rust-lightning/lightning/src/ln/channelmanager.rs
Matt Corallo c2a47d1b4c Pull hmac out of OnionHopData.
Its a bit awkward to have an hmac field covering the struct that
its in, and there is little difference in removing it, so just pull
it out and use a [u8; 32] where we care about the hmac.
2020-02-11 13:48:56 -05:00

3386 lines
149 KiB
Rust

//! The top-level channel management and payment tracking stuff lives here.
//!
//! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
//! upon reconnect to the relevant peer(s).
//!
//! It does not manage routing logic (see ln::router for that) nor does it manage constructing
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
//! imply it needs to fail HTLCs/payments/channels it manages).
use bitcoin::blockdata::block::BlockHeader;
use bitcoin::blockdata::transaction::Transaction;
use bitcoin::blockdata::constants::genesis_block;
use bitcoin::network::constants::Network;
use bitcoin::util::hash::BitcoinHash;
use bitcoin_hashes::{Hash, HashEngine};
use bitcoin_hashes::hmac::{Hmac, HmacEngine};
use bitcoin_hashes::sha256::Hash as Sha256;
use bitcoin_hashes::sha256d::Hash as Sha256dHash;
use bitcoin_hashes::cmp::fixed_time_eq;
use secp256k1::key::{SecretKey,PublicKey};
use secp256k1::Secp256k1;
use secp256k1::ecdh::SharedSecret;
use secp256k1;
use chain::chaininterface::{BroadcasterInterface,ChainListener,FeeEstimator};
use chain::transaction::OutPoint;
use ln::channel::{Channel, ChannelError};
use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, ManyChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
use ln::router::Route;
use ln::features::InitFeatures;
use ln::msgs;
use ln::onion_utils;
use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
use chain::keysinterface::{ChannelKeys, KeysInterface, InMemoryChannelKeys};
use util::config::UserConfig;
use util::{byte_utils, events};
use util::ser::{Readable, ReadableArgs, Writeable, Writer};
use util::chacha20::ChaCha20;
use util::logger::Logger;
use util::errors::APIError;
use std::{cmp, mem};
use std::collections::{HashMap, hash_map, HashSet};
use std::io::Cursor;
use std::sync::{Arc, Mutex, MutexGuard, RwLock};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::Duration;
use std::marker::{Sync, Send};
use std::ops::Deref;
const SIXTY_FIVE_ZEROS: [u8; 65] = [0; 65];
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
//
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
//
// When a Channel forwards an HTLC to its peer, it will give us back the PendingForwardHTLCInfo
// which we will use to construct an outbound HTLC, with a relevant HTLCSource::PreviousHopData
// filled in to indicate where it came from (which we can use to either fail-backwards or fulfill
// the HTLC backwards along the relevant path).
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
// our payment, which we can use to decode errors or inform the user that the payment was sent.
/// Stores the info we will need to send when we want to forward an HTLC onwards
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) struct PendingForwardHTLCInfo {
onion_packet: Option<msgs::OnionPacket>,
incoming_shared_secret: [u8; 32],
payment_hash: PaymentHash,
short_channel_id: u64,
pub(super) amt_to_forward: u64,
pub(super) outgoing_cltv_value: u32,
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailureMsg {
Relay(msgs::UpdateFailHTLC),
Malformed(msgs::UpdateFailMalformedHTLC),
}
/// Stores whether we can't forward an HTLC or relevant forwarding info
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum PendingHTLCStatus {
Forward(PendingForwardHTLCInfo),
Fail(HTLCFailureMsg),
}
/// Tracks the inbound corresponding to an outbound HTLC
#[derive(Clone, PartialEq)]
pub(super) struct HTLCPreviousHopData {
short_channel_id: u64,
htlc_id: u64,
incoming_packet_shared_secret: [u8; 32],
}
/// Tracks the inbound corresponding to an outbound HTLC
#[derive(Clone, PartialEq)]
pub(super) enum HTLCSource {
PreviousHopData(HTLCPreviousHopData),
OutboundRoute {
route: Route,
session_priv: SecretKey,
/// Technically we can recalculate this from the route, but we cache it here to avoid
/// doing a double-pass on route when we get a failure back
first_hop_htlc_msat: u64,
},
}
#[cfg(test)]
impl HTLCSource {
pub fn dummy() -> Self {
HTLCSource::OutboundRoute {
route: Route { hops: Vec::new() },
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
first_hop_htlc_msat: 0,
}
}
}
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
pub(super) enum HTLCFailReason {
LightningError {
err: msgs::OnionErrorPacket,
},
Reason {
failure_code: u16,
data: Vec<u8>,
}
}
/// payment_hash type, use to cross-lock hop
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentHash(pub [u8;32]);
/// payment_preimage type, use to route payment between hop
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
pub struct PaymentPreimage(pub [u8;32]);
type ShutdownResult = (Vec<Transaction>, Vec<(HTLCSource, PaymentHash)>);
/// Error type returned across the channel_state mutex boundary. When an Err is generated for a
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
/// channel_state lock. We then return the set of things that need to be done outside the lock in
/// this struct and call handle_error!() on it.
struct MsgHandleErrInternal {
err: msgs::LightningError,
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
}
impl MsgHandleErrInternal {
#[inline]
fn send_err_msg_no_close(err: &'static str, channel_id: [u8; 32]) -> Self {
Self {
err: LightningError {
err,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err.to_string()
},
},
},
shutdown_finish: None,
}
}
#[inline]
fn ignore_no_close(err: &'static str) -> Self {
Self {
err: LightningError {
err,
action: msgs::ErrorAction::IgnoreError,
},
shutdown_finish: None,
}
}
#[inline]
fn from_no_close(err: msgs::LightningError) -> Self {
Self { err, shutdown_finish: None }
}
#[inline]
fn from_finish_shutdown(err: &'static str, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
Self {
err: LightningError {
err,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: err.to_string()
},
},
},
shutdown_finish: Some((shutdown_res, channel_update)),
}
}
#[inline]
fn from_chan_no_close<ChanSigner: ChannelKeys>(err: ChannelError<ChanSigner>, channel_id: [u8; 32]) -> Self {
Self {
err: match err {
ChannelError::Ignore(msg) => LightningError {
err: msg,
action: msgs::ErrorAction::IgnoreError,
},
ChannelError::Close(msg) => LightningError {
err: msg,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg.to_string()
},
},
},
ChannelError::CloseDelayBroadcast { msg, .. } => LightningError {
err: msg,
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage {
channel_id,
data: msg.to_string()
},
},
},
},
shutdown_finish: None,
}
}
}
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
pub(super) enum HTLCForwardInfo {
AddHTLC {
prev_short_channel_id: u64,
prev_htlc_id: u64,
forward_info: PendingForwardHTLCInfo,
},
FailHTLC {
htlc_id: u64,
err_packet: msgs::OnionErrorPacket,
},
}
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
/// be sent in the order they appear in the return value, however sometimes the order needs to be
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
/// they were originally sent). In those cases, this enum is also returned.
#[derive(Clone, PartialEq)]
pub(super) enum RAACommitmentOrder {
/// Send the CommitmentUpdate messages first
CommitmentFirst,
/// Send the RevokeAndACK message first
RevokeAndACKFirst,
}
// Note this is only exposed in cfg(test):
pub(super) struct ChannelHolder<ChanSigner: ChannelKeys> {
pub(super) by_id: HashMap<[u8; 32], Channel<ChanSigner>>,
pub(super) short_to_id: HashMap<u64, [u8; 32]>,
/// short channel id -> forward infos. Key of 0 means payments received
/// Note that while this is held in the same mutex as the channels themselves, no consistency
/// guarantees are made about the existence of a channel with the short id here, nor the short
/// ids in the PendingForwardHTLCInfo!
pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
/// payment_hash -> Vec<(amount_received, htlc_source)> for tracking things that were to us and
/// can be failed/claimed by the user
/// Note that while this is held in the same mutex as the channels themselves, no consistency
/// guarantees are made about the channels given here actually existing anymore by the time you
/// go to read them!
pub(super) claimable_htlcs: HashMap<PaymentHash, Vec<(u64, HTLCPreviousHopData)>>,
/// Messages to send to peers - pushed to in the same lock that they are generated in (except
/// for broadcast messages, where ordering isn't as strict).
pub(super) pending_msg_events: Vec<events::MessageSendEvent>,
}
/// State we hold per-peer. In the future we should put channels in here, but for now we only hold
/// the latest Init features we heard from the peer.
struct PeerState {
latest_features: InitFeatures,
}
#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height";
/// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions.
pub type SimpleArcChannelManager<M> = Arc<ChannelManager<InMemoryChannelKeys, Arc<M>>>;
/// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
/// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions.
pub type SimpleRefChannelManager<'a, M> = ChannelManager<InMemoryChannelKeys, &'a M>;
/// Manager which keeps track of a number of channels and sends messages to the appropriate
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
///
/// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
/// to individual Channels.
///
/// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
/// all peers during write/read (though does not modify this instance, only the instance being
/// serialized). This will result in any channels which have not yet exchanged funding_created (ie
/// called funding_transaction_generated for outbound channels).
///
/// Note that you can be a bit lazier about writing out ChannelManager than you can be with
/// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
/// returning from ManyChannelMonitor::add_update_monitor, with ChannelManagers, writing updates
/// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
/// the serialization process). If the deserialized version is out-of-date compared to the
/// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
/// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
///
/// Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
/// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
/// block_connected() to step towards your best block) upon deserialization before using the
/// object!
///
/// Note that ChannelManager is responsible for tracking liveness of its channels and generating
/// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
/// offline for a full minute. In order to track this, you must call
/// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
///
/// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
/// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefChannelManager, and use a
/// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
pub struct ChannelManager<ChanSigner: ChannelKeys, M: Deref> where M::Target: ManyChannelMonitor<ChanSigner> {
default_configuration: UserConfig,
genesis_hash: Sha256dHash,
fee_estimator: Arc<FeeEstimator>,
monitor: M,
tx_broadcaster: Arc<BroadcasterInterface>,
#[cfg(test)]
pub(super) latest_block_height: AtomicUsize,
#[cfg(not(test))]
latest_block_height: AtomicUsize,
last_block_hash: Mutex<Sha256dHash>,
secp_ctx: Secp256k1<secp256k1::All>,
#[cfg(test)]
pub(super) channel_state: Mutex<ChannelHolder<ChanSigner>>,
#[cfg(not(test))]
channel_state: Mutex<ChannelHolder<ChanSigner>>,
our_network_key: SecretKey,
/// The bulk of our storage will eventually be here (channels and message queues and the like).
/// If we are connected to a peer we always at least have an entry here, even if no channels
/// are currently open with that peer.
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
/// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
/// new channel.
per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
pending_events: Mutex<Vec<events::Event>>,
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
/// Essentially just when we're serializing ourselves out.
/// Taken first everywhere where we are making changes before any other locks.
total_consistency_lock: RwLock<()>,
keys_manager: Arc<KeysInterface<ChanKeySigner = ChanSigner>>,
logger: Arc<Logger>,
}
/// The amount of time we require our counterparty wait to claim their money (ie time between when
/// we, or our watchtower, must check for them having broadcast a theft transaction).
pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
/// The amount of time we're willing to wait to claim money back to us
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7;
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
/// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
/// ie the node we forwarded the payment on to should always have enough room to reliably time out
/// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
/// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
// ie that if the next-hop peer fails the HTLC within
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
// LATENCY_GRACE_PERIOD_BLOCKS.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
// Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
// ChannelMontior::would_broadcast_at_height for a description of why this is needed.
#[deny(const_err)]
#[allow(dead_code)]
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
macro_rules! secp_call {
( $res: expr, $err: expr ) => {
match $res {
Ok(key) => key,
Err(_) => return Err($err),
}
};
}
/// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
pub struct ChannelDetails {
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
/// Note that this means this value is *not* persistent - it can change once during the
/// lifetime of the channel.
pub channel_id: [u8; 32],
/// The position of the funding transaction in the chain. None if the funding transaction has
/// not yet been confirmed and the channel fully opened.
pub short_channel_id: Option<u64>,
/// The node_id of our counterparty
pub remote_network_id: PublicKey,
/// The Features the channel counterparty provided upon last connection.
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
/// many routing-relevant features are present in the init context.
pub counterparty_features: InitFeatures,
/// The value, in satoshis, of this channel as appears in the funding output
pub channel_value_satoshis: u64,
/// The user_id passed in to create_channel, or 0 if the channel was inbound.
pub user_id: u64,
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
/// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
/// available for inclusion in new outbound HTLCs). This further does not include any pending
/// outgoing HTLCs which are awaiting some other resolution to be sent.
pub outbound_capacity_msat: u64,
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
/// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
/// available for inclusion in new inbound HTLCs).
/// Note that there are some corner cases not fully handled here, so the actual available
/// inbound capacity may be slightly higher than this.
pub inbound_capacity_msat: u64,
/// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
/// the peer is connected, and (c) no monitor update failure is pending resolution.
pub is_live: bool,
}
macro_rules! handle_error {
($self: ident, $internal: expr, $their_node_id: expr, $locked_channel_state: expr) => {
match $internal {
Ok(msg) => Ok(msg),
Err(MsgHandleErrInternal { err, shutdown_finish }) => {
if let Some((shutdown_res, update_option)) = shutdown_finish {
$self.finish_force_close_channel(shutdown_res);
if let Some(update) = update_option {
$locked_channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
log_error!($self, "{}", err.err);
if let msgs::ErrorAction::IgnoreError = err.action {
} else { $locked_channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: $their_node_id, action: err.action.clone() }); }
// Return error in case higher-API need one
Err(err)
},
}
}
}
macro_rules! break_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(ChannelError::Ignore(msg)) => {
break Err(MsgHandleErrInternal::from_chan_no_close::<ChanSigner>(ChannelError::Ignore(msg), $entry.key().clone()))
},
Err(ChannelError::Close(msg)) => {
log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok()))
},
Err(ChannelError::CloseDelayBroadcast { .. }) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
}
}
}
macro_rules! try_chan_entry {
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
match $res {
Ok(res) => res,
Err(ChannelError::Ignore(msg)) => {
return Err(MsgHandleErrInternal::from_chan_no_close::<ChanSigner>(ChannelError::Ignore(msg), $entry.key().clone()))
},
Err(ChannelError::Close(msg)) => {
log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok()))
},
Err(ChannelError::CloseDelayBroadcast { msg, update }) => {
log_error!($self, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
if let Some(update) = update {
if let Err(e) = $self.monitor.add_update_monitor(update.get_funding_txo().unwrap(), update.clone()) {
match e {
// Upstream channel is dead, but we want at least to fail backward HTLCs to save
// downstream channels. In case of PermanentFailure, we are not going to be able
// to claim back to_remote output on remote commitment transaction. Doesn't
// make a difference here, we are concern about HTLCs circuit, not onchain funds.
ChannelMonitorUpdateErr::PermanentFailure => {},
ChannelMonitorUpdateErr::TemporaryFailure => {},
}
}
}
let mut shutdown_res = chan.force_shutdown();
if shutdown_res.0.len() >= 1 {
log_error!($self, "You have a toxic local commitment transaction {} avaible in channel monitor, read comment in ChannelMonitor::get_latest_local_commitment_txn to be informed of manual action to take", shutdown_res.0[0].txid());
}
shutdown_res.0.clear();
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
}
}
}
}
macro_rules! handle_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
match $err {
ChannelMonitorUpdateErr::PermanentFailure => {
log_error!($self, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
let (channel_id, mut chan) = $entry.remove_entry();
if let Some(short_id) = chan.get_short_channel_id() {
$channel_state.short_to_id.remove(&short_id);
}
// TODO: $failed_fails is dropped here, which will cause other channels to hit the
// chain in a confused state! We need to move them into the ChannelMonitor which
// will be responsible for failing backwards once things confirm on-chain.
// It's ok that we drop $failed_forwards here - at this point we'd rather they
// broadcast HTLC-Timeout and pay the associated fees to get their funds back than
// us bother trying to claim it just to forward on to another peer. If we're
// splitting hairs we'd prefer to claim payments that were to us, but we haven't
// given up the preimage yet, so might as well just wait until the payment is
// retried, avoiding the on-chain fees.
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok()));
res
},
ChannelMonitorUpdateErr::TemporaryFailure => {
log_info!($self, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
log_bytes!($entry.key()[..]),
if $resend_commitment && $resend_raa {
match $action_type {
RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
}
} else if $resend_commitment { "commitment" }
else if $resend_raa { "RAA" }
else { "nothing" },
(&$failed_forwards as &Vec<(PendingForwardHTLCInfo, u64)>).len(),
(&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
if !$resend_commitment {
debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
}
if !$resend_raa {
debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
}
$entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
Err(MsgHandleErrInternal::from_chan_no_close::<ChanSigner>(ChannelError::Ignore("Failed to update ChannelMonitor"), *$entry.key()))
},
}
}
}
macro_rules! return_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
};
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
}
}
// Does not break in case of TemporaryFailure!
macro_rules! maybe_break_monitor_err {
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
(e, ChannelMonitorUpdateErr::PermanentFailure) => {
break e;
},
(_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
}
}
}
impl<ChanSigner: ChannelKeys, M: Deref> ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
/// Constructs a new ChannelManager to hold several channels and route between them.
///
/// This is the main "logic hub" for all channel-related actions, and implements
/// ChannelMessageHandler.
///
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
///
/// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
///
/// Users must provide the current blockchain height from which to track onchain channel
/// funding outpoints and send payments with reliable timelocks.
///
/// Users need to notify the new ChannelManager when a new block is connected or
/// disconnected using its `block_connected` and `block_disconnected` methods.
/// However, rather than calling these methods directly, the user should register
/// the ChannelManager as a listener to the BlockNotifier and call the BlockNotifier's
/// `block_(dis)connected` methods, which will notify all registered listeners in one
/// go.
pub fn new(network: Network, feeest: Arc<FeeEstimator>, monitor: M, tx_broadcaster: Arc<BroadcasterInterface>, logger: Arc<Logger>,keys_manager: Arc<KeysInterface<ChanKeySigner = ChanSigner>>, config: UserConfig, current_blockchain_height: usize) -> Result<ChannelManager<ChanSigner, M>, secp256k1::Error> {
let secp_ctx = Secp256k1::new();
let res = ChannelManager {
default_configuration: config.clone(),
genesis_hash: genesis_block(network).header.bitcoin_hash(),
fee_estimator: feeest.clone(),
monitor,
tx_broadcaster,
latest_block_height: AtomicUsize::new(current_blockchain_height),
last_block_hash: Mutex::new(Default::default()),
secp_ctx,
channel_state: Mutex::new(ChannelHolder{
by_id: HashMap::new(),
short_to_id: HashMap::new(),
forward_htlcs: HashMap::new(),
claimable_htlcs: HashMap::new(),
pending_msg_events: Vec::new(),
}),
our_network_key: keys_manager.get_node_secret(),
per_peer_state: RwLock::new(HashMap::new()),
pending_events: Mutex::new(Vec::new()),
total_consistency_lock: RwLock::new(()),
keys_manager,
logger,
};
Ok(res)
}
/// Creates a new outbound channel to the given remote node and with the given value.
///
/// user_id will be provided back as user_channel_id in FundingGenerationReady and
/// FundingBroadcastSafe events to allow tracking of which events correspond with which
/// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
/// may wish to avoid using 0 for user_id here.
///
/// If successful, will generate a SendOpenChannel message event, so you should probably poll
/// PeerManager::process_events afterwards.
///
/// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
/// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64) -> Result<(), APIError> {
if channel_value_satoshis < 1000 {
return Err(APIError::APIMisuseError { err: "channel_value must be at least 1000 satoshis" });
}
let channel = Channel::new_outbound(&*self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, Arc::clone(&self.logger), &self.default_configuration)?;
let res = channel.get_open_channel(self.genesis_hash.clone(), &*self.fee_estimator);
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_state = self.channel_state.lock().unwrap();
match channel_state.by_id.entry(channel.channel_id()) {
hash_map::Entry::Occupied(_) => {
if cfg!(feature = "fuzztarget") {
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG" });
} else {
panic!("RNG is bad???");
}
},
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
node_id: their_network_key,
msg: res,
});
Ok(())
}
fn list_channels_with_filter<F: FnMut(&(&[u8; 32], &Channel<ChanSigner>)) -> bool>(&self, f: F) -> Vec<ChannelDetails> {
let mut res = Vec::new();
{
let channel_state = self.channel_state.lock().unwrap();
res.reserve(channel_state.by_id.len());
for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
res.push(ChannelDetails {
channel_id: (*channel_id).clone(),
short_channel_id: channel.get_short_channel_id(),
remote_network_id: channel.get_their_node_id(),
counterparty_features: InitFeatures::empty(),
channel_value_satoshis: channel.get_value_satoshis(),
inbound_capacity_msat,
outbound_capacity_msat,
user_id: channel.get_user_id(),
is_live: channel.is_live(),
});
}
}
let per_peer_state = self.per_peer_state.read().unwrap();
for chan in res.iter_mut() {
if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
}
}
res
}
/// Gets the list of open channels, in random order. See ChannelDetail field documentation for
/// more information.
pub fn list_channels(&self) -> Vec<ChannelDetails> {
self.list_channels_with_filter(|_| true)
}
/// Gets the list of usable channels, in random order. Useful as an argument to
/// Router::get_route to ensure non-announced channels are used.
///
/// These are guaranteed to have their is_live value set to true, see the documentation for
/// ChannelDetails::is_live for more info on exactly what the criteria are.
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
// Note we use is_live here instead of usable which leads to somewhat confused
// internal/external nomenclature, but that's ok cause that's probably what the user
// really wanted anyway.
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
}
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
/// will be accepted on the given channel, and after additional timeout/the closing of all
/// pending HTLCs, the channel will be closed on chain.
///
/// May generate a SendShutdown message event on success, which should be relayed.
pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
let _ = self.total_consistency_lock.read().unwrap();
let (mut failed_htlcs, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: chan_entry.get().get_their_node_id(),
msg: shutdown_msg
});
if chan_entry.get().is_shutdown() {
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(failed_htlcs, Some(chan_entry.remove_entry().1))
} else { (failed_htlcs, None) }
},
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel"})
}
};
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
let chan_update = if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
Some(update)
} else { None }
} else { None };
if let Some(update) = chan_update {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
Ok(())
}
#[inline]
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
let (local_txn, mut failed_htlcs) = shutdown_res;
log_trace!(self, "Finishing force-closure of channel with {} transactions to broadcast and {} HTLCs to fail", local_txn.len(), failed_htlcs.len());
for htlc_source in failed_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
for tx in local_txn {
log_trace!(self, "Broadcast onchain {}", log_tx!(tx));
self.tx_broadcaster.broadcast_transaction(&tx);
}
}
/// Force closes a channel, immediately broadcasting the latest local commitment transaction to
/// the chain and rejecting new HTLCs on the given channel.
pub fn force_close_channel(&self, channel_id: &[u8; 32]) {
let _ = self.total_consistency_lock.read().unwrap();
let mut chan = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
if let Some(chan) = channel_state.by_id.remove(channel_id) {
if let Some(short_id) = chan.get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
chan
} else {
return;
}
};
log_trace!(self, "Force-closing channel {}", log_bytes!(channel_id[..]));
self.finish_force_close_channel(chan.force_shutdown());
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
/// Force close all channels, immediately broadcasting the latest local commitment transaction
/// for each to the chain and rejecting new HTLCs on each.
pub fn force_close_all_channels(&self) {
for chan in self.list_channels() {
self.force_close_channel(&chan.channel_id);
}
}
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<ChanSigner>>) {
macro_rules! return_malformed_err {
($msg: expr, $err_code: expr) => {
{
log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg);
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
failure_code: $err_code,
})), self.channel_state.lock().unwrap());
}
}
}
if let Err(_) = msg.onion_routing_packet.public_key {
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
}
let shared_secret = {
let mut arr = [0; 32];
arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
arr
};
let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
if msg.onion_routing_packet.version != 0 {
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
//the hash doesn't really serve any purpose - in the case of hashing all data, the
//receiving node would have to brute force to figure out which version was put in the
//packet by the node that send us the message, in the case of hashing the hop_data, the
//node knows the HMAC matched, so they already know what is there...
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
}
let mut hmac = HmacEngine::<Sha256>::new(&mu);
hmac.input(&msg.onion_routing_packet.hop_data);
hmac.input(&msg.payment_hash.0[..]);
if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
}
let mut channel_state = None;
macro_rules! return_err {
($msg: expr, $err_code: expr, $data: expr) => {
{
log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg);
if channel_state.is_none() {
channel_state = Some(self.channel_state.lock().unwrap());
}
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
})), channel_state.unwrap());
}
}
}
let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
let (next_hop_data, next_hop_hmac) = {
let mut decoded = [0; 65];
chacha.process(&msg.onion_routing_packet.hop_data[0..65], &mut decoded);
let mut hmac = [0; 32];
hmac.copy_from_slice(&decoded[33..]);
match msgs::OnionHopData::read(&mut Cursor::new(&decoded[..33])) {
Err(err) => {
let error_code = match err {
msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
_ => 0x2000 | 2, // Should never happen
};
return_err!("Unable to decode our hop data", error_code, &[0;0]);
},
Ok(msg) => (msg, hmac)
}
};
let pending_forward_info = if next_hop_hmac == [0; 32] {
#[cfg(test)]
{
// In tests, make sure that the initial onion pcket data is, at least, non-0.
// We could do some fancy randomness test here, but, ehh, whatever.
// This checks for the issue where you can calculate the path length given the
// onion data as all the path entries that the originator sent will be here
// as-is (and were originally 0s).
// Of course reverse path calculation is still pretty easy given naive routing
// algorithms, but this fixes the most-obvious case.
let mut new_packet_data = [0; 19*65];
chacha.process(&msg.onion_routing_packet.hop_data[65..], &mut new_packet_data[0..19*65]);
assert_ne!(new_packet_data[0..65], [0; 65][..]);
assert_ne!(new_packet_data[..], [0; 19*65][..]);
}
// OUR PAYMENT!
// final_expiry_too_soon
if (msg.cltv_expiry as u64) < self.latest_block_height.load(Ordering::Acquire) as u64 + (CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
}
// final_incorrect_htlc_amount
if next_hop_data.amt_to_forward > msg.amount_msat {
return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
}
// final_incorrect_cltv_expiry
if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
}
// Note that we could obviously respond immediately with an update_fulfill_htlc
// message, however that would leak that we are the recipient of this payment, so
// instead we stay symmetric with the forwarding case, only responding (after a
// delay) once they've send us a commitment_signed!
PendingHTLCStatus::Forward(PendingForwardHTLCInfo {
onion_packet: None,
payment_hash: msg.payment_hash.clone(),
short_channel_id: 0,
incoming_shared_secret: shared_secret,
amt_to_forward: next_hop_data.amt_to_forward,
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
})
} else {
let mut new_packet_data = [0; 20*65];
chacha.process(&msg.onion_routing_packet.hop_data[65..], &mut new_packet_data[0..19*65]);
chacha.process(&SIXTY_FIVE_ZEROS[..], &mut new_packet_data[19*65..]);
let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
let blinding_factor = {
let mut sha = Sha256::engine();
sha.input(&new_pubkey.serialize()[..]);
sha.input(&shared_secret);
Sha256::from_engine(sha).into_inner()
};
let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
Err(e)
} else { Ok(new_pubkey) };
let outgoing_packet = msgs::OnionPacket {
version: 0,
public_key,
hop_data: new_packet_data,
hmac: next_hop_hmac.clone(),
};
PendingHTLCStatus::Forward(PendingForwardHTLCInfo {
onion_packet: Some(outgoing_packet),
payment_hash: msg.payment_hash.clone(),
short_channel_id: next_hop_data.short_channel_id,
incoming_shared_secret: shared_secret,
amt_to_forward: next_hop_data.amt_to_forward,
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
})
};
channel_state = Some(self.channel_state.lock().unwrap());
if let &PendingHTLCStatus::Forward(PendingForwardHTLCInfo { ref onion_packet, ref short_channel_id, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
if onion_packet.is_some() { // If short_channel_id is 0 here, we'll reject them in the body here
let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
let forwarding_id = match id_option {
None => { // unknown_next_peer
return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
},
Some(id) => id.clone(),
};
if let Some((err, code, chan_update)) = loop {
let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
// Note that we could technically not return an error yet here and just hope
// that the connection is reestablished or monitor updated by the time we get
// around to doing the actual forward, but better to fail early if we can and
// hopefully an attacker trying to path-trace payments cannot make this occur
// on a small/per-node/per-channel scale.
if !chan.is_live() { // channel_disabled
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
}
if *amt_to_forward < chan.get_their_htlc_minimum_msat() { // amount_below_minimum
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
}
let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_our_fee_base_msat(&*self.fee_estimator) as u64) });
if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
}
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
}
let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
// We want to have at least LATENCY_GRACE_PERIOD_BLOCKS to fail prior to going on chain CLAIM_BUFFER blocks before expiration
if msg.cltv_expiry <= cur_height + CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS as u32 { // expiry_too_soon
break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
}
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
break Some(("CLTV expiry is too far in the future", 21, None));
}
break None;
}
{
let mut res = Vec::with_capacity(8 + 128);
if let Some(chan_update) = chan_update {
if code == 0x1000 | 11 || code == 0x1000 | 12 {
res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
}
else if code == 0x1000 | 13 {
res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
}
else if code == 0x1000 | 20 {
res.extend_from_slice(&byte_utils::be16_to_array(chan_update.contents.flags));
}
res.extend_from_slice(&chan_update.encode_with_len()[..]);
}
return_err!(err, code, &res[..]);
}
}
}
(pending_forward_info, channel_state.unwrap())
}
/// only fails if the channel does not yet have an assigned short_id
/// May be called with channel_state already locked!
fn get_channel_update(&self, chan: &Channel<ChanSigner>) -> Result<msgs::ChannelUpdate, LightningError> {
let short_channel_id = match chan.get_short_channel_id() {
None => return Err(LightningError{err: "Channel not yet established", action: msgs::ErrorAction::IgnoreError}),
Some(id) => id,
};
let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_their_node_id().serialize()[..];
let unsigned = msgs::UnsignedChannelUpdate {
chain_hash: self.genesis_hash,
short_channel_id: short_channel_id,
timestamp: chan.get_channel_update_count(),
flags: (!were_node_one) as u16 | ((!chan.is_live() as u16) << 1),
cltv_expiry_delta: CLTV_EXPIRY_DELTA,
htlc_minimum_msat: chan.get_our_htlc_minimum_msat(),
fee_base_msat: chan.get_our_fee_base_msat(&*self.fee_estimator),
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
excess_data: Vec::new(),
};
let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
Ok(msgs::ChannelUpdate {
signature: sig,
contents: unsigned
})
}
/// Sends a payment along a given route.
///
/// Value parameters are provided via the last hop in route, see documentation for RouteHop
/// fields for more info.
///
/// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
/// payment), we don't do anything to stop you! We always try to ensure that if the provided
/// next hop knows the preimage to payment_hash they can claim an additional amount as
/// specified in the last hop in the route! Thus, you should probably do your own
/// payment_preimage tracking (which you should already be doing as they represent "proof of
/// payment") and prevent double-sends yourself.
///
/// May generate a SendHTLCs message event on success, which should be relayed.
///
/// Raises APIError::RoutError when invalid route or forward parameter
/// (cltv_delta, fee, node public key) is specified.
/// Raises APIError::ChannelUnavailable if the next-hop channel is not available for updates
/// (including due to previous monitor update failure or new permanent monitor update failure).
/// Raised APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
/// relevant updates.
///
/// In case of APIError::RouteError/APIError::ChannelUnavailable, the payment send has failed
/// and you may wish to retry via a different route immediately.
/// In case of APIError::MonitorUpdateFailed, the commitment update has been irrevocably
/// committed on our end and we're just waiting for a monitor update to send it. Do NOT retry
/// the payment via a different route unless you intend to pay twice!
pub fn send_payment(&self, route: Route, payment_hash: PaymentHash) -> Result<(), APIError> {
if route.hops.len() < 1 || route.hops.len() > 20 {
return Err(APIError::RouteError{err: "Route didn't go anywhere/had bogus size"});
}
let our_node_id = self.get_our_node_id();
for (idx, hop) in route.hops.iter().enumerate() {
if idx != route.hops.len() - 1 && hop.pubkey == our_node_id {
return Err(APIError::RouteError{err: "Route went through us but wasn't a simple rebalance loop to us"});
}
}
let (session_priv, prng_seed) = self.keys_manager.get_onion_rand();
let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
let onion_keys = secp_call!(onion_utils::construct_onion_keys(&self.secp_ctx, &route, &session_priv),
APIError::RouteError{err: "Pubkey along hop was maliciously selected"});
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height)?;
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, &payment_hash);
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_lock = self.channel_state.lock().unwrap();
let err: Result<(), _> = loop {
let id = match channel_lock.short_to_id.get(&route.hops.first().unwrap().short_channel_id) {
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!"}),
Some(id) => id.clone(),
};
let channel_state = &mut *channel_lock;
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
match {
if chan.get().get_their_node_id() != route.hops.first().unwrap().pubkey {
return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
}
if !chan.get().is_live() {
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!"});
}
break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
route: route.clone(),
session_priv: session_priv.clone(),
first_hop_htlc_msat: htlc_msat,
}, onion_packet), channel_state, chan)
} {
Some((update_add, commitment_signed, chan_monitor)) => {
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
// Note that MonitorUpdateFailed here indicates (per function docs)
// that we will resent the commitment update once we unfree monitor
// updating, so we have to take special care that we don't return
// something else in case we will resend later!
return Err(APIError::MonitorUpdateFailed);
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: route.hops.first().unwrap().pubkey,
updates: msgs::CommitmentUpdate {
update_add_htlcs: vec![update_add],
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
},
});
},
None => {},
}
} else { unreachable!(); }
return Ok(());
};
match handle_error!(self, err, route.hops.first().unwrap().pubkey, channel_lock) {
Ok(_) => unreachable!(),
Err(e) => { Err(APIError::ChannelUnavailable { err: e.err }) }
}
}
/// Call this upon creation of a funding transaction for the given channel.
///
/// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
/// or your counterparty can steal your funds!
///
/// Panics if a funding transaction has already been provided for this channel.
///
/// May panic if the funding_txo is duplicative with some other channel (note that this should
/// be trivially prevented by using unique funding transaction keys per-channel).
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) {
let _ = self.total_consistency_lock.read().unwrap();
let (mut chan, msg, chan_monitor) = {
let mut channel_state = self.channel_state.lock().unwrap();
let (res, chan) = match channel_state.by_id.remove(temporary_channel_id) {
Some(mut chan) => {
(chan.get_outbound_funding_created(funding_txo)
.map_err(|e| if let ChannelError::Close(msg) = e {
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(), None)
} else { unreachable!(); })
, chan)
},
None => return
};
match handle_error!(self, res, chan.get_their_node_id(), channel_state) {
Ok(funding_msg) => {
(chan, funding_msg.0, funding_msg.1)
},
Err(_) => { return; }
}
};
// Because we have exclusive ownership of the channel here we can release the channel_state
// lock before add_update_monitor
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
match e {
ChannelMonitorUpdateErr::PermanentFailure => {
{
let mut channel_state = self.channel_state.lock().unwrap();
match handle_error!(self, Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", *temporary_channel_id, chan.force_shutdown(), None)), chan.get_their_node_id(), channel_state) {
Err(_) => { return; },
Ok(()) => unreachable!(),
}
}
},
ChannelMonitorUpdateErr::TemporaryFailure => {
// Its completely fine to continue with a FundingCreated until the monitor
// update is persisted, as long as we don't generate the FundingBroadcastSafe
// until the monitor has been safely persisted (as funding broadcast is not,
// in fact, safe).
chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
},
}
}
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
node_id: chan.get_their_node_id(),
msg: msg,
});
match channel_state.by_id.entry(chan.channel_id()) {
hash_map::Entry::Occupied(_) => {
panic!("Generated duplicate funding txid?");
},
hash_map::Entry::Vacant(e) => {
e.insert(chan);
}
}
}
fn get_announcement_sigs(&self, chan: &Channel<ChanSigner>) -> Option<msgs::AnnouncementSignatures> {
if !chan.should_announce() {
log_trace!(self, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
return None
}
let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
Ok(res) => res,
Err(_) => return None, // Only in case of state precondition violations eg channel is closing
};
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
Some(msgs::AnnouncementSignatures {
channel_id: chan.channel_id(),
short_channel_id: chan.get_short_channel_id().unwrap(),
node_signature: our_node_sig,
bitcoin_signature: our_bitcoin_sig,
})
}
/// Processes HTLCs which are pending waiting on random forward delay.
///
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
/// Will likely generate further events.
pub fn process_pending_htlc_forwards(&self) {
let _ = self.total_consistency_lock.read().unwrap();
let mut new_events = Vec::new();
let mut failed_forwards = Vec::new();
let mut handle_errors = Vec::new();
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
if short_chan_id != 0 {
let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
Some(chan_id) => chan_id.clone(),
None => {
failed_forwards.reserve(pending_forwards.len());
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => {
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
});
failed_forwards.push((htlc_source, forward_info.payment_hash, 0x4000 | 10, None));
},
HTLCForwardInfo::FailHTLC { .. } => {
// Channel went away before we could fail it. This implies
// the channel is now on chain and our counterparty is
// trying to broadcast the HTLC-Timeout, but that's their
// problem, not ours.
}
}
}
continue;
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
let mut add_htlc_msgs = Vec::new();
let mut fail_htlc_msgs = Vec::new();
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => {
log_trace!(self, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(forward_info.payment_hash.0), prev_short_channel_id, short_chan_id);
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
});
match chan.get_mut().send_htlc(forward_info.amt_to_forward, forward_info.payment_hash, forward_info.outgoing_cltv_value, htlc_source.clone(), forward_info.onion_packet.unwrap()) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(forward_info.payment_hash.0), msg);
} else {
panic!("Stated return value requirements in send_htlc() were not met");
}
let chan_update = self.get_channel_update(chan.get()).unwrap();
failed_forwards.push((htlc_source, forward_info.payment_hash, 0x1000 | 7, Some(chan_update)));
continue;
},
Ok(update_add) => {
match update_add {
Some(msg) => { add_htlc_msgs.push(msg); },
None => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can add anymore HTLCs. The Channel
// will automatically handle building the update_add_htlc and
// commitment_signed messages when we can.
// TODO: Do some kind of timer to set the channel as !is_live()
// as we don't really want others relying on us relaying through
// this channel currently :/.
}
}
}
}
},
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
log_trace!(self, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
Err(e) => {
if let ChannelError::Ignore(msg) = e {
log_trace!(self, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
} else {
panic!("Stated return value requirements in get_update_fail_htlc() were not met");
}
// fail-backs are best-effort, we probably already have one
// pending, and if not that's OK, if not, the channel is on
// the chain and sending the HTLC-Timeout is their problem.
continue;
},
Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
Ok(None) => {
// Nothing to do here...we're waiting on a remote
// revoke_and_ack before we can update the commitment
// transaction. The Channel will automatically handle
// building the update_fail_htlc and commitment_signed
// messages when we can.
// We don't need any kind of timer here as they should fail
// the channel onto the chain if they can't get our
// update_fail_htlc in time, it's not our problem.
}
}
},
}
}
if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
let (commitment_msg, monitor) = match chan.get_mut().send_commitment() {
Ok(res) => res,
Err(e) => {
// We surely failed send_commitment due to bad keys, in that case
// close channel and then send error message to peer.
let their_node_id = chan.get().get_their_node_id();
let err: Result<(), _> = match e {
ChannelError::Ignore(_) => {
panic!("Stated return value requirements in send_commitment() were not met");
},
ChannelError::Close(msg) => {
log_trace!(self, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
let (channel_id, mut channel) = chan.remove_entry();
if let Some(short_id) = channel.get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(), self.get_channel_update(&channel).ok()))
},
ChannelError::CloseDelayBroadcast { .. } => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
};
match handle_error!(self, err, their_node_id, channel_state) {
Ok(_) => unreachable!(),
Err(_) => { continue; },
}
}
};
if let Err(e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) {
handle_errors.push((chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
continue;
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_their_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: add_htlc_msgs,
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: fail_htlc_msgs,
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: commitment_msg,
},
});
}
} else {
unreachable!();
}
} else {
for forward_info in pending_forwards.drain(..) {
match forward_info {
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => {
let prev_hop_data = HTLCPreviousHopData {
short_channel_id: prev_short_channel_id,
htlc_id: prev_htlc_id,
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
};
match channel_state.claimable_htlcs.entry(forward_info.payment_hash) {
hash_map::Entry::Occupied(mut entry) => entry.get_mut().push((forward_info.amt_to_forward, prev_hop_data)),
hash_map::Entry::Vacant(entry) => { entry.insert(vec![(forward_info.amt_to_forward, prev_hop_data)]); },
};
new_events.push(events::Event::PaymentReceived {
payment_hash: forward_info.payment_hash,
amt: forward_info.amt_to_forward,
});
},
HTLCForwardInfo::FailHTLC { .. } => {
panic!("Got pending fail of our own HTLC");
}
}
}
}
}
}
for (htlc_source, payment_hash, failure_code, update) in failed_forwards.drain(..) {
match update {
None => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: Vec::new() }),
Some(chan_update) => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: chan_update.encode_with_len() }),
};
}
if handle_errors.len() > 0 {
let mut channel_state_lock = self.channel_state.lock().unwrap();
for (their_node_id, err) in handle_errors.drain(..) {
let _ = handle_error!(self, err, their_node_id, channel_state_lock);
}
}
if new_events.is_empty() { return }
let mut events = self.pending_events.lock().unwrap();
events.append(&mut new_events);
}
/// If a peer is disconnected we mark any channels with that peer as 'disabled'.
/// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
/// to inform the network about the uselessness of these channels.
///
/// This method handles all the details, and must be called roughly once per minute.
pub fn timer_chan_freshness_every_min(&self) {
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
for (_, chan) in channel_state.by_id.iter_mut() {
if chan.is_disabled_staged() && !chan.is_live() {
if let Ok(update) = self.get_channel_update(&chan) {
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
chan.to_fresh();
} else if chan.is_disabled_staged() && chan.is_live() {
chan.to_fresh();
} else if chan.is_disabled_marked() {
chan.to_disabled_staged();
}
}
}
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
/// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
/// along the path (including in our own channel on which we received it).
/// Returns false if no payment was found to fail backwards, true if the process of failing the
/// HTLC backwards has been started.
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
if let Some(mut sources) = removed_source {
for (recvd_value, htlc_with_hash) in sources.drain(..) {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc_with_hash), payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: byte_utils::be64_to_array(recvd_value).to_vec() });
}
true
} else { false }
}
/// Fails an HTLC backwards to the sender of it to us.
/// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
/// There are several callsites that do stupid things like loop over a list of payment_hashes
/// to fail and take the channel_state lock for each iteration (as we take ownership and may
/// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
/// still-available channels.
fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<ChanSigner>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
//identify whether we sent it or not based on the (I presume) very different runtime
//between the branches here. We should make this async and move it into the forward HTLCs
//timer handling.
match source {
HTLCSource::OutboundRoute { ref route, .. } => {
log_trace!(self, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
mem::drop(channel_state_lock);
match &onion_error {
&HTLCFailReason::LightningError { ref err } => {
#[cfg(test)]
let (channel_update, payment_retryable, onion_error_code) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
#[cfg(not(test))]
let (channel_update, payment_retryable, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
// TODO: If we decided to blame ourselves (or one of our channels) in
// process_onion_failure we should close that channel as it implies our
// next-hop is needlessly blaming us!
if let Some(update) = channel_update {
self.channel_state.lock().unwrap().pending_msg_events.push(
events::MessageSendEvent::PaymentFailureNetworkUpdate {
update,
}
);
}
self.pending_events.lock().unwrap().push(
events::Event::PaymentFailed {
payment_hash: payment_hash.clone(),
rejected_by_dest: !payment_retryable,
#[cfg(test)]
error_code: onion_error_code
}
);
},
&HTLCFailReason::Reason {
#[cfg(test)]
ref failure_code,
.. } => {
// we get a fail_malformed_htlc from the first hop
// TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
// failures here, but that would be insufficient as Router::get_route
// generally ignores its view of our own channels as we provide them via
// ChannelDetails.
// TODO: For non-temporary failures, we really should be closing the
// channel here as we apparently can't relay through them anyway.
self.pending_events.lock().unwrap().push(
events::Event::PaymentFailed {
payment_hash: payment_hash.clone(),
rejected_by_dest: route.hops.len() == 1,
#[cfg(test)]
error_code: Some(*failure_code),
}
);
}
}
},
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret }) => {
let err_packet = match onion_error {
HTLCFailReason::Reason { failure_code, data } => {
log_trace!(self, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
},
HTLCFailReason::LightningError { err } => {
log_trace!(self, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
}
};
let mut forward_event = None;
if channel_state_lock.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
}
match channel_state_lock.forward_htlcs.entry(short_channel_id) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
},
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
}
}
mem::drop(channel_state_lock);
if let Some(time) = forward_event {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
},
}
}
/// Provides a payment preimage in response to a PaymentReceived event, returning true and
/// generating message events for the net layer to claim the payment, if possible. Thus, you
/// should probably kick the net layer to go send messages if this returns true!
///
/// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
/// available within a few percent of the expected amount. This is critical for several
/// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
/// payment_preimage without having provided the full value and b) it avoids certain
/// privacy-breaking recipient-probing attacks which may reveal payment activity to
/// motivated attackers.
///
/// May panic if called except in response to a PaymentReceived event.
pub fn claim_funds(&self, payment_preimage: PaymentPreimage, expected_amount: u64) -> bool {
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_state = Some(self.channel_state.lock().unwrap());
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
if let Some(mut sources) = removed_source {
for (received_amount, htlc_with_hash) in sources.drain(..) {
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
if received_amount < expected_amount || received_amount > expected_amount * 2 {
let mut htlc_msat_data = byte_utils::be64_to_array(received_amount).to_vec();
let mut height_data = byte_utils::be32_to_array(self.latest_block_height.load(Ordering::Acquire) as u32).to_vec();
htlc_msat_data.append(&mut height_data);
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
HTLCSource::PreviousHopData(htlc_with_hash), &payment_hash,
HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_data });
} else {
self.claim_funds_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), payment_preimage);
}
}
true
} else { false }
}
fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<ChanSigner>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
let (their_node_id, err) = loop {
match source {
HTLCSource::OutboundRoute { .. } => {
mem::drop(channel_state_lock);
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PaymentSent {
payment_preimage
});
},
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, .. }) => {
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
let channel_state = &mut *channel_state_lock;
let chan_id = match channel_state.short_to_id.get(&short_channel_id) {
Some(chan_id) => chan_id.clone(),
None => {
// TODO: There is probably a channel manager somewhere that needs to
// learn the preimage as the channel already hit the chain and that's
// why it's missing.
return
}
};
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
match chan.get_mut().get_update_fulfill_htlc_and_commit(htlc_id, payment_preimage) {
Ok((msgs, monitor_option)) => {
if let Some(chan_monitor) = monitor_option {
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
if was_frozen_for_monitor {
assert!(msgs.is_none());
} else {
break (chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()));
}
}
}
if let Some((msg, commitment_signed)) = msgs {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_their_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: vec![msg],
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed,
}
});
}
},
Err(_e) => {
// TODO: There is probably a channel manager somewhere that needs to
// learn the preimage as the channel may be about to hit the chain.
//TODO: Do something with e?
return
},
}
} else { unreachable!(); }
},
}
return;
};
let _ = handle_error!(self, err, their_node_id, channel_state_lock);
}
/// Gets the node_id held by this ChannelManager
pub fn get_our_node_id(&self) -> PublicKey {
PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key)
}
/// Used to restore channels to normal operation after a
/// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
/// operation.
pub fn test_restore_channel_monitor(&self) {
let mut close_results = Vec::new();
let mut htlc_forwards = Vec::new();
let mut htlc_failures = Vec::new();
let mut pending_events = Vec::new();
let _ = self.total_consistency_lock.read().unwrap();
{
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, channel| {
if channel.is_awaiting_monitor_update() {
let chan_monitor = channel.channel_monitor().clone();
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
match e {
ChannelMonitorUpdateErr::PermanentFailure => {
// TODO: There may be some pending HTLCs that we intended to fail
// backwards when a monitor update failed. We should make sure
// knowledge of those gets moved into the appropriate in-memory
// ChannelMonitor and they get failed backwards once we get
// on-chain confirmations.
// Note I think #198 addresses this, so once it's merged a test
// should be written.
if let Some(short_id) = channel.get_short_channel_id() {
short_to_id.remove(&short_id);
}
close_results.push(channel.force_shutdown());
if let Ok(update) = self.get_channel_update(&channel) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
false
},
ChannelMonitorUpdateErr::TemporaryFailure => true,
}
} else {
let (raa, commitment_update, order, pending_forwards, mut pending_failures, needs_broadcast_safe, funding_locked) = channel.monitor_updating_restored();
if !pending_forwards.is_empty() {
htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), pending_forwards));
}
htlc_failures.append(&mut pending_failures);
macro_rules! handle_cs { () => {
if let Some(update) = commitment_update {
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: channel.get_their_node_id(),
updates: update,
});
}
} }
macro_rules! handle_raa { () => {
if let Some(revoke_and_ack) = raa {
pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: channel.get_their_node_id(),
msg: revoke_and_ack,
});
}
} }
match order {
RAACommitmentOrder::CommitmentFirst => {
handle_cs!();
handle_raa!();
},
RAACommitmentOrder::RevokeAndACKFirst => {
handle_raa!();
handle_cs!();
},
}
if needs_broadcast_safe {
pending_events.push(events::Event::FundingBroadcastSafe {
funding_txo: channel.get_funding_txo().unwrap(),
user_channel_id: channel.get_user_id(),
});
}
if let Some(msg) = funding_locked {
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: channel.get_their_node_id(),
msg,
});
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: channel.get_their_node_id(),
msg: announcement_sigs,
});
}
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
}
true
}
} else { true }
});
}
self.pending_events.lock().unwrap().append(&mut pending_events);
for failure in htlc_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
self.forward_htlcs(&mut htlc_forwards[..]);
for res in close_results.drain(..) {
self.finish_force_close_channel(res);
}
}
fn internal_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
if msg.chain_hash != self.genesis_hash {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash", msg.temporary_channel_id.clone()));
}
let channel = Channel::new_from_req(&*self.fee_estimator, &self.keys_manager, their_node_id.clone(), their_features, msg, 0, Arc::clone(&self.logger), &self.default_configuration)
.map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel.channel_id()) {
hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!", msg.temporary_channel_id.clone())),
hash_map::Entry::Vacant(entry) => {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
node_id: their_node_id.clone(),
msg: channel.get_accept_channel(),
});
entry.insert(channel);
}
}
Ok(())
}
fn internal_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
let (value, output_script, user_id) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id));
}
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id))
}
};
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::FundingGenerationReady {
temporary_channel_id: msg.temporary_channel_id,
channel_value_satoshis: value,
output_script: output_script,
user_channel_id: user_id,
});
Ok(())
}
fn internal_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
let ((funding_msg, monitor_update), mut chan) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id));
}
(try_chan_entry!(self, chan.get_mut().funding_created(msg), channel_state, chan), chan.remove())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id))
}
};
// Because we have exclusive ownership of the channel here we can release the channel_state
// lock before add_update_monitor
if let Err(e) = self.monitor.add_update_monitor(monitor_update.get_funding_txo().unwrap(), monitor_update) {
match e {
ChannelMonitorUpdateErr::PermanentFailure => {
// Note that we reply with the new channel_id in error messages if we gave up on the
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
// any messages referencing a previously-closed channel anyway.
return Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", funding_msg.channel_id, chan.force_shutdown(), None));
},
ChannelMonitorUpdateErr::TemporaryFailure => {
// There's no problem signing a counterparty's funding transaction if our monitor
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
// accepted payment from yet. We do, however, need to wait to send our funding_locked
// until we have persisted our monitor.
chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(funding_msg.channel_id) {
hash_map::Entry::Occupied(_) => {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id", funding_msg.channel_id))
},
hash_map::Entry::Vacant(e) => {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
node_id: their_node_id.clone(),
msg: funding_msg,
});
e.insert(chan);
}
}
Ok(())
}
fn internal_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
let (funding_txo, user_id) = {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let chan_monitor = try_chan_entry!(self, chan.get_mut().funding_signed(&msg), channel_state, chan);
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
}
(chan.get().get_funding_txo().unwrap(), chan.get().get_user_id())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
};
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::FundingBroadcastSafe {
funding_txo: funding_txo,
user_channel_id: user_id,
});
Ok(())
}
fn internal_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
log_trace!(self, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
// If we see locking block before receiving remote funding_locked, we broadcast our
// announcement_sigs at remote funding_locked reception. If we receive remote
// funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
// block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
// the order of the events but our peer may not receive it due to disconnection. The specs
// lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
// connection in the future if simultaneous misses by both peers due to network/hardware
// failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
// to be received, from then sigs are going to be flood to the whole network.
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: their_node_id.clone(),
msg: announcement_sigs,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
}
fn internal_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
let (mut dropped_htlcs, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&*self.fee_estimator, &msg), channel_state, chan_entry);
if let Some(msg) = shutdown {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: their_node_id.clone(),
msg,
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: their_node_id.clone(),
msg,
});
}
if chan_entry.get().is_shutdown() {
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(dropped_htlcs, Some(chan_entry.remove_entry().1))
} else { (dropped_htlcs, None) }
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
};
for htlc_source in dropped_htlcs.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
Ok(())
}
fn internal_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
let (tx, chan_option) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id.clone()) {
hash_map::Entry::Occupied(mut chan_entry) => {
if chan_entry.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&*self.fee_estimator, &msg), channel_state, chan_entry);
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: their_node_id.clone(),
msg,
});
}
if tx.is_some() {
// We're done with this channel, we've got a signed closing transaction and
// will send the closing_signed back to the remote peer upon return. This
// also implies there are no pending HTLCs left on the channel, so we can
// fully delete it from tracking (the channel monitor is still around to
// watch for old state broadcasts)!
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
channel_state.short_to_id.remove(&short_id);
}
(tx, Some(chan_entry.remove_entry().1))
} else { (tx, None) }
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
};
if let Some(broadcast_tx) = tx {
log_trace!(self, "Broadcast onchain {}", log_tx!(broadcast_tx));
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
}
if let Some(chan) = chan_option {
if let Ok(update) = self.get_channel_update(&chan) {
let mut channel_state = self.channel_state.lock().unwrap();
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
}
Ok(())
}
fn internal_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
//determine the state of the payment based on our response/if we forward anything/the time
//we take to respond. We should take care to avoid allowing such an attack.
//
//TODO: There exists a further attack where a node may garble the onion data, forward it to
//us repeatedly garbled in different ways, and compare our error messages, which are
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
//but we should prevent it anyway.
let (mut pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
if !chan.get().is_usable() {
// If the update_add is completely bogus, the call will Err and we will close,
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
// want to reject the new HTLC and fail it backwards instead of forwarding.
if let PendingHTLCStatus::Forward(PendingForwardHTLCInfo { incoming_shared_secret, .. }) = pending_forward_info {
let chan_update = self.get_channel_update(chan.get());
pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
channel_id: msg.channel_id,
htlc_id: msg.htlc_id,
reason: if let Ok(update) = chan_update {
// TODO: Note that |20 is defined as "channel FROM the processing
// node has been disabled" (emphasis mine), which seems to imply
// that we can't return |20 for an inbound channel being disabled.
// This probably needs a spec update but should definitely be
// allowed.
onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x1000|20, &{
let mut res = Vec::with_capacity(8 + 128);
res.extend_from_slice(&byte_utils::be16_to_array(update.contents.flags));
res.extend_from_slice(&update.encode_with_len()[..]);
res
}[..])
} else {
// This can only happen if the channel isn't in the fully-funded
// state yet, implying our counterparty is trying to route payments
// over the channel back to themselves (cause no one else should
// know the short_id is a lightning channel yet). We should have no
// problem just calling this unknown_next_peer
onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x4000|10, &[])
},
}));
}
}
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
Ok(())
}
fn internal_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let htlc_source = {
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
};
self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
Ok(())
}
fn internal_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
Ok(())
}
fn internal_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
if (msg.failure_code & 0x8000) == 0 {
let chan_err: ChannelError<ChanSigner> = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set");
try_chan_entry!(self, Err(chan_err), channel_state, chan);
}
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
}
fn internal_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let (revoke_and_ack, commitment_signed, closing_signed, chan_monitor) =
try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &*self.fee_estimator), channel_state, chan);
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
//TODO: Rebroadcast closing_signed if present on monitor update restoration
}
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: their_node_id.clone(),
msg: revoke_and_ack,
});
if let Some(msg) = commitment_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: their_node_id.clone(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: None,
commitment_signed: msg,
},
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: their_node_id.clone(),
msg,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
}
#[inline]
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, Vec<(PendingForwardHTLCInfo, u64)>)]) {
for &mut (prev_short_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
let mut forward_event = None;
if !pending_forwards.is_empty() {
let mut channel_state = self.channel_state.lock().unwrap();
if channel_state.forward_htlcs.is_empty() {
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
}
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
match channel_state.forward_htlcs.entry(forward_info.short_channel_id) {
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info });
},
hash_map::Entry::Vacant(entry) => {
entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info }));
}
}
}
}
match forward_event {
Some(time) => {
let mut pending_events = self.pending_events.lock().unwrap();
pending_events.push(events::Event::PendingHTLCsForwardable {
time_forwardable: time
});
}
None => {},
}
}
}
fn internal_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
let (pending_forwards, mut pending_failures, short_channel_id) = {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
let (commitment_update, pending_forwards, pending_failures, closing_signed, chan_monitor) =
try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &*self.fee_estimator), channel_state, chan);
if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
if was_frozen_for_monitor {
assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
return Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA"));
} else {
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures);
}
}
if let Some(updates) = commitment_update {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: their_node_id.clone(),
updates,
});
}
if let Some(msg) = closing_signed {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
node_id: their_node_id.clone(),
msg,
});
}
(pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"))
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
};
for failure in pending_failures.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
}
self.forward_htlcs(&mut [(short_channel_id, pending_forwards)]);
Ok(())
}
fn internal_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
try_chan_entry!(self, chan.get_mut().update_fee(&*self.fee_estimator, &msg), channel_state, chan);
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
Ok(())
}
fn internal_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
if !chan.get().is_usable() {
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it", action: msgs::ErrorAction::IgnoreError}));
}
let our_node_id = self.get_our_node_id();
let (announcement, our_bitcoin_sig) =
try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
let were_node_one = announcement.node_id_1 == our_node_id;
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
if self.secp_ctx.verify(&msghash, &msg.node_signature, if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 }).is_err() ||
self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 }).is_err() {
let chan_err: ChannelError<ChanSigner> = ChannelError::Close("Bad announcement_signatures node_signature");
try_chan_entry!(self, Err(chan_err), channel_state, chan);
}
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
msg: msgs::ChannelAnnouncement {
node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
contents: announcement,
},
update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
});
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
Ok(())
}
fn internal_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(msg.channel_id) {
hash_map::Entry::Occupied(mut chan) => {
if chan.get().get_their_node_id() != *their_node_id {
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
}
let (funding_locked, revoke_and_ack, commitment_update, channel_monitor, mut order, shutdown) =
try_chan_entry!(self, chan.get_mut().channel_reestablish(msg), channel_state, chan);
if let Some(monitor) = channel_monitor {
if let Err(e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) {
// channel_reestablish doesn't guarantee the order it returns is sensical
// for the messages it returns, but if we're setting what messages to
// re-transmit on monitor update success, we need to make sure it is sane.
if revoke_and_ack.is_none() {
order = RAACommitmentOrder::CommitmentFirst;
}
if commitment_update.is_none() {
order = RAACommitmentOrder::RevokeAndACKFirst;
}
return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
//TODO: Resend the funding_locked if needed once we get the monitor running again
}
}
if let Some(msg) = funding_locked {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: their_node_id.clone(),
msg
});
}
macro_rules! send_raa { () => {
if let Some(msg) = revoke_and_ack {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
node_id: their_node_id.clone(),
msg
});
}
} }
macro_rules! send_cu { () => {
if let Some(updates) = commitment_update {
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: their_node_id.clone(),
updates
});
}
} }
match order {
RAACommitmentOrder::RevokeAndACKFirst => {
send_raa!();
send_cu!();
},
RAACommitmentOrder::CommitmentFirst => {
send_cu!();
send_raa!();
},
}
if let Some(msg) = shutdown {
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
node_id: their_node_id.clone(),
msg,
});
}
Ok(())
},
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
}
}
/// Begin Update fee process. Allowed only on an outbound channel.
/// If successful, will generate a UpdateHTLCs event, so you should probably poll
/// PeerManager::process_events afterwards.
/// Note: This API is likely to change!
#[doc(hidden)]
pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u64) -> Result<(), APIError> {
let _ = self.total_consistency_lock.read().unwrap();
let mut channel_state_lock = self.channel_state.lock().unwrap();
let their_node_id;
let err: Result<(), _> = loop {
let channel_state = &mut *channel_state_lock;
match channel_state.by_id.entry(channel_id) {
hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: "Failed to find corresponding channel"}),
hash_map::Entry::Occupied(mut chan) => {
if !chan.get().is_outbound() {
return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel"});
}
if chan.get().is_awaiting_monitor_update() {
return Err(APIError::MonitorUpdateFailed);
}
if !chan.get().is_live() {
return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected"});
}
their_node_id = chan.get().get_their_node_id();
if let Some((update_fee, commitment_signed, chan_monitor)) =
break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw), channel_state, chan)
{
if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) {
unimplemented!();
}
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
node_id: chan.get().get_their_node_id(),
updates: msgs::CommitmentUpdate {
update_add_htlcs: Vec::new(),
update_fulfill_htlcs: Vec::new(),
update_fail_htlcs: Vec::new(),
update_fail_malformed_htlcs: Vec::new(),
update_fee: Some(update_fee),
commitment_signed,
},
});
}
},
}
return Ok(())
};
match handle_error!(self, err, their_node_id, channel_state_lock) {
Ok(_) => unreachable!(),
Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
}
}
}
impl<ChanSigner: ChannelKeys, M: Deref> events::MessageSendEventsProvider for ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
fn get_and_clear_pending_msg_events(&self) -> Vec<events::MessageSendEvent> {
// TODO: Event release to users and serialization is currently race-y: it's very easy for a
// user to serialize a ChannelManager with pending events in it and lose those events on
// restart. This is doubly true for the fail/fulfill-backs from monitor events!
{
//TODO: This behavior should be documented.
for htlc_update in self.monitor.fetch_pending_htlc_updated() {
if let Some(preimage) = htlc_update.payment_preimage {
log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
} else {
log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
}
}
let mut ret = Vec::new();
let mut channel_state = self.channel_state.lock().unwrap();
mem::swap(&mut ret, &mut channel_state.pending_msg_events);
ret
}
}
impl<ChanSigner: ChannelKeys, M: Deref> events::EventsProvider for ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
// TODO: Event release to users and serialization is currently race-y: it's very easy for a
// user to serialize a ChannelManager with pending events in it and lose those events on
// restart. This is doubly true for the fail/fulfill-backs from monitor events!
{
//TODO: This behavior should be documented.
for htlc_update in self.monitor.fetch_pending_htlc_updated() {
if let Some(preimage) = htlc_update.payment_preimage {
log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
} else {
log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
}
}
}
let mut ret = Vec::new();
let mut pending_events = self.pending_events.lock().unwrap();
mem::swap(&mut ret, &mut *pending_events);
ret
}
}
impl<ChanSigner: ChannelKeys, M: Deref + Sync + Send> ChainListener for ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], indexes_of_txn_matched: &[u32]) {
let header_hash = header.bitcoin_hash();
log_trace!(self, "Block {} at height {} connected with {} txn matched", header_hash, height, txn_matched.len());
let _ = self.total_consistency_lock.read().unwrap();
let mut failed_channels = Vec::new();
{
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, channel| {
let chan_res = channel.block_connected(header, height, txn_matched, indexes_of_txn_matched);
if let Ok(Some(funding_locked)) = chan_res {
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
node_id: channel.get_their_node_id(),
msg: funding_locked,
});
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
log_trace!(self, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
node_id: channel.get_their_node_id(),
msg: announcement_sigs,
});
} else {
log_trace!(self, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
}
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
} else if let Err(e) = chan_res {
pending_msg_events.push(events::MessageSendEvent::HandleError {
node_id: channel.get_their_node_id(),
action: msgs::ErrorAction::SendErrorMessage { msg: e },
});
return false;
}
if let Some(funding_txo) = channel.get_funding_txo() {
for tx in txn_matched {
for inp in tx.input.iter() {
if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
log_trace!(self, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
if let Some(short_id) = channel.get_short_channel_id() {
short_to_id.remove(&short_id);
}
// It looks like our counterparty went on-chain. We go ahead and
// broadcast our latest local state as well here, just in case its
// some kind of SPV attack, though we expect these to be dropped.
failed_channels.push(channel.force_shutdown());
if let Ok(update) = self.get_channel_update(&channel) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
return false;
}
}
}
}
if channel.is_funding_initiated() && channel.channel_monitor().would_broadcast_at_height(height) {
if let Some(short_id) = channel.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(channel.force_shutdown());
// If would_broadcast_at_height() is true, the channel_monitor will broadcast
// the latest local tx for us, so we should skip that here (it doesn't really
// hurt anything, but does make tests a bit simpler).
failed_channels.last_mut().unwrap().0 = Vec::new();
if let Ok(update) = self.get_channel_update(&channel) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
return false;
}
true
});
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
self.latest_block_height.store(height as usize, Ordering::Release);
*self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash;
}
/// We force-close the channel without letting our counterparty participate in the shutdown
fn block_disconnected(&self, header: &BlockHeader, _: u32) {
let _ = self.total_consistency_lock.read().unwrap();
let mut failed_channels = Vec::new();
{
let mut channel_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, v| {
if v.block_disconnected(header) {
if let Some(short_id) = v.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(v.force_shutdown());
if let Ok(update) = self.get_channel_update(&v) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
false
} else {
true
}
});
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
self.latest_block_height.fetch_sub(1, Ordering::AcqRel);
*self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash();
}
}
impl<ChanSigner: ChannelKeys, M: Deref + Sync + Send> ChannelMessageHandler for ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_open_channel(their_node_id, their_features, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_accept_channel(their_node_id, their_features, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_funding_created(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_funding_signed(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_funding_locked(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_shutdown(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_closing_signed(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_update_add_htlc(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_update_fulfill_htlc(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_update_fail_htlc(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_update_fail_malformed_htlc(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_commitment_signed(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_revoke_and_ack(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_update_fee(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_announcement_signatures(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
let _ = self.total_consistency_lock.read().unwrap();
let res = self.internal_channel_reestablish(their_node_id, msg);
if res.is_err() {
let mut channel_state_lock = self.channel_state.lock().unwrap();
let _ = handle_error!(self, res, *their_node_id, channel_state_lock);
}
}
fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool) {
let _ = self.total_consistency_lock.read().unwrap();
let mut failed_channels = Vec::new();
let mut failed_payments = Vec::new();
let mut no_channels_remain = true;
{
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let short_to_id = &mut channel_state.short_to_id;
let pending_msg_events = &mut channel_state.pending_msg_events;
if no_connection_possible {
log_debug!(self, "Failing all channels with {} due to no_connection_possible", log_pubkey!(their_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_their_node_id() == *their_node_id {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
failed_channels.push(chan.force_shutdown());
if let Ok(update) = self.get_channel_update(&chan) {
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
msg: update
});
}
false
} else {
true
}
});
} else {
log_debug!(self, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(their_node_id));
channel_state.by_id.retain(|_, chan| {
if chan.get_their_node_id() == *their_node_id {
let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused();
chan.to_disabled_marked();
if !failed_adds.is_empty() {
let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
failed_payments.push((chan_update, failed_adds));
}
if chan.is_shutdown() {
if let Some(short_id) = chan.get_short_channel_id() {
short_to_id.remove(&short_id);
}
return false;
} else {
no_channels_remain = false;
}
}
true
})
}
pending_msg_events.retain(|msg| {
match msg {
&events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
&events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != their_node_id,
&events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
}
});
}
if no_channels_remain {
self.per_peer_state.write().unwrap().remove(their_node_id);
}
for failure in failed_channels.drain(..) {
self.finish_force_close_channel(failure);
}
for (chan_update, mut htlc_sources) in failed_payments {
for (htlc_source, payment_hash) in htlc_sources.drain(..) {
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
}
}
}
fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &msgs::Init) {
log_debug!(self, "Generating channel_reestablish events for {}", log_pubkey!(their_node_id));
let _ = self.total_consistency_lock.read().unwrap();
{
let mut peer_state_lock = self.per_peer_state.write().unwrap();
match peer_state_lock.entry(their_node_id.clone()) {
hash_map::Entry::Vacant(e) => {
e.insert(Mutex::new(PeerState {
latest_features: init_msg.features.clone(),
}));
},
hash_map::Entry::Occupied(e) => {
e.get().lock().unwrap().latest_features = init_msg.features.clone();
},
}
}
let mut channel_state_lock = self.channel_state.lock().unwrap();
let channel_state = &mut *channel_state_lock;
let pending_msg_events = &mut channel_state.pending_msg_events;
channel_state.by_id.retain(|_, chan| {
if chan.get_their_node_id() == *their_node_id {
if !chan.have_received_message() {
// If we created this (outbound) channel while we were disconnected from the
// peer we probably failed to send the open_channel message, which is now
// lost. We can't have had anything pending related to this channel, so we just
// drop it.
false
} else {
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
node_id: chan.get_their_node_id(),
msg: chan.get_channel_reestablish(),
});
true
}
} else { true }
});
//TODO: Also re-broadcast announcement_signatures
}
fn handle_error(&self, their_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
let _ = self.total_consistency_lock.read().unwrap();
if msg.channel_id == [0; 32] {
for chan in self.list_channels() {
if chan.remote_network_id == *their_node_id {
self.force_close_channel(&chan.channel_id);
}
}
} else {
self.force_close_channel(&msg.channel_id);
}
}
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl Writeable for PendingForwardHTLCInfo {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
self.onion_packet.write(writer)?;
self.incoming_shared_secret.write(writer)?;
self.payment_hash.write(writer)?;
self.short_channel_id.write(writer)?;
self.amt_to_forward.write(writer)?;
self.outgoing_cltv_value.write(writer)?;
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for PendingForwardHTLCInfo {
fn read(reader: &mut R) -> Result<PendingForwardHTLCInfo, DecodeError> {
Ok(PendingForwardHTLCInfo {
onion_packet: Readable::read(reader)?,
incoming_shared_secret: Readable::read(reader)?,
payment_hash: Readable::read(reader)?,
short_channel_id: Readable::read(reader)?,
amt_to_forward: Readable::read(reader)?,
outgoing_cltv_value: Readable::read(reader)?,
})
}
}
impl Writeable for HTLCFailureMsg {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCFailureMsg::Relay(ref fail_msg) => {
0u8.write(writer)?;
fail_msg.write(writer)?;
},
&HTLCFailureMsg::Malformed(ref fail_msg) => {
1u8.write(writer)?;
fail_msg.write(writer)?;
}
}
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for HTLCFailureMsg {
fn read(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
match <u8 as Readable<R>>::read(reader)? {
0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for PendingHTLCStatus {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&PendingHTLCStatus::Forward(ref forward_info) => {
0u8.write(writer)?;
forward_info.write(writer)?;
},
&PendingHTLCStatus::Fail(ref fail_msg) => {
1u8.write(writer)?;
fail_msg.write(writer)?;
}
}
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for PendingHTLCStatus {
fn read(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
match <u8 as Readable<R>>::read(reader)? {
0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl_writeable!(HTLCPreviousHopData, 0, {
short_channel_id,
htlc_id,
incoming_packet_shared_secret
});
impl Writeable for HTLCSource {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCSource::PreviousHopData(ref hop_data) => {
0u8.write(writer)?;
hop_data.write(writer)?;
},
&HTLCSource::OutboundRoute { ref route, ref session_priv, ref first_hop_htlc_msat } => {
1u8.write(writer)?;
route.write(writer)?;
session_priv.write(writer)?;
first_hop_htlc_msat.write(writer)?;
}
}
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for HTLCSource {
fn read(reader: &mut R) -> Result<HTLCSource, DecodeError> {
match <u8 as Readable<R>>::read(reader)? {
0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
1 => Ok(HTLCSource::OutboundRoute {
route: Readable::read(reader)?,
session_priv: Readable::read(reader)?,
first_hop_htlc_msat: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for HTLCFailReason {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCFailReason::LightningError { ref err } => {
0u8.write(writer)?;
err.write(writer)?;
},
&HTLCFailReason::Reason { ref failure_code, ref data } => {
1u8.write(writer)?;
failure_code.write(writer)?;
data.write(writer)?;
}
}
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for HTLCFailReason {
fn read(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
match <u8 as Readable<R>>::read(reader)? {
0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
1 => Ok(HTLCFailReason::Reason {
failure_code: Readable::read(reader)?,
data: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for HTLCForwardInfo {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self {
&HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_htlc_id, ref forward_info } => {
0u8.write(writer)?;
prev_short_channel_id.write(writer)?;
prev_htlc_id.write(writer)?;
forward_info.write(writer)?;
},
&HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
1u8.write(writer)?;
htlc_id.write(writer)?;
err_packet.write(writer)?;
},
}
Ok(())
}
}
impl<R: ::std::io::Read> Readable<R> for HTLCForwardInfo {
fn read(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
match <u8 as Readable<R>>::read(reader)? {
0 => Ok(HTLCForwardInfo::AddHTLC {
prev_short_channel_id: Readable::read(reader)?,
prev_htlc_id: Readable::read(reader)?,
forward_info: Readable::read(reader)?,
}),
1 => Ok(HTLCForwardInfo::FailHTLC {
htlc_id: Readable::read(reader)?,
err_packet: Readable::read(reader)?,
}),
_ => Err(DecodeError::InvalidValue),
}
}
}
impl<ChanSigner: ChannelKeys + Writeable, M: Deref> Writeable for ChannelManager<ChanSigner, M> where M::Target: ManyChannelMonitor<ChanSigner> {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
let _ = self.total_consistency_lock.write().unwrap();
writer.write_all(&[SERIALIZATION_VERSION; 1])?;
writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
self.genesis_hash.write(writer)?;
(self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?;
self.last_block_hash.lock().unwrap().write(writer)?;
let channel_state = self.channel_state.lock().unwrap();
let mut unfunded_channels = 0;
for (_, channel) in channel_state.by_id.iter() {
if !channel.is_funding_initiated() {
unfunded_channels += 1;
}
}
((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
for (_, channel) in channel_state.by_id.iter() {
if channel.is_funding_initiated() {
channel.write(writer)?;
}
}
(channel_state.forward_htlcs.len() as u64).write(writer)?;
for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
short_channel_id.write(writer)?;
(pending_forwards.len() as u64).write(writer)?;
for forward in pending_forwards {
forward.write(writer)?;
}
}
(channel_state.claimable_htlcs.len() as u64).write(writer)?;
for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
payment_hash.write(writer)?;
(previous_hops.len() as u64).write(writer)?;
for &(recvd_amt, ref previous_hop) in previous_hops.iter() {
recvd_amt.write(writer)?;
previous_hop.write(writer)?;
}
}
let per_peer_state = self.per_peer_state.write().unwrap();
(per_peer_state.len() as u64).write(writer)?;
for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
peer_pubkey.write(writer)?;
let peer_state = peer_state_mutex.lock().unwrap();
peer_state.latest_features.write(writer)?;
}
Ok(())
}
}
/// Arguments for the creation of a ChannelManager that are not deserialized.
///
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
/// is:
/// 1) Deserialize all stored ChannelMonitors.
/// 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash,
/// ChannelManager)>::read(reader, args).
/// This may result in closing some Channels if the ChannelMonitor is newer than the stored
/// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
/// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using
/// ChannelMonitor::get_monitored_outpoints and ChannelMonitor::get_funding_txo().
/// 4) Reconnect blocks on your ChannelMonitors.
/// 5) Move the ChannelMonitors into your local ManyChannelMonitor.
/// 6) Disconnect/connect blocks on the ChannelManager.
/// 7) Register the new ChannelManager with your ChainWatchInterface.
pub struct ChannelManagerReadArgs<'a, ChanSigner: 'a + ChannelKeys, M: Deref> where M::Target: ManyChannelMonitor<ChanSigner> {
/// The keys provider which will give us relevant keys. Some keys will be loaded during
/// deserialization.
pub keys_manager: Arc<KeysInterface<ChanKeySigner = ChanSigner>>,
/// The fee_estimator for use in the ChannelManager in the future.
///
/// No calls to the FeeEstimator will be made during deserialization.
pub fee_estimator: Arc<FeeEstimator>,
/// The ManyChannelMonitor for use in the ChannelManager in the future.
///
/// No calls to the ManyChannelMonitor will be made during deserialization. It is assumed that
/// you have deserialized ChannelMonitors separately and will add them to your
/// ManyChannelMonitor after deserializing this ChannelManager.
pub monitor: M,
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
/// used to broadcast the latest local commitment transactions of channels which must be
/// force-closed during deserialization.
pub tx_broadcaster: Arc<BroadcasterInterface>,
/// The Logger for use in the ChannelManager and which may be used to log information during
/// deserialization.
pub logger: Arc<Logger>,
/// Default settings used for new channels. Any existing channels will continue to use the
/// runtime settings which were stored when the ChannelManager was serialized.
pub default_config: UserConfig,
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
/// value.get_funding_txo() should be the key).
///
/// If a monitor is inconsistent with the channel state during deserialization the channel will
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
/// is true for missing channels as well. If there is a monitor missing for which we find
/// channel data Err(DecodeError::InvalidValue) will be returned.
///
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
/// this struct.
pub channel_monitors: &'a mut HashMap<OutPoint, &'a mut ChannelMonitor<ChanSigner>>,
}
impl<'a, R : ::std::io::Read, ChanSigner: ChannelKeys + Readable<R>, M: Deref> ReadableArgs<R, ChannelManagerReadArgs<'a, ChanSigner, M>> for (Sha256dHash, ChannelManager<ChanSigner, M>) where M::Target: ManyChannelMonitor<ChanSigner> {
fn read(reader: &mut R, args: ChannelManagerReadArgs<'a, ChanSigner, M>) -> Result<Self, DecodeError> {
let _ver: u8 = Readable::read(reader)?;
let min_ver: u8 = Readable::read(reader)?;
if min_ver > SERIALIZATION_VERSION {
return Err(DecodeError::UnknownVersion);
}
let genesis_hash: Sha256dHash = Readable::read(reader)?;
let latest_block_height: u32 = Readable::read(reader)?;
let last_block_hash: Sha256dHash = Readable::read(reader)?;
let mut closed_channels = Vec::new();
let channel_count: u64 = Readable::read(reader)?;
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
for _ in 0..channel_count {
let mut channel: Channel<ChanSigner> = ReadableArgs::read(reader, args.logger.clone())?;
if channel.last_block_connected != last_block_hash {
return Err(DecodeError::InvalidValue);
}
let funding_txo = channel.channel_monitor().get_funding_txo().ok_or(DecodeError::InvalidValue)?;
funding_txo_set.insert(funding_txo.clone());
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
if channel.get_cur_local_commitment_transaction_number() != monitor.get_cur_local_commitment_number() ||
channel.get_revoked_remote_commitment_transaction_number() != monitor.get_min_seen_secret() ||
channel.get_cur_remote_commitment_transaction_number() != monitor.get_cur_remote_commitment_number() {
let mut force_close_res = channel.force_shutdown();
force_close_res.0 = monitor.get_latest_local_commitment_txn();
closed_channels.push(force_close_res);
} else {
if let Some(short_channel_id) = channel.get_short_channel_id() {
short_to_id.insert(short_channel_id, channel.channel_id());
}
by_id.insert(channel.channel_id(), channel);
}
} else {
return Err(DecodeError::InvalidValue);
}
}
for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
if !funding_txo_set.contains(funding_txo) {
closed_channels.push((monitor.get_latest_local_commitment_txn(), Vec::new()));
}
}
let forward_htlcs_count: u64 = Readable::read(reader)?;
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
for _ in 0..forward_htlcs_count {
let short_channel_id = Readable::read(reader)?;
let pending_forwards_count: u64 = Readable::read(reader)?;
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, 128));
for _ in 0..pending_forwards_count {
pending_forwards.push(Readable::read(reader)?);
}
forward_htlcs.insert(short_channel_id, pending_forwards);
}
let claimable_htlcs_count: u64 = Readable::read(reader)?;
let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
for _ in 0..claimable_htlcs_count {
let payment_hash = Readable::read(reader)?;
let previous_hops_len: u64 = Readable::read(reader)?;
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, 2));
for _ in 0..previous_hops_len {
previous_hops.push((Readable::read(reader)?, Readable::read(reader)?));
}
claimable_htlcs.insert(payment_hash, previous_hops);
}
let peer_count: u64 = Readable::read(reader)?;
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, 128));
for _ in 0..peer_count {
let peer_pubkey = Readable::read(reader)?;
let peer_state = PeerState {
latest_features: Readable::read(reader)?,
};
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
}
let channel_manager = ChannelManager {
genesis_hash,
fee_estimator: args.fee_estimator,
monitor: args.monitor,
tx_broadcaster: args.tx_broadcaster,
latest_block_height: AtomicUsize::new(latest_block_height as usize),
last_block_hash: Mutex::new(last_block_hash),
secp_ctx: Secp256k1::new(),
channel_state: Mutex::new(ChannelHolder {
by_id,
short_to_id,
forward_htlcs,
claimable_htlcs,
pending_msg_events: Vec::new(),
}),
our_network_key: args.keys_manager.get_node_secret(),
per_peer_state: RwLock::new(per_peer_state),
pending_events: Mutex::new(Vec::new()),
total_consistency_lock: RwLock::new(()),
keys_manager: args.keys_manager,
logger: args.logger,
default_configuration: args.default_config,
};
for close_res in closed_channels.drain(..) {
channel_manager.finish_force_close_channel(close_res);
//TODO: Broadcast channel update for closed channels, but only after we've made a
//connection or two.
}
Ok((last_block_hash.clone(), channel_manager))
}
}