be failed backwards (L3022 in
channelmanager.rs)

This new field will be used in upcoming commit(s) to encrypt phantom payment failure
packets.
2022-02-24 22:32:14 -05:00

7486 lines
343 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The top-level channel management and payment tracking stuff lives here.
//!
//! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
//! upon reconnect to the relevant peer(s).
//!
//! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
//! imply it needs to fail HTLCs/payments/channels it manages).
//!
use bitcoin::blockdata::block::{Block, BlockHeader};
use bitcoin::blockdata::transaction::Transaction;
use bitcoin::blockdata::constants::genesis_block;
use bitcoin::network::constants::Network;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::{BlockHash, Txid};
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
use bitcoin::secp256k1::Secp256k1;
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1;
use chain;
use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
use chain::transaction::{OutPoint, TransactionData};
// Since this struct is returned in `list_channels` methods, expose it here in case users want to
// construct one themselves.
use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
use ln::features::{InitFeatures, NodeFeatures};
use routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters};
use ln::msgs;
use ln::msgs::NetAddress;
use ln::onion_utils;
use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT, OptionalField};
use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner, Recipient};
use util::config::UserConfig;
use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
use util::{byte_utils, events};
use util::scid_utils::fake_scid;
use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
use util::logger::{Level, Logger};
use util::errors::APIError;
use io;
use prelude::*;
use core::{cmp, mem};
use core::cell::RefCell;
use io::Read;
use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
use core::sync::atomic::{AtomicUsize, Ordering};
use core::time::Duration;
use core::ops::Deref;
#[cfg(any(test, feature = "std"))]
use std::time::Instant;
mod inbound_payment {
use alloc::string::ToString;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::cmp::fixed_time_eq;
use bitcoin::hashes::hmac::{Hmac, HmacEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use chain::keysinterface::{KeyMaterial, KeysInterface, Sign};
use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
use ln::channelmanager::APIError;
use ln::msgs;
use ln::msgs::MAX_VALUE_MSAT;
use util::chacha20::ChaCha20;
use util::crypto::hkdf_extract_expand_thrice;
use util::logger::Logger;
use core::convert::TryInto;
use core::ops::Deref;
const IV_LEN: usize = 16;
const METADATA_LEN: usize = 16;
const METADATA_KEY_LEN: usize = 32;
const AMT_MSAT_LEN: usize = 8;
// Used to shift the payment type bits to take up the top 3 bits of the metadata bytes, or to
// retrieve said payment type bits.
const METHOD_TYPE_OFFSET: usize = 5;
/// A set of keys that were HKDF-expanded from an initial call to
/// [`KeysInterface::get_inbound_payment_key_material`].
///
/// [`KeysInterface::get_inbound_payment_key_material`]: crate::chain::keysinterface::KeysInterface::get_inbound_payment_key_material
pub(super) struct ExpandedKey {
/// The key used to encrypt the bytes containing the payment metadata (i.e. the amount and
/// expiry, included for payment verification on decryption).
metadata_key: [u8; 32],
/// The key used to authenticate an LDK-provided payment hash and metadata as previously
/// registered with LDK.
ldk_pmt_hash_key: [u8; 32],
/// The key used to authenticate a user-provided payment hash and metadata as previously
/// registered with LDK.
user_pmt_hash_key: [u8; 32],
}
impl ExpandedKey {
pub(super) fn new(key_material: &KeyMaterial) -> ExpandedKey {
let (metadata_key, ldk_pmt_hash_key, user_pmt_hash_key) =
hkdf_extract_expand_thrice(b"LDK Inbound Payment Key Expansion", &key_material.0);
Self {
metadata_key,
ldk_pmt_hash_key,
user_pmt_hash_key,
}
}
}
enum Method {
LdkPaymentHash = 0,
UserPaymentHash = 1,
}
impl Method {
fn from_bits(bits: u8) -> Result<Method, u8> {
match bits {
bits if bits == Method::LdkPaymentHash as u8 => Ok(Method::LdkPaymentHash),
bits if bits == Method::UserPaymentHash as u8 => Ok(Method::UserPaymentHash),
unknown => Err(unknown),
}
}
}
pub(super) fn create<Signer: Sign, K: Deref>(keys: &ExpandedKey, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, keys_manager: &K, highest_seen_timestamp: u64) -> Result<(PaymentHash, PaymentSecret), ()>
where K::Target: KeysInterface<Signer = Signer>
{
let metadata_bytes = construct_metadata_bytes(min_value_msat, Method::LdkPaymentHash, invoice_expiry_delta_secs, highest_seen_timestamp)?;
let mut iv_bytes = [0 as u8; IV_LEN];
let rand_bytes = keys_manager.get_secure_random_bytes();
iv_bytes.copy_from_slice(&rand_bytes[..IV_LEN]);
let mut hmac = HmacEngine::<Sha256>::new(&keys.ldk_pmt_hash_key);
hmac.input(&iv_bytes);
hmac.input(&metadata_bytes);
let payment_preimage_bytes = Hmac::from_engine(hmac).into_inner();
let ldk_pmt_hash = PaymentHash(Sha256::hash(&payment_preimage_bytes).into_inner());
let payment_secret = construct_payment_secret(&iv_bytes, &metadata_bytes, &keys.metadata_key);
Ok((ldk_pmt_hash, payment_secret))
}
pub(super) fn create_from_hash(keys: &ExpandedKey, min_value_msat: Option<u64>, payment_hash: PaymentHash, invoice_expiry_delta_secs: u32, highest_seen_timestamp: u64) -> Result<PaymentSecret, ()> {
let metadata_bytes = construct_metadata_bytes(min_value_msat, Method::UserPaymentHash, invoice_expiry_delta_secs, highest_seen_timestamp)?;
let mut hmac = HmacEngine::<Sha256>::new(&keys.user_pmt_hash_key);
hmac.input(&metadata_bytes);
hmac.input(&payment_hash.0);
let hmac_bytes = Hmac::from_engine(hmac).into_inner();
let mut iv_bytes = [0 as u8; IV_LEN];
iv_bytes.copy_from_slice(&hmac_bytes[..IV_LEN]);
Ok(construct_payment_secret(&iv_bytes, &metadata_bytes, &keys.metadata_key))
}
fn construct_metadata_bytes(min_value_msat: Option<u64>, payment_type: Method, invoice_expiry_delta_secs: u32, highest_seen_timestamp: u64) -> Result<[u8; METADATA_LEN], ()> {
if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
return Err(());
}
let mut min_amt_msat_bytes: [u8; AMT_MSAT_LEN] = match min_value_msat {
Some(amt) => amt.to_be_bytes(),
None => [0; AMT_MSAT_LEN],
};
min_amt_msat_bytes[0] |= (payment_type as u8) << METHOD_TYPE_OFFSET;
// We assume that highest_seen_timestamp is pretty close to the current time - it's updated when
// we receive a new block with the maximum time we've seen in a header. It should never be more
// than two hours in the future. Thus, we add two hours here as a buffer to ensure we
// absolutely never fail a payment too early.
// Note that we assume that received blocks have reasonably up-to-date timestamps.
let expiry_bytes = (highest_seen_timestamp + invoice_expiry_delta_secs as u64 + 7200).to_be_bytes();
let mut metadata_bytes: [u8; METADATA_LEN] = [0; METADATA_LEN];
metadata_bytes[..AMT_MSAT_LEN].copy_from_slice(&min_amt_msat_bytes);
metadata_bytes[AMT_MSAT_LEN..].copy_from_slice(&expiry_bytes);
Ok(metadata_bytes)
}
fn construct_payment_secret(iv_bytes: &[u8; IV_LEN], metadata_bytes: &[u8; METADATA_LEN], metadata_key: &[u8; METADATA_KEY_LEN]) -> PaymentSecret {
let mut payment_secret_bytes: [u8; 32] = [0; 32];
let (iv_slice, encrypted_metadata_slice) = payment_secret_bytes.split_at_mut(IV_LEN);
iv_slice.copy_from_slice(iv_bytes);
let chacha_block = ChaCha20::get_single_block(metadata_key, iv_bytes);
for i in 0..METADATA_LEN {
encrypted_metadata_slice[i] = chacha_block[i] ^ metadata_bytes[i];
}
PaymentSecret(payment_secret_bytes)
}
/// Check that an inbound payment's `payment_data` field is sane.
///
/// LDK does not store any data for pending inbound payments. Instead, we construct our payment
/// secret (and, if supplied by LDK, our payment preimage) to include encrypted metadata about the
/// payment.
///
/// The metadata is constructed as:
/// payment method (3 bits) || payment amount (8 bytes - 3 bits) || expiry (8 bytes)
/// and encrypted using a key derived from [`KeysInterface::get_inbound_payment_key_material`].
///
/// Then on payment receipt, we verify in this method that the payment preimage and payment secret
/// match what was constructed.
///
/// [`create_inbound_payment`] and [`create_inbound_payment_for_hash`] are called by the user to
/// construct the payment secret and/or payment hash that this method is verifying. If the former
/// method is called, then the payment method bits mentioned above are represented internally as
/// [`Method::LdkPaymentHash`]. If the latter, [`Method::UserPaymentHash`].
///
/// For the former method, the payment preimage is constructed as an HMAC of payment metadata and
/// random bytes. Because the payment secret is also encoded with these random bytes and metadata
/// (with the metadata encrypted with a block cipher), we're able to authenticate the preimage on
/// payment receipt.
///
/// For the latter, the payment secret instead contains an HMAC of the user-provided payment hash
/// and payment metadata (encrypted with a block cipher), allowing us to authenticate the payment
/// hash and metadata on payment receipt.
///
/// See [`ExpandedKey`] docs for more info on the individual keys used.
///
/// [`KeysInterface::get_inbound_payment_key_material`]: crate::chain::keysinterface::KeysInterface::get_inbound_payment_key_material
/// [`create_inbound_payment`]: crate::ln::channelmanager::ChannelManager::create_inbound_payment
/// [`create_inbound_payment_for_hash`]: crate::ln::channelmanager::ChannelManager::create_inbound_payment_for_hash
pub(super) fn verify<L: Deref>(payment_hash: PaymentHash, payment_data: msgs::FinalOnionHopData, highest_seen_timestamp: u64, keys: &ExpandedKey, logger: &L) -> Result<Option<PaymentPreimage>, ()>
where L::Target: Logger
{
let (iv_bytes, metadata_bytes) = decrypt_metadata(payment_data.payment_secret, keys);
let payment_type_res = Method::from_bits((metadata_bytes[0] & 0b1110_0000) >> METHOD_TYPE_OFFSET);
let mut amt_msat_bytes = [0; AMT_MSAT_LEN];
amt_msat_bytes.copy_from_slice(&metadata_bytes[..AMT_MSAT_LEN]);
// Zero out the bits reserved to indicate the payment type.
amt_msat_bytes[0] &= 0b00011111;
let min_amt_msat: u64 = u64::from_be_bytes(amt_msat_bytes.into());
let expiry = u64::from_be_bytes(metadata_bytes[AMT_MSAT_LEN..].try_into().unwrap());
// Make sure to check to check the HMAC before doing the other checks below, to mitigate timing
// attacks.
let mut payment_preimage = None;
match payment_type_res {
Ok(Method::UserPaymentHash) => {
let mut hmac = HmacEngine::<Sha256>::new(&keys.user_pmt_hash_key);
hmac.input(&metadata_bytes[..]);
hmac.input(&payment_hash.0);
if !fixed_time_eq(&iv_bytes, &Hmac::from_engine(hmac).into_inner().split_at_mut(IV_LEN).0) {
log_trace!(logger, "Failing HTLC with user-generated payment_hash {}: unexpected payment_secret", log_bytes!(payment_hash.0));
return Err(())
}
},
Ok(Method::LdkPaymentHash) => {
match derive_ldk_payment_preimage(payment_hash, &iv_bytes, &metadata_bytes, keys) {
Ok(preimage) => payment_preimage = Some(preimage),
Err(bad_preimage_bytes) => {
log_trace!(logger, "Failing HTLC with payment_hash {} due to mismatching preimage {}", log_bytes!(payment_hash.0), log_bytes!(bad_preimage_bytes));
return Err(())
}
}
},
Err(unknown_bits) => {
log_trace!(logger, "Failing HTLC with payment hash {} due to unknown payment type {}", log_bytes!(payment_hash.0), unknown_bits);
return Err(());
}
}
if payment_data.total_msat < min_amt_msat {
log_trace!(logger, "Failing HTLC with payment_hash {} due to total_msat {} being less than the minimum amount of {} msat", log_bytes!(payment_hash.0), payment_data.total_msat, min_amt_msat);
return Err(())
}
if expiry < highest_seen_timestamp {
log_trace!(logger, "Failing HTLC with payment_hash {}: expired payment", log_bytes!(payment_hash.0));
return Err(())
}
Ok(payment_preimage)
}
pub(super) fn get_payment_preimage(payment_hash: PaymentHash, payment_secret: PaymentSecret, keys: &ExpandedKey) -> Result<PaymentPreimage, APIError> {
let (iv_bytes, metadata_bytes) = decrypt_metadata(payment_secret, keys);
match Method::from_bits((metadata_bytes[0] & 0b1110_0000) >> METHOD_TYPE_OFFSET) {
Ok(Method::LdkPaymentHash) => {
derive_ldk_payment_preimage(payment_hash, &iv_bytes, &metadata_bytes, keys)
.map_err(|bad_preimage_bytes| APIError::APIMisuseError {
err: format!("Payment hash {} did not match decoded preimage {}", log_bytes!(payment_hash.0), log_bytes!(bad_preimage_bytes))
})
},
Ok(Method::UserPaymentHash) => Err(APIError::APIMisuseError {
err: "Expected payment type to be LdkPaymentHash, instead got UserPaymentHash".to_string()
}),
Err(other) => Err(APIError::APIMisuseError { err: format!("Unknown payment type: {}", other) }),
}
}
fn decrypt_metadata(payment_secret: PaymentSecret, keys: &ExpandedKey) -> ([u8; IV_LEN], [u8; METADATA_LEN]) {
let mut iv_bytes = [0; IV_LEN];
let (iv_slice, encrypted_metadata_bytes) = payment_secret.0.split_at(IV_LEN);
iv_bytes.copy_from_slice(iv_slice);
let chacha_block = ChaCha20::get_single_block(&keys.metadata_key, &iv_bytes);
let mut metadata_bytes: [u8; METADATA_LEN] = [0; METADATA_LEN];
for i in 0..METADATA_LEN {
metadata_bytes[i] = chacha_block[i] ^ encrypted_metadata_bytes[i];
}
(iv_bytes, metadata_bytes)
}
// Errors if the payment preimage doesn't match `payment_hash`. Returns the bad preimage bytes in
// this case.
fn derive_ldk_payment_preimage(payment_hash: PaymentHash, iv_bytes: &[u8; IV_LEN], metadata_bytes: &[u8; METADATA_LEN], keys: &ExpandedKey) -> Result<PaymentPreimage, [u8; 32]> {
let mut hmac = HmacEngine::<Sha256>::new(&keys.ldk_pmt_hash_key);
hmac.input(iv_bytes);
hmac.input(metadata_bytes);
let decoded_payment_preimage = Hmac::from_engine(hmac).into_inner();
if !fixed_time_eq(&payment_hash.0, &Sha256::hash(&decoded_payment_preimage).into_inner()) {
return Err(decoded_payment_preimage);
}
return Ok(PaymentPreimage(decoded_payment_preimage))
}
}
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
//
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
//
// Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
// Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
// with it to track where it came from (in case of onwards-forward error), waiting a random delay
// before we forward it.
//
// We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
// relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
// to either fail-backwards or fulfill the HTLC backwards along the relevant path).
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
// our payment, which we can use to decode errors or inform the user that the payment was sent.
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
enum PendingHTLCRouting {
Forward {
onion_packet: msgs::OnionPacket,
short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
},
Receive {
payment_data: msgs::FinalOnionHopData,
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
phantom_shared_secret: Option<[u8; 32]>,
},
ReceiveKeysend {
payment_preimage: PaymentPreimage,
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
},
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) struct PendingHTLCInfo {
routing: PendingHTLCRouting,
incoming_shared_secret: [u8; 32],
payment_hash: PaymentHash,
pub(super) amt_to_forward: u64,
pub(super) outgoing_cltv_value: u32,
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailureMsg {
Relay(msgs::UpdateFailHTLC),
Malformed(msgs::UpdateFailMalformedHTLC),
}
/// Stores whether we can't forward an HTLC or relevant forwarding info
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum PendingHTLCStatus {
Forward(PendingHTLCInfo),
Fail(HTLCFailureMsg),
}
pub(super) enum HTLCForwardInfo {
AddHTLC {
forward_info: PendingHTLCInfo,
// These fields are produced in `forward_htlcs()` and consumed in
// `process_pending_htlc_forwards()` for constructing the
// `HTLCSource::PreviousHopData` for failed and forwarded
// HTLCs.
prev_short_channel_id: u64,
prev_htlc_id: u64,
prev_funding_outpoint: OutPoint,
},
FailHTLC {
htlc_id: u64,
err_packet: msgs::OnionErrorPacket,
},
}
/// Tracks the inbound corresponding to an outbound HTLC
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) struct HTLCPreviousHopData {
short_channel_id: u64,
htlc_id: u64,
incoming_packet_shared_secret: [u8; 32],
phantom_shared_secret: Option<[u8; 32]>,
// This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
// channel with a preimage provided by the forward channel.
outpoint: OutPoint,
}
enum OnionPayload {
/// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
/// payment_secret which prevents path-probing attacks and can associate different HTLCs which
/// are part of the same payment.
Invoice(msgs::FinalOnionHopData),
/// Contains the payer-provided preimage.
Spontaneous(PaymentPreimage),
}
struct ClaimableHTLC {
prev_hop: HTLCPreviousHopData,
cltv_expiry: u32,
value: u64,
onion_payload: OnionPayload,
}
/// A payment identifier used to uniquely identify a payment to LDK.
/// (C-not exported) as we just use [u8; 32] directly
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentId(pub [u8; 32]);
impl Writeable for PaymentId {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
self.0.write(w)
}
}
impl Readable for PaymentId {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 32] = Readable::read(r)?;
Ok(PaymentId(buf))
}
}
/// Tracks the inbound corresponding to an outbound HTLC
#[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
#[derive(Clone, PartialEq, Eq)]
pub(crate) enum HTLCSource {
PreviousHopData(HTLCPreviousHopData),
OutboundRoute {
path: Vec<RouteHop>,
session_priv: SecretKey,
/// Technically we can recalculate this from the route, but we cache it here to avoid
/// doing a double-pass on route when we get a failure back
first_hop_htlc_msat: u64,
payment_id: PaymentId,
payment_secret: Option<PaymentSecret>,
payment_params: Option<PaymentParameters>,
},
}
#[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
impl core::hash::Hash for HTLCSource {
fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
match self {
HTLCSource::PreviousHopData(prev_hop_data) => {
0u8.hash(hasher);
prev_hop_data.hash(hasher);
},
HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
1u8.hash(hasher);
path.hash(hasher);
session_priv[..].hash(hasher);
payment_id.hash(hasher);
payment_secret.hash(hasher);
first_hop_htlc_msat.hash(hasher);
payment_params.hash(hasher);
},
}
}
}
#[cfg(test)]
impl HTLCSource {
pub fn dummy() -> Self {
HTLCSource::OutboundRoute {
path: Vec::new(),
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
first_hop_htlc_msat: 0,
payment_id: PaymentId([2; 32]),
payment_secret: None,
payment_params: None,
}
}
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailReason {
LightningError {
err: msgs::OnionErrorPacket,
},
Reason {
failure_code: u16,
data: Vec<u8>,
}
}
struct ReceiveError {
err_code: u16,
err_data: Vec<u8>,
msg: &'static str,
}
/// Return value for claim_funds_from_hop
enum ClaimFundsFromHop {
PrevHopForceClosed,
MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
Success(u64),
DuplicateClaim,
}
type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
/// Error type returned across the channel_state mutex boundary. When an Err is generated for a
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
/// channel_state lock. We then return the set of things that need to be done outside the lock in
/// this struct and call handle_error!() on it.
struct MsgHandleErrInternal {
err: msgs::LightningError,
chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
}
impl MsgHandleErrInternal {
#[inline]
fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
Self {
err: LightningError {
err: err.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err
},
},
},
chan_id: None,
shutdown_finish: None,
}
}
#[inline]
fn ignore_no_close(err: String) -> Self {
Self {
err: LightningError {
err,
action: msgs::ErrorAction::IgnoreError,
},
chan_id: None,
shutdown_finish: None,
}
}
#[inline]
fn from_no_close(err: msgs::LightningError) -> Self {
Self { err, chan_id: None, shutdown_finish: None }
}
#[inline]
fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
Self {
err: LightningError {
err: err.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err
},
},
},
chan_id: Some((channel_id, user_channel_id)),
shutdown_finish: Some((shutdown_res, channel_update)),
}
}
#[inline]
fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
Self {
err: match err {
ChannelError::Warn(msg) => LightningError {
err: msg.clone(),
action: msgs::ErrorAction::SendWarningMessage {
msg: msgs::WarningMessage {
channel_id,
data: msg
},
log_level: Level::Warn,
},
},
ChannelError::Ignore(msg) => LightningError {
err: msg,
action: msgs::ErrorAction::IgnoreError,
},
ChannelError::Close(msg) => LightningError {
err: msg.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg
},
},
},
ChannelError::CloseDelayBroadcast(msg) => LightningError {
err: msg.clone(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg
},
},
},
},
chan_id: None,
shutdown_finish: None,
}
}
}
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
/// be sent in the order they appear in the return value, however sometimes the order needs to be
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
/// they were originally sent). In those cases, this enum is also returned.
#[derive(Clone, PartialEq)]
pub(super) enum RAACommitmentOrder {
/// Send the CommitmentUpdate messages first
CommitmentFirst,
/// Send the RevokeAndACK message first
RevokeAndACKFirst,
}
// Note this is only exposed in cfg(test):
pub(super) struct ChannelHolder<Signer: Sign> {
pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
pub(super) short_to_id: HashMap<u64, [u8; 32]>,
/// short channel id -> forward infos. Key of 0 means payments received
/// Note that while this is held in the same mutex as the channels themselves, no consistency
/// guarantees are made about the existence of a channel with the short id here, nor the short
/// ids in the PendingHTLCInfo!
pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
/// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
/// Note that while this is held in the same mutex as the channels themselves, no consistency
/// guarantees are made about the channels given here actually existing anymore by the time you
/// go to read them!
claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
/// Messages to send to peers - pushed to in the same lock that they are generated in (except
/// for broadcast messages, where ordering isn't as strict).
pub(super) pending_msg_events: Vec<MessageSendEvent>,
}
/// Events which we process internally but cannot be procsesed immediately at the generation site
/// for some reason. They are handled in timer_tick_occurred, so may be processed with
/// quite some time lag.
enum BackgroundEvent {
/// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
/// commitment transaction.
ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
}
/// State we hold per-peer. In the future we should put channels in here, but for now we only hold
/// the latest Init features we heard from the peer.
struct PeerState {
latest_features: InitFeatures,
}
/// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
/// actually ours and not some duplicate HTLC sent to us by a node along the route.
///
/// For users who don't want to bother doing their own payment preimage storage, we also store that
/// here.
///
/// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
/// and instead encoding it in the payment secret.
struct PendingInboundPayment {
/// The payment secret that the sender must use for us to accept this payment
payment_secret: PaymentSecret,
/// Time at which this HTLC expires - blocks with a header time above this value will result in
/// this payment being removed.
expiry_time: u64,
/// Arbitrary identifier the user specifies (or not)
user_payment_id: u64,
// Other required attributes of the payment, optionally enforced:
payment_preimage: Option<PaymentPreimage>,
min_value_msat: Option<u64>,
}
/// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
/// and later, also stores information for retrying the payment.
pub(crate) enum PendingOutboundPayment {
Legacy {
session_privs: HashSet<[u8; 32]>,
},
Retryable {
session_privs: HashSet<[u8; 32]>,
payment_hash: PaymentHash,
payment_secret: Option<PaymentSecret>,
pending_amt_msat: u64,
/// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
pending_fee_msat: Option<u64>,
/// The total payment amount across all paths, used to verify that a retry is not overpaying.
total_msat: u64,
/// Our best known block height at the time this payment was initiated.
starting_block_height: u32,
},
/// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
/// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
/// and add a pending payment that was already fulfilled.
Fulfilled {
session_privs: HashSet<[u8; 32]>,
payment_hash: Option<PaymentHash>,
},
/// When a payer gives up trying to retry a payment, they inform us, letting us generate a
/// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race
/// conditions in MPP-aware payment retriers (1), where the possibility of multiple
/// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a
/// downstream event handler as to when a payment has actually failed.
///
/// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164
Abandoned {
session_privs: HashSet<[u8; 32]>,
payment_hash: PaymentHash,
},
}
impl PendingOutboundPayment {
fn is_retryable(&self) -> bool {
match self {
PendingOutboundPayment::Retryable { .. } => true,
_ => false,
}
}
fn is_fulfilled(&self) -> bool {
match self {
PendingOutboundPayment::Fulfilled { .. } => true,
_ => false,
}
}
fn abandoned(&self) -> bool {
match self {
PendingOutboundPayment::Abandoned { .. } => true,
_ => false,
}
}
fn get_pending_fee_msat(&self) -> Option<u64> {
match self {
PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
_ => None,
}
}
fn payment_hash(&self) -> Option<PaymentHash> {
match self {
PendingOutboundPayment::Legacy { .. } => None,
PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash),
PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash,
PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash),
}
}
fn mark_fulfilled(&mut self) {
let mut session_privs = HashSet::new();
core::mem::swap(&mut session_privs, match self {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } |
PendingOutboundPayment::Fulfilled { session_privs, .. } |
PendingOutboundPayment::Abandoned { session_privs, .. }
=> session_privs,
});
let payment_hash = self.payment_hash();
*self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash };
}
fn mark_abandoned(&mut self) -> Result<(), ()> {
let mut session_privs = HashSet::new();
let our_payment_hash;
core::mem::swap(&mut session_privs, match self {
PendingOutboundPayment::Legacy { .. } |
PendingOutboundPayment::Fulfilled { .. } =>
return Err(()),
PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } |
PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => {
our_payment_hash = *payment_hash;
session_privs
},
});
*self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash };
Ok(())
}
/// panics if path is None and !self.is_fulfilled
fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
let remove_res = match self {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } |
PendingOutboundPayment::Fulfilled { session_privs, .. } |
PendingOutboundPayment::Abandoned { session_privs, .. } => {
session_privs.remove(session_priv)
}
};
if remove_res {
if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
let path = path.expect("Fulfilling a payment should always come with a path");
let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
*pending_amt_msat -= path_last_hop.fee_msat;
if let Some(fee_msat) = pending_fee_msat.as_mut() {
*fee_msat -= path.get_path_fees();
}
}
}
remove_res
}
fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
let insert_res = match self {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } => {
session_privs.insert(session_priv)
}
PendingOutboundPayment::Fulfilled { .. } => false,
PendingOutboundPayment::Abandoned { .. } => false,
};
if insert_res {
if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
*pending_amt_msat += path_last_hop.fee_msat;
if let Some(fee_msat) = pending_fee_msat.as_mut() {
*fee_msat += path.get_path_fees();
}
}
}
insert_res
}
fn remaining_parts(&self) -> usize {
match self {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } |
PendingOutboundPayment::Fulfilled { session_privs, .. } |
PendingOutboundPayment::Abandoned { session_privs, .. } => {
session_privs.len()
}
}
}
}
/// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions. Note that the ChannelManager can take any
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
/// concrete type of the KeysManager.
pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
/// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
/// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions. Note that the ChannelManager can take any
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
/// concrete type of the KeysManager.
pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
/// Manager which keeps track of a number of channels and sends messages to the appropriate
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
///
/// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
/// to individual Channels.
///
/// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
/// all peers during write/read (though does not modify this instance, only the instance being
/// serialized). This will result in any channels which have not yet exchanged funding_created (ie
/// called funding_transaction_generated for outbound channels).
///
/// Note that you can be a bit lazier about writing out ChannelManager than you can be with
/// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
/// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
/// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
/// the serialization process). If the deserialized version is out-of-date compared to the
/// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
/// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
///
/// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
/// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
/// block_connected() to step towards your best block) upon deserialization before using the
/// object!
///
/// Note that ChannelManager is responsible for tracking liveness of its channels and generating
/// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
/// offline for a full minute. In order to track this, you must call
/// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
///
/// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
/// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefChannelManager, and use a
/// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
default_configuration: UserConfig,
genesis_hash: BlockHash,
fee_estimator: F,
chain_monitor: M,
tx_broadcaster: T,
#[cfg(test)]
pub(super) best_block: RwLock<BestBlock>,
#[cfg(not(test))]
best_block: RwLock<BestBlock>,
secp_ctx: Secp256k1<secp256k1::All>,
#[cfg(any(test, feature = "_test_utils"))]
pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
#[cfg(not(any(test, feature = "_test_utils")))]
channel_state: Mutex<ChannelHolder<Signer>>,
/// Storage for PaymentSecrets and any requirements on future inbound payments before we will
/// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
/// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
/// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
/// Locked *after* channel_state.
pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
/// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
/// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
/// (if the channel has been force-closed), however we track them here to prevent duplicative
/// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
/// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
/// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
/// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
/// after reloading from disk while replaying blocks against ChannelMonitors.
///
/// See `PendingOutboundPayment` documentation for more info.
///
/// Locked *after* channel_state.
pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
our_network_key: SecretKey,
our_network_pubkey: PublicKey,
inbound_payment_key: inbound_payment::ExpandedKey,
/// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
/// incoming payment. To make it harder for a third-party to identify the type of a payment,
/// we encrypt the namespace identifier using these bytes.
///
/// [fake scids]: crate::util::scid_utils::fake_scid
fake_scid_rand_bytes: [u8; 32],
/// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
/// value increases strictly since we don't assume access to a time source.
last_node_announcement_serial: AtomicUsize,
/// The highest block timestamp we've seen, which is usually a good guess at the current time.
/// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
/// very far in the past, and can only ever be up to two hours in the future.
highest_seen_timestamp: AtomicUsize,
/// The bulk of our storage will eventually be here (channels and message queues and the like).
/// If we are connected to a peer we always at least have an entry here, even if no channels
/// are currently open with that peer.
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
/// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
/// new channel.
///
/// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
pending_events: Mutex<Vec<events::Event>>,
pending_background_events: Mutex<Vec<BackgroundEvent>>,
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
/// Essentially just when we're serializing ourselves out.
/// Taken first everywhere where we are making changes before any other locks.
/// When acquiring this lock in read mode, rather than acquiring it directly, call
/// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
/// PersistenceNotifier the lock contains sends out a notification when the lock is released.
total_consistency_lock: RwLock<()>,
persistence_notifier: PersistenceNotifier,
keys_manager: K,
logger: L,
}
/// Chain-related parameters used to construct a new `ChannelManager`.
///
/// Typically, the block-specific parameters are derived from the best block hash for the network,
/// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
/// are not needed when deserializing a previously constructed `ChannelManager`.
#[derive(Clone, Copy, PartialEq)]
pub struct ChainParameters {
/// The network for determining the `chain_hash` in Lightning messages.
pub network: Network,
/// The hash and height of the latest block successfully connected.
///
/// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
pub best_block: BestBlock,
}
#[derive(Copy, Clone, PartialEq)]
enum NotifyOption {
DoPersist,
SkipPersist,
}
/// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
/// desirable to notify any listeners on `await_persistable_update_timeout`/
/// `await_persistable_update` when new updates are available for persistence. Therefore, this
/// struct is responsible for locking the total consistency lock and, upon going out of scope,
/// sending the aforementioned notification (since the lock being released indicates that the
/// updates are ready for persistence).
///
/// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
/// notify or not based on whether relevant changes have been made, providing a closure to
/// `optionally_notify` which returns a `NotifyOption`.
struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
persistence_notifier: &'a PersistenceNotifier,
should_persist: F,
// We hold onto this result so the lock doesn't get released immediately.
_read_guard: RwLockReadGuard<'a, ()>,
}
impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
}
fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
let read_guard = lock.read().unwrap();
PersistenceNotifierGuard {
persistence_notifier: notifier,
should_persist: persist_check,
_read_guard: read_guard,
}
}
}
impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
fn drop(&mut self) {
if (self.should_persist)() == NotifyOption::DoPersist {
self.persistence_notifier.notify();
}
}
}
/// The amount of time in blocks we require our counterparty wait to claim their money (ie time
/// between when we, or our watchtower, must check for them having broadcast a theft transaction).
///
/// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
///
/// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
/// The amount of time in blocks we're willing to wait to claim money back to us. This matches
/// the maximum required amount in lnd as of March 2021.
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
/// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
///
/// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
///
/// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
// This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
// i.e. the node we forwarded the payment on to should always have enough room to reliably time out
// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
/// Minimum CLTV difference between the current block height and received inbound payments.
/// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
/// this value.
// Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
// any payments to succeed. Further, we don't want payments to fail if a block was found while
// a payment was being routed, so we add an extra block to be safe.
pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
// ie that if the next-hop peer fails the HTLC within
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
// LATENCY_GRACE_PERIOD_BLOCKS.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
// Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
// ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
/// The number of blocks before we consider an outbound payment for expiry if it doesn't have any
/// pending HTLCs in flight.
pub(crate) const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
/// Information needed for constructing an invoice route hint for this channel.
#[derive(Clone, Debug, PartialEq)]
pub struct CounterpartyForwardingInfo {
/// Base routing fee in millisatoshis.
pub fee_base_msat: u32,
/// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
pub fee_proportional_millionths: u32,
/// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
/// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
/// `cltv_expiry_delta` for more details.
pub cltv_expiry_delta: u16,
}
/// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
/// to better separate parameters.
#[derive(Clone, Debug, PartialEq)]
pub struct ChannelCounterparty {
/// The node_id of our counterparty
pub node_id: PublicKey,
/// The Features the channel counterparty provided upon last connection.
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
/// many routing-relevant features are present in the init context.
pub features: InitFeatures,
/// The value, in satoshis, that must always be held in the channel for our counterparty. This
/// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
/// claiming at least this value on chain.
///
/// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
///
/// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
pub unspendable_punishment_reserve: u64,
/// Information on the fees and requirements that the counterparty requires when forwarding
/// payments to us through this channel.
pub forwarding_info: Option<CounterpartyForwardingInfo>,
}
/// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
#[derive(Clone, Debug, PartialEq)]
pub struct ChannelDetails {
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
/// Note that this means this value is *not* persistent - it can change once during the
/// lifetime of the channel.
pub channel_id: [u8; 32],
/// Parameters which apply to our counterparty. See individual fields for more information.
pub counterparty: ChannelCounterparty,
/// The Channel's funding transaction output, if we've negotiated the funding transaction with
/// our counterparty already.
///
/// Note that, if this has been set, `channel_id` will be equivalent to
/// `funding_txo.unwrap().to_channel_id()`.
pub funding_txo: Option<OutPoint>,
/// The position of the funding transaction in the chain. None if the funding transaction has
/// not yet been confirmed and the channel fully opened.
pub short_channel_id: Option<u64>,
/// The value, in satoshis, of this channel as appears in the funding output
pub channel_value_satoshis: u64,
/// The value, in satoshis, that must always be held in the channel for us. This value ensures
/// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
/// this value on chain.
///
/// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
///
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
///
/// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
pub unspendable_punishment_reserve: Option<u64>,
/// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
pub user_channel_id: u64,
/// Our total balance. This is the amount we would get if we close the channel.
/// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
/// amount is not likely to be recoverable on close.
///
/// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
/// balance is not available for inclusion in new outbound HTLCs). This further does not include
/// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
/// This does not consider any on-chain fees.
///
/// See also [`ChannelDetails::outbound_capacity_msat`]
pub balance_msat: u64,
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
/// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
/// available for inclusion in new outbound HTLCs). This further does not include any pending
/// outgoing HTLCs which are awaiting some other resolution to be sent.
///
/// See also [`ChannelDetails::balance_msat`]
///
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
/// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
/// should be able to spend nearly this amount.
pub outbound_capacity_msat: u64,
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
/// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
/// available for inclusion in new inbound HTLCs).
/// Note that there are some corner cases not fully handled here, so the actual available
/// inbound capacity may be slightly higher than this.
///
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
/// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
/// However, our counterparty should be able to spend nearly this amount.
pub inbound_capacity_msat: u64,
/// The number of required confirmations on the funding transaction before the funding will be
/// considered "locked". This number is selected by the channel fundee (i.e. us if
/// [`is_outbound`] is *not* set), and can be selected for inbound channels with
/// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
/// [`ChannelHandshakeLimits::max_minimum_depth`].
///
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
///
/// [`is_outbound`]: ChannelDetails::is_outbound
/// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
/// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
pub confirmations_required: Option<u32>,
/// The number of blocks (after our commitment transaction confirms) that we will need to wait
/// until we can claim our funds after we force-close the channel. During this time our
/// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
/// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
/// time to claim our non-HTLC-encumbered funds.
///
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
pub force_close_spend_delay: Option<u16>,
/// True if the channel was initiated (and thus funded) by us.
pub is_outbound: bool,
/// True if the channel is confirmed, funding_locked messages have been exchanged, and the
/// channel is not currently being shut down. `funding_locked` message exchange implies the
/// required confirmation count has been reached (and we were connected to the peer at some
/// point after the funding transaction received enough confirmations). The required
/// confirmation count is provided in [`confirmations_required`].
///
/// [`confirmations_required`]: ChannelDetails::confirmations_required
pub is_funding_locked: bool,
/// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
/// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
///
/// This is a strict superset of `is_funding_locked`.
pub is_usable: bool,
/// True if this channel is (or will be) publicly-announced.
pub is_public: bool,
}
/// If a payment fails to send, it can be in one of several states. This enum is returned as the
/// Err() type describing which state the payment is in, see the description of individual enum
/// states for more.
#[derive(Clone, Debug)]
pub enum PaymentSendFailure {
/// A parameter which was passed to send_payment was invalid, preventing us from attempting to
/// send the payment at all. No channel state has been changed or messages sent to peers, and
/// once you've changed the parameter at error, you can freely retry the payment in full.
ParameterError(APIError),
/// A parameter in a single path which was passed to send_payment was invalid, preventing us
/// from attempting to send the payment at all. No channel state has been changed or messages
/// sent to peers, and once you've changed the parameter at error, you can freely retry the
/// payment in full.
///
/// The results here are ordered the same as the paths in the route object which was passed to
/// send_payment.
PathParameterError(Vec<Result<(), APIError>>),
/// All paths which were attempted failed to send, with no channel state change taking place.
/// You can freely retry the payment in full (though you probably want to do so over different
/// paths than the ones selected).
AllFailedRetrySafe(Vec<APIError>),
/// Some paths which were attempted failed to send, though possibly not all. At least some
/// paths have irrevocably committed to the HTLC and retrying the payment in full would result
/// in over-/re-payment.
///
/// The results here are ordered the same as the paths in the route object which was passed to
/// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
/// retried (though there is currently no API with which to do so).
///
/// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
/// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
/// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
/// with the latest update_id.
PartialFailure {
/// The errors themselves, in the same order as the route hops.
results: Vec<Result<(), APIError>>,
/// If some paths failed without irrevocably committing to the new HTLC(s), this will
/// contain a [`RouteParameters`] object which can be used to calculate a new route that
/// will pay all remaining unpaid balance.
failed_paths_retry: Option<RouteParameters>,
/// The payment id for the payment, which is now at least partially pending.
payment_id: PaymentId,
},
}
/// Route hints used in constructing invoices for [phantom node payents].
///
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
pub struct PhantomRouteHints {
/// The list of channels to be included in the invoice route hints.
pub channels: Vec<ChannelDetails>,
/// A fake scid used for representing the phantom node's fake channel in generating the invoice
/// route hints.
pub phantom_scid: u64,
/// The pubkey of the real backing node that would ultimately receive the payment.
pub real_node_pubkey: PublicKey,
}
macro_rules! handle_error {
($self: ident, $internal: expr, $counterparty_node_id: expr) => {
match $internal {
Ok(msg) => Ok(msg),
Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
#[cfg(debug_assertions)]
{
// In testing, ensure there are no deadlocks where the lock is already held upon
// entering the macro.
assert!($self.channel_state.try_lock().is_ok());
assert!($self.pending_events.try_lock().is_ok());
}
let mut msg_events = Vec::with_capacity(2);
if let Some((shutdown_res, update_option)) = shutdown_finish {
$self.finish_force_close_channel(shutdown_res);
if let Some(update) = update_option {
msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
if let Some((channel_id, user_channel_id)) = chan_id {
$self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
channel_id, user_channel_id,
reason: ClosureReason::ProcessingError { err: err.err.clone() }
});
}
}
log_error!($self.logger, "{}", err.err);
if let msgs::ErrorAction::IgnoreError = err.action {
} else {
msg_events.push(events::MessageSendEvent::HandleError {
node_id: $counterparty_node_id,
action: err.action.clone()
});
}
if !msg_events.is_empty() {
$self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
}
// Return error in case higher-API need one
Err(err)
},
}
}
}
/// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
macro_rules! convert_chan_err {
($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
match $err {
ChannelError::Warn(msg) => {
(false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
},
ChannelError::Ignore(msg) => {
(false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
},
ChannelError::Close(msg) => {
log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
if let Some(short_id) = $channel.get_short_channel_id() {
$short_to_id.remove(&short_id);
}
let shutdown_res = $channel.force_shutdown(true);
(true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
},
ChannelError::CloseDelayBroadcast(msg) => {
log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
if let Some(short_id) = $channel.get_short_channel_id() {
$short_to_id.remove(&short_id);
}
let shutdown_res = $channel.force_shutdown(false);
(true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
}
}
}
}
macro_rules! break_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(e) => {
let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
if drop {
$entry.remove_entry();
}
break Err(res);
}
}
}
}
macro_rules! try_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(e) => {
let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
if drop {
$entry.remove_entry();
}
return Err(res);
}
}
}
}
macro_rules! remove_channel {
($channel_state: expr, $entry: expr) => {
{
let channel = $entry.remove_entry().1;
if let Some(short_id) = channel.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
channel
}
}
}
macro_rules! handle_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
};
($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
match $err {
ChannelMonitorUpdateErr::PermanentFailure => {
log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
if let Some(short_id) = $chan.get_short_channel_id() {
$short_to_id.remove(&short_id);
}
// TODO: $failed_fails is dropped here, which will cause other channels to hit the
// chain in a confused state! We need to move them into the ChannelMonitor which
// will be responsible for failing backwards once things confirm on-chain.
// It's ok that we drop $failed_forwards here - at this point we'd rather they
// broadcast HTLC-Timeout and pay the associated fees to get their funds back than
// us bother trying to claim it just to forward on to another peer. If we're
// splitting hairs we'd prefer to claim payments that were to us, but we haven't
// given up the preimage yet, so might as well just wait until the payment is
// retried, avoiding the on-chain fees.
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
$chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
(res, true)
},
ChannelMonitorUpdateErr::TemporaryFailure => {
log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
log_bytes!($chan_id[..]),
if $resend_commitment && $resend_raa {
match $action_type {
RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
}
} else if $resend_commitment { "commitment" }
else if $resend_raa { "RAA" }
else { "nothing" },
(&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
(&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
(&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
if !$resend_commitment {
debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
}
if !$resend_raa {
debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
}
$chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
(Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
},
}
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
if drop {
$entry.remove_entry();
}
res
} };
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, Vec::new())
}
}
macro_rules! return_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
}
}
// Does not break in case of TemporaryFailure!
macro_rules! maybe_break_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
(e, ChannelMonitorUpdateErr::PermanentFailure) => {
break e;
},
(_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
}
}
}
macro_rules! handle_chan_restoration_locked {
($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
$raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
$pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr, $announcement_sigs: expr) => { {
let mut htlc_forwards = None;
let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
let chanmon_update_is_none = chanmon_update.is_none();
let res = loop {
let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
if !forwards.is_empty() {
htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
$channel_entry.get().get_funding_txo().unwrap(), forwards));
}
if chanmon_update.is_some() {
// On reconnect, we, by definition, only resend a funding_locked if there have been
// no commitment updates, so the only channel monitor update which could also be
// associated with a funding_locked would be the funding_created/funding_signed
// monitor update. That monitor update failing implies that we won't send
// funding_locked until it's been updated, so we can't have a funding_locked and a
// monitor update here (so we don't bother to handle it correctly below).
assert!($funding_locked.is_none());
// A channel monitor update makes no sense without either a funding_locked or a
// commitment update to process after it. Since we can't have a funding_locked, we
// only bother to handle the monitor-update + commitment_update case below.
assert!($commitment_update.is_some());
}
if let Some(msg) = $funding_locked {
// Similar to the above, this implies that we're letting the funding_locked fly
// before it should be allowed to.
assert!(chanmon_update.is_none());
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: counterparty_node_id,
msg,
});
$channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
}
if let Some(msg) = $announcement_sigs {
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: counterparty_node_id,
msg,
});
}
let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
if let Some(monitor_update) = chanmon_update {
// We only ever broadcast a funding transaction in response to a funding_signed
// message and the resulting monitor update. Thus, on channel_reestablish
// message handling we can't have a funding transaction to broadcast. When
// processing a monitor update finishing resulting in a funding broadcast, we
// cannot have a second monitor update, thus this case would indicate a bug.
assert!(funding_broadcastable.is_none());
// Given we were just reconnected or finished updating a channel monitor, the
// only case where we can get a new ChannelMonitorUpdate would be if we also
// have some commitment updates to send as well.
assert!($commitment_update.is_some());
if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
// channel_reestablish doesn't guarantee the order it returns is sensical
// for the messages it returns, but if we're setting what messages to
// re-transmit on monitor update success, we need to make sure it is sane.
let mut order = $order;
if $raa.is_none() {
order = RAACommitmentOrder::CommitmentFirst;
}
break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
}
}
macro_rules! handle_cs { () => {
if let Some(update) = $commitment_update {
$channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id,
updates: update,
});
}
} }
macro_rules! handle_raa { () => {
if let Some(revoke_and_ack) = $raa {
$channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: counterparty_node_id,
msg: revoke_and_ack,
});
}
} }
match $order {
RAACommitmentOrder::CommitmentFirst => {
handle_cs!();
handle_raa!();
},
RAACommitmentOrder::RevokeAndACKFirst => {
handle_raa!();
handle_cs!();
},
}
if let Some(tx) = funding_broadcastable {
log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
$self.tx_broadcaster.broadcast_transaction(&tx);
}
break Ok(());
};
if chanmon_update_is_none {
// If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
// above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
// should *never* end up calling back to `chain_monitor.update_channel()`.
assert!(res.is_ok());
}
(htlc_forwards, res, counterparty_node_id)
} }
}
macro_rules! post_handle_chan_restoration {
($self: ident, $locked_res: expr) => { {
let (htlc_forwards, res, counterparty_node_id) = $locked_res;
let _ = handle_error!($self, res, counterparty_node_id);
if let Some(forwards) = htlc_forwards {
$self.forward_htlcs(&mut [forwards][..]);
}
} }
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Constructs a new ChannelManager to hold several channels and route between them.
///
/// This is the main "logic hub" for all channel-related actions, and implements
/// ChannelMessageHandler.
///
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
///
/// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
///
/// Users need to notify the new ChannelManager when a new block is connected or
/// disconnected using its `block_connected` and `block_disconnected` methods, starting
/// from after `params.latest_hash`.
pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material();
let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
ChannelManager {
default_configuration: config.clone(),
genesis_hash: genesis_block(params.network).header.block_hash(),
fee_estimator: fee_est,
chain_monitor,
tx_broadcaster,
best_block: RwLock::new(params.best_block),
channel_state: Mutex::new(ChannelHolder{
by_id: HashMap::new(),
short_to_id: HashMap::new(),
forward_htlcs: HashMap::new(),
claimable_htlcs: HashMap::new(),
pending_msg_events: Vec::new(),
}),
pending_inbound_payments: Mutex::new(HashMap::new()),
pending_outbound_payments: Mutex::new(HashMap::new()),
our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(),
our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()),
secp_ctx,
inbound_payment_key: expanded_inbound_key,
fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(),
last_node_announcement_serial: AtomicUsize::new(0),
highest_seen_timestamp: AtomicUsize::new(0),
per_peer_state: RwLock::new(HashMap::new()),
pending_events: Mutex::new(Vec::new()),
pending_background_events: Mutex::new(Vec::new()),
total_consistency_lock: RwLock::new(()),
persistence_notifier: PersistenceNotifier::new(),
keys_manager,
logger,
}
}
/// Gets the current configuration applied to all new channels, as
pub fn get_current_default_configuration(&self) -> &UserConfig {
&self.default_configuration
}
/// Creates a new outbound channel to the given remote node and with the given value.
///
/// `user_channel_id` will be provided back as in
/// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
/// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
/// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
/// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
/// ignored.
///
/// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
/// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
///
/// Note that we do not check if you are currently connected to the given peer. If no
/// connection is available, the outbound `open_channel` message may fail to send, resulting in
/// the channel eventually being silently forgotten (dropped on reload).
///
/// Returns the new Channel's temporary `channel_id`. This ID will appear as
/// [`Event::FundingGenerationReady::temporary_channel_id`] and in
/// [`ChannelDetails::channel_id`] until after
/// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
/// one derived from the funding transaction's TXID. If the counterparty rejects the channel
/// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
///
/// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
/// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
/// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
if channel_value_satoshis < 1000 {
return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
}
let channel = {
let per_peer_state = self.per_peer_state.read().unwrap();
match per_peer_state.get(&their_network_key) {
Some(peer_state) => {
let peer_state = peer_state.lock().unwrap();
let their_features = &peer_state.latest_features;
let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features,
channel_value_satoshis, push_msat, user_channel_id, config, self.best_block.read().unwrap().height())?
},
None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
}
};
let res = channel.get_open_channel(self.genesis_hash.clone());
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
// We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
debug_assert!(&self.total_consistency_lock.try_write().is_err());
let temporary_channel_id = channel.channel_id();
let mut channel_state = self.channel_state.lock().unwrap();
match channel_state.by_id.entry(temporary_channel_id) {
hash_map::Entry::Occupied(_) => {
if cfg!(feature = "fuzztarget") {
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
} else {
panic!("RNG is bad???");
}
},
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
node_id: their_network_key,
msg: res,
});
Ok(temporary_channel_id)
}
fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
let mut res = Vec::new();
{
let channel_state = self.channel_state.lock().unwrap();
res.reserve(channel_state.by_id.len());
for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
let balance_msat = channel.get_balance_msat();
let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
channel.get_holder_counterparty_selected_channel_reserve_satoshis();
res.push(ChannelDetails {
channel_id: (*channel_id).clone(),
counterparty: ChannelCounterparty {
node_id: channel.get_counterparty_node_id(),
features: InitFeatures::empty(),
unspendable_punishment_reserve: to_remote_reserve_satoshis,
forwarding_info: channel.counterparty_forwarding_info(),
},
funding_txo: channel.get_funding_txo(),
short_channel_id: channel.get_short_channel_id(),
channel_value_satoshis: channel.get_value_satoshis(),
unspendable_punishment_reserve: to_self_reserve_satoshis,
balance_msat,
inbound_capacity_msat,
outbound_capacity_msat,
user_channel_id: channel.get_user_id(),
confirmations_required: channel.minimum_depth(),
force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
is_outbound: channel.is_outbound(),
is_funding_locked: channel.is_usable(),
is_usable: channel.is_live(),
is_public: channel.should_announce(),
});
}
}
let per_peer_state = self.per_peer_state.read().unwrap();
for chan in res.iter_mut() {
if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
}
}
res
}
/// Gets the list of open channels, in random order. See ChannelDetail field documentation for
/// more information.
pub fn list_channels(&self) -> Vec<ChannelDetails> {
self.list_channels_with_filter(|_| true)
}
/// Gets the list of usable channels, in random order. Useful as an argument to
/// get_route to ensure non-announced channels are used.
///
/// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
/// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
/// are.
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
// Note we use is_live here instead of usable which leads to somewhat confused
// internal/external nomenclature, but that's ok cause that's probably what the user
// really wanted anyway.
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
}
/// Helper function that issues the channel close events
fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
let mut pending_events_lock = self.pending_events.lock().unwrap();
match channel.unbroadcasted_funding() {
Some(transaction) => {
pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
},
None => {},
}
pending_events_lock.push(events::Event::ChannelClosed {
channel_id: channel.channel_id(),
user_channel_id: channel.get_user_id(),
reason: closure_reason
});
}
fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let counterparty_node_id;
let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
let result: Result<(), _> = loop {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
counterparty_node_id = chan_entry.get().get_counterparty_node_id();
let per_peer_state = self.per_peer_state.read().unwrap();
let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
Some(peer_state) => {
let peer_state = peer_state.lock().unwrap();
let their_features = &peer_state.latest_features;
chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
},
None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
};
failed_htlcs = htlcs;
// Update the monitor with the shutdown script if necessary.
if let Some(monitor_update) = monitor_update {
if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
let (result, is_permanent) =
handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), Vec::new(), chan_entry.key());
if is_permanent {
remove_channel!(channel_state, chan_entry);
break result;
}
}
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: counterparty_node_id,
msg: shutdown_msg
});
if chan_entry.get().is_shutdown() {
let channel = remove_channel!(channel_state, chan_entry);
if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: channel_update
});
}
self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
}
break Ok(());
},
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
}
};
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
let _ = handle_error!(self, result, counterparty_node_id);
Ok(())
}
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
/// will be accepted on the given channel, and after additional timeout/the closing of all
/// pending HTLCs, the channel will be closed on chain.
///
/// * If we are the channel initiator, we will pay between our [`Background`] and
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
/// estimate.
/// * If our counterparty is the channel initiator, we will require a channel closing
/// transaction feerate of at least our [`Background`] feerate or the feerate which
/// would appear on a force-closure transaction, whichever is lower. We will allow our
/// counterparty to pay as much fee as they'd like, however.
///
/// May generate a SendShutdown message event on success, which should be relayed.
///
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
/// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
/// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
self.close_channel_internal(channel_id, None)
}
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
/// will be accepted on the given channel, and after additional timeout/the closing of all
/// pending HTLCs, the channel will be closed on chain.
///
/// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
/// the channel being closed or not:
/// * If we are the channel initiator, we will pay at least this feerate on the closing
/// transaction. The upper-bound is set by
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
/// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
/// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
/// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
/// will appear on a force-closure transaction, whichever is lower).
///
/// May generate a SendShutdown message event on success, which should be relayed.
///
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
/// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
/// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
}
#[inline]
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
let (monitor_update_option, mut failed_htlcs) = shutdown_res;
log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
if let Some((funding_txo, monitor_update)) = monitor_update_option {
// There isn't anything we can do if we get an update failure - we're already
// force-closing. The monitor update on the required in-memory copy should broadcast
// the latest local state, which is the best we can do anyway. Thus, it is safe to
// ignore the result here.
let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
}
}
/// `peer_node_id` should be set when we receive a message from a peer, but not set when the
/// user closes, which will be re-exposed as the `ChannelClosed` reason.
fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
let mut chan = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
if let Some(node_id) = peer_node_id {
if chan.get().get_counterparty_node_id() != *node_id {
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
}
}
if let Some(short_id) = chan.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
if peer_node_id.is_some() {
if let Some(peer_msg) = peer_msg {
self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
}
} else {
self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
}
chan.remove_entry().1
} else {
return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
}
};
log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
self.finish_force_close_channel(chan.force_shutdown(true));
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
Ok(chan.get_counterparty_node_id())
}
/// Force closes a channel, immediately broadcasting the latest local commitment transaction to
/// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
match self.force_close_channel_with_peer(channel_id, None, None) {
Ok(counterparty_node_id) => {
self.channel_state.lock().unwrap().pending_msg_events.push(
events::MessageSendEvent::HandleError {
node_id: counterparty_node_id,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
},
}
);
Ok(())
},
Err(e) => Err(e)
}
}
/// Force close all channels, immediately broadcasting the latest local commitment transaction
/// for each to the chain and rejecting new HTLCs on each.
pub fn force_close_all_channels(&self) {
for chan in self.list_channels() {
let _ = self.force_close_channel(&chan.channel_id);
}
}
fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
{
// final_incorrect_cltv_expiry
if hop_data.outgoing_cltv_value != cltv_expiry {
return Err(ReceiveError {
msg: "Upstream node set CLTV to the wrong value",
err_code: 18,
err_data: byte_utils::be32_to_array(cltv_expiry).to_vec()
})
}
// final_expiry_too_soon
// We have to have some headroom to broadcast on chain if we have the preimage, so make sure
// we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
// Also, ensure that, in the case of an unknown preimage for the received payment hash, our
// payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
// channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
return Err(ReceiveError {
err_code: 17,
err_data: Vec::new(),
msg: "The final CLTV expiry is too soon to handle",
});
}
if hop_data.amt_to_forward > amt_msat {
return Err(ReceiveError {
err_code: 19,
err_data: byte_utils::be64_to_array(amt_msat).to_vec(),
msg: "Upstream node sent less than we were supposed to receive in payment",
});
}
let routing = match hop_data.format {
msgs::OnionHopDataFormat::Legacy { .. } => {
return Err(ReceiveError {
err_code: 0x4000|0x2000|3,
err_data: Vec::new(),
msg: "We require payment_secrets",
});
},
msgs::OnionHopDataFormat::NonFinalNode { .. } => {
return Err(ReceiveError {
err_code: 0x4000|22,
err_data: Vec::new(),
msg: "Got non final data with an HMAC of 0",
});
},
msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
if payment_data.is_some() && keysend_preimage.is_some() {
return Err(ReceiveError {
err_code: 0x4000|22,
err_data: Vec::new(),
msg: "We don't support MPP keysend payments",
});
} else if let Some(data) = payment_data {
PendingHTLCRouting::Receive {
payment_data: data,
incoming_cltv_expiry: hop_data.outgoing_cltv_value,
phantom_shared_secret,
}
} else if let Some(payment_preimage) = keysend_preimage {
// We need to check that the sender knows the keysend preimage before processing this
// payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
// could discover the final destination of X, by probing the adjacent nodes on the route
// with a keysend payment of identical payment hash to X and observing the processing
// time discrepancies due to a hash collision with X.
let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
if hashed_preimage != payment_hash {
return Err(ReceiveError {
err_code: 0x4000|22,
err_data: Vec::new(),
msg: "Payment preimage didn't match payment hash",
});
}
PendingHTLCRouting::ReceiveKeysend {
payment_preimage,
incoming_cltv_expiry: hop_data.outgoing_cltv_value,
}
} else {
return Err(ReceiveError {
err_code: 0x4000|0x2000|3,
err_data: Vec::new(),
msg: "We require payment_secrets",
});
}
},
};
Ok(PendingHTLCInfo {
routing,
payment_hash,
incoming_shared_secret: shared_secret,
amt_to_forward: amt_msat,
outgoing_cltv_value: hop_data.outgoing_cltv_value,
})
}
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
macro_rules! return_malformed_err {
($msg: expr, $err_code: expr) => {
{
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
failure_code: $err_code,
})), self.channel_state.lock().unwrap());
}
}
}
if let Err(_) = msg.onion_routing_packet.public_key {
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
}
let shared_secret = {
let mut arr = [0; 32];
arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
arr
};
if msg.onion_routing_packet.version != 0 {
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
//the hash doesn't really serve any purpose - in the case of hashing all data, the
//receiving node would have to brute force to figure out which version was put in the
//packet by the node that send us the message, in the case of hashing the hop_data, the
//node knows the HMAC matched, so they already know what is there...
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
}
let mut channel_state = None;
macro_rules! return_err {
($msg: expr, $err_code: expr, $data: expr) => {
{
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
if channel_state.is_none() {
channel_state = Some(self.channel_state.lock().unwrap());
}
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
})), channel_state.unwrap());
}
}
}
let next_hop = match onion_utils::decode_next_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
Ok(res) => res,
Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
return_malformed_err!(err_msg, err_code);
},
Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
return_err!(err_msg, err_code, &[0; 0]);
},
};
let pending_forward_info = match next_hop {
onion_utils::Hop::Receive(next_hop_data) => {
// OUR PAYMENT!
match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
Ok(info) => {
// Note that we could obviously respond immediately with an update_fulfill_htlc
// message, however that would leak that we are the recipient of this payment, so
// instead we stay symmetric with the forwarding case, only responding (after a
// delay) once they've send us a commitment_signed!
PendingHTLCStatus::Forward(info)
},
Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
}
},
onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
let blinding_factor = {
let mut sha = Sha256::engine();
sha.input(&new_pubkey.serialize()[..]);
sha.input(&shared_secret);
Sha256::from_engine(sha).into_inner()
};
let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
Err(e)
} else { Ok(new_pubkey) };
let outgoing_packet = msgs::OnionPacket {
version: 0,
public_key,
hop_data: new_packet_bytes,
hmac: next_hop_hmac.clone(),
};
let short_channel_id = match next_hop_data.format {
msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
msgs::OnionHopDataFormat::FinalNode { .. } => {
return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
},
};
PendingHTLCStatus::Forward(PendingHTLCInfo {
routing: PendingHTLCRouting::Forward {
onion_packet: outgoing_packet,
short_channel_id,
},
payment_hash: msg.payment_hash.clone(),
incoming_shared_secret: shared_secret,
amt_to_forward: next_hop_data.amt_to_forward,
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
})
}
};
channel_state = Some(self.channel_state.lock().unwrap());
if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
// If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
// with a short_channel_id of 0. This is important as various things later assume
// short_channel_id is non-0 in any ::Forward.
if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
if let Some((err, code, chan_update)) = loop {
let forwarding_id_opt = match id_option {
None => { // unknown_next_peer
// Note that this is likely a timing oracle for detecting whether an scid is a
// phantom.
if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) {
None
} else {
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
}
},
Some(id) => Some(id.clone()),
};
let (chan_update_opt, forwardee_cltv_expiry_delta) = if let Some(forwarding_id) = forwarding_id_opt {
let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
// Leave channel updates as None for private channels.
let chan_update_opt = if chan.should_announce() {
Some(self.get_channel_update_for_unicast(chan).unwrap()) } else { None };
if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
// Note that the behavior here should be identical to the above block - we
// should NOT reveal the existence or non-existence of a private channel if
// we don't allow forwards outbound over them.
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
}
// Note that we could technically not return an error yet here and just hope
// that the connection is reestablished or monitor updated by the time we get
// around to doing the actual forward, but better to fail early if we can and
// hopefully an attacker trying to path-trace payments cannot make this occur
// on a small/per-node/per-channel scale.
if !chan.is_live() { // channel_disabled
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
}
if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
}
let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
.and_then(|prop_fee| { (prop_fee / 1000000)
.checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, chan_update_opt));
}
(chan_update_opt, chan.get_cltv_expiry_delta())
} else { (None, MIN_CLTV_EXPIRY_DELTA) };
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + forwardee_cltv_expiry_delta as u64 { // incorrect_cltv_expiry
break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, chan_update_opt));
}
let cur_height = self.best_block.read().unwrap().height() + 1;
// Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
// but we want to be robust wrt to counterparty packet sanitization (see
// HTLC_FAIL_BACK_BUFFER rationale).
if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
}
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
break Some(("CLTV expiry is too far in the future", 21, None));
}
// If the HTLC expires ~now, don't bother trying to forward it to our
// counterparty. They should fail it anyway, but we don't want to bother with
// the round-trips or risk them deciding they definitely want the HTLC and
// force-closing to ensure they get it if we're offline.
// We previously had a much more aggressive check here which tried to ensure
// our counterparty receives an HTLC which has *our* risk threshold met on it,
// but there is no need to do that, and since we're a bit conservative with our
// risk threshold it just results in failing to forward payments.
if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
}
break None;
}
{
let mut res = Vec::with_capacity(8 + 128);
if let Some(chan_update) = chan_update {
if code == 0x1000 | 11 || code == 0x1000 | 12 {
res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
}
else if code == 0x1000 | 13 {
res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
}
else if code == 0x1000 | 20 {
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
res.extend_from_slice(&byte_utils::be16_to_array(0));
}
res.extend_from_slice(&chan_update.encode_with_len()[..]);
}
return_err!(err, code, &res[..]);
}
}
}
(pending_forward_info, channel_state.unwrap())
}
/// Gets the current channel_update for the given channel. This first checks if the channel is
/// public, and thus should be called whenever the result is going to be passed out in a
/// [`MessageSendEvent::BroadcastChannelUpdate`] event.
///
/// May be called with channel_state already locked!
fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
if !chan.should_announce() {
return Err(LightningError {
err: "Cannot broadcast a channel_update for a private channel".to_owned(),
action: msgs::ErrorAction::IgnoreError
});
}
log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
self.get_channel_update_for_unicast(chan)
}
/// Gets the current channel_update for the given channel. This does not check if the channel
/// is public (only returning an Err if the channel does not yet have an assigned short_id),
/// and thus MUST NOT be called unless the recipient of the resulting message has already
/// provided evidence that they know about the existence of the channel.
/// May be called with channel_state already locked!
fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
let short_channel_id = match chan.get_short_channel_id() {
None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
Some(id) => id,
};
let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
let unsigned = msgs::UnsignedChannelUpdate {
chain_hash: self.genesis_hash,
short_channel_id,
timestamp: chan.get_update_time_counter(),
flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
cltv_expiry_delta: chan.get_cltv_expiry_delta(),
htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
excess_data: Vec::new(),
};
let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
Ok(msgs::ChannelUpdate {
signature: sig,
contents: unsigned
})
}
// Only public for testing, this should otherwise never be called direcly
pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
let prng_seed = self.keys_manager.get_secure_random_bytes();
let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
.map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
if onion_utils::route_size_insane(&onion_payloads) {
return Err(APIError::RouteError{err: "Route size too large considering onion data"});
}
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let err: Result<(), _> = loop {
let mut channel_lock = self.channel_state.lock().unwrap();
let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
let payment_entry = pending_outbounds.entry(payment_id);
if let hash_map::Entry::Occupied(payment) = &payment_entry {
if !payment.get().is_retryable() {
return Err(APIError::RouteError {
err: "Payment already completed"
});
}
}
let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
Some(id) => id.clone(),
};
macro_rules! insert_outbound_payment {
() => {
let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable {
session_privs: HashSet::new(),
pending_amt_msat: 0,
pending_fee_msat: Some(0),
payment_hash: *payment_hash,
payment_secret: *payment_secret,
starting_block_height: self.best_block.read().unwrap().height(),
total_msat: total_value,
});
assert!(payment.insert(session_priv_bytes, path));
}
}
let channel_state = &mut *channel_lock;
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
match {
if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
}
if !chan.get().is_live() {
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
}
break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
path: path.clone(),
session_priv: session_priv.clone(),
first_hop_htlc_msat: htlc_msat,
payment_id,
payment_secret: payment_secret.clone(),
payment_params: payment_params.clone(),
}, onion_packet, &self.logger),
channel_state, chan)
} {
Some((update_add, commitment_signed, monitor_update)) => {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
// Note that MonitorUpdateFailed here indicates (per function docs)
// that we will resend the commitment update once monitor updating
// is restored. Therefore, we must return an error indicating that
// it is unsafe to retry the payment wholesale, which we do in the
// send_payment check for MonitorUpdateFailed, below.
insert_outbound_payment!(); // Only do this after possibly break'ing on Perm failure above.
return Err(APIError::MonitorUpdateFailed);
}
insert_outbound_payment!();
log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: path.first().unwrap().pubkey,
updates: msgs::CommitmentUpdate {
update_add_htlcs: vec![update_add],
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
},
});
},
None => { insert_outbound_payment!(); },
}
} else { unreachable!(); }
return Ok(());
};
match handle_error!(self, err, path.first().unwrap().pubkey) {
Ok(_) => unreachable!(),
Err(e) => {
Err(APIError::ChannelUnavailable { err: e.err })
},
}
}
/// Sends a payment along a given route.
///
/// Value parameters are provided via the last hop in route, see documentation for RouteHop
/// fields for more info.
///
/// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
/// payment), we don't do anything to stop you! We always try to ensure that if the provided
/// next hop knows the preimage to payment_hash they can claim an additional amount as
/// specified in the last hop in the route! Thus, you should probably do your own
/// payment_preimage tracking (which you should already be doing as they represent "proof of
/// payment") and prevent double-sends yourself.
///
/// May generate SendHTLCs message(s) event on success, which should be relayed.
///
/// Each path may have a different return value, and PaymentSendValue may return a Vec with
/// each entry matching the corresponding-index entry in the route paths, see
/// PaymentSendFailure for more info.
///
/// In general, a path may raise:
/// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
/// node public key) is specified.
/// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
/// (including due to previous monitor update failure or new permanent monitor update
/// failure).
/// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
/// relevant updates.
///
/// Note that depending on the type of the PaymentSendFailure the HTLC may have been
/// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
/// different route unless you intend to pay twice!
///
/// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
/// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
/// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
/// must not contain multiple paths as multi-path payments require a recipient-provided
/// payment_secret.
/// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
/// bit set (either as required or as available). If multiple paths are present in the Route,
/// we assume the invoice had the basic_mpp feature set.
pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
}
fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
if route.paths.len() < 1 {
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
}
if route.paths.len() > 10 {
// This limit is completely arbitrary - there aren't any real fundamental path-count
// limits. After we support retrying individual paths we should likely bump this, but
// for now more than 10 paths likely carries too much one-path failure.
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
}
if payment_secret.is_none() && route.paths.len() > 1 {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
}
let mut total_value = 0;
let our_node_id = self.get_our_node_id();
let mut path_errs = Vec::with_capacity(route.paths.len());
let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
'path_check: for path in route.paths.iter() {
if path.len() < 1 || path.len() > 20 {
path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
continue 'path_check;
}
for (idx, hop) in path.iter().enumerate() {
if idx != path.len() - 1 && hop.pubkey == our_node_id {
path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
continue 'path_check;
}
}
total_value += path.last().unwrap().fee_msat;
path_errs.push(Ok(()));
}
if path_errs.iter().any(|e| e.is_err()) {
return Err(PaymentSendFailure::PathParameterError(path_errs));
}
if let Some(amt_msat) = recv_value_msat {
debug_assert!(amt_msat >= total_value);
total_value = amt_msat;
}
let cur_height = self.best_block.read().unwrap().height() + 1;
let mut results = Vec::new();
for path in route.paths.iter() {
results.push(self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
}
let mut has_ok = false;
let mut has_err = false;
let mut pending_amt_unsent = 0;
let mut max_unsent_cltv_delta = 0;
for (res, path) in results.iter().zip(route.paths.iter()) {
if res.is_ok() { has_ok = true; }
if res.is_err() { has_err = true; }
if let &Err(APIError::MonitorUpdateFailed) = res {
// MonitorUpdateFailed is inherently unsafe to retry, so we call it a
// PartialFailure.
has_err = true;
has_ok = true;
} else if res.is_err() {
pending_amt_unsent += path.last().unwrap().fee_msat;
max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
}
}
if has_err && has_ok {
Err(PaymentSendFailure::PartialFailure {
results,
payment_id,
failed_paths_retry: if pending_amt_unsent != 0 {
if let Some(payment_params) = &route.payment_params {
Some(RouteParameters {
payment_params: payment_params.clone(),
final_value_msat: pending_amt_unsent,
final_cltv_expiry_delta: max_unsent_cltv_delta,
})
} else { None }
} else { None },
})
} else if has_err {
// If we failed to send any paths, we shouldn't have inserted the new PaymentId into
// our `pending_outbound_payments` map at all.
debug_assert!(self.pending_outbound_payments.lock().unwrap().get(&payment_id).is_none());
Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
} else {
Ok(payment_id)
}
}
/// Retries a payment along the given [`Route`].
///
/// Errors returned are a superset of those returned from [`send_payment`], so see
/// [`send_payment`] documentation for more details on errors. This method will also error if the
/// retry amount puts the payment more than 10% over the payment's total amount, if the payment
/// for the given `payment_id` cannot be found (likely due to timeout or success), or if
/// further retries have been disabled with [`abandon_payment`].
///
/// [`send_payment`]: [`ChannelManager::send_payment`]
/// [`abandon_payment`]: [`ChannelManager::abandon_payment`]
pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
for path in route.paths.iter() {
if path.len() == 0 {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: "length-0 path in route".to_string()
}))
}
}
let (total_msat, payment_hash, payment_secret) = {
let outbounds = self.pending_outbound_payments.lock().unwrap();
if let Some(payment) = outbounds.get(&payment_id) {
match payment {
PendingOutboundPayment::Retryable {
total_msat, payment_hash, payment_secret, pending_amt_msat, ..
} => {
let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
}))
}
(*total_msat, *payment_hash, *payment_secret)
},
PendingOutboundPayment::Legacy { .. } => {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
}))
},
PendingOutboundPayment::Fulfilled { .. } => {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: "Payment already completed".to_owned()
}));
},
PendingOutboundPayment::Abandoned { .. } => {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: "Payment already abandoned (with some HTLCs still pending)".to_owned()
}));
},
}
} else {
return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
}))
}
};
return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
}
/// Signals that no further retries for the given payment will occur.
///
/// After this method returns, any future calls to [`retry_payment`] for the given `payment_id`
/// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated,
/// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining
/// pending HTLCs for this payment.
///
/// Note that calling this method does *not* prevent a payment from succeeding. You must still
/// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
/// determine the ultimate status of a payment.
///
/// [`retry_payment`]: Self::retry_payment
/// [`Event::PaymentFailed`]: events::Event::PaymentFailed
/// [`Event::PaymentSent`]: events::Event::PaymentSent
pub fn abandon_payment(&self, payment_id: PaymentId) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
if let Ok(()) = payment.get_mut().mark_abandoned() {
if payment.get().remaining_parts() == 0 {
self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
payment_id,
payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
});
payment.remove();
}
}
}
}
/// Send a spontaneous payment, which is a payment that does not require the recipient to have
/// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
/// the preimage, it must be a cryptographically secure random value that no intermediate node
/// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
/// never reach the recipient.
///
/// See [`send_payment`] documentation for more details on the return value of this function.
///
/// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
/// [`send_payment`] for more information about the risks of duplicate preimage usage.
///
/// Note that `route` must have exactly one path.
///
/// [`send_payment`]: Self::send_payment
pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
let preimage = match payment_preimage {
Some(p) => p,
None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
};
let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
Ok(payment_id) => Ok((payment_hash, payment_id)),
Err(e) => Err(e)
}
}
/// Handles the generation of a funding transaction, optionally (for tests) with a function
/// which checks the correctness of the funding transaction given the associated channel.
fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
let (chan, msg) = {
let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
Some(mut chan) => {
let funding_txo = find_funding_output(&chan, &funding_transaction)?;
(chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
.map_err(|e| if let ChannelError::Close(msg) = e {
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
} else { unreachable!(); })
, chan)
},
None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
};
match handle_error!(self, res, chan.get_counterparty_node_id()) {
Ok(funding_msg) => {
(chan, funding_msg)
},
Err(_) => { return Err(APIError::ChannelUnavailable {
err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
}) },
}
};
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
node_id: chan.get_counterparty_node_id(),
msg,
});
match channel_state.by_id.entry(chan.channel_id()) {
hash_map::Entry::Occupied(_) => {
panic!("Generated duplicate funding txid?");
},
hash_map::Entry::Vacant(e) => {
e.insert(chan);
}
}
Ok(())
}
#[cfg(test)]
pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
Ok(OutPoint { txid: tx.txid(), index: output_index })
})
}
/// Call this upon creation of a funding transaction for the given channel.
///
/// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
/// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
///
/// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
/// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
///
/// May panic if the output found in the funding transaction is duplicative with some other
/// channel (note that this should be trivially prevented by using unique funding transaction
/// keys per-channel).
///
/// Do NOT broadcast the funding transaction yourself. When we have safely received our
/// counterparty's signature the funding transaction will automatically be broadcast via the
/// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
///
/// Note that this includes RBF or similar transaction replacement strategies - lightning does
/// not currently support replacing a funding transaction on an existing channel. Instead,
/// create a new channel with a conflicting funding transaction.
///
/// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
/// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
for inp in funding_transaction.input.iter() {
if inp.witness.is_empty() {
return Err(APIError::APIMisuseError {
err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
});
}
}
self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
let mut output_index = None;
let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
for (idx, outp) in tx.output.iter().enumerate() {
if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
if output_index.is_some() {
return Err(APIError::APIMisuseError {
err: "Multiple outputs matched the expected script and value".to_owned()
});
}
if idx > u16::max_value() as usize {
return Err(APIError::APIMisuseError {
err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
});
}
output_index = Some(idx as u16);
}
}
if output_index.is_none() {
return Err(APIError::APIMisuseError {
err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
});
}
Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
})
}
#[allow(dead_code)]
// Messages of up to 64KB should never end up more than half full with addresses, as that would
// be absurd. We ensure this by checking that at least 500 (our stated public contract on when
// broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
// message...
const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
#[deny(const_err)]
#[allow(dead_code)]
// ...by failing to compile if the number of addresses that would be half of a message is
// smaller than 500:
const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
/// Regenerates channel_announcements and generates a signed node_announcement from the given
/// arguments, providing them in corresponding events via
/// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
/// on-chain. This effectively re-broadcasts all channel announcements and sends our node
/// announcement to ensure that the lightning P2P network is aware of the channels we have and
/// our network addresses.
///
/// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
/// node to humans. They carry no in-protocol meaning.
///
/// `addresses` represent the set (possibly empty) of socket addresses on which this node
/// accepts incoming connections. These will be included in the node_announcement, publicly
/// tying these addresses together and to this node. If you wish to preserve user privacy,
/// addresses should likely contain only Tor Onion addresses.
///
/// Panics if `addresses` is absurdly large (more than 500).
///
/// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
if addresses.len() > 500 {
panic!("More than half the message size was taken up by public addresses!");
}
// While all existing nodes handle unsorted addresses just fine, the spec requires that
// addresses be sorted for future compatibility.
addresses.sort_by_key(|addr| addr.get_id());
let announcement = msgs::UnsignedNodeAnnouncement {
features: NodeFeatures::known(),
timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
node_id: self.get_our_node_id(),
rgb, alias, addresses,
excess_address_data: Vec::new(),
excess_data: Vec::new(),
};
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let mut announced_chans = false;
for (_, chan) in channel_state.by_id.iter() {
if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) {
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
msg,
update_msg: match self.get_channel_update_for_broadcast(chan) {
Ok(msg) => msg,
Err(_) => continue,
},
});
announced_chans = true;
} else {
// If the channel is not public or has not yet reached funding_locked, check the
// next channel. If we don't yet have any public channels, we'll skip the broadcast
// below as peers may not accept it without channels on chain first.
}
}
if announced_chans {
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
msg: msgs::NodeAnnouncement {
signature: node_announce_sig,
contents: announcement
},
});
}
}
/// Processes HTLCs which are pending waiting on random forward delay.
///
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
/// Will likely generate further events.
pub fn process_pending_htlc_forwards(&self) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut new_events = Vec::new();
let mut failed_forwards = Vec::new();
let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
let mut handle_errors = Vec::new();
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
if short_chan_id != 0 {
let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
Some(chan_id) => chan_id.clone(),
None => {
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
prev_funding_outpoint } => {
macro_rules! fail_forward {
($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
{
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: incoming_shared_secret,
phantom_shared_secret: $phantom_ss,
});
failed_forwards.push((htlc_source, payment_hash,
HTLCFailReason::Reason { failure_code: $err_code, data: $err_data }
));
continue;
}
}
}
if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode);
if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) {
let phantom_shared_secret = {
let mut arr = [0; 32];
arr.copy_from_slice(&SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap())[..]);
arr
};
let next_hop = match onion_utils::decode_next_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
Ok(res) => res,
Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
fail_forward!(err_msg, err_code, Vec::new(), None);
},
Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
fail_forward!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
},
};
match next_hop {
onion_utils::Hop::Receive(hop_data) => {
match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) {
Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])),
Err(ReceiveError { err_code, err_data, msg }) => fail_forward!(msg, err_code, err_data, Some(phantom_shared_secret))
}
},
_ => panic!(),
}
} else {
fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
}
} else {
fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
}
},
HTLCForwardInfo::FailHTLC { .. } => {
// Channel went away before we could fail it. This implies
// the channel is now on chain and our counterparty is
// trying to broadcast the HTLC-Timeout, but that's their
// problem, not ours.
//
// `fail_htlc_backwards_internal` is never called for
// phantom payments, so this is unreachable for them.
}
}
}
continue;
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
let mut add_htlc_msgs = Vec::new();
let mut fail_htlc_msgs = Vec::new();
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
routing: PendingHTLCRouting::Forward {
onion_packet, ..
}, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
prev_funding_outpoint } => {
log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: incoming_shared_secret,
// Phantom payments are only PendingHTLCRouting::Receive.
phantom_shared_secret: None,
});
match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
} else {
panic!("Stated return value requirements in send_htlc() were not met");
}
let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
failed_forwards.push((htlc_source, payment_hash,
HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
));
continue;
},
Ok(update_add) => {
match update_add {
Some(msg) => { add_htlc_msgs.push(msg); },
None => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can add anymore HTLCs. The Channel
// will automatically handle building the update_add_htlc and
// commitment_signed messages when we can.
// TODO: Do some kind of timer to set the channel as !is_live()
// as we don't really want others relying on us relaying through
// this channel currently :/.
}
}
}
}
},
HTLCForwardInfo::AddHTLC { .. } => {
panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
},
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
} else {
panic!("Stated return value requirements in get_update_fail_htlc() were not met");
}
// fail-backs are best-effort, we probably already have one
// pending, and if not that's OK, if not, the channel is on
// the chain and sending the HTLC-Timeout is their problem.
continue;
},
Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
Ok(None) => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can update the commitment
// transaction. The Channel will automatically handle
// building the update_fail_htlc and commitment_signed
// messages when we can.
// We don't need any kind of timer here as they should fail
// the channel onto the chain if they can't get our
// update_fail_htlc in time, it's not our problem.
}
}
},
}
}
if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
Ok(res) => res,
Err(e) => {
// We surely failed send_commitment due to bad keys, in that case
// close channel and then send error message to peer.
let counterparty_node_id = chan.get().get_counterparty_node_id();
let err: Result<(), _> = match e {
ChannelError::Ignore(_) | ChannelError::Warn(_) => {
panic!("Stated return value requirements in send_commitment() were not met");
}
ChannelError::Close(msg) => {
log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
let (channel_id, mut channel) = chan.remove_entry();
if let Some(short_id) = channel.get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
// ChannelClosed event is generated by handle_error for us.
Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
},
ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
};
handle_errors.push((counterparty_node_id, err));
continue;
}
};
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
continue;
}
log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: add_htlc_msgs,
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: fail_htlc_msgs,
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: commitment_msg,
},
});
}
} else {
unreachable!();
}
} else {
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
prev_funding_outpoint } => {
let (cltv_expiry, onion_payload, phantom_shared_secret) = match routing {
PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } =>
(incoming_cltv_expiry, OnionPayload::Invoice(payment_data), phantom_shared_secret),
PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
(incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None),
_ => {
panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
}
};
let claimable_htlc = ClaimableHTLC {
prev_hop: HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: incoming_shared_secret,
phantom_shared_secret,
},
value: amt_to_forward,
cltv_expiry,
onion_payload,
};
macro_rules! fail_htlc {
($htlc: expr) => {
let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(
&byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
);
failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: $htlc.prev_hop.short_channel_id,
outpoint: prev_funding_outpoint,
htlc_id: $htlc.prev_hop.htlc_id,
incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
phantom_shared_secret,
}), payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
));
}
}
macro_rules! check_total_value {
($payment_data_total_msat: expr, $payment_secret: expr, $payment_preimage: expr) => {{
let mut total_value = 0;
let mut payment_received_generated = false;
let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
.or_insert(Vec::new());
if htlcs.len() == 1 {
if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
fail_htlc!(claimable_htlc);
continue
}
}
htlcs.push(claimable_htlc);
for htlc in htlcs.iter() {
total_value += htlc.value;
match &htlc.onion_payload {
OnionPayload::Invoice(htlc_payment_data) => {
if htlc_payment_data.total_msat != $payment_data_total_msat {
log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
log_bytes!(payment_hash.0), $payment_data_total_msat, htlc_payment_data.total_msat);
total_value = msgs::MAX_VALUE_MSAT;
}
if total_value >= msgs::MAX_VALUE_MSAT { break; }
},
_ => unreachable!(),
}
}
if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data_total_msat {
log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
log_bytes!(payment_hash.0), total_value, $payment_data_total_msat);
for htlc in htlcs.iter() {
fail_htlc!(htlc);
}
} else if total_value == $payment_data_total_msat {
new_events.push(events::Event::PaymentReceived {
payment_hash,
purpose: events::PaymentPurpose::InvoicePayment {
payment_preimage: $payment_preimage,
payment_secret: $payment_secret,
},
amt: total_value,
});
payment_received_generated = true;
} else {
// Nothing to do - we haven't reached the total
// payment value yet, wait until we receive more
// MPP parts.
}
payment_received_generated
}}
}
// Check that the payment hash and secret are known. Note that we
// MUST take care to handle the "unknown payment hash" and
// "incorrect payment secret" cases here identically or we'd expose
// that we are the ultimate recipient of the given payment hash.
// Further, we must not expose whether we have any other HTLCs
// associated with the same payment_hash pending or not.
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
match payment_secrets.entry(payment_hash) {
hash_map::Entry::Vacant(_) => {
match claimable_htlc.onion_payload {
OnionPayload::Invoice(ref payment_data) => {
let payment_preimage = match inbound_payment::verify(payment_hash, payment_data.clone(), self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
Ok(payment_preimage) => payment_preimage,
Err(()) => {
fail_htlc!(claimable_htlc);
continue
}
};
let payment_data_total_msat = payment_data.total_msat;
let payment_secret = payment_data.payment_secret.clone();
check_total_value!(payment_data_total_msat, payment_secret, payment_preimage);
},
OnionPayload::Spontaneous(preimage) => {
match channel_state.claimable_htlcs.entry(payment_hash) {
hash_map::Entry::Vacant(e) => {
e.insert(vec![claimable_htlc]);
new_events.push(events::Event::PaymentReceived {
payment_hash,
amt: amt_to_forward,
purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
});
},
hash_map::Entry::Occupied(_) => {
log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
fail_htlc!(claimable_htlc);
}
}
}
}
},
hash_map::Entry::Occupied(inbound_payment) => {
let payment_data =
if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
data.clone()
} else {
log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
fail_htlc!(claimable_htlc);
continue
};
if inbound_payment.get().payment_secret != payment_data.payment_secret {
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
fail_htlc!(claimable_htlc);
} else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
fail_htlc!(claimable_htlc);
} else {
let payment_received_generated = check_total_value!(payment_data.total_msat, payment_data.payment_secret, inbound_payment.get().payment_preimage);
if payment_received_generated {
inbound_payment.remove_entry();
}
}
},
};
},
HTLCForwardInfo::FailHTLC { .. } => {
panic!("Got pending fail of our own HTLC");
}
}
}
}
}
}
for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
}
self.forward_htlcs(&mut phantom_receives);
for (counterparty_node_id, err) in handle_errors.drain(..) {
let _ = handle_error!(self, err, counterparty_node_id);
}
if new_events.is_empty() { return }
let mut events = self.pending_events.lock().unwrap();
events.append(&mut new_events);
}
/// Free the background events, generally called from timer_tick_occurred.
///
/// Exposed for testing to allow us to process events quickly without generating accidental
/// BroadcastChannelUpdate events in timer_tick_occurred.
///
/// Expects the caller to have a total_consistency_lock read lock.
fn process_background_events(&self) -> bool {
let mut background_events = Vec::new();
mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
if background_events.is_empty() {
return false;
}
for event in background_events.drain(..) {
match event {
BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
// The channel has already been closed, so no use bothering to care about the
// monitor updating completing.
let _ = self.chain_monitor.update_channel(funding_txo, update);
},
}
}
true
}
#[cfg(any(test, feature = "_test_utils"))]
/// Process background events, for functional testing
pub fn test_process_background_events(&self) {
self.process_background_events();
}
fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
// If the feerate has decreased by less than half, don't bother
if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
return (true, NotifyOption::SkipPersist, Ok(()));
}
if !chan.is_live() {
log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
return (true, NotifyOption::SkipPersist, Ok(()));
}
log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
let mut retain_channel = true;
let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
Ok(res) => Ok(res),
Err(e) => {
let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
if drop { retain_channel = false; }
Err(res)
}
};
let ret_err = match res {
Ok(Some((update_fee, commitment_signed, monitor_update))) => {
if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), Vec::new(), chan_id);
if drop { retain_channel = false; }
res
} else {
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: Some(update_fee),
commitment_signed,
},
});
Ok(())
}
},
Ok(None) => Ok(()),
Err(e) => Err(e),
};
(retain_channel, NotifyOption::DoPersist, ret_err)
}
#[cfg(fuzzing)]
/// In chanmon_consistency we want to sometimes do the channel fee updates done in
/// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
/// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
/// it wants to detect). Thus, we have a variant exposed here for its benefit.
pub fn maybe_update_chan_fees(&self) {
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
let mut should_persist = NotifyOption::SkipPersist;
let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
let mut handle_errors = Vec::new();
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let pending_msg_events = &mut channel_state.pending_msg_events;
let short_to_id = &mut channel_state.short_to_id;
channel_state.by_id.retain(|chan_id, chan| {
let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
if err.is_err() {
handle_errors.push(err);
}
retain_channel
});
}
should_persist
});
}
/// Performs actions which should happen on startup and roughly once per minute thereafter.
///
/// This currently includes:
/// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
/// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
/// than a minute, informing the network that they should no longer attempt to route over
/// the channel.
///
/// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
/// estimate fetches.
pub fn timer_tick_occurred(&self) {
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
let mut should_persist = NotifyOption::SkipPersist;
if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
let mut handle_errors = Vec::new();
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let pending_msg_events = &mut channel_state.pending_msg_events;
let short_to_id = &mut channel_state.short_to_id;
channel_state.by_id.retain(|chan_id, chan| {
let counterparty_node_id = chan.get_counterparty_node_id();
let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
if err.is_err() {
handle_errors.push((err, counterparty_node_id));
}
if !retain_channel { return false; }
if let Err(e) = chan.timer_check_closing_negotiation_progress() {
let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
handle_errors.push((Err(err), chan.get_counterparty_node_id()));
if needs_close { return false; }
}
match chan.channel_update_status() {
ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
should_persist = NotifyOption::DoPersist;
chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
},
ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
should_persist = NotifyOption::DoPersist;
chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
},
_ => {},
}
true
});
}
for (err, counterparty_node_id) in handle_errors.drain(..) {
let _ = handle_error!(self, err, counterparty_node_id);
}
should_persist
});
}
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
/// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
/// along the path (including in our own channel on which we received it).
/// Returns false if no payment was found to fail backwards, true if the process of failing the
/// HTLC backwards has been started.
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
if let Some(mut sources) = removed_source {
for htlc in sources.drain(..) {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
self.best_block.read().unwrap().height()));
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
}
true
} else { false }
}
// Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
// failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
// be surfaced to the user.
fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
match htlc_src {
HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
let (failure_code, onion_failure_data) =
match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
hash_map::Entry::Occupied(chan_entry) => {
if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
(0x1000|7, upd.encode_with_len())
} else {
(0x4000|10, Vec::new())
}
},
hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
};
let channel_state = self.channel_state.lock().unwrap();
self.fail_htlc_backwards_internal(channel_state,
htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
},
HTLCSource::OutboundRoute { session_priv, payment_id, path, payment_params, .. } => {
let mut session_priv_bytes = [0; 32];
session_priv_bytes.copy_from_slice(&session_priv[..]);
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() {
let retry = if let Some(payment_params_data) = payment_params {
let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
Some(RouteParameters {
payment_params: payment_params_data,
final_value_msat: path_last_hop.fee_msat,
final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
})
} else { None };
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PaymentPathFailed {
payment_id: Some(payment_id),
payment_hash,
rejected_by_dest: false,
network_update: None,
all_paths_failed: payment.get().remaining_parts() == 0,
path: path.clone(),
short_channel_id: None,
retry,
#[cfg(test)]
error_code: None,
#[cfg(test)]
error_data: None,
});
if payment.get().abandoned() && payment.get().remaining_parts() == 0 {
pending_events.push(events::Event::PaymentFailed {
payment_id,
payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
});
payment.remove();
}
}
} else {
log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
}
},
};
}
}
/// Fails an HTLC backwards to the sender of it to us.
/// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
/// There are several callsites that do stupid things like loop over a list of payment_hashes
/// to fail and take the channel_state lock for each iteration (as we take ownership and may
/// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
/// still-available channels.
fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
//identify whether we sent it or not based on the (I presume) very different runtime
//between the branches here. We should make this async and move it into the forward HTLCs
//timer handling.
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// from block_connected which may run during initialization prior to the chain_monitor
// being fully configured. See the docs for `ChannelManagerReadArgs` for more.
match source {
HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => {
let mut session_priv_bytes = [0; 32];
session_priv_bytes.copy_from_slice(&session_priv[..]);
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
let mut all_paths_failed = false;
let mut full_failure_ev = None;
if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
return;
}
if payment.get().is_fulfilled() {
log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
return;
}
if payment.get().remaining_parts() == 0 {
all_paths_failed = true;
if payment.get().abandoned() {
full_failure_ev = Some(events::Event::PaymentFailed {
payment_id,
payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
});
payment.remove();
}
}
} else {
log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
return;
}
mem::drop(channel_state_lock);
let retry = if let Some(payment_params_data) = payment_params {
let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
Some(RouteParameters {
payment_params: payment_params_data.clone(),
final_value_msat: path_last_hop.fee_msat,
final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
})
} else { None };
log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
let path_failure = match &onion_error {
&HTLCFailReason::LightningError { ref err } => {
#[cfg(test)]
let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
#[cfg(not(test))]
let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
// TODO: If we decided to blame ourselves (or one of our channels) in
// process_onion_failure we should close that channel as it implies our
// next-hop is needlessly blaming us!
events::Event::PaymentPathFailed {
payment_id: Some(payment_id),
payment_hash: payment_hash.clone(),
rejected_by_dest: !payment_retryable,
network_update,
all_paths_failed,
path: path.clone(),
short_channel_id,
retry,
#[cfg(test)]
error_code: onion_error_code,
#[cfg(test)]
error_data: onion_error_data
}
},
&HTLCFailReason::Reason {
#[cfg(test)]
ref failure_code,
#[cfg(test)]
ref data,
.. } => {
// we get a fail_malformed_htlc from the first hop
// TODO: We'd like to generate a NetworkUpdate for temporary
// failures here, but that would be insufficient as get_route
// generally ignores its view of our own channels as we provide them via
// ChannelDetails.
// TODO: For non-temporary failures, we really should be closing the
// channel here as we apparently can't relay through them anyway.
events::Event::PaymentPathFailed {
payment_id: Some(payment_id),
payment_hash: payment_hash.clone(),
rejected_by_dest: path.len() == 1,
network_update: None,
all_paths_failed,
path: path.clone(),
short_channel_id: Some(path.first().unwrap().short_channel_id),
retry,
#[cfg(test)]
error_code: Some(*failure_code),
#[cfg(test)]
error_data: Some(data.clone()),
}
}
};
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(path_failure);
if let Some(ev) = full_failure_ev { pending_events.push(ev); }
},
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
let err_packet = match onion_error {
HTLCFailReason::Reason { failure_code, data } => {
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
},
HTLCFailReason::LightningError { err } => {
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
}
};
let mut forward_event = None;
if channel_state_lock.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
}
match channel_state_lock.forward_htlcs.entry(short_channel_id) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
},
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
}
}
mem::drop(channel_state_lock);
if let Some(time) = forward_event {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
},
}
}
/// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any
/// [`MessageSendEvent`]s needed to claim the payment.
///
/// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
/// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
/// event matches your expectation. If you fail to do so and call this method, you may provide
/// the sender "proof-of-payment" when they did not fulfill the full expected payment.
///
/// Returns whether any HTLCs were claimed, and thus if any new [`MessageSendEvent`]s are now
/// pending for processing via [`get_and_clear_pending_msg_events`].
///
/// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived
/// [`create_inbound_payment`]: Self::create_inbound_payment
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
/// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
if let Some(mut sources) = removed_source {
assert!(!sources.is_empty());
// If we are claiming an MPP payment, we have to take special care to ensure that each
// channel exists before claiming all of the payments (inside one lock).
// Note that channel existance is sufficient as we should always get a monitor update
// which will take care of the real HTLC claim enforcement.
//
// If we find an HTLC which we would need to claim but for which we do not have a
// channel, we will fail all parts of the MPP payment. While we could wait and see if
// the sender retries the already-failed path(s), it should be a pretty rare case where
// we got all the HTLCs and then a channel closed while we were waiting for the user to
// provide the preimage, so worrying too much about the optimal handling isn't worth
// it.
let mut valid_mpp = true;
for htlc in sources.iter() {
if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
valid_mpp = false;
break;
}
}
let mut errs = Vec::new();
let mut claimed_any_htlcs = false;
for htlc in sources.drain(..) {
if !valid_mpp {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
self.best_block.read().unwrap().height()));
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
} else {
match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
if let msgs::ErrorAction::IgnoreError = err.err.action {
// We got a temporary failure updating monitor, but will claim the
// HTLC when the monitor updating is restored (or on chain).
log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
claimed_any_htlcs = true;
} else { errs.push((pk, err)); }
},
ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
ClaimFundsFromHop::DuplicateClaim => {
// While we should never get here in most cases, if we do, it likely
// indicates that the HTLC was timed out some time ago and is no longer
// available to be claimed. Thus, it does not make sense to set
// `claimed_any_htlcs`.
},
ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
}
}
}
// Now that we've done the entire above loop in one lock, we can handle any errors
// which were generated.
channel_state.take();
for (counterparty_node_id, err) in errs.drain(..) {
let res: Result<(), _> = Err(err);
let _ = handle_error!(self, res, counterparty_node_id);
}
claimed_any_htlcs
} else { false }
}
fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
let channel_state = &mut **channel_state_lock;
let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
Some(chan_id) => chan_id.clone(),
None => {
return ClaimFundsFromHop::PrevHopForceClosed
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
Ok(msgs_monitor_option) => {
if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
"Failed to update channel monitor with preimage {:?}: {:?}",
payment_preimage, e);
return ClaimFundsFromHop::MonitorUpdateFail(
chan.get().get_counterparty_node_id(),
handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
Some(htlc_value_msat)
);
}
if let Some((msg, commitment_signed)) = msgs {
log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_counterparty_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: vec![msg],
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
}
});
}
return ClaimFundsFromHop::Success(htlc_value_msat);
} else {
return ClaimFundsFromHop::DuplicateClaim;
}
},
Err((e, monitor_update)) => {
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
"Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
payment_preimage, e);
}
let counterparty_node_id = chan.get().get_counterparty_node_id();
let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
if drop {
chan.remove_entry();
}
return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
},
}
} else { unreachable!(); }
}
fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
let mut pending_events = self.pending_events.lock().unwrap();
for source in sources.drain(..) {
if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source {
let mut session_priv_bytes = [0; 32];
session_priv_bytes.copy_from_slice(&session_priv[..]);
if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
assert!(payment.get().is_fulfilled());
if payment.get_mut().remove(&session_priv_bytes, None) {
pending_events.push(
events::Event::PaymentPathSuccessful {
payment_id,
payment_hash: payment.get().payment_hash(),
path,
}
);
}
if payment.get().remaining_parts() == 0 {
payment.remove();
}
}
}
}
}
fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
match source {
HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
mem::drop(channel_state_lock);
let mut session_priv_bytes = [0; 32];
session_priv_bytes.copy_from_slice(&session_priv[..]);
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
let mut pending_events = self.pending_events.lock().unwrap();
if !payment.get().is_fulfilled() {
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
let fee_paid_msat = payment.get().get_pending_fee_msat();
pending_events.push(
events::Event::PaymentSent {
payment_id: Some(payment_id),
payment_preimage,
payment_hash,
fee_paid_msat,
}
);
payment.get_mut().mark_fulfilled();
}
if from_onchain {
// We currently immediately remove HTLCs which were fulfilled on-chain.
// This could potentially lead to removing a pending payment too early,
// with a reorg of one block causing us to re-add the fulfilled payment on
// restart.
// TODO: We should have a second monitor event that informs us of payments
// irrevocably fulfilled.
if payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()));
pending_events.push(
events::Event::PaymentPathSuccessful {
payment_id,
payment_hash,
path,
}
);
}
if payment.get().remaining_parts() == 0 {
payment.remove();
}
}
} else {
log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
}
},
HTLCSource::PreviousHopData(hop_data) => {
let prev_outpoint = hop_data.outpoint;
let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
let htlc_claim_value_msat = match res {
ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
ClaimFundsFromHop::Success(amt) => Some(amt),
_ => None,
};
if let ClaimFundsFromHop::PrevHopForceClosed = res {
let preimage_update = ChannelMonitorUpdate {
update_id: CLOSED_CHANNEL_UPDATE_ID,
updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
payment_preimage: payment_preimage.clone(),
}],
};
// We update the ChannelMonitor on the backward link, after
// receiving an offchain preimage event from the forward link (the
// event being update_fulfill_htlc).
if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
payment_preimage, e);
}
// Note that we do *not* set `claimed_htlc` to false here. In fact, this
// totally could be a duplicate claim, but we have no way of knowing
// without interrogating the `ChannelMonitor` we've provided the above
// update to. Instead, we simply document in `PaymentForwarded` that this
// can happen.
}
mem::drop(channel_state_lock);
if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
let result: Result<(), _> = Err(err);
let _ = handle_error!(self, result, pk);
}
if claimed_htlc {
if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
Some(claimed_htlc_value - forwarded_htlc_value)
} else { None };
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PaymentForwarded {
fee_earned_msat,
claim_from_onchain_tx: from_onchain,
});
}
}
},
}
}
/// Gets the node_id held by this ChannelManager
pub fn get_our_node_id(&self) -> PublicKey {
self.our_network_pubkey.clone()
}
fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let chan_restoration_res;
let (mut pending_failures, finalized_claims) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
hash_map::Entry::Occupied(chan) => chan,
hash_map::Entry::Vacant(_) => return,
};
if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
return;
}
let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height());
let channel_update = if updates.funding_locked.is_some() && channel.get().is_usable() {
// We only send a channel_update in the case where we are just now sending a
// funding_locked and the channel is in a usable state. We may re-send a
// channel_update later through the announcement_signatures process for public
// channels, but there's no reason not to just inform our counterparty of our fees
// now.
Some(events::MessageSendEvent::SendChannelUpdate {
node_id: channel.get().get_counterparty_node_id(),
msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
})
} else { None };
chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.funding_locked, updates.announcement_sigs);
if let Some(upd) = channel_update {
channel_state.pending_msg_events.push(upd);
}
(updates.failed_htlcs, updates.finalized_claimed_htlcs)
};
post_handle_chan_restoration!(self, chan_restoration_res);
self.finalize_claims(finalized_claims);
for failure in pending_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
}
/// Called to accept a request to open a channel after [`Event::OpenChannelRequest`] has been
/// triggered.
///
/// The `temporary_channel_id` parameter indicates which inbound channel should be accepted.
///
/// [`Event::OpenChannelRequest`]: crate::util::events::Event::OpenChannelRequest
pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32]) -> Result<(), APIError> {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(temporary_channel_id.clone()) {
hash_map::Entry::Occupied(mut channel) => {
if !channel.get().inbound_is_awaiting_accept() {
return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
node_id: channel.get().get_counterparty_node_id(),
msg: channel.get_mut().accept_inbound_channel(),
});
}
hash_map::Entry::Vacant(_) => {
return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() });
}
}
Ok(())
}
fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
if msg.chain_hash != self.genesis_hash {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
}
if !self.default_configuration.accept_inbound_channels {
return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
}
let mut channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(),
&their_features, msg, 0, &self.default_configuration, self.best_block.read().unwrap().height(), &self.logger)
.map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel.channel_id()) {
hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
hash_map::Entry::Vacant(entry) => {
if !self.default_configuration.manually_accept_inbound_channels {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
node_id: counterparty_node_id.clone(),
msg: channel.accept_inbound_channel(),
});
} else {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(
events::Event::OpenChannelRequest {
temporary_channel_id: msg.temporary_channel_id.clone(),
counterparty_node_id: counterparty_node_id.clone(),
funding_satoshis: msg.funding_satoshis,
push_msat: msg.push_msat,
}
);
}
entry.insert(channel);
}
}
Ok(())
}
fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
let (value, output_script, user_id) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
}
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.peer_channel_config_limits, &their_features), channel_state, chan);
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
}
};
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::FundingGenerationReady {
temporary_channel_id: msg.temporary_channel_id,
channel_value_satoshis: value,
output_script,
user_channel_id: user_id,
});
Ok(())
}
fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
let ((funding_msg, monitor), mut chan) = {
let best_block = *self.best_block.read().unwrap();
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
}
(try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
}
};
// Because we have exclusive ownership of the channel here we can release the channel_state
// lock before watch_channel
if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
match e {
ChannelMonitorUpdateErr::PermanentFailure => {
// Note that we reply with the new channel_id in error messages if we gave up on the
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
// any messages referencing a previously-closed channel anyway.
// We do not do a force-close here as that would generate a monitor update for
// a monitor that we didn't manage to store (and that we don't care about - we
// don't respond with the funding_signed so the channel can never go on chain).
let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
assert!(failed_htlcs.is_empty());
return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
},
ChannelMonitorUpdateErr::TemporaryFailure => {
// There's no problem signing a counterparty's funding transaction if our monitor
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
// accepted payment from yet. We do, however, need to wait to send our funding_locked
// until we have persisted our monitor.
chan.monitor_update_failed(false, false, Vec::new(), Vec::new(), Vec::new());
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(funding_msg.channel_id) {
hash_map::Entry::Occupied(_) => {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
},
hash_map::Entry::Vacant(e) => {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
node_id: counterparty_node_id.clone(),
msg: funding_msg,
});
e.insert(chan);
}
}
Ok(())
}
fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
let funding_tx = {
let best_block = *self.best_block.read().unwrap();
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
Ok(update) => update,
Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
};
if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
// We weren't able to watch the channel to begin with, so no updates should be made on
// it. Previously, full_stack_target found an (unreachable) panic when the
// monitor update contained within `shutdown_finish` was applied.
if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
shutdown_finish.0.take();
}
}
return res
}
funding_tx
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
self.tx_broadcaster.broadcast_transaction(&funding_tx);
Ok(())
}
fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().funding_locked(&msg, self.get_our_node_id(),
self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan);
if let Some(announcement_sigs) = announcement_sigs_opt {
log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: counterparty_node_id.clone(),
msg: announcement_sigs,
});
} else if chan.get().is_usable() {
// If we're sending an announcement_signatures, we'll send the (public)
// channel_update after sending a channel_announcement when we receive our
// counterparty's announcement_signatures. Thus, we only bother to send a
// channel_update here if the channel is not public, i.e. we're not sending an
// announcement_signatures.
log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
node_id: counterparty_node_id.clone(),
msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
let result: Result<(), _> = loop {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
if !chan_entry.get().received_shutdown() {
log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
log_bytes!(msg.channel_id),
if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
}
let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
dropped_htlcs = htlcs;
// Update the monitor with the shutdown script if necessary.
if let Some(monitor_update) = monitor_update {
if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
let (result, is_permanent) =
handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), Vec::new(), chan_entry.key());
if is_permanent {
remove_channel!(channel_state, chan_entry);
break result;
}
}
}
if let Some(msg) = shutdown {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: *counterparty_node_id,
msg,
});
}
break Ok(());
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
for htlc_source in dropped_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
let _ = handle_error!(self, result, *counterparty_node_id);
Ok(())
}
fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
let (tx, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: counterparty_node_id.clone(),
msg,
});
}
if tx.is_some() {
// We're done with this channel, we've got a signed closing transaction and
// will send the closing_signed back to the remote peer upon return. This
// also implies there are no pending HTLCs left on the channel, so we can
// fully delete it from tracking (the channel monitor is still around to
// watch for old state broadcasts)!
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(tx, Some(chan_entry.remove_entry().1))
} else { (tx, None) }
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
if let Some(broadcast_tx) = tx {
log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
}
if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
}
Ok(())
}
fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
//determine the state of the payment based on our response/if we forward anything/the time
//we take to respond. We should take care to avoid allowing such an attack.
//
//TODO: There exists a further attack where a node may garble the onion data, forward it to
//us repeatedly garbled in different ways, and compare our error messages, which are
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
//but we should prevent it anyway.
let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
// If the update_add is completely bogus, the call will Err and we will close,
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
// want to reject the new HTLC and fail it backwards instead of forwarding.
match pending_forward_info {
PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
let reason = if (error_code & 0x1000) != 0 {
if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
let mut res = Vec::with_capacity(8 + 128);
// TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
res.extend_from_slice(&byte_utils::be16_to_array(0));
res.extend_from_slice(&upd.encode_with_len()[..]);
res
}[..])
} else {
// The only case where we'd be unable to
// successfully get a channel update is if the
// channel isn't in the fully-funded state yet,
// implying our counterparty is trying to route
// payments over the channel back to themselves
// (because no one else should know the short_id
// is a lightning channel yet). We should have
// no problem just calling this
// unknown_next_peer (0x4000|10).
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
}
} else {
onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
};
let msg = msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason
};
PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
},
_ => pending_forward_info
}
};
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let (htlc_source, forwarded_htlc_value) = {
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
Ok(())
}
fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
if (msg.failure_code & 0x8000) == 0 {
let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
try_chan_entry!(self, Err(chan_err), channel_state, chan);
}
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let (revoke_and_ack, commitment_signed, monitor_update) =
match chan.get_mut().commitment_signed(&msg, &self.logger) {
Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
Err((Some(update), e)) => {
assert!(chan.get().is_awaiting_monitor_update());
let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
try_chan_entry!(self, Err(e), channel_state, chan);
unreachable!();
},
Ok(res) => res
};
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: counterparty_node_id.clone(),
msg: revoke_and_ack,
});
if let Some(msg) = commitment_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id.clone(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: msg,
},
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
}
#[inline]
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
let mut forward_event = None;
if !pending_forwards.is_empty() {
let mut channel_state = self.channel_state.lock().unwrap();
if channel_state.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
}
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
match channel_state.forward_htlcs.entry(match forward_info.routing {
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
PendingHTLCRouting::Receive { .. } => 0,
PendingHTLCRouting::ReceiveKeysend { .. } => 0,
}) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
prev_htlc_id, forward_info });
},
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
prev_htlc_id, forward_info }));
}
}
}
}
match forward_event {
Some(time) => {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
None => {},
}
}
}
fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
let mut htlcs_to_fail = Vec::new();
let res = loop {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
let raa_updates = break_chan_entry!(self,
chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) {
if was_frozen_for_monitor {
assert!(raa_updates.commitment_update.is_none());
assert!(raa_updates.accepted_htlcs.is_empty());
assert!(raa_updates.failed_htlcs.is_empty());
assert!(raa_updates.finalized_claimed_htlcs.is_empty());
break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
} else {
if let Err(e) = handle_monitor_err!(self, e, channel_state, chan,
RAACommitmentOrder::CommitmentFirst, false,
raa_updates.commitment_update.is_some(),
raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
raa_updates.finalized_claimed_htlcs) {
break Err(e);
} else { unreachable!(); }
}
}
if let Some(updates) = raa_updates.commitment_update {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: counterparty_node_id.clone(),
updates,
});
}
break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
raa_updates.finalized_claimed_htlcs,
chan.get().get_short_channel_id()
.expect("RAA should only work on a short-id-available channel"),
chan.get().get_funding_txo().unwrap()))
},
hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
match res {
Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
short_channel_id, channel_outpoint)) =>
{
for failure in pending_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
self.finalize_claims(finalized_claim_htlcs);
Ok(())
},
Err(e) => Err(e)
}
}
fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
if !chan.get().is_usable() {
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
}
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan),
// Note that announcement_signatures fails if the channel cannot be announced,
// so get_channel_update_for_broadcast will never fail by the time we get here.
update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
});
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
Ok(())
}
/// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
Some(chan_id) => chan_id.clone(),
None => {
// It's not a local channel
return Ok(NotifyOption::SkipPersist)
}
};
match channel_state.by_id.entry(chan_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
if chan.get().should_announce() {
// If the announcement is about a channel of ours which is public, some
// other peer may simply be forwarding all its gossip to us. Don't provide
// a scary-looking error message and return Ok instead.
return Ok(NotifyOption::SkipPersist);
}
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
}
let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
let msg_from_node_one = msg.contents.flags & 1 == 0;
if were_node_one == msg_from_node_one {
return Ok(NotifyOption::SkipPersist);
} else {
try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
}
},
hash_map::Entry::Vacant(_) => unreachable!()
}
Ok(NotifyOption::DoPersist)
}
fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
let chan_restoration_res;
let (htlcs_failed_forward, need_lnd_workaround) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
}
// Currently, we expect all holding cell update_adds to be dropped on peer
// disconnect, so Channel's reestablish will never hand us any holding cell
// freed HTLCs to fail backwards. If in the future we no longer drop pending
// add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash,
&*self.best_block.read().unwrap()), channel_state, chan);
let mut channel_update = None;
if let Some(msg) = responses.shutdown_msg {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: counterparty_node_id.clone(),
msg,
});
} else if chan.get().is_usable() {
// If the channel is in a usable state (ie the channel is not being shut
// down), send a unicast channel_update to our counterparty to make sure
// they have the latest channel parameters.
channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
node_id: chan.get().get_counterparty_node_id(),
msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
});
}
let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
chan_restoration_res = handle_chan_restoration_locked!(
self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order,
responses.mon_update, Vec::new(), None, responses.funding_locked, responses.announcement_sigs);
if let Some(upd) = channel_update {
channel_state.pending_msg_events.push(upd);
}
(responses.holding_cell_failed_htlcs, need_lnd_workaround)
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
}
};
post_handle_chan_restoration!(self, chan_restoration_res);
self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
if let Some(funding_locked_msg) = need_lnd_workaround {
self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
}
Ok(())
}
/// Process pending events from the `chain::Watch`, returning whether any events were processed.
fn process_pending_monitor_events(&self) -> bool {
let mut failed_channels = Vec::new();
let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
let has_pending_monitor_events = !pending_monitor_events.is_empty();
for monitor_event in pending_monitor_events.drain(..) {
match monitor_event {
MonitorEvent::HTLCEvent(htlc_update) => {
if let Some(preimage) = htlc_update.payment_preimage {
log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
} else {
log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
},
MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
MonitorEvent::UpdateFailed(funding_outpoint) => {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let by_id = &mut channel_state.by_id;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(chan.force_shutdown(false));
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
} else {
ClosureReason::CommitmentTxConfirmed
};
self.issue_channel_close_events(&chan, reason);
pending_msg_events.push(events::MessageSendEvent::HandleError {
node_id: chan.get_counterparty_node_id(),
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
},
});
}
},
MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
self.channel_monitor_updated(&funding_txo, monitor_update_id);
},
}
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
has_pending_monitor_events
}
/// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
/// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
/// update events as a separate process method here.
#[cfg(feature = "fuzztarget")]
pub fn process_monitor_events(&self) {
self.process_pending_monitor_events();
}
/// Check the holding cell in each channel and free any pending HTLCs in them if possible.
/// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
/// update was applied.
///
/// This should only apply to HTLCs which were added to the holding cell because we were
/// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
/// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
/// code to inform them of a channel monitor update.
fn check_free_holding_cells(&self) -> bool {
let mut has_monitor_update = false;
let mut failed_htlcs = Vec::new();
let mut handle_errors = Vec::new();
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let by_id = &mut channel_state.by_id;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
by_id.retain(|channel_id, chan| {
match chan.maybe_free_holding_cell_htlcs(&self.logger) {
Ok((commitment_opt, holding_cell_failed_htlcs)) => {
if !holding_cell_failed_htlcs.is_empty() {
failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
}
if let Some((commitment_update, monitor_update)) = commitment_opt {
if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
has_monitor_update = true;
let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), Vec::new(), channel_id);
handle_errors.push((chan.get_counterparty_node_id(), res));
if close_channel { return false; }
} else {
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get_counterparty_node_id(),
updates: commitment_update,
});
}
}
true
},
Err(e) => {
let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
// ChannelClosed event is generated by handle_error for us
!close_channel
}
}
});
}
let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
for (failures, channel_id) in failed_htlcs.drain(..) {
self.fail_holding_cell_htlcs(failures, channel_id);
}
for (counterparty_node_id, err) in handle_errors.drain(..) {
let _ = handle_error!(self, err, counterparty_node_id);
}
has_update
}
/// Check whether any channels have finished removing all pending updates after a shutdown
/// exchange and can now send a closing_signed.
/// Returns whether any closing_signed messages were generated.
fn maybe_generate_initial_closing_signed(&self) -> bool {
let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
let mut has_update = false;
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let by_id = &mut channel_state.by_id;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
by_id.retain(|channel_id, chan| {
match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
Ok((msg_opt, tx_opt)) => {
if let Some(msg) = msg_opt {
has_update = true;
pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: chan.get_counterparty_node_id(), msg,
});
}
if let Some(tx) = tx_opt {
// We're done with this channel. We got a closing_signed and sent back
// a closing_signed with a closing transaction to broadcast.
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
self.tx_broadcaster.broadcast_transaction(&tx);
false
} else { true }
},
Err(e) => {
has_update = true;
let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
!close_channel
}
}
});
}
for (counterparty_node_id, err) in handle_errors.drain(..) {
let _ = handle_error!(self, err, counterparty_node_id);
}
has_update
}
/// Handle a list of channel failures during a block_connected or block_disconnected call,
/// pushing the channel monitor update (if any) to the background events queue and removing the
/// Channel object.
fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
for mut failure in failed_channels.drain(..) {
// Either a commitment transactions has been confirmed on-chain or
// Channel::block_disconnected detected that the funding transaction has been
// reorganized out of the main chain.
// We cannot broadcast our latest local state via monitor update (as
// Channel::force_shutdown tries to make us do) as we may still be in initialization,
// so we track the update internally and handle it when the user next calls
// timer_tick_occurred, guaranteeing we're running normally.
if let Some((funding_txo, update)) = failure.0.take() {
assert_eq!(update.updates.len(), 1);
if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
assert!(should_broadcast);
} else { unreachable!(); }
self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
}
self.finish_force_close_channel(failure);
}
}
fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
}
let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
match payment_secrets.entry(payment_hash) {
hash_map::Entry::Vacant(e) => {
e.insert(PendingInboundPayment {
payment_secret, min_value_msat, payment_preimage,
user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
// We assume that highest_seen_timestamp is pretty close to the current time -
// it's updated when we receive a new block with the maximum time we've seen in
// a header. It should never be more than two hours in the future.
// Thus, we add two hours here as a buffer to ensure we absolutely
// never fail a payment too early.
// Note that we assume that received blocks have reasonably up-to-date
// timestamps.
expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
});
},
hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
}
Ok(payment_secret)
}
/// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
/// to pay us.
///
/// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
/// [`PaymentHash`] and [`PaymentPreimage`] for you.
///
/// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
/// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
/// passed directly to [`claim_funds`].
///
/// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
///
/// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
/// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
///
/// # Note
///
/// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
/// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
///
/// Errors if `min_value_msat` is greater than total bitcoin supply.
///
/// [`claim_funds`]: Self::claim_funds
/// [`PaymentReceived`]: events::Event::PaymentReceived
/// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> {
inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
}
/// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
/// serialized state with LDK node(s) running 0.0.103 and earlier.
///
/// # Note
/// This method is deprecated and will be removed soon.
///
/// [`create_inbound_payment`]: Self::create_inbound_payment
#[deprecated]
pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
Ok((payment_hash, payment_secret))
}
/// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
/// stored external to LDK.
///
/// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
/// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
/// the `min_value_msat` provided here, if one is provided.
///
/// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
/// note that LDK will not stop you from registering duplicate payment hashes for inbound
/// payments.
///
/// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
/// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
/// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
/// sender "proof-of-payment" unless they have paid the required amount.
///
/// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
/// in excess of the current time. This should roughly match the expiry time set in the invoice.
/// After this many seconds, we will remove the inbound payment, resulting in any attempts to
/// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
/// invoices when no timeout is set.
///
/// Note that we use block header time to time-out pending inbound payments (with some margin
/// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
/// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
/// If you need exact expiry semantics, you should enforce them upon receipt of
/// [`PaymentReceived`].
///
/// May panic if `invoice_expiry_delta_secs` is greater than one year.
///
/// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
/// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
///
/// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
/// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
///
/// # Note
///
/// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
/// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
///
/// Errors if `min_value_msat` is greater than total bitcoin supply.
///
/// [`create_inbound_payment`]: Self::create_inbound_payment
/// [`PaymentReceived`]: events::Event::PaymentReceived
pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, ()> {
inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
}
/// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
/// serialized state with LDK node(s) running 0.0.103 and earlier.
///
/// # Note
/// This method is deprecated and will be removed soon.
///
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
#[deprecated]
pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
}
/// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
/// previously returned from [`create_inbound_payment`].
///
/// [`create_inbound_payment`]: Self::create_inbound_payment
pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
}
/// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
/// are used when constructing the phantom invoice's route hints.
///
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
pub fn get_phantom_scid(&self) -> u64 {
let mut channel_state = self.channel_state.lock().unwrap();
let best_block = self.best_block.read().unwrap();
loop {
let scid_candidate = fake_scid::get_phantom_scid(&self.fake_scid_rand_bytes, best_block.height(), &self.genesis_hash, &self.keys_manager);
// Ensure the generated scid doesn't conflict with a real channel.
match channel_state.short_to_id.entry(scid_candidate) {
hash_map::Entry::Occupied(_) => continue,
hash_map::Entry::Vacant(_) => return scid_candidate
}
}
}
/// Gets route hints for use in receiving [phantom node payments].
///
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
PhantomRouteHints {
channels: self.list_usable_channels(),
phantom_scid: self.get_phantom_scid(),
real_node_pubkey: self.get_our_node_id(),
}
}
#[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
let events = core::cell::RefCell::new(Vec::new());
let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
self.process_pending_events(&event_handler);
events.into_inner()
}
#[cfg(test)]
pub fn has_pending_payments(&self) -> bool {
!self.pending_outbound_payments.lock().unwrap().is_empty()
}
#[cfg(test)]
pub fn clear_pending_payments(&self) {
self.pending_outbound_payments.lock().unwrap().clear()
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
let events = RefCell::new(Vec::new());
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
let mut result = NotifyOption::SkipPersist;
// TODO: This behavior should be documented. It's unintuitive that we query
// ChannelMonitors when clearing other events.
if self.process_pending_monitor_events() {
result = NotifyOption::DoPersist;
}
if self.check_free_holding_cells() {
result = NotifyOption::DoPersist;
}
if self.maybe_generate_initial_closing_signed() {
result = NotifyOption::DoPersist;
}
let mut pending_events = Vec::new();
let mut channel_state = self.channel_state.lock().unwrap();
mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
if !pending_events.is_empty() {
events.replace(pending_events);
}
result
});
events.into_inner()
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Processes events that must be periodically handled.
///
/// An [`EventHandler`] may safely call back to the provider in order to handle an event.
/// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
///
/// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
/// when processed, an [`EventHandler`] must be able to handle previously seen events when
/// restarting from an old state.
fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
let mut result = NotifyOption::SkipPersist;
// TODO: This behavior should be documented. It's unintuitive that we query
// ChannelMonitors when clearing other events.
if self.process_pending_monitor_events() {
result = NotifyOption::DoPersist;
}
let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
if !pending_events.is_empty() {
result = NotifyOption::DoPersist;
}
for event in pending_events.drain(..) {
handler.handle_event(&event);
}
result
});
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn block_connected(&self, block: &Block, height: u32) {
{
let best_block = self.best_block.read().unwrap();
assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
"Blocks must be connected in chain-order - the connected header must build on the last connected header");
assert_eq!(best_block.height(), height - 1,
"Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
}
let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
self.transactions_confirmed(&block.header, &txdata, height);
self.best_block_updated(&block.header, height);
}
fn block_disconnected(&self, header: &BlockHeader, height: u32) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let new_height = height - 1;
{
let mut best_block = self.best_block.write().unwrap();
assert_eq!(best_block.block_hash(), header.block_hash(),
"Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
assert_eq!(best_block.height(), height,
"Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
*best_block = BestBlock::new(header.prev_blockhash, new_height)
}
self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let block_hash = header.block_hash();
log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)
.map(|(a, b)| (a, Vec::new(), b)));
}
fn best_block_updated(&self, header: &BlockHeader, height: u32) {
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let block_hash = header.block_hash();
log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
*self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
macro_rules! max_time {
($timestamp: expr) => {
loop {
// Update $timestamp to be the max of its current value and the block
// timestamp. This should keep us close to the current time without relying on
// having an explicit local time source.
// Just in case we end up in a race, we loop until we either successfully
// update $timestamp or decide we don't need to.
let old_serial = $timestamp.load(Ordering::Acquire);
if old_serial >= header.time as usize { break; }
if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
break;
}
}
}
}
max_time!(self.last_node_announcement_serial);
max_time!(self.highest_seen_timestamp);
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
payment_secrets.retain(|_, inbound_payment| {
inbound_payment.expiry_time > header.time as u64
});
let mut outbounds = self.pending_outbound_payments.lock().unwrap();
let mut pending_events = self.pending_events.lock().unwrap();
outbounds.retain(|payment_id, payment| {
if payment.remaining_parts() != 0 { return true }
if let PendingOutboundPayment::Retryable { starting_block_height, payment_hash, .. } = payment {
if *starting_block_height + PAYMENT_EXPIRY_BLOCKS <= height {
log_info!(self.logger, "Timing out payment with id {} and hash {}", log_bytes!(payment_id.0), log_bytes!(payment_hash.0));
pending_events.push(events::Event::PaymentFailed {
payment_id: *payment_id, payment_hash: *payment_hash,
});
false
} else { true }
} else { true }
});
}
fn get_relevant_txids(&self) -> Vec<Txid> {
let channel_state = self.channel_state.lock().unwrap();
let mut res = Vec::with_capacity(channel_state.short_to_id.len());
for chan in channel_state.by_id.values() {
if let Some(funding_txo) = chan.get_funding_txo() {
res.push(funding_txo.txid);
}
}
res
}
fn transaction_unconfirmed(&self, txid: &Txid) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
self.do_chain_event(None, |channel| {
if let Some(funding_txo) = channel.get_funding_txo() {
if funding_txo.txid == *txid {
channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
} else { Ok((None, Vec::new(), None)) }
} else { Ok((None, Vec::new(), None)) }
});
}
}
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
where
M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Calls a function which handles an on-chain event (blocks dis/connected, transactions
/// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
/// the function.
fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
(&self, height_opt: Option<u32>, f: FN) {
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
// during initialization prior to the chain_monitor being fully configured in some cases.
// See the docs for `ChannelManagerReadArgs` for more.
let mut failed_channels = Vec::new();
let mut timed_out_htlcs = Vec::new();
{
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, channel| {
let res = f(channel);
if let Ok((funding_locked_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
data: chan_update,
}));
}
if let Some(funding_locked) = funding_locked_opt {
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: channel.get_counterparty_node_id(),
msg: funding_locked,
});
if channel.is_usable() {
log_trace!(self.logger, "Sending funding_locked with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
node_id: channel.get_counterparty_node_id(),
msg: self.get_channel_update_for_unicast(channel).unwrap(),
});
} else {
log_trace!(self.logger, "Sending funding_locked WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
}
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
}
if let Some(announcement_sigs) = announcement_sigs {
log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: channel.get_counterparty_node_id(),
msg: announcement_sigs,
});
if let Some(height) = height_opt {
if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
msg: announcement,
// Note that announcement_signatures fails if the channel cannot be announced,
// so get_channel_update_for_broadcast will never fail by the time we get here.
update_msg: self.get_channel_update_for_broadcast(channel).unwrap(),
});
}
}
}
} else if let Err(reason) = res {
if let Some(short_id) = channel.get_short_channel_id() {
short_to_id.remove(&short_id);
}
// It looks like our counterparty went on-chain or funding transaction was
// reorged out of the main chain. Close the channel.
failed_channels.push(channel.force_shutdown(true));
if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
let reason_message = format!("{}", reason);
self.issue_channel_close_events(channel, reason);
pending_msg_events.push(events::MessageSendEvent::HandleError {
node_id: channel.get_counterparty_node_id(),
action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
channel_id: channel.channel_id(),
data: reason_message,
} },
});
return false;
}
true
});
if let Some(height) = height_opt {
channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
htlcs.retain(|htlc| {
// If height is approaching the number of blocks we think it takes us to get
// our commitment transaction confirmed before the HTLC expires, plus the
// number of blocks we generally consider it to take to do a commitment update,
// just give up on it and fail the HTLC.
if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
failure_code: 0x4000 | 15,
data: htlc_msat_height_data
}));
false
} else { true }
});
!htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
});
}
}
self.handle_init_event_channel_failures(failed_channels);
for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
}
}
/// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
/// indicating whether persistence is necessary. Only one listener on
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
/// up.
///
/// Note that this method is not available with the `no-std` feature.
#[cfg(any(test, feature = "std"))]
pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
self.persistence_notifier.wait_timeout(max_wait)
}
/// Blocks until ChannelManager needs to be persisted. Only one listener on
/// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
/// up.
pub fn await_persistable_update(&self) {
self.persistence_notifier.wait()
}
#[cfg(any(test, feature = "_test_utils"))]
pub fn get_persistence_condvar_value(&self) -> bool {
let mutcond = &self.persistence_notifier.persistence_lock;
let &(ref mtx, _) = mutcond;
let guard = mtx.lock().unwrap();
*guard
}
/// Gets the latest best block which was connected either via the [`chain::Listen`] or
/// [`chain::Confirm`] interfaces.
pub fn current_best_block(&self) -> BestBlock {
self.best_block.read().unwrap().clone()
}
}
impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
}
fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
}
fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
}
fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
}
fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
persist
} else {
NotifyOption::SkipPersist
}
});
}
fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
}
fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
let mut failed_channels = Vec::new();
let mut no_channels_remain = true;
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
if no_connection_possible {
log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(chan.force_shutdown(true));
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
false
} else {
true
}
});
} else {
log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
if chan.is_shutdown() {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
return false;
} else {
no_channels_remain = false;
}
}
true
})
}
pending_msg_events.retain(|msg| {
match msg {
&events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
&events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
&events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
&events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
&events::MessageSendEvent::SendShortIdsQuery { .. } => false,
&events::MessageSendEvent::SendReplyChannelRange { .. } => false,
}
});
}
if no_channels_remain {
self.per_peer_state.write().unwrap().remove(counterparty_node_id);
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
}
fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
{
let mut peer_state_lock = self.per_peer_state.write().unwrap();
match peer_state_lock.entry(counterparty_node_id.clone()) {
hash_map::Entry::Vacant(e) => {
e.insert(Mutex::new(PeerState {
latest_features: init_msg.features.clone(),
}));
},
hash_map::Entry::Occupied(e) => {
e.get().lock().unwrap().latest_features = init_msg.features.clone();
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, chan| {
if chan.get_counterparty_node_id() == *counterparty_node_id {
if !chan.have_received_message() {
// If we created this (outbound) channel while we were disconnected from the
// peer we probably failed to send the open_channel message, which is now
// lost. We can't have had anything pending related to this channel, so we just
// drop it.
false
} else {
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
node_id: chan.get_counterparty_node_id(),
msg: chan.get_channel_reestablish(&self.logger),
});
true
}
} else { true }
});
//TODO: Also re-broadcast announcement_signatures
}
fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
if msg.channel_id == [0; 32] {
for chan in self.list_channels() {
if chan.counterparty.node_id == *counterparty_node_id {
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
}
}
} else {
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
}
}
}
/// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
/// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
struct PersistenceNotifier {
/// Users won't access the persistence_lock directly, but rather wait on its bool using
/// `wait_timeout` and `wait`.
persistence_lock: (Mutex<bool>, Condvar),
}
impl PersistenceNotifier {
fn new() -> Self {
Self {
persistence_lock: (Mutex::new(false), Condvar::new()),
}
}
fn wait(&self) {
loop {
let &(ref mtx, ref cvar) = &self.persistence_lock;
let mut guard = mtx.lock().unwrap();
if *guard {
*guard = false;
return;
}
guard = cvar.wait(guard).unwrap();
let result = *guard;
if result {
*guard = false;
return
}
}
}
#[cfg(any(test, feature = "std"))]
fn wait_timeout(&self, max_wait: Duration) -> bool {
let current_time = Instant::now();
loop {
let &(ref mtx, ref cvar) = &self.persistence_lock;
let mut guard = mtx.lock().unwrap();
if *guard {
*guard = false;
return true;
}
guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
// Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
// desired wait time has actually passed, and if not then restart the loop with a reduced wait
// time. Note that this logic can be highly simplified through the use of
// `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
// 1.42.0.
let elapsed = current_time.elapsed();
let result = *guard;
if result || elapsed >= max_wait {
*guard = false;
return result;
}
match max_wait.checked_sub(elapsed) {
None => return result,
Some(_) => continue
}
}
}
// Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
fn notify(&self) {
let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
let mut persistence_lock = persist_mtx.lock().unwrap();
*persistence_lock = true;
mem::drop(persistence_lock);
cnd.notify_all();
}
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
(2, fee_base_msat, required),
(4, fee_proportional_millionths, required),
(6, cltv_expiry_delta, required),
});
impl_writeable_tlv_based!(ChannelCounterparty, {
(2, node_id, required),
(4, features, required),
(6, unspendable_punishment_reserve, required),
(8, forwarding_info, option),
});
impl_writeable_tlv_based!(ChannelDetails, {
(2, channel_id, required),
(4, counterparty, required),
(6, funding_txo, option),
(8, short_channel_id, option),
(10, channel_value_satoshis, required),
(12, unspendable_punishment_reserve, option),
(14, user_channel_id, required),
(16, balance_msat, required),
(18, outbound_capacity_msat, required),
(20, inbound_capacity_msat, required),
(22, confirmations_required, option),
(24, force_close_spend_delay, option),
(26, is_outbound, required),
(28, is_funding_locked, required),
(30, is_usable, required),
(32, is_public, required),
});
impl_writeable_tlv_based!(PhantomRouteHints, {
(2, channels, vec_type),
(4, phantom_scid, required),
(6, real_node_pubkey, required),
});
impl_writeable_tlv_based_enum!(PendingHTLCRouting,
(0, Forward) => {
(0, onion_packet, required),
(2, short_channel_id, required),
},
(1, Receive) => {
(0, payment_data, required),
(1, phantom_shared_secret, option),
(2, incoming_cltv_expiry, required),
},
(2, ReceiveKeysend) => {
(0, payment_preimage, required),
(2, incoming_cltv_expiry, required),
},
;);
impl_writeable_tlv_based!(PendingHTLCInfo, {
(0, routing, required),
(2, incoming_shared_secret, required),
(4, payment_hash, required),
(6, amt_to_forward, required),
(8, outgoing_cltv_value, required)
});
impl Writeable for HTLCFailureMsg {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
match self {
HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
0u8.write(writer)?;
channel_id.write(writer)?;
htlc_id.write(writer)?;
reason.write(writer)?;
},
HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
channel_id, htlc_id, sha256_of_onion, failure_code
}) => {
1u8.write(writer)?;
channel_id.write(writer)?;
htlc_id.write(writer)?;
sha256_of_onion.write(writer)?;
failure_code.write(writer)?;
},
}
Ok(())
}
}
impl Readable for HTLCFailureMsg {
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
let id: u8 = Readable::read(reader)?;
match id {
0 => {
Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
channel_id: Readable::read(reader)?,
htlc_id: Readable::read(reader)?,
reason: Readable::read(reader)?,
}))
},
1 => {
Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
channel_id: Readable::read(reader)?,
htlc_id: Readable::read(reader)?,
sha256_of_onion: Readable::read(reader)?,
failure_code: Readable::read(reader)?,
}))
},
// In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
// weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
// messages contained in the variants.
// In version 0.0.101, support for reading the variants with these types was added, and
// we should migrate to writing these variants when UpdateFailHTLC or
// UpdateFailMalformedHTLC get TLV fields.
2 => {
let length: BigSize = Readable::read(reader)?;
let mut s = FixedLengthReader::new(reader, length.0);
let res = Readable::read(&mut s)?;
s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
Ok(HTLCFailureMsg::Relay(res))
},
3 => {
let length: BigSize = Readable::read(reader)?;
let mut s = FixedLengthReader::new(reader, length.0);
let res = Readable::read(&mut s)?;
s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
Ok(HTLCFailureMsg::Malformed(res))
},
_ => Err(DecodeError::UnknownRequiredFeature),
}
}
}
impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
(0, Forward),
(1, Fail),
);
impl_writeable_tlv_based!(HTLCPreviousHopData, {
(0, short_channel_id, required),
(1, phantom_shared_secret, option),
(2, outpoint, required),
(4, htlc_id, required),
(6, incoming_packet_shared_secret, required)
});
impl Writeable for ClaimableHTLC {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
let payment_data = match &self.onion_payload {
OnionPayload::Invoice(data) => Some(data.clone()),
_ => None,
};
let keysend_preimage = match self.onion_payload {
OnionPayload::Invoice(_) => None,
OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
};
write_tlv_fields!
(writer,
{
(0, self.prev_hop, required), (2, self.value, required),
(4, payment_data, option), (6, self.cltv_expiry, required),
(8, keysend_preimage, option),
});
Ok(())
}
}
impl Readable for ClaimableHTLC {
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
let mut value = 0;
let mut payment_data: Option<msgs::FinalOnionHopData> = None;
let mut cltv_expiry = 0;
let mut keysend_preimage: Option<PaymentPreimage> = None;
read_tlv_fields!
(reader,
{
(0, prev_hop, required), (2, value, required),
(4, payment_data, option), (6, cltv_expiry, required),
(8, keysend_preimage, option)
});
let onion_payload = match keysend_preimage {
Some(p) => {
if payment_data.is_some() {
return Err(DecodeError::InvalidValue)
}
OnionPayload::Spontaneous(p)
},
None => {
if payment_data.is_none() {
return Err(DecodeError::InvalidValue)
}
OnionPayload::Invoice(payment_data.unwrap())
},
};
Ok(Self {
prev_hop: prev_hop.0.unwrap(),
value,
onion_payload,
cltv_expiry,
})
}
}
impl Readable for HTLCSource {
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
let id: u8 = Readable::read(reader)?;
match id {
0 => {
let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
let mut first_hop_htlc_msat: u64 = 0;
let mut path = Some(Vec::new());
let mut payment_id = None;
let mut payment_secret = None;
let mut payment_params = None;
read_tlv_fields!(reader, {
(0, session_priv, required),
(1, payment_id, option),
(2, first_hop_htlc_msat, required),
(3, payment_secret, option),
(4, path, vec_type),
(5, payment_params, option),
});
if payment_id.is_none() {
// For backwards compat, if there was no payment_id written, use the session_priv bytes
// instead.
payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
}
Ok(HTLCSource::OutboundRoute {
session_priv: session_priv.0.unwrap(),
first_hop_htlc_msat: first_hop_htlc_msat,
path: path.unwrap(),
payment_id: payment_id.unwrap(),
payment_secret,
payment_params,
})
}
1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
_ => Err(DecodeError::UnknownRequiredFeature),
}
}
}
impl Writeable for HTLCSource {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
match self {
HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
0u8.write(writer)?;
let payment_id_opt = Some(payment_id);
write_tlv_fields!(writer, {
(0, session_priv, required),
(1, payment_id_opt, option),
(2, first_hop_htlc_msat, required),
(3, payment_secret, option),
(4, path, vec_type),
(5, payment_params, option),
});
}
HTLCSource::PreviousHopData(ref field) => {
1u8.write(writer)?;
field.write(writer)?;
}
}
Ok(())
}
}
impl_writeable_tlv_based_enum!(HTLCFailReason,
(0, LightningError) => {
(0, err, required),
},
(1, Reason) => {
(0, failure_code, required),
(2, data, vec_type),
},
;);
impl_writeable_tlv_based_enum!(HTLCForwardInfo,
(0, AddHTLC) => {
(0, forward_info, required),
(2, prev_short_channel_id, required),
(4, prev_htlc_id, required),
(6, prev_funding_outpoint, required),
},
(1, FailHTLC) => {
(0, htlc_id, required),
(2, err_packet, required),
},
;);
impl_writeable_tlv_based!(PendingInboundPayment, {
(0, payment_secret, required),
(2, expiry_time, required),
(4, user_payment_id, required),
(6, payment_preimage, required),
(8, min_value_msat, required),
});
impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
(0, Legacy) => {
(0, session_privs, required),
},
(1, Fulfilled) => {
(0, session_privs, required),
(1, payment_hash, option),
},
(2, Retryable) => {
(0, session_privs, required),
(1, pending_fee_msat, option),
(2, payment_hash, required),
(4, payment_secret, option),
(6, total_msat, required),
(8, pending_amt_msat, required),
(10, starting_block_height, required),
},
(3, Abandoned) => {
(0, session_privs, required),
(2, payment_hash, required),
},
);
impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
let _consistency_lock = self.total_consistency_lock.write().unwrap();
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
self.genesis_hash.write(writer)?;
{
let best_block = self.best_block.read().unwrap();
best_block.height().write(writer)?;
best_block.block_hash().write(writer)?;
}
let channel_state = self.channel_state.lock().unwrap();
let mut unfunded_channels = 0;
for (_, channel) in channel_state.by_id.iter() {
if !channel.is_funding_initiated() {
unfunded_channels += 1;
}
}
((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
for (_, channel) in channel_state.by_id.iter() {
if channel.is_funding_initiated() {
channel.write(writer)?;
}
}
(channel_state.forward_htlcs.len() as u64).write(writer)?;
for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
short_channel_id.write(writer)?;
(pending_forwards.len() as u64).write(writer)?;
for forward in pending_forwards {
forward.write(writer)?;
}
}
(channel_state.claimable_htlcs.len() as u64).write(writer)?;
for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
payment_hash.write(writer)?;
(previous_hops.len() as u64).write(writer)?;
for htlc in previous_hops.iter() {
htlc.write(writer)?;
}
}
let per_peer_state = self.per_peer_state.write().unwrap();
(per_peer_state.len() as u64).write(writer)?;
for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
peer_pubkey.write(writer)?;
let peer_state = peer_state_mutex.lock().unwrap();
peer_state.latest_features.write(writer)?;
}
let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
let events = self.pending_events.lock().unwrap();
(events.len() as u64).write(writer)?;
for event in events.iter() {
event.write(writer)?;
}
let background_events = self.pending_background_events.lock().unwrap();
(background_events.len() as u64).write(writer)?;
for event in background_events.iter() {
match event {
BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
0u8.write(writer)?;
funding_txo.write(writer)?;
monitor_update.write(writer)?;
},
}
}
(self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
(self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
(pending_inbound_payments.len() as u64).write(writer)?;
for (hash, pending_payment) in pending_inbound_payments.iter() {
hash.write(writer)?;
pending_payment.write(writer)?;
}
// For backwards compat, write the session privs and their total length.
let mut num_pending_outbounds_compat: u64 = 0;
for (_, outbound) in pending_outbound_payments.iter() {
if !outbound.is_fulfilled() && !outbound.abandoned() {
num_pending_outbounds_compat += outbound.remaining_parts() as u64;
}
}
num_pending_outbounds_compat.write(writer)?;
for (_, outbound) in pending_outbound_payments.iter() {
match outbound {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } => {
for session_priv in session_privs.iter() {
session_priv.write(writer)?;
}
}
PendingOutboundPayment::Fulfilled { .. } => {},
PendingOutboundPayment::Abandoned { .. } => {},
}
}
// Encode without retry info for 0.0.101 compatibility.
let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
for (id, outbound) in pending_outbound_payments.iter() {
match outbound {
PendingOutboundPayment::Legacy { session_privs } |
PendingOutboundPayment::Retryable { session_privs, .. } => {
pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
},
_ => {},
}
}
write_tlv_fields!(writer, {
(1, pending_outbound_payments_no_retry, required),
(3, pending_outbound_payments, required),
(5, self.our_network_pubkey, required),
(7, self.fake_scid_rand_bytes, required),
});
Ok(())
}
}
/// Arguments for the creation of a ChannelManager that are not deserialized.
///
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
/// is:
/// 1) Deserialize all stored [`ChannelMonitor`]s.
/// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
/// `<(BlockHash, ChannelManager)>::read(reader, args)`
/// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
/// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
/// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
/// same way you would handle a [`chain::Filter`] call using
/// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
/// 4) Reconnect blocks on your [`ChannelMonitor`]s.
/// 5) Disconnect/connect blocks on the [`ChannelManager`].
/// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
/// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
/// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
/// the next step.
/// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
/// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
///
/// Note that the ordering of #4-7 is not of importance, however all four must occur before you
/// call any other methods on the newly-deserialized [`ChannelManager`].
///
/// Note that because some channels may be closed during deserialization, it is critical that you
/// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
/// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
/// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
/// not force-close the same channels but consider them live), you may end up revoking a state for
/// which you've already broadcasted the transaction.
///
/// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// The keys provider which will give us relevant keys. Some keys will be loaded during
/// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
/// signing data.
pub keys_manager: K,
/// The fee_estimator for use in the ChannelManager in the future.
///
/// No calls to the FeeEstimator will be made during deserialization.
pub fee_estimator: F,
/// The chain::Watch for use in the ChannelManager in the future.
///
/// No calls to the chain::Watch will be made during deserialization. It is assumed that
/// you have deserialized ChannelMonitors separately and will add them to your
/// chain::Watch after deserializing this ChannelManager.
pub chain_monitor: M,
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
/// used to broadcast the latest local commitment transactions of channels which must be
/// force-closed during deserialization.
pub tx_broadcaster: T,
/// The Logger for use in the ChannelManager and which may be used to log information during
/// deserialization.
pub logger: L,
/// Default settings used for new channels. Any existing channels will continue to use the
/// runtime settings which were stored when the ChannelManager was serialized.
pub default_config: UserConfig,
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
/// value.get_funding_txo() should be the key).
///
/// If a monitor is inconsistent with the channel state during deserialization the channel will
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
/// is true for missing channels as well. If there is a monitor missing for which we find
/// channel data Err(DecodeError::InvalidValue) will be returned.
///
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
/// this struct.
///
/// (C-not exported) because we have no HashMap bindings
pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
}
impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
/// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
/// HashMap for you. This is primarily useful for C bindings where it is not practical to
/// populate a HashMap directly from C.
pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
Self {
keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
}
}
}
// Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
// SipmleArcChannelManager type:
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
Ok((blockhash, Arc::new(chan_manager)))
}
}
impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
where M::Target: chain::Watch<Signer>,
T::Target: BroadcasterInterface,
K::Target: KeysInterface<Signer = Signer>,
F::Target: FeeEstimator,
L::Target: Logger,
{
fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
let genesis_hash: BlockHash = Readable::read(reader)?;
let best_block_height: u32 = Readable::read(reader)?;
let best_block_hash: BlockHash = Readable::read(reader)?;
let mut failed_htlcs = Vec::new();
let channel_count: u64 = Readable::read(reader)?;
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
let mut channel_closures = Vec::new();
for _ in 0..channel_count {
let mut channel: Channel<Signer> = Channel::read(reader, (&args.keys_manager, best_block_height))?;
let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
funding_txo_set.insert(funding_txo.clone());
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
// If the channel is ahead of the monitor, return InvalidValue:
log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
return Err(DecodeError::InvalidValue);
} else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
// But if the channel is behind of the monitor, close the channel:
log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
failed_htlcs.append(&mut new_failed_htlcs);
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
channel_closures.push(events::Event::ChannelClosed {
channel_id: channel.channel_id(),
user_channel_id: channel.get_user_id(),
reason: ClosureReason::OutdatedChannelManager
});
} else {
log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
if let Some(short_channel_id) = channel.get_short_channel_id() {
short_to_id.insert(short_channel_id, channel.channel_id());
}
by_id.insert(channel.channel_id(), channel);
}
} else {
log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
return Err(DecodeError::InvalidValue);
}
}
for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
if !funding_txo_set.contains(funding_txo) {
log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
}
}
const MAX_ALLOC_SIZE: usize = 1024 * 64;
let forward_htlcs_count: u64 = Readable::read(reader)?;
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
for _ in 0..forward_htlcs_count {
let short_channel_id = Readable::read(reader)?;
let pending_forwards_count: u64 = Readable::read(reader)?;
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
for _ in 0..pending_forwards_count {
pending_forwards.push(Readable::read(reader)?);
}
forward_htlcs.insert(short_channel_id, pending_forwards);
}
let claimable_htlcs_count: u64 = Readable::read(reader)?;
let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
for _ in 0..claimable_htlcs_count {
let payment_hash = Readable::read(reader)?;
let previous_hops_len: u64 = Readable::read(reader)?;
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
for _ in 0..previous_hops_len {
previous_hops.push(Readable::read(reader)?);
}
claimable_htlcs.insert(payment_hash, previous_hops);
}
let peer_count: u64 = Readable::read(reader)?;
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
for _ in 0..peer_count {
let peer_pubkey = Readable::read(reader)?;
let peer_state = PeerState {
latest_features: Readable::read(reader)?,
};
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
}
let event_count: u64 = Readable::read(reader)?;
let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
for _ in 0..event_count {
match MaybeReadable::read(reader)? {
Some(event) => pending_events_read.push(event),
None => continue,
}
}
if forward_htlcs_count > 0 {
// If we have pending HTLCs to forward, assume we either dropped a
// `PendingHTLCsForwardable` or the user received it but never processed it as they
// shut down before the timer hit. Either way, set the time_forwardable to a small
// constant as enough time has likely passed that we should simply handle the forwards
// now, or at least after the user gets a chance to reconnect to our peers.
pending_events_read.push(events::Event::PendingHTLCsForwardable {
time_forwardable: Duration::from_secs(2),
});
}
let background_event_count: u64 = Readable::read(reader)?;
let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
for _ in 0..background_event_count {
match <u8 as Readable>::read(reader)? {
0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
_ => return Err(DecodeError::InvalidValue),
}
}
let last_node_announcement_serial: u32 = Readable::read(reader)?;
let highest_seen_timestamp: u32 = Readable::read(reader)?;
let pending_inbound_payment_count: u64 = Readable::read(reader)?;
let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
for _ in 0..pending_inbound_payment_count {
if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
return Err(DecodeError::InvalidValue);
}
}
let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
for _ in 0..pending_outbound_payments_count_compat {
let session_priv = Readable::read(reader)?;
let payment = PendingOutboundPayment::Legacy {
session_privs: [session_priv].iter().cloned().collect()
};
if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
return Err(DecodeError::InvalidValue)
};
}
// pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
let mut pending_outbound_payments = None;
let mut received_network_pubkey: Option<PublicKey> = None;
let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
read_tlv_fields!(reader, {
(1, pending_outbound_payments_no_retry, option),
(3, pending_outbound_payments, option),
(5, received_network_pubkey, option),
(7, fake_scid_rand_bytes, option),
});
if fake_scid_rand_bytes.is_none() {
fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes());
}
if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
pending_outbound_payments = Some(pending_outbound_payments_compat);
} else if pending_outbound_payments.is_none() {
let mut outbounds = HashMap::new();
for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
}
pending_outbound_payments = Some(outbounds);
} else {
// If we're tracking pending payments, ensure we haven't lost any by looking at the
// ChannelMonitor data for any channels for which we do not have authorative state
// (i.e. those for which we just force-closed above or we otherwise don't have a
// corresponding `Channel` at all).
// This avoids several edge-cases where we would otherwise "forget" about pending
// payments which are still in-flight via their on-chain state.
// We only rebuild the pending payments map if we were most recently serialized by
// 0.0.102+
for (_, monitor) in args.channel_monitors {
if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
if path.is_empty() {
log_error!(args.logger, "Got an empty path for a pending payment");
return Err(DecodeError::InvalidValue);
}
let path_amt = path.last().unwrap().fee_msat;
let mut session_priv_bytes = [0; 32];
session_priv_bytes[..].copy_from_slice(&session_priv[..]);
match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
hash_map::Entry::Occupied(mut entry) => {
let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
},
hash_map::Entry::Vacant(entry) => {
let path_fee = path.get_path_fees();
entry.insert(PendingOutboundPayment::Retryable {
session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
payment_hash: htlc.payment_hash,
payment_secret,
pending_amt_msat: path_amt,
pending_fee_msat: Some(path_fee),
total_msat: path_amt,
starting_block_height: best_block_height,
});
log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
}
}
}
}
}
}
}
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
if !channel_closures.is_empty() {
pending_events_read.append(&mut channel_closures);
}
let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) {
Ok(key) => key,
Err(()) => return Err(DecodeError::InvalidValue)
};
let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key);
if let Some(network_pubkey) = received_network_pubkey {
if network_pubkey != our_network_pubkey {
log_error!(args.logger, "Key that was generated does not match the existing key.");
return Err(DecodeError::InvalidValue);
}
}
let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material();
let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
let channel_manager = ChannelManager {
genesis_hash,
fee_estimator: args.fee_estimator,
chain_monitor: args.chain_monitor,
tx_broadcaster: args.tx_broadcaster,
best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
channel_state: Mutex::new(ChannelHolder {
by_id,
short_to_id,
forward_htlcs,
claimable_htlcs,
pending_msg_events: Vec::new(),
}),
inbound_payment_key: expanded_inbound_key,
pending_inbound_payments: Mutex::new(pending_inbound_payments),
pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
our_network_key,
our_network_pubkey,
secp_ctx,
last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
per_peer_state: RwLock::new(per_peer_state),
pending_events: Mutex::new(pending_events_read),
pending_background_events: Mutex::new(pending_background_events_read),
total_consistency_lock: RwLock::new(()),
persistence_notifier: PersistenceNotifier::new(),
keys_manager: args.keys_manager,
logger: args.logger,
default_configuration: args.default_config,
};
for htlc_source in failed_htlcs.drain(..) {
channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
//TODO: Broadcast channel update for closed channels, but only after we've made a
//connection or two.
Ok((best_block_hash.clone(), channel_manager))
}
}
#[cfg(test)]
mod tests {
use bitcoin::hashes::Hash;
use bitcoin::hashes::sha256::Hash as Sha256;
use core::time::Duration;
use core::sync::atomic::Ordering;
use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
use ln::channelmanager::{PaymentId, PaymentSendFailure};
use ln::channelmanager::inbound_payment;
use ln::features::InitFeatures;
use ln::functional_test_utils::*;
use ln::msgs;
use ln::msgs::ChannelMessageHandler;
use routing::router::{PaymentParameters, RouteParameters, find_route};
use util::errors::APIError;
use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
use util::test_utils;
#[cfg(feature = "std")]
#[test]
fn test_wait_timeout() {
use ln::channelmanager::PersistenceNotifier;
use sync::Arc;
use core::sync::atomic::AtomicBool;
use std::thread;
let persistence_notifier = Arc::new(PersistenceNotifier::new());
let thread_notifier = Arc::clone(&persistence_notifier);
let exit_thread = Arc::new(AtomicBool::new(false));
let exit_thread_clone = exit_thread.clone();
thread::spawn(move || {
loop {
let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
let mut persistence_lock = persist_mtx.lock().unwrap();
*persistence_lock = true;
cnd.notify_all();
if exit_thread_clone.load(Ordering::SeqCst) {
break
}
}
});
// Check that we can block indefinitely until updates are available.
let _ = persistence_notifier.wait();
// Check that the PersistenceNotifier will return after the given duration if updates are
// available.
loop {
if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
exit_thread.store(true, Ordering::SeqCst);
// Check that the PersistenceNotifier will return after the given duration even if no updates
// are available.
loop {
if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
break
}
}
}
#[test]
fn test_notify_limits() {
// Check that a few cases which don't require the persistence of a new ChannelManager,
// indeed, do not cause the persistence of a new ChannelManager.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
// All nodes start with a persistable update pending as `create_network` connects each node
// with all other nodes to make most tests simpler.
assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
// We check that the channel info nodes have doesn't change too early, even though we try
// to connect messages with new values
chan.0.contents.fee_base_msat *= 2;
chan.1.contents.fee_base_msat *= 2;
let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
// The first two nodes (which opened a channel) should now require fresh persistence
assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
// ... but the last node should not.
assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
// After persisting the first two nodes they should no longer need fresh persistence.
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
// Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
// about the channel.
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
// The nodes which are a party to the channel should also ignore messages from unrelated
// parties.
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
// At this point the channel info given by peers should still be the same.
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
// An earlier version of handle_channel_update didn't check the directionality of the
// update message and would always update the local fee info, even if our peer was
// (spuriously) forwarding us our own channel_update.
let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
// First deliver each peers' own message, checking that the node doesn't need to be
// persisted and that its channel info remains the same.
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
// Finally, deliver the other peers' message, ensuring each node needs to be persisted and
// the channel info has updated.
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
}
#[test]
fn test_keysend_dup_hash_partial_mpp() {
// Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
// expected.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
// First, send a partial MPP payment.
let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
let payment_id = PaymentId([42; 32]);
// Use the utility function send_payment_along_path to send the payment with MPP data which
// indicates there are more HTLCs coming.
let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
// Next, send a keysend payment with the same payment_hash and make sure it fails.
nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let ev = events.drain(..).next().unwrap();
let payment_event = SendEvent::from_event(ev);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(updates.update_add_htlcs.is_empty());
assert!(updates.update_fulfill_htlcs.is_empty());
assert_eq!(updates.update_fail_htlcs.len(), 1);
assert!(updates.update_fail_malformed_htlcs.is_empty());
assert!(updates.update_fee.is_none());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
expect_payment_failed!(nodes[0], our_payment_hash, true);
// Send the second half of the original MPP payment.
nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
// Claim the full MPP payment. Note that we can't use a test utility like
// claim_funds_along_route because the ordering of the messages causes the second half of the
// payment to be put in the holding cell, which confuses the test utilities. So we exchange the
// lightning messages manually.
assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 2);
let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
check_added_monitors!(nodes[1], 1);
let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
check_added_monitors!(nodes[1], 1);
let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
check_added_monitors!(nodes[0], 1);
let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
check_added_monitors!(nodes[0], 1);
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
check_added_monitors!(nodes[1], 1);
let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
check_added_monitors!(nodes[0], 1);
// Note that successful MPP payments will generate a single PaymentSent event upon the first
// path's success and a PaymentPathSuccessful event for each path's success.
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 3);
match events[0] {
Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
assert_eq!(Some(payment_id), *id);
assert_eq!(payment_preimage, *preimage);
assert_eq!(our_payment_hash, *hash);
},
_ => panic!("Unexpected event"),
}
match events[1] {
Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
assert_eq!(payment_id, *actual_payment_id);
assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
assert_eq!(route.paths[0], *path);
},
_ => panic!("Unexpected event"),
}
match events[2] {
Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
assert_eq!(payment_id, *actual_payment_id);
assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
assert_eq!(route.paths[0], *path);
},
_ => panic!("Unexpected event"),
}
}
#[test]
fn test_keysend_dup_payment_hash() {
// (1): Test that a keysend payment with a duplicate payment hash to an existing pending
// outbound regular payment fails as expected.
// (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
// fails as expected.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
let scorer = test_utils::TestScorer::with_penalty(0);
// To start (1), send a regular payment but don't claim it.
let expected_route = [&nodes[1]];
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
// Next, attempt a keysend payment and make sure it fails.
let route_params = RouteParameters {
payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
final_value_msat: 100_000,
final_cltv_expiry_delta: TEST_FINAL_CLTV,
};
let route = find_route(
&nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
nodes[0].logger, &scorer
).unwrap();
nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let ev = events.drain(..).next().unwrap();
let payment_event = SendEvent::from_event(ev);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(updates.update_add_htlcs.is_empty());
assert!(updates.update_fulfill_htlcs.is_empty());
assert_eq!(updates.update_fail_htlcs.len(), 1);
assert!(updates.update_fail_malformed_htlcs.is_empty());
assert!(updates.update_fee.is_none());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
expect_payment_failed!(nodes[0], payment_hash, true);
// Finally, claim the original payment.
claim_payment(&nodes[0], &expected_route, payment_preimage);
// To start (2), send a keysend payment but don't claim it.
let payment_preimage = PaymentPreimage([42; 32]);
let route = find_route(
&nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
nodes[0].logger, &scorer
).unwrap();
let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let event = events.pop().unwrap();
let path = vec![&nodes[1]];
pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
// Next, attempt a regular payment and make sure it fails.
let payment_secret = PaymentSecret([43; 32]);
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let ev = events.drain(..).next().unwrap();
let payment_event = SendEvent::from_event(ev);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(updates.update_add_htlcs.is_empty());
assert!(updates.update_fulfill_htlcs.is_empty());
assert_eq!(updates.update_fail_htlcs.len(), 1);
assert!(updates.update_fail_malformed_htlcs.is_empty());
assert!(updates.update_fee.is_none());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
expect_payment_failed!(nodes[0], payment_hash, true);
// Finally, succeed the keysend payment.
claim_payment(&nodes[0], &expected_route, payment_preimage);
}
#[test]
fn test_keysend_hash_mismatch() {
// Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
// preimage doesn't match the msg's payment hash.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let payer_pubkey = nodes[0].node.get_our_node_id();
let payee_pubkey = nodes[1].node.get_our_node_id();
nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
let route_params = RouteParameters {
payment_params: PaymentParameters::for_keysend(payee_pubkey),
final_value_msat: 10000,
final_cltv_expiry_delta: 40,
};
let network_graph = nodes[0].network_graph;
let first_hops = nodes[0].node.list_usable_channels();
let scorer = test_utils::TestScorer::with_penalty(0);
let route = find_route(
&payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
nodes[0].logger, &scorer
).unwrap();
let test_preimage = PaymentPreimage([42; 32]);
let mismatch_payment_hash = PaymentHash([43; 32]);
let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
check_added_monitors!(nodes[0], 1);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
assert_eq!(updates.update_add_htlcs.len(), 1);
assert!(updates.update_fulfill_htlcs.is_empty());
assert!(updates.update_fail_htlcs.is_empty());
assert!(updates.update_fail_malformed_htlcs.is_empty());
assert!(updates.update_fee.is_none());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
}
#[test]
fn test_keysend_msg_with_secret_err() {
// Test that we error as expected if we receive a keysend payment that includes a payment secret.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let payer_pubkey = nodes[0].node.get_our_node_id();
let payee_pubkey = nodes[1].node.get_our_node_id();
nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
let route_params = RouteParameters {
payment_params: PaymentParameters::for_keysend(payee_pubkey),
final_value_msat: 10000,
final_cltv_expiry_delta: 40,
};
let network_graph = nodes[0].network_graph;
let first_hops = nodes[0].node.list_usable_channels();
let scorer = test_utils::TestScorer::with_penalty(0);
let route = find_route(
&payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
nodes[0].logger, &scorer
).unwrap();
let test_preimage = PaymentPreimage([42; 32]);
let test_secret = PaymentSecret([43; 32]);
let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
check_added_monitors!(nodes[0], 1);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
assert_eq!(updates.update_add_htlcs.len(), 1);
assert!(updates.update_fulfill_htlcs.is_empty());
assert!(updates.update_fail_htlcs.is_empty());
assert!(updates.update_fail_malformed_htlcs.is_empty());
assert!(updates.update_fee.is_none());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
}
#[test]
fn test_multi_hop_missing_secret() {
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
// Marshall an MPP route.
let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
let path = route.paths[0].clone();
route.paths.push(path);
route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
route.paths[0][0].short_channel_id = chan_1_id;
route.paths[0][1].short_channel_id = chan_3_id;
route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
route.paths[1][0].short_channel_id = chan_2_id;
route.paths[1][1].short_channel_id = chan_4_id;
match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
_ => panic!("unexpected error")
}
}
#[test]
fn bad_inbound_payment_hash() {
// Add coverage for checking that a user-provided payment hash matches the payment secret.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
let payment_data = msgs::FinalOnionHopData {
payment_secret,
total_msat: 100_000,
};
// Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
// payment verification fails as expected.
let mut bad_payment_hash = payment_hash.clone();
bad_payment_hash.0[0] += 1;
match inbound_payment::verify(bad_payment_hash, payment_data.clone(), nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
Ok(_) => panic!("Unexpected ok"),
Err(()) => {
nodes[0].logger.assert_log_contains("lightning::ln::channelmanager::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
}
}
// Check that using the original payment hash succeeds.
assert!(inbound_payment::verify(payment_hash, payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
}
}
#[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
pub mod bench {
use chain::Listen;
use chain::chainmonitor::{ChainMonitor, Persist};
use chain::keysinterface::{KeysManager, InMemorySigner};
use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
use ln::features::{InitFeatures, InvoiceFeatures};
use ln::functional_test_utils::*;
use ln::msgs::{ChannelMessageHandler, Init};
use routing::network_graph::NetworkGraph;
use routing::router::{PaymentParameters, get_route};
use util::test_utils;
use util::config::UserConfig;
use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose};
use bitcoin::hashes::Hash;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::{Block, BlockHeader, Transaction, TxOut};
use sync::{Arc, Mutex};
use test::Bencher;
struct NodeHolder<'a, P: Persist<InMemorySigner>> {
node: &'a ChannelManager<InMemorySigner,
&'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
&'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
&'a test_utils::TestLogger, &'a P>,
&'a test_utils::TestBroadcaster, &'a KeysManager,
&'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
}
#[cfg(test)]
#[bench]
fn bench_sends(bench: &mut Bencher) {
bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
}
pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
// Do a simple benchmark of sending a payment back and forth between two nodes.
// Note that this is unrealistic as each payment send will require at least two fsync
// calls per node.
let network = bitcoin::Network::Testnet;
let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
let mut config: UserConfig = Default::default();
config.own_channel_config.minimum_depth = 1;
let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
let seed_a = [1u8; 32];
let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
network,
best_block: BestBlock::from_genesis(network),
});
let node_a_holder = NodeHolder { node: &node_a };
let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
let seed_b = [2u8; 32];
let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
network,
best_block: BestBlock::from_genesis(network),
});
let node_b_holder = NodeHolder { node: &node_b };
node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() });
node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() });
node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
let tx;
if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
value: 8_000_000, script_pubkey: output_script,
}]};
node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
} else { panic!(); }
node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
let block = Block {
header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
txdata: vec![tx],
};
Listen::block_connected(&node_a, &block, 1);
Listen::block_connected(&node_b, &block, 1);
node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
let msg_events = node_a.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 2);
match msg_events[0] {
MessageSendEvent::SendFundingLocked { ref msg, .. } => {
node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
},
_ => panic!(),
}
match msg_events[1] {
MessageSendEvent::SendChannelUpdate { .. } => {},
_ => panic!(),
}
let dummy_graph = NetworkGraph::new(genesis_hash);
let mut payment_count: u64 = 0;
macro_rules! send_payment {
($node_a: expr, $node_b: expr) => {
let usable_channels = $node_a.list_usable_channels();
let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id())
.with_features(InvoiceFeatures::known());
let scorer = test_utils::TestScorer::with_penalty(0);
let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph,
Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer).unwrap();
let mut payment_preimage = PaymentPreimage([0; 32]);
payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
payment_count += 1;
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
$node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
$node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
assert!($node_b.claim_funds(payment_preimage));
match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
MessageSendEvent::UpdateHTLCs { node_id, updates } => {
assert_eq!(node_id, $node_a.get_our_node_id());
$node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
},
_ => panic!("Failed to generate claim event"),
}
let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
}
}
bench.iter(|| {
send_payment!(node_a, node_b);
send_payment!(node_b, node_a);
});
}
}