mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 17:01:10 +01:00
In the coming commits, we need to delay `ChannelMonitorUpdate`s until future actions (specifically `Event` handling). However, because we should only notify users once of a given `ChannelMonitorUpdate` and they must be provided in-order, we need to track which ones have or have not been given to users and, once updating resumes, fly the ones that haven't already made it to users. To do this we simply add a `bool` in the `ChannelMonitorUpdate` set stored in the `Channel` which indicates if an update flew and decline to provide new updates back to the `ChannelManager` if any updates have their flown bit unset. Further, because we'll now by releasing `ChannelMonitorUpdate`s which were already stored in the pending list, we now need to support getting a `Completed` result for a monitor which isn't the only pending monitor (or even out of order), thus we also rewrite the way monitor updates are marked completed.
9217 lines
438 KiB
Rust
9217 lines
438 KiB
Rust
// This file is Copyright its original authors, visible in version control
|
|
// history.
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! The top-level channel management and payment tracking stuff lives here.
|
|
//!
|
|
//! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
|
|
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
|
|
//! upon reconnect to the relevant peer(s).
|
|
//!
|
|
//! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
|
|
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
|
|
//! imply it needs to fail HTLCs/payments/channels it manages).
|
|
|
|
use bitcoin::blockdata::block::BlockHeader;
|
|
use bitcoin::blockdata::transaction::Transaction;
|
|
use bitcoin::blockdata::constants::genesis_block;
|
|
use bitcoin::network::constants::Network;
|
|
|
|
use bitcoin::hashes::Hash;
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::hash_types::{BlockHash, Txid};
|
|
|
|
use bitcoin::secp256k1::{SecretKey,PublicKey};
|
|
use bitcoin::secp256k1::Secp256k1;
|
|
use bitcoin::{LockTime, secp256k1, Sequence};
|
|
|
|
use crate::chain;
|
|
use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
|
|
use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
|
|
use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
|
|
use crate::chain::transaction::{OutPoint, TransactionData};
|
|
use crate::events;
|
|
use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
|
|
// Since this struct is returned in `list_channels` methods, expose it here in case users want to
|
|
// construct one themselves.
|
|
use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
|
|
use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
|
|
use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
|
|
#[cfg(any(feature = "_test_utils", test))]
|
|
use crate::ln::features::InvoiceFeatures;
|
|
use crate::routing::gossip::NetworkGraph;
|
|
use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, PaymentParameters, Route, RouteHop, RouteParameters, Router};
|
|
use crate::routing::scoring::ProbabilisticScorer;
|
|
use crate::ln::msgs;
|
|
use crate::ln::onion_utils;
|
|
use crate::ln::onion_utils::HTLCFailReason;
|
|
use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
|
|
#[cfg(test)]
|
|
use crate::ln::outbound_payment;
|
|
use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
|
|
use crate::ln::wire::Encode;
|
|
use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
|
|
use crate::util::config::{UserConfig, ChannelConfig};
|
|
use crate::util::wakers::{Future, Notifier};
|
|
use crate::util::scid_utils::fake_scid;
|
|
use crate::util::string::UntrustedString;
|
|
use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
|
|
use crate::util::logger::{Level, Logger};
|
|
use crate::util::errors::APIError;
|
|
|
|
use alloc::collections::BTreeMap;
|
|
|
|
use crate::io;
|
|
use crate::prelude::*;
|
|
use core::{cmp, mem};
|
|
use core::cell::RefCell;
|
|
use crate::io::Read;
|
|
use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
|
|
use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
|
|
use core::time::Duration;
|
|
use core::ops::Deref;
|
|
|
|
// Re-export this for use in the public API.
|
|
pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
|
|
|
|
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
|
|
//
|
|
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
|
|
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
|
|
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
|
|
//
|
|
// Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
|
|
// Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
|
|
// with it to track where it came from (in case of onwards-forward error), waiting a random delay
|
|
// before we forward it.
|
|
//
|
|
// We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
|
|
// relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
|
|
// to either fail-backwards or fulfill the HTLC backwards along the relevant path).
|
|
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
|
|
// our payment, which we can use to decode errors or inform the user that the payment was sent.
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum PendingHTLCRouting {
|
|
Forward {
|
|
onion_packet: msgs::OnionPacket,
|
|
/// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
|
|
/// generated using `get_fake_scid` from the scid_utils::fake_scid module.
|
|
short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
|
|
},
|
|
Receive {
|
|
payment_data: msgs::FinalOnionHopData,
|
|
payment_metadata: Option<Vec<u8>>,
|
|
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
|
|
phantom_shared_secret: Option<[u8; 32]>,
|
|
},
|
|
ReceiveKeysend {
|
|
payment_preimage: PaymentPreimage,
|
|
payment_metadata: Option<Vec<u8>>,
|
|
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
|
|
},
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) struct PendingHTLCInfo {
|
|
pub(super) routing: PendingHTLCRouting,
|
|
pub(super) incoming_shared_secret: [u8; 32],
|
|
payment_hash: PaymentHash,
|
|
/// Amount received
|
|
pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
|
|
/// Sender intended amount to forward or receive (actual amount received
|
|
/// may overshoot this in either case)
|
|
pub(super) outgoing_amt_msat: u64,
|
|
pub(super) outgoing_cltv_value: u32,
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum HTLCFailureMsg {
|
|
Relay(msgs::UpdateFailHTLC),
|
|
Malformed(msgs::UpdateFailMalformedHTLC),
|
|
}
|
|
|
|
/// Stores whether we can't forward an HTLC or relevant forwarding info
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum PendingHTLCStatus {
|
|
Forward(PendingHTLCInfo),
|
|
Fail(HTLCFailureMsg),
|
|
}
|
|
|
|
pub(super) struct PendingAddHTLCInfo {
|
|
pub(super) forward_info: PendingHTLCInfo,
|
|
|
|
// These fields are produced in `forward_htlcs()` and consumed in
|
|
// `process_pending_htlc_forwards()` for constructing the
|
|
// `HTLCSource::PreviousHopData` for failed and forwarded
|
|
// HTLCs.
|
|
//
|
|
// Note that this may be an outbound SCID alias for the associated channel.
|
|
prev_short_channel_id: u64,
|
|
prev_htlc_id: u64,
|
|
prev_funding_outpoint: OutPoint,
|
|
prev_user_channel_id: u128,
|
|
}
|
|
|
|
pub(super) enum HTLCForwardInfo {
|
|
AddHTLC(PendingAddHTLCInfo),
|
|
FailHTLC {
|
|
htlc_id: u64,
|
|
err_packet: msgs::OnionErrorPacket,
|
|
},
|
|
}
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) struct HTLCPreviousHopData {
|
|
// Note that this may be an outbound SCID alias for the associated channel.
|
|
short_channel_id: u64,
|
|
htlc_id: u64,
|
|
incoming_packet_shared_secret: [u8; 32],
|
|
phantom_shared_secret: Option<[u8; 32]>,
|
|
|
|
// This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
|
|
// channel with a preimage provided by the forward channel.
|
|
outpoint: OutPoint,
|
|
}
|
|
|
|
enum OnionPayload {
|
|
/// Indicates this incoming onion payload is for the purpose of paying an invoice.
|
|
Invoice {
|
|
/// This is only here for backwards-compatibility in serialization, in the future it can be
|
|
/// removed, breaking clients running 0.0.106 and earlier.
|
|
_legacy_hop_data: Option<msgs::FinalOnionHopData>,
|
|
},
|
|
/// Contains the payer-provided preimage.
|
|
Spontaneous(PaymentPreimage),
|
|
}
|
|
|
|
/// HTLCs that are to us and can be failed/claimed by the user
|
|
struct ClaimableHTLC {
|
|
prev_hop: HTLCPreviousHopData,
|
|
cltv_expiry: u32,
|
|
/// The amount (in msats) of this MPP part
|
|
value: u64,
|
|
/// The amount (in msats) that the sender intended to be sent in this MPP
|
|
/// part (used for validating total MPP amount)
|
|
sender_intended_value: u64,
|
|
onion_payload: OnionPayload,
|
|
timer_ticks: u8,
|
|
/// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
|
|
/// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
|
|
total_value_received: Option<u64>,
|
|
/// The sender intended sum total of all MPP parts specified in the onion
|
|
total_msat: u64,
|
|
}
|
|
|
|
/// A payment identifier used to uniquely identify a payment to LDK.
|
|
///
|
|
/// This is not exported to bindings users as we just use [u8; 32] directly
|
|
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct PaymentId(pub [u8; 32]);
|
|
|
|
impl Writeable for PaymentId {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
|
|
self.0.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for PaymentId {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(PaymentId(buf))
|
|
}
|
|
}
|
|
|
|
/// An identifier used to uniquely identify an intercepted HTLC to LDK.
|
|
///
|
|
/// This is not exported to bindings users as we just use [u8; 32] directly
|
|
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct InterceptId(pub [u8; 32]);
|
|
|
|
impl Writeable for InterceptId {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
|
|
self.0.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for InterceptId {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(InterceptId(buf))
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
|
|
/// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
|
|
pub(crate) enum SentHTLCId {
|
|
PreviousHopData { short_channel_id: u64, htlc_id: u64 },
|
|
OutboundRoute { session_priv: SecretKey },
|
|
}
|
|
impl SentHTLCId {
|
|
pub(crate) fn from_source(source: &HTLCSource) -> Self {
|
|
match source {
|
|
HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
|
|
short_channel_id: hop_data.short_channel_id,
|
|
htlc_id: hop_data.htlc_id,
|
|
},
|
|
HTLCSource::OutboundRoute { session_priv, .. } =>
|
|
Self::OutboundRoute { session_priv: *session_priv },
|
|
}
|
|
}
|
|
}
|
|
impl_writeable_tlv_based_enum!(SentHTLCId,
|
|
(0, PreviousHopData) => {
|
|
(0, short_channel_id, required),
|
|
(2, htlc_id, required),
|
|
},
|
|
(2, OutboundRoute) => {
|
|
(0, session_priv, required),
|
|
};
|
|
);
|
|
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub(crate) enum HTLCSource {
|
|
PreviousHopData(HTLCPreviousHopData),
|
|
OutboundRoute {
|
|
path: Path,
|
|
session_priv: SecretKey,
|
|
/// Technically we can recalculate this from the route, but we cache it here to avoid
|
|
/// doing a double-pass on route when we get a failure back
|
|
first_hop_htlc_msat: u64,
|
|
payment_id: PaymentId,
|
|
},
|
|
}
|
|
#[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
|
|
impl core::hash::Hash for HTLCSource {
|
|
fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
|
|
match self {
|
|
HTLCSource::PreviousHopData(prev_hop_data) => {
|
|
0u8.hash(hasher);
|
|
prev_hop_data.hash(hasher);
|
|
},
|
|
HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
|
|
1u8.hash(hasher);
|
|
path.hash(hasher);
|
|
session_priv[..].hash(hasher);
|
|
payment_id.hash(hasher);
|
|
first_hop_htlc_msat.hash(hasher);
|
|
},
|
|
}
|
|
}
|
|
}
|
|
impl HTLCSource {
|
|
#[cfg(not(feature = "grind_signatures"))]
|
|
#[cfg(test)]
|
|
pub fn dummy() -> Self {
|
|
HTLCSource::OutboundRoute {
|
|
path: Path { hops: Vec::new(), blinded_tail: None },
|
|
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
|
|
first_hop_htlc_msat: 0,
|
|
payment_id: PaymentId([2; 32]),
|
|
}
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
/// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
|
|
/// transaction. Useful to ensure different datastructures match up.
|
|
pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
|
|
if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
|
|
*first_hop_htlc_msat == htlc.amount_msat
|
|
} else {
|
|
// There's nothing we can check for forwarded HTLCs
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ReceiveError {
|
|
err_code: u16,
|
|
err_data: Vec<u8>,
|
|
msg: &'static str,
|
|
}
|
|
|
|
/// This enum is used to specify which error data to send to peers when failing back an HTLC
|
|
/// using [`ChannelManager::fail_htlc_backwards_with_reason`].
|
|
///
|
|
/// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
|
|
#[derive(Clone, Copy)]
|
|
pub enum FailureCode {
|
|
/// We had a temporary error processing the payment. Useful if no other error codes fit
|
|
/// and you want to indicate that the payer may want to retry.
|
|
TemporaryNodeFailure = 0x2000 | 2,
|
|
/// We have a required feature which was not in this onion. For example, you may require
|
|
/// some additional metadata that was not provided with this payment.
|
|
RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3,
|
|
/// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
|
|
/// the HTLC is too close to the current block height for safe handling.
|
|
/// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
|
|
/// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
|
|
IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
|
|
}
|
|
|
|
type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
|
|
|
|
/// Error type returned across the peer_state mutex boundary. When an Err is generated for a
|
|
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
|
|
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
|
|
/// peer_state lock. We then return the set of things that need to be done outside the lock in
|
|
/// this struct and call handle_error!() on it.
|
|
|
|
struct MsgHandleErrInternal {
|
|
err: msgs::LightningError,
|
|
chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
|
|
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
|
|
}
|
|
impl MsgHandleErrInternal {
|
|
#[inline]
|
|
fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err: err.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err
|
|
},
|
|
},
|
|
},
|
|
chan_id: None,
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_no_close(err: msgs::LightningError) -> Self {
|
|
Self { err, chan_id: None, shutdown_finish: None }
|
|
}
|
|
#[inline]
|
|
fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err: err.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err
|
|
},
|
|
},
|
|
},
|
|
chan_id: Some((channel_id, user_channel_id)),
|
|
shutdown_finish: Some((shutdown_res, channel_update)),
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: match err {
|
|
ChannelError::Warn(msg) => LightningError {
|
|
err: msg.clone(),
|
|
action: msgs::ErrorAction::SendWarningMessage {
|
|
msg: msgs::WarningMessage {
|
|
channel_id,
|
|
data: msg
|
|
},
|
|
log_level: Level::Warn,
|
|
},
|
|
},
|
|
ChannelError::Ignore(msg) => LightningError {
|
|
err: msg,
|
|
action: msgs::ErrorAction::IgnoreError,
|
|
},
|
|
ChannelError::Close(msg) => LightningError {
|
|
err: msg.clone(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: msg
|
|
},
|
|
},
|
|
},
|
|
},
|
|
chan_id: None,
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
|
|
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
|
|
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
|
|
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
|
|
pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
|
|
|
|
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
|
|
/// be sent in the order they appear in the return value, however sometimes the order needs to be
|
|
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
|
|
/// they were originally sent). In those cases, this enum is also returned.
|
|
#[derive(Clone, PartialEq)]
|
|
pub(super) enum RAACommitmentOrder {
|
|
/// Send the CommitmentUpdate messages first
|
|
CommitmentFirst,
|
|
/// Send the RevokeAndACK message first
|
|
RevokeAndACKFirst,
|
|
}
|
|
|
|
/// Information about a payment which is currently being claimed.
|
|
struct ClaimingPayment {
|
|
amount_msat: u64,
|
|
payment_purpose: events::PaymentPurpose,
|
|
receiver_node_id: PublicKey,
|
|
}
|
|
impl_writeable_tlv_based!(ClaimingPayment, {
|
|
(0, amount_msat, required),
|
|
(2, payment_purpose, required),
|
|
(4, receiver_node_id, required),
|
|
});
|
|
|
|
struct ClaimablePayment {
|
|
purpose: events::PaymentPurpose,
|
|
onion_fields: Option<RecipientOnionFields>,
|
|
htlcs: Vec<ClaimableHTLC>,
|
|
}
|
|
|
|
/// Information about claimable or being-claimed payments
|
|
struct ClaimablePayments {
|
|
/// Map from payment hash to the payment data and any HTLCs which are to us and can be
|
|
/// failed/claimed by the user.
|
|
///
|
|
/// Note that, no consistency guarantees are made about the channels given here actually
|
|
/// existing anymore by the time you go to read them!
|
|
///
|
|
/// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
|
|
/// we don't get a duplicate payment.
|
|
claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
|
|
|
|
/// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
|
|
/// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
|
|
/// as an [`events::Event::PaymentClaimed`].
|
|
pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
|
|
}
|
|
|
|
/// Events which we process internally but cannot be procsesed immediately at the generation site
|
|
/// for some reason. They are handled in timer_tick_occurred, so may be processed with
|
|
/// quite some time lag.
|
|
enum BackgroundEvent {
|
|
/// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
|
|
/// commitment transaction.
|
|
ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) enum MonitorUpdateCompletionAction {
|
|
/// Indicates that a payment ultimately destined for us was claimed and we should emit an
|
|
/// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
|
|
/// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
|
|
/// event can be generated.
|
|
PaymentClaimed { payment_hash: PaymentHash },
|
|
/// Indicates an [`events::Event`] should be surfaced to the user.
|
|
EmitEvent { event: events::Event },
|
|
}
|
|
|
|
impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
|
|
(0, PaymentClaimed) => { (0, payment_hash, required) },
|
|
(2, EmitEvent) => { (0, event, upgradable_required) },
|
|
);
|
|
|
|
/// State we hold per-peer.
|
|
pub(super) struct PeerState<Signer: ChannelSigner> {
|
|
/// `temporary_channel_id` or `channel_id` -> `channel`.
|
|
///
|
|
/// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
|
|
/// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
|
|
/// `channel_id`.
|
|
pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
|
|
/// The latest `InitFeatures` we heard from the peer.
|
|
latest_features: InitFeatures,
|
|
/// Messages to send to the peer - pushed to in the same lock that they are generated in (except
|
|
/// for broadcast messages, where ordering isn't as strict).
|
|
pub(super) pending_msg_events: Vec<MessageSendEvent>,
|
|
/// Map from a specific channel to some action(s) that should be taken when all pending
|
|
/// [`ChannelMonitorUpdate`]s for the channel complete updating.
|
|
///
|
|
/// Note that because we generally only have one entry here a HashMap is pretty overkill. A
|
|
/// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
|
|
/// channels with a peer this will just be one allocation and will amount to a linear list of
|
|
/// channels to walk, avoiding the whole hashing rigmarole.
|
|
///
|
|
/// Note that the channel may no longer exist. For example, if a channel was closed but we
|
|
/// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
|
|
/// for a missing channel. While a malicious peer could construct a second channel with the
|
|
/// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
|
|
/// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
|
|
/// duplicates do not occur, so such channels should fail without a monitor update completing.
|
|
monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
|
|
/// The peer is currently connected (i.e. we've seen a
|
|
/// [`ChannelMessageHandler::peer_connected`] and no corresponding
|
|
/// [`ChannelMessageHandler::peer_disconnected`].
|
|
is_connected: bool,
|
|
}
|
|
|
|
impl <Signer: ChannelSigner> PeerState<Signer> {
|
|
/// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
|
|
/// If true is passed for `require_disconnected`, the function will return false if we haven't
|
|
/// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
|
|
fn ok_to_remove(&self, require_disconnected: bool) -> bool {
|
|
if require_disconnected && self.is_connected {
|
|
return false
|
|
}
|
|
self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
|
|
}
|
|
}
|
|
|
|
/// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
|
|
/// actually ours and not some duplicate HTLC sent to us by a node along the route.
|
|
///
|
|
/// For users who don't want to bother doing their own payment preimage storage, we also store that
|
|
/// here.
|
|
///
|
|
/// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
|
|
/// and instead encoding it in the payment secret.
|
|
struct PendingInboundPayment {
|
|
/// The payment secret that the sender must use for us to accept this payment
|
|
payment_secret: PaymentSecret,
|
|
/// Time at which this HTLC expires - blocks with a header time above this value will result in
|
|
/// this payment being removed.
|
|
expiry_time: u64,
|
|
/// Arbitrary identifier the user specifies (or not)
|
|
user_payment_id: u64,
|
|
// Other required attributes of the payment, optionally enforced:
|
|
payment_preimage: Option<PaymentPreimage>,
|
|
min_value_msat: Option<u64>,
|
|
}
|
|
|
|
/// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
|
|
/// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
|
|
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
|
|
/// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
|
|
/// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
|
|
/// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
|
|
/// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
|
|
/// of [`KeysManager`] and [`DefaultRouter`].
|
|
///
|
|
/// This is not exported to bindings users as Arcs don't make sense in bindings
|
|
pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
|
|
Arc<M>,
|
|
Arc<T>,
|
|
Arc<KeysManager>,
|
|
Arc<KeysManager>,
|
|
Arc<KeysManager>,
|
|
Arc<F>,
|
|
Arc<DefaultRouter<
|
|
Arc<NetworkGraph<Arc<L>>>,
|
|
Arc<L>,
|
|
Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
|
|
>>,
|
|
Arc<L>
|
|
>;
|
|
|
|
/// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
|
|
/// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
|
|
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
|
|
/// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
|
|
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
|
|
/// issues such as overly long function definitions. Note that the ChannelManager can take any type
|
|
/// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
|
|
/// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
|
|
/// of [`KeysManager`] and [`DefaultRouter`].
|
|
///
|
|
/// This is not exported to bindings users as Arcs don't make sense in bindings
|
|
pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
|
|
|
|
/// A trivial trait which describes any [`ChannelManager`] used in testing.
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
pub trait AChannelManager {
|
|
type Watch: chain::Watch<Self::Signer>;
|
|
type M: Deref<Target = Self::Watch>;
|
|
type Broadcaster: BroadcasterInterface;
|
|
type T: Deref<Target = Self::Broadcaster>;
|
|
type EntropySource: EntropySource;
|
|
type ES: Deref<Target = Self::EntropySource>;
|
|
type NodeSigner: NodeSigner;
|
|
type NS: Deref<Target = Self::NodeSigner>;
|
|
type Signer: WriteableEcdsaChannelSigner;
|
|
type SignerProvider: SignerProvider<Signer = Self::Signer>;
|
|
type SP: Deref<Target = Self::SignerProvider>;
|
|
type FeeEstimator: FeeEstimator;
|
|
type F: Deref<Target = Self::FeeEstimator>;
|
|
type Router: Router;
|
|
type R: Deref<Target = Self::Router>;
|
|
type Logger: Logger;
|
|
type L: Deref<Target = Self::Logger>;
|
|
fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
|
|
}
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
|
|
for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer> + Sized,
|
|
T::Target: BroadcasterInterface + Sized,
|
|
ES::Target: EntropySource + Sized,
|
|
NS::Target: NodeSigner + Sized,
|
|
SP::Target: SignerProvider + Sized,
|
|
F::Target: FeeEstimator + Sized,
|
|
R::Target: Router + Sized,
|
|
L::Target: Logger + Sized,
|
|
{
|
|
type Watch = M::Target;
|
|
type M = M;
|
|
type Broadcaster = T::Target;
|
|
type T = T;
|
|
type EntropySource = ES::Target;
|
|
type ES = ES;
|
|
type NodeSigner = NS::Target;
|
|
type NS = NS;
|
|
type Signer = <SP::Target as SignerProvider>::Signer;
|
|
type SignerProvider = SP::Target;
|
|
type SP = SP;
|
|
type FeeEstimator = F::Target;
|
|
type F = F;
|
|
type Router = R::Target;
|
|
type R = R;
|
|
type Logger = L::Target;
|
|
type L = L;
|
|
fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
|
|
}
|
|
|
|
/// Manager which keeps track of a number of channels and sends messages to the appropriate
|
|
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
|
|
///
|
|
/// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
|
|
/// to individual Channels.
|
|
///
|
|
/// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
|
|
/// all peers during write/read (though does not modify this instance, only the instance being
|
|
/// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
|
|
/// called [`funding_transaction_generated`] for outbound channels) being closed.
|
|
///
|
|
/// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
|
|
/// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
|
|
/// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
|
|
/// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
|
|
/// the serialization process). If the deserialized version is out-of-date compared to the
|
|
/// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
|
|
/// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
|
|
///
|
|
/// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
|
|
/// tells you the last block hash which was connected. You should get the best block tip before using the manager.
|
|
/// See [`chain::Listen`] and [`chain::Confirm`] for more details.
|
|
///
|
|
/// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
|
|
/// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
|
|
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
|
|
/// offline for a full minute. In order to track this, you must call
|
|
/// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
|
|
///
|
|
/// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
|
|
/// inbound channels without confirmed funding transactions. This may result in nodes which we do
|
|
/// not have a channel with being unable to connect to us or open new channels with us if we have
|
|
/// many peers with unfunded channels.
|
|
///
|
|
/// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
|
|
/// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
|
|
/// never limited. Please ensure you limit the count of such channels yourself.
|
|
///
|
|
/// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
|
|
/// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
|
|
/// essentially you should default to using a [`SimpleRefChannelManager`], and use a
|
|
/// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
|
|
/// you're using lightning-net-tokio.
|
|
///
|
|
/// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
|
|
/// [`funding_created`]: msgs::FundingCreated
|
|
/// [`funding_transaction_generated`]: Self::funding_transaction_generated
|
|
/// [`BlockHash`]: bitcoin::hash_types::BlockHash
|
|
/// [`update_channel`]: chain::Watch::update_channel
|
|
/// [`ChannelUpdate`]: msgs::ChannelUpdate
|
|
/// [`timer_tick_occurred`]: Self::timer_tick_occurred
|
|
/// [`read`]: ReadableArgs::read
|
|
//
|
|
// Lock order:
|
|
// The tree structure below illustrates the lock order requirements for the different locks of the
|
|
// `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
|
|
// and should then be taken in the order of the lowest to the highest level in the tree.
|
|
// Note that locks on different branches shall not be taken at the same time, as doing so will
|
|
// create a new lock order for those specific locks in the order they were taken.
|
|
//
|
|
// Lock order tree:
|
|
//
|
|
// `total_consistency_lock`
|
|
// |
|
|
// |__`forward_htlcs`
|
|
// | |
|
|
// | |__`pending_intercepted_htlcs`
|
|
// |
|
|
// |__`per_peer_state`
|
|
// | |
|
|
// | |__`pending_inbound_payments`
|
|
// | |
|
|
// | |__`claimable_payments`
|
|
// | |
|
|
// | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
|
|
// | |
|
|
// | |__`peer_state`
|
|
// | |
|
|
// | |__`id_to_peer`
|
|
// | |
|
|
// | |__`short_to_chan_info`
|
|
// | |
|
|
// | |__`outbound_scid_aliases`
|
|
// | |
|
|
// | |__`best_block`
|
|
// | |
|
|
// | |__`pending_events`
|
|
// | |
|
|
// | |__`pending_background_events`
|
|
//
|
|
pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
default_configuration: UserConfig,
|
|
genesis_hash: BlockHash,
|
|
fee_estimator: LowerBoundedFeeEstimator<F>,
|
|
chain_monitor: M,
|
|
tx_broadcaster: T,
|
|
#[allow(unused)]
|
|
router: R,
|
|
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
#[cfg(test)]
|
|
pub(super) best_block: RwLock<BestBlock>,
|
|
#[cfg(not(test))]
|
|
best_block: RwLock<BestBlock>,
|
|
secp_ctx: Secp256k1<secp256k1::All>,
|
|
|
|
/// Storage for PaymentSecrets and any requirements on future inbound payments before we will
|
|
/// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
|
|
/// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
|
|
/// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
|
|
|
|
/// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
|
|
/// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
|
|
/// (if the channel has been force-closed), however we track them here to prevent duplicative
|
|
/// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
|
|
/// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
|
|
/// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
|
|
/// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
|
|
/// after reloading from disk while replaying blocks against ChannelMonitors.
|
|
///
|
|
/// See `PendingOutboundPayment` documentation for more info.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
pending_outbound_payments: OutboundPayments,
|
|
|
|
/// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
|
|
///
|
|
/// Note that because we may have an SCID Alias as the key we can have two entries per channel,
|
|
/// though in practice we probably won't be receiving HTLCs for a channel both via the alias
|
|
/// and via the classic SCID.
|
|
///
|
|
/// Note that no consistency guarantees are made about the existence of a channel with the
|
|
/// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
#[cfg(test)]
|
|
pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
|
|
#[cfg(not(test))]
|
|
forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
|
|
/// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
|
|
/// until the user tells us what we should do with them.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
|
|
|
|
/// The sets of payments which are claimable or currently being claimed. See
|
|
/// [`ClaimablePayments`]' individual field docs for more info.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
claimable_payments: Mutex<ClaimablePayments>,
|
|
|
|
/// The set of outbound SCID aliases across all our channels, including unconfirmed channels
|
|
/// and some closed channels which reached a usable state prior to being closed. This is used
|
|
/// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
|
|
/// active channel list on load.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
outbound_scid_aliases: Mutex<HashSet<u64>>,
|
|
|
|
/// `channel_id` -> `counterparty_node_id`.
|
|
///
|
|
/// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
|
|
/// multiple channels with the same `temporary_channel_id` to different peers can exist,
|
|
/// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
|
|
///
|
|
/// Note that this map should only be used for `MonitorEvent` handling, to be able to access
|
|
/// the corresponding channel for the event, as we only have access to the `channel_id` during
|
|
/// the handling of the events.
|
|
///
|
|
/// Note that no consistency guarantees are made about the existence of a peer with the
|
|
/// `counterparty_node_id` in our other maps.
|
|
///
|
|
/// TODO:
|
|
/// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
|
|
/// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
|
|
/// would break backwards compatability.
|
|
/// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
|
|
/// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
|
|
/// required to access the channel with the `counterparty_node_id`.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
|
|
|
|
/// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
|
|
///
|
|
/// Outbound SCID aliases are added here once the channel is available for normal use, with
|
|
/// SCIDs being added once the funding transaction is confirmed at the channel's required
|
|
/// confirmation depth.
|
|
///
|
|
/// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
|
|
/// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
|
|
/// channel with the `channel_id` in our other maps.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
#[cfg(test)]
|
|
pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
|
|
#[cfg(not(test))]
|
|
short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
|
|
|
|
our_network_pubkey: PublicKey,
|
|
|
|
inbound_payment_key: inbound_payment::ExpandedKey,
|
|
|
|
/// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
|
|
/// incoming payment. To make it harder for a third-party to identify the type of a payment,
|
|
/// we encrypt the namespace identifier using these bytes.
|
|
///
|
|
/// [fake scids]: crate::util::scid_utils::fake_scid
|
|
fake_scid_rand_bytes: [u8; 32],
|
|
|
|
/// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
|
|
/// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
|
|
/// keeping additional state.
|
|
probing_cookie_secret: [u8; 32],
|
|
|
|
/// The highest block timestamp we've seen, which is usually a good guess at the current time.
|
|
/// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
|
|
/// very far in the past, and can only ever be up to two hours in the future.
|
|
highest_seen_timestamp: AtomicUsize,
|
|
|
|
/// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
|
|
/// basis, as well as the peer's latest features.
|
|
///
|
|
/// If we are connected to a peer we always at least have an entry here, even if no channels
|
|
/// are currently open with that peer.
|
|
///
|
|
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
|
|
/// operate on the inner value freely. This opens up for parallel per-peer operation for
|
|
/// channels.
|
|
///
|
|
/// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
|
|
///
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
#[cfg(not(any(test, feature = "_test_utils")))]
|
|
per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
|
|
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
pending_events: Mutex<Vec<events::Event>>,
|
|
/// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
|
|
pending_events_processor: AtomicBool,
|
|
/// See `ChannelManager` struct-level documentation for lock order requirements.
|
|
pending_background_events: Mutex<Vec<BackgroundEvent>>,
|
|
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
|
|
/// Essentially just when we're serializing ourselves out.
|
|
/// Taken first everywhere where we are making changes before any other locks.
|
|
/// When acquiring this lock in read mode, rather than acquiring it directly, call
|
|
/// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
|
|
/// Notifier the lock contains sends out a notification when the lock is released.
|
|
total_consistency_lock: RwLock<()>,
|
|
|
|
persistence_notifier: Notifier,
|
|
|
|
entropy_source: ES,
|
|
node_signer: NS,
|
|
signer_provider: SP,
|
|
|
|
logger: L,
|
|
}
|
|
|
|
/// Chain-related parameters used to construct a new `ChannelManager`.
|
|
///
|
|
/// Typically, the block-specific parameters are derived from the best block hash for the network,
|
|
/// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
|
|
/// are not needed when deserializing a previously constructed `ChannelManager`.
|
|
#[derive(Clone, Copy, PartialEq)]
|
|
pub struct ChainParameters {
|
|
/// The network for determining the `chain_hash` in Lightning messages.
|
|
pub network: Network,
|
|
|
|
/// The hash and height of the latest block successfully connected.
|
|
///
|
|
/// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
|
|
pub best_block: BestBlock,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
enum NotifyOption {
|
|
DoPersist,
|
|
SkipPersist,
|
|
}
|
|
|
|
/// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
|
|
/// desirable to notify any listeners on `await_persistable_update_timeout`/
|
|
/// `await_persistable_update` when new updates are available for persistence. Therefore, this
|
|
/// struct is responsible for locking the total consistency lock and, upon going out of scope,
|
|
/// sending the aforementioned notification (since the lock being released indicates that the
|
|
/// updates are ready for persistence).
|
|
///
|
|
/// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
|
|
/// notify or not based on whether relevant changes have been made, providing a closure to
|
|
/// `optionally_notify` which returns a `NotifyOption`.
|
|
struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
|
|
persistence_notifier: &'a Notifier,
|
|
should_persist: F,
|
|
// We hold onto this result so the lock doesn't get released immediately.
|
|
_read_guard: RwLockReadGuard<'a, ()>,
|
|
}
|
|
|
|
impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
|
|
fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
|
|
PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
|
|
}
|
|
|
|
fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
|
|
let read_guard = lock.read().unwrap();
|
|
|
|
PersistenceNotifierGuard {
|
|
persistence_notifier: notifier,
|
|
should_persist: persist_check,
|
|
_read_guard: read_guard,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
|
|
fn drop(&mut self) {
|
|
if (self.should_persist)() == NotifyOption::DoPersist {
|
|
self.persistence_notifier.notify();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The amount of time in blocks we require our counterparty wait to claim their money (ie time
|
|
/// between when we, or our watchtower, must check for them having broadcast a theft transaction).
|
|
///
|
|
/// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
|
|
///
|
|
/// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
|
|
pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
|
|
/// The amount of time in blocks we're willing to wait to claim money back to us. This matches
|
|
/// the maximum required amount in lnd as of March 2021.
|
|
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
|
|
|
|
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
|
|
/// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
|
|
///
|
|
/// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
|
|
///
|
|
/// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
|
|
// This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
|
|
// i.e. the node we forwarded the payment on to should always have enough room to reliably time out
|
|
// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
|
|
// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
|
|
pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
|
|
// This should be long enough to allow a payment path drawn across multiple routing hops with substantial
|
|
// `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
|
|
// in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
|
|
// scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
|
|
// while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
|
|
// routing failure for any HTLC sender picking up an LDK node among the first hops.
|
|
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
|
|
|
|
/// Minimum CLTV difference between the current block height and received inbound payments.
|
|
/// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
|
|
/// this value.
|
|
// Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
|
|
// any payments to succeed. Further, we don't want payments to fail if a block was found while
|
|
// a payment was being routed, so we add an extra block to be safe.
|
|
pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
|
|
|
|
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
|
|
// ie that if the next-hop peer fails the HTLC within
|
|
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
|
|
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
|
|
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
|
|
// LATENCY_GRACE_PERIOD_BLOCKS.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
|
|
|
|
// Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
|
|
// ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
|
|
|
|
/// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
|
|
pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
|
|
|
|
/// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
|
|
/// idempotency of payments by [`PaymentId`]. See
|
|
/// [`OutboundPayments::remove_stale_resolved_payments`].
|
|
pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
|
|
|
|
/// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
|
|
/// until we mark the channel disabled and gossip the update.
|
|
pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
|
|
|
|
/// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
|
|
/// we mark the channel enabled and gossip the update.
|
|
pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
|
|
|
|
/// The maximum number of unfunded channels we can have per-peer before we start rejecting new
|
|
/// (inbound) ones. The number of peers with unfunded channels is limited separately in
|
|
/// [`MAX_UNFUNDED_CHANNEL_PEERS`].
|
|
const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
|
|
|
|
/// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
|
|
/// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
|
|
const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
|
|
|
|
/// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
|
|
/// many peers we reject new (inbound) connections.
|
|
const MAX_NO_CHANNEL_PEERS: usize = 250;
|
|
|
|
/// Information needed for constructing an invoice route hint for this channel.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct CounterpartyForwardingInfo {
|
|
/// Base routing fee in millisatoshis.
|
|
pub fee_base_msat: u32,
|
|
/// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
|
|
pub fee_proportional_millionths: u32,
|
|
/// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
|
|
/// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
|
|
/// `cltv_expiry_delta` for more details.
|
|
pub cltv_expiry_delta: u16,
|
|
}
|
|
|
|
/// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
|
|
/// to better separate parameters.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct ChannelCounterparty {
|
|
/// The node_id of our counterparty
|
|
pub node_id: PublicKey,
|
|
/// The Features the channel counterparty provided upon last connection.
|
|
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
|
|
/// many routing-relevant features are present in the init context.
|
|
pub features: InitFeatures,
|
|
/// The value, in satoshis, that must always be held in the channel for our counterparty. This
|
|
/// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
|
|
/// claiming at least this value on chain.
|
|
///
|
|
/// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
|
|
///
|
|
/// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
|
|
pub unspendable_punishment_reserve: u64,
|
|
/// Information on the fees and requirements that the counterparty requires when forwarding
|
|
/// payments to us through this channel.
|
|
pub forwarding_info: Option<CounterpartyForwardingInfo>,
|
|
/// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
|
|
/// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
|
|
/// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
|
|
pub outbound_htlc_minimum_msat: Option<u64>,
|
|
/// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
|
|
pub outbound_htlc_maximum_msat: Option<u64>,
|
|
}
|
|
|
|
/// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct ChannelDetails {
|
|
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
|
|
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
|
|
/// Note that this means this value is *not* persistent - it can change once during the
|
|
/// lifetime of the channel.
|
|
pub channel_id: [u8; 32],
|
|
/// Parameters which apply to our counterparty. See individual fields for more information.
|
|
pub counterparty: ChannelCounterparty,
|
|
/// The Channel's funding transaction output, if we've negotiated the funding transaction with
|
|
/// our counterparty already.
|
|
///
|
|
/// Note that, if this has been set, `channel_id` will be equivalent to
|
|
/// `funding_txo.unwrap().to_channel_id()`.
|
|
pub funding_txo: Option<OutPoint>,
|
|
/// The features which this channel operates with. See individual features for more info.
|
|
///
|
|
/// `None` until negotiation completes and the channel type is finalized.
|
|
pub channel_type: Option<ChannelTypeFeatures>,
|
|
/// The position of the funding transaction in the chain. None if the funding transaction has
|
|
/// not yet been confirmed and the channel fully opened.
|
|
///
|
|
/// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
|
|
/// payments instead of this. See [`get_inbound_payment_scid`].
|
|
///
|
|
/// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
|
|
/// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
|
|
///
|
|
/// [`inbound_scid_alias`]: Self::inbound_scid_alias
|
|
/// [`outbound_scid_alias`]: Self::outbound_scid_alias
|
|
/// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
|
|
/// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
|
|
/// [`confirmations_required`]: Self::confirmations_required
|
|
pub short_channel_id: Option<u64>,
|
|
/// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
|
|
/// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
|
|
/// the channel has not yet been confirmed (as long as [`confirmations_required`] is
|
|
/// `Some(0)`).
|
|
///
|
|
/// This will be `None` as long as the channel is not available for routing outbound payments.
|
|
///
|
|
/// [`short_channel_id`]: Self::short_channel_id
|
|
/// [`confirmations_required`]: Self::confirmations_required
|
|
pub outbound_scid_alias: Option<u64>,
|
|
/// An optional [`short_channel_id`] alias for this channel, randomly generated by our
|
|
/// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
|
|
/// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
|
|
/// when they see a payment to be routed to us.
|
|
///
|
|
/// Our counterparty may choose to rotate this value at any time, though will always recognize
|
|
/// previous values for inbound payment forwarding.
|
|
///
|
|
/// [`short_channel_id`]: Self::short_channel_id
|
|
pub inbound_scid_alias: Option<u64>,
|
|
/// The value, in satoshis, of this channel as appears in the funding output
|
|
pub channel_value_satoshis: u64,
|
|
/// The value, in satoshis, that must always be held in the channel for us. This value ensures
|
|
/// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
|
|
/// this value on chain.
|
|
///
|
|
/// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
///
|
|
/// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
|
|
pub unspendable_punishment_reserve: Option<u64>,
|
|
/// The `user_channel_id` passed in to create_channel, or a random value if the channel was
|
|
/// inbound. This may be zero for inbound channels serialized with LDK versions prior to
|
|
/// 0.0.113.
|
|
pub user_channel_id: u128,
|
|
/// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
|
|
/// which is applied to commitment and HTLC transactions.
|
|
///
|
|
/// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
|
|
pub feerate_sat_per_1000_weight: Option<u32>,
|
|
/// Our total balance. This is the amount we would get if we close the channel.
|
|
/// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
|
|
/// amount is not likely to be recoverable on close.
|
|
///
|
|
/// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
|
|
/// balance is not available for inclusion in new outbound HTLCs). This further does not include
|
|
/// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
/// This does not consider any on-chain fees.
|
|
///
|
|
/// See also [`ChannelDetails::outbound_capacity_msat`]
|
|
pub balance_msat: u64,
|
|
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
|
|
/// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
|
|
/// available for inclusion in new outbound HTLCs). This further does not include any pending
|
|
/// outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
///
|
|
/// See also [`ChannelDetails::balance_msat`]
|
|
///
|
|
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
|
|
/// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
|
|
/// should be able to spend nearly this amount.
|
|
pub outbound_capacity_msat: u64,
|
|
/// The available outbound capacity for sending a single HTLC to the remote peer. This is
|
|
/// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
|
|
/// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
|
|
/// to use a limit as close as possible to the HTLC limit we can currently send.
|
|
///
|
|
/// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
|
|
pub next_outbound_htlc_limit_msat: u64,
|
|
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
|
|
/// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
|
|
/// available for inclusion in new inbound HTLCs).
|
|
/// Note that there are some corner cases not fully handled here, so the actual available
|
|
/// inbound capacity may be slightly higher than this.
|
|
///
|
|
/// This value is not exact. Due to various in-flight changes, feerate changes, and our
|
|
/// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
|
|
/// However, our counterparty should be able to spend nearly this amount.
|
|
pub inbound_capacity_msat: u64,
|
|
/// The number of required confirmations on the funding transaction before the funding will be
|
|
/// considered "locked". This number is selected by the channel fundee (i.e. us if
|
|
/// [`is_outbound`] is *not* set), and can be selected for inbound channels with
|
|
/// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
|
|
/// [`ChannelHandshakeLimits::max_minimum_depth`].
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
///
|
|
/// [`is_outbound`]: ChannelDetails::is_outbound
|
|
/// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
|
|
/// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
|
|
pub confirmations_required: Option<u32>,
|
|
/// The current number of confirmations on the funding transaction.
|
|
///
|
|
/// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
|
|
pub confirmations: Option<u32>,
|
|
/// The number of blocks (after our commitment transaction confirms) that we will need to wait
|
|
/// until we can claim our funds after we force-close the channel. During this time our
|
|
/// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
|
|
/// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
|
|
/// time to claim our non-HTLC-encumbered funds.
|
|
///
|
|
/// This value will be `None` for outbound channels until the counterparty accepts the channel.
|
|
pub force_close_spend_delay: Option<u16>,
|
|
/// True if the channel was initiated (and thus funded) by us.
|
|
pub is_outbound: bool,
|
|
/// True if the channel is confirmed, channel_ready messages have been exchanged, and the
|
|
/// channel is not currently being shut down. `channel_ready` message exchange implies the
|
|
/// required confirmation count has been reached (and we were connected to the peer at some
|
|
/// point after the funding transaction received enough confirmations). The required
|
|
/// confirmation count is provided in [`confirmations_required`].
|
|
///
|
|
/// [`confirmations_required`]: ChannelDetails::confirmations_required
|
|
pub is_channel_ready: bool,
|
|
/// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
|
|
/// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
|
|
///
|
|
/// This is a strict superset of `is_channel_ready`.
|
|
pub is_usable: bool,
|
|
/// True if this channel is (or will be) publicly-announced.
|
|
pub is_public: bool,
|
|
/// The smallest value HTLC (in msat) we will accept, for this channel. This field
|
|
/// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
|
|
pub inbound_htlc_minimum_msat: Option<u64>,
|
|
/// The largest value HTLC (in msat) we currently will accept, for this channel.
|
|
pub inbound_htlc_maximum_msat: Option<u64>,
|
|
/// Set of configurable parameters that affect channel operation.
|
|
///
|
|
/// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
|
|
pub config: Option<ChannelConfig>,
|
|
}
|
|
|
|
impl ChannelDetails {
|
|
/// Gets the current SCID which should be used to identify this channel for inbound payments.
|
|
/// This should be used for providing invoice hints or in any other context where our
|
|
/// counterparty will forward a payment to us.
|
|
///
|
|
/// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
|
|
/// [`ChannelDetails::short_channel_id`]. See those for more information.
|
|
pub fn get_inbound_payment_scid(&self) -> Option<u64> {
|
|
self.inbound_scid_alias.or(self.short_channel_id)
|
|
}
|
|
|
|
/// Gets the current SCID which should be used to identify this channel for outbound payments.
|
|
/// This should be used in [`Route`]s to describe the first hop or in other contexts where
|
|
/// we're sending or forwarding a payment outbound over this channel.
|
|
///
|
|
/// This is either the [`ChannelDetails::short_channel_id`], if set, or the
|
|
/// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
|
|
pub fn get_outbound_payment_scid(&self) -> Option<u64> {
|
|
self.short_channel_id.or(self.outbound_scid_alias)
|
|
}
|
|
|
|
fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
|
|
best_block_height: u32, latest_features: InitFeatures) -> Self {
|
|
|
|
let balance = channel.get_available_balances();
|
|
let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
|
|
channel.get_holder_counterparty_selected_channel_reserve_satoshis();
|
|
ChannelDetails {
|
|
channel_id: channel.channel_id(),
|
|
counterparty: ChannelCounterparty {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
features: latest_features,
|
|
unspendable_punishment_reserve: to_remote_reserve_satoshis,
|
|
forwarding_info: channel.counterparty_forwarding_info(),
|
|
// Ensures that we have actually received the `htlc_minimum_msat` value
|
|
// from the counterparty through the `OpenChannel` or `AcceptChannel`
|
|
// message (as they are always the first message from the counterparty).
|
|
// Else `Channel::get_counterparty_htlc_minimum_msat` could return the
|
|
// default `0` value set by `Channel::new_outbound`.
|
|
outbound_htlc_minimum_msat: if channel.have_received_message() {
|
|
Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
|
|
outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
|
|
},
|
|
funding_txo: channel.get_funding_txo(),
|
|
// Note that accept_channel (or open_channel) is always the first message, so
|
|
// `have_received_message` indicates that type negotiation has completed.
|
|
channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
|
|
short_channel_id: channel.get_short_channel_id(),
|
|
outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
|
|
inbound_scid_alias: channel.latest_inbound_scid_alias(),
|
|
channel_value_satoshis: channel.get_value_satoshis(),
|
|
feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
|
|
unspendable_punishment_reserve: to_self_reserve_satoshis,
|
|
balance_msat: balance.balance_msat,
|
|
inbound_capacity_msat: balance.inbound_capacity_msat,
|
|
outbound_capacity_msat: balance.outbound_capacity_msat,
|
|
next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
|
|
user_channel_id: channel.get_user_id(),
|
|
confirmations_required: channel.minimum_depth(),
|
|
confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
|
|
force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
|
|
is_outbound: channel.is_outbound(),
|
|
is_channel_ready: channel.is_usable(),
|
|
is_usable: channel.is_live(),
|
|
is_public: channel.should_announce(),
|
|
inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
|
|
inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
|
|
config: Some(channel.config()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
|
|
/// These include payments that have yet to find a successful path, or have unresolved HTLCs.
|
|
#[derive(Debug, PartialEq)]
|
|
pub enum RecentPaymentDetails {
|
|
/// When a payment is still being sent and awaiting successful delivery.
|
|
Pending {
|
|
/// Hash of the payment that is currently being sent but has yet to be fulfilled or
|
|
/// abandoned.
|
|
payment_hash: PaymentHash,
|
|
/// Total amount (in msat, excluding fees) across all paths for this payment,
|
|
/// not just the amount currently inflight.
|
|
total_msat: u64,
|
|
},
|
|
/// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
|
|
/// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
|
|
/// payment is removed from tracking.
|
|
Fulfilled {
|
|
/// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
|
|
/// made before LDK version 0.0.104.
|
|
payment_hash: Option<PaymentHash>,
|
|
},
|
|
/// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
|
|
/// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
|
|
/// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
|
|
Abandoned {
|
|
/// Hash of the payment that we have given up trying to send.
|
|
payment_hash: PaymentHash,
|
|
},
|
|
}
|
|
|
|
/// Route hints used in constructing invoices for [phantom node payents].
|
|
///
|
|
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
|
|
#[derive(Clone)]
|
|
pub struct PhantomRouteHints {
|
|
/// The list of channels to be included in the invoice route hints.
|
|
pub channels: Vec<ChannelDetails>,
|
|
/// A fake scid used for representing the phantom node's fake channel in generating the invoice
|
|
/// route hints.
|
|
pub phantom_scid: u64,
|
|
/// The pubkey of the real backing node that would ultimately receive the payment.
|
|
pub real_node_pubkey: PublicKey,
|
|
}
|
|
|
|
macro_rules! handle_error {
|
|
($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
|
|
// In testing, ensure there are no deadlocks where the lock is already held upon
|
|
// entering the macro.
|
|
debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
|
|
debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
|
|
|
|
match $internal {
|
|
Ok(msg) => Ok(msg),
|
|
Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
|
|
let mut msg_events = Vec::with_capacity(2);
|
|
|
|
if let Some((shutdown_res, update_option)) = shutdown_finish {
|
|
$self.finish_force_close_channel(shutdown_res);
|
|
if let Some(update) = update_option {
|
|
msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
if let Some((channel_id, user_channel_id)) = chan_id {
|
|
$self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
|
|
channel_id, user_channel_id,
|
|
reason: ClosureReason::ProcessingError { err: err.err.clone() }
|
|
});
|
|
}
|
|
}
|
|
|
|
log_error!($self.logger, "{}", err.err);
|
|
if let msgs::ErrorAction::IgnoreError = err.action {
|
|
} else {
|
|
msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: $counterparty_node_id,
|
|
action: err.action.clone()
|
|
});
|
|
}
|
|
|
|
if !msg_events.is_empty() {
|
|
let per_peer_state = $self.per_peer_state.read().unwrap();
|
|
if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
|
|
let mut peer_state = peer_state_mutex.lock().unwrap();
|
|
peer_state.pending_msg_events.append(&mut msg_events);
|
|
}
|
|
}
|
|
|
|
// Return error in case higher-API need one
|
|
Err(err)
|
|
},
|
|
}
|
|
} }
|
|
}
|
|
|
|
macro_rules! update_maps_on_chan_removal {
|
|
($self: expr, $channel: expr) => {{
|
|
$self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
|
|
let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
|
|
if let Some(short_id) = $channel.get_short_channel_id() {
|
|
short_to_chan_info.remove(&short_id);
|
|
} else {
|
|
// If the channel was never confirmed on-chain prior to its closure, remove the
|
|
// outbound SCID alias we used for it from the collision-prevention set. While we
|
|
// generally want to avoid ever re-using an outbound SCID alias across all channels, we
|
|
// also don't want a counterparty to be able to trivially cause a memory leak by simply
|
|
// opening a million channels with us which are closed before we ever reach the funding
|
|
// stage.
|
|
let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
|
|
debug_assert!(alias_removed);
|
|
}
|
|
short_to_chan_info.remove(&$channel.outbound_scid_alias());
|
|
}}
|
|
}
|
|
|
|
/// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
|
|
macro_rules! convert_chan_err {
|
|
($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
|
|
match $err {
|
|
ChannelError::Warn(msg) => {
|
|
(false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
|
|
},
|
|
ChannelError::Ignore(msg) => {
|
|
(false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
|
|
},
|
|
ChannelError::Close(msg) => {
|
|
log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
|
|
update_maps_on_chan_removal!($self, $channel);
|
|
let shutdown_res = $channel.force_shutdown(true);
|
|
(true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
|
|
shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! break_chan_entry {
|
|
($self: ident, $res: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
|
|
if drop {
|
|
$entry.remove_entry();
|
|
}
|
|
break Err(res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! try_chan_entry {
|
|
($self: ident, $res: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
|
|
if drop {
|
|
$entry.remove_entry();
|
|
}
|
|
return Err(res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! remove_channel {
|
|
($self: expr, $entry: expr) => {
|
|
{
|
|
let channel = $entry.remove_entry().1;
|
|
update_maps_on_chan_removal!($self, channel);
|
|
channel
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! send_channel_ready {
|
|
($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
|
|
$pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
|
|
node_id: $channel.get_counterparty_node_id(),
|
|
msg: $channel_ready_msg,
|
|
});
|
|
// Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
|
|
// we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
|
|
let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
|
|
let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
|
|
assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
|
|
"SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
|
|
if let Some(real_scid) = $channel.get_short_channel_id() {
|
|
let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
|
|
assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
|
|
"SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
|
|
}
|
|
}}
|
|
}
|
|
|
|
macro_rules! emit_channel_pending_event {
|
|
($locked_events: expr, $channel: expr) => {
|
|
if $channel.should_emit_channel_pending_event() {
|
|
$locked_events.push(events::Event::ChannelPending {
|
|
channel_id: $channel.channel_id(),
|
|
former_temporary_channel_id: $channel.temporary_channel_id(),
|
|
counterparty_node_id: $channel.get_counterparty_node_id(),
|
|
user_channel_id: $channel.get_user_id(),
|
|
funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
|
|
});
|
|
$channel.set_channel_pending_event_emitted();
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! emit_channel_ready_event {
|
|
($locked_events: expr, $channel: expr) => {
|
|
if $channel.should_emit_channel_ready_event() {
|
|
debug_assert!($channel.channel_pending_event_emitted());
|
|
$locked_events.push(events::Event::ChannelReady {
|
|
channel_id: $channel.channel_id(),
|
|
user_channel_id: $channel.get_user_id(),
|
|
counterparty_node_id: $channel.get_counterparty_node_id(),
|
|
channel_type: $channel.get_channel_type().clone(),
|
|
});
|
|
$channel.set_channel_ready_event_emitted();
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! handle_monitor_update_completion {
|
|
($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
|
|
let mut updates = $chan.monitor_updating_restored(&$self.logger,
|
|
&$self.node_signer, $self.genesis_hash, &$self.default_configuration,
|
|
$self.best_block.read().unwrap().height());
|
|
let counterparty_node_id = $chan.get_counterparty_node_id();
|
|
let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
|
|
// We only send a channel_update in the case where we are just now sending a
|
|
// channel_ready and the channel is in a usable state. We may re-send a
|
|
// channel_update later through the announcement_signatures process for public
|
|
// channels, but there's no reason not to just inform our counterparty of our fees
|
|
// now.
|
|
if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
|
|
Some(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: counterparty_node_id,
|
|
msg,
|
|
})
|
|
} else { None }
|
|
} else { None };
|
|
|
|
let update_actions = $peer_state.monitor_update_blocked_actions
|
|
.remove(&$chan.channel_id()).unwrap_or(Vec::new());
|
|
|
|
let htlc_forwards = $self.handle_channel_resumption(
|
|
&mut $peer_state.pending_msg_events, $chan, updates.raa,
|
|
updates.commitment_update, updates.order, updates.accepted_htlcs,
|
|
updates.funding_broadcastable, updates.channel_ready,
|
|
updates.announcement_sigs);
|
|
if let Some(upd) = channel_update {
|
|
$peer_state.pending_msg_events.push(upd);
|
|
}
|
|
|
|
let channel_id = $chan.channel_id();
|
|
core::mem::drop($peer_state_lock);
|
|
core::mem::drop($per_peer_state_lock);
|
|
|
|
$self.handle_monitor_update_completion_actions(update_actions);
|
|
|
|
if let Some(forwards) = htlc_forwards {
|
|
$self.forward_htlcs(&mut [forwards][..]);
|
|
}
|
|
$self.finalize_claims(updates.finalized_claimed_htlcs);
|
|
for failure in updates.failed_htlcs.drain(..) {
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
|
|
$self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
|
|
}
|
|
} }
|
|
}
|
|
|
|
macro_rules! handle_new_monitor_update {
|
|
($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
|
|
// update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
|
|
// any case so that it won't deadlock.
|
|
debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
|
|
match $update_res {
|
|
ChannelMonitorUpdateStatus::InProgress => {
|
|
log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
|
|
log_bytes!($chan.channel_id()[..]));
|
|
Ok(())
|
|
},
|
|
ChannelMonitorUpdateStatus::PermanentFailure => {
|
|
log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
|
|
log_bytes!($chan.channel_id()[..]));
|
|
update_maps_on_chan_removal!($self, $chan);
|
|
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
|
|
"ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
|
|
$chan.get_user_id(), $chan.force_shutdown(false),
|
|
$self.get_channel_update_for_broadcast(&$chan).ok()));
|
|
$remove;
|
|
res
|
|
},
|
|
ChannelMonitorUpdateStatus::Completed => {
|
|
$chan.complete_one_mon_update($update_id);
|
|
if $chan.no_monitor_updates_pending() {
|
|
handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
|
|
}
|
|
Ok(())
|
|
},
|
|
}
|
|
} };
|
|
($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
|
|
handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
|
|
}
|
|
}
|
|
|
|
macro_rules! process_events_body {
|
|
($self: expr, $event_to_handle: expr, $handle_event: expr) => {
|
|
let mut processed_all_events = false;
|
|
while !processed_all_events {
|
|
if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
|
|
return;
|
|
}
|
|
|
|
let mut result = NotifyOption::SkipPersist;
|
|
|
|
{
|
|
// We'll acquire our total consistency lock so that we can be sure no other
|
|
// persists happen while processing monitor events.
|
|
let _read_guard = $self.total_consistency_lock.read().unwrap();
|
|
|
|
// TODO: This behavior should be documented. It's unintuitive that we query
|
|
// ChannelMonitors when clearing other events.
|
|
if $self.process_pending_monitor_events() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
}
|
|
|
|
let pending_events = $self.pending_events.lock().unwrap().clone();
|
|
let num_events = pending_events.len();
|
|
if !pending_events.is_empty() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
for event in pending_events {
|
|
$event_to_handle = event;
|
|
$handle_event;
|
|
}
|
|
|
|
{
|
|
let mut pending_events = $self.pending_events.lock().unwrap();
|
|
pending_events.drain(..num_events);
|
|
processed_all_events = pending_events.is_empty();
|
|
$self.pending_events_processor.store(false, Ordering::Release);
|
|
}
|
|
|
|
if result == NotifyOption::DoPersist {
|
|
$self.persistence_notifier.notify();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// Constructs a new `ChannelManager` to hold several channels and route between them.
|
|
///
|
|
/// This is the main "logic hub" for all channel-related actions, and implements
|
|
/// [`ChannelMessageHandler`].
|
|
///
|
|
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
|
|
///
|
|
/// Users need to notify the new `ChannelManager` when a new block is connected or
|
|
/// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
|
|
/// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
|
|
/// more details.
|
|
///
|
|
/// [`block_connected`]: chain::Listen::block_connected
|
|
/// [`block_disconnected`]: chain::Listen::block_disconnected
|
|
/// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
|
|
pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
|
|
let mut secp_ctx = Secp256k1::new();
|
|
secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
|
|
let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
|
|
let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
|
|
ChannelManager {
|
|
default_configuration: config.clone(),
|
|
genesis_hash: genesis_block(params.network).header.block_hash(),
|
|
fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
|
|
chain_monitor,
|
|
tx_broadcaster,
|
|
router,
|
|
|
|
best_block: RwLock::new(params.best_block),
|
|
|
|
outbound_scid_aliases: Mutex::new(HashSet::new()),
|
|
pending_inbound_payments: Mutex::new(HashMap::new()),
|
|
pending_outbound_payments: OutboundPayments::new(),
|
|
forward_htlcs: Mutex::new(HashMap::new()),
|
|
claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
|
|
pending_intercepted_htlcs: Mutex::new(HashMap::new()),
|
|
id_to_peer: Mutex::new(HashMap::new()),
|
|
short_to_chan_info: FairRwLock::new(HashMap::new()),
|
|
|
|
our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
|
|
secp_ctx,
|
|
|
|
inbound_payment_key: expanded_inbound_key,
|
|
fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
|
|
|
|
probing_cookie_secret: entropy_source.get_secure_random_bytes(),
|
|
|
|
highest_seen_timestamp: AtomicUsize::new(0),
|
|
|
|
per_peer_state: FairRwLock::new(HashMap::new()),
|
|
|
|
pending_events: Mutex::new(Vec::new()),
|
|
pending_events_processor: AtomicBool::new(false),
|
|
pending_background_events: Mutex::new(Vec::new()),
|
|
total_consistency_lock: RwLock::new(()),
|
|
persistence_notifier: Notifier::new(),
|
|
|
|
entropy_source,
|
|
node_signer,
|
|
signer_provider,
|
|
|
|
logger,
|
|
}
|
|
}
|
|
|
|
/// Gets the current configuration applied to all new channels.
|
|
pub fn get_current_default_configuration(&self) -> &UserConfig {
|
|
&self.default_configuration
|
|
}
|
|
|
|
fn create_and_insert_outbound_scid_alias(&self) -> u64 {
|
|
let height = self.best_block.read().unwrap().height();
|
|
let mut outbound_scid_alias = 0;
|
|
let mut i = 0;
|
|
loop {
|
|
if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
|
|
outbound_scid_alias += 1;
|
|
} else {
|
|
outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
|
|
}
|
|
if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
|
|
break;
|
|
}
|
|
i += 1;
|
|
if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
|
|
}
|
|
outbound_scid_alias
|
|
}
|
|
|
|
/// Creates a new outbound channel to the given remote node and with the given value.
|
|
///
|
|
/// `user_channel_id` will be provided back as in
|
|
/// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
|
|
/// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
|
|
/// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
|
|
/// is simply copied to events and otherwise ignored.
|
|
///
|
|
/// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
|
|
/// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
|
|
///
|
|
/// Note that we do not check if you are currently connected to the given peer. If no
|
|
/// connection is available, the outbound `open_channel` message may fail to send, resulting in
|
|
/// the channel eventually being silently forgotten (dropped on reload).
|
|
///
|
|
/// Returns the new Channel's temporary `channel_id`. This ID will appear as
|
|
/// [`Event::FundingGenerationReady::temporary_channel_id`] and in
|
|
/// [`ChannelDetails::channel_id`] until after
|
|
/// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
|
|
/// one derived from the funding transaction's TXID. If the counterparty rejects the channel
|
|
/// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
|
|
///
|
|
/// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
|
|
/// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
|
|
/// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
|
|
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
|
|
if channel_value_satoshis < 1000 {
|
|
return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
|
|
}
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
// We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
|
|
debug_assert!(&self.total_consistency_lock.try_write().is_err());
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
|
|
let peer_state_mutex = per_peer_state.get(&their_network_key)
|
|
.ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
|
|
|
|
let mut peer_state = peer_state_mutex.lock().unwrap();
|
|
let channel = {
|
|
let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
|
|
let their_features = &peer_state.latest_features;
|
|
let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
|
|
match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
|
|
their_features, channel_value_satoshis, push_msat, user_channel_id, config,
|
|
self.best_block.read().unwrap().height(), outbound_scid_alias)
|
|
{
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
|
|
return Err(e);
|
|
},
|
|
}
|
|
};
|
|
let res = channel.get_open_channel(self.genesis_hash.clone());
|
|
|
|
let temporary_channel_id = channel.channel_id();
|
|
match peer_state.channel_by_id.entry(temporary_channel_id) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
if cfg!(fuzzing) {
|
|
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
|
|
} else {
|
|
panic!("RNG is bad???");
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
|
|
}
|
|
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
|
|
node_id: their_network_key,
|
|
msg: res,
|
|
});
|
|
Ok(temporary_channel_id)
|
|
}
|
|
|
|
fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
|
|
// Allocate our best estimate of the number of channels we have in the `res`
|
|
// Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
|
|
// a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
|
|
// of the ChannelMonitor handling. Therefore reallocations may still occur, but is
|
|
// unlikely as the `short_to_chan_info` map often contains 2 entries for
|
|
// the same channel.
|
|
let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
|
|
{
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
|
|
let details = ChannelDetails::from_channel(channel, best_block_height,
|
|
peer_state.latest_features.clone());
|
|
res.push(details);
|
|
}
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
|
|
/// more information.
|
|
pub fn list_channels(&self) -> Vec<ChannelDetails> {
|
|
self.list_channels_with_filter(|_| true)
|
|
}
|
|
|
|
/// Gets the list of usable channels, in random order. Useful as an argument to
|
|
/// [`Router::find_route`] to ensure non-announced channels are used.
|
|
///
|
|
/// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
|
|
/// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
|
|
/// are.
|
|
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
|
|
// Note we use is_live here instead of usable which leads to somewhat confused
|
|
// internal/external nomenclature, but that's ok cause that's probably what the user
|
|
// really wanted anyway.
|
|
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
|
|
}
|
|
|
|
/// Gets the list of channels we have with a given counterparty, in random order.
|
|
pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
|
|
if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let features = &peer_state.latest_features;
|
|
return peer_state.channel_by_id
|
|
.iter()
|
|
.map(|(_, channel)|
|
|
ChannelDetails::from_channel(channel, best_block_height, features.clone()))
|
|
.collect();
|
|
}
|
|
vec![]
|
|
}
|
|
|
|
/// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
|
|
/// successful path, or have unresolved HTLCs.
|
|
///
|
|
/// This can be useful for payments that may have been prepared, but ultimately not sent, as a
|
|
/// result of a crash. If such a payment exists, is not listed here, and an
|
|
/// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
|
|
///
|
|
/// [`Event::PaymentSent`]: events::Event::PaymentSent
|
|
pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
|
|
self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
|
|
.filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
|
|
PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
|
|
Some(RecentPaymentDetails::Pending {
|
|
payment_hash: *payment_hash,
|
|
total_msat: *total_msat,
|
|
})
|
|
},
|
|
PendingOutboundPayment::Abandoned { payment_hash, .. } => {
|
|
Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
|
|
},
|
|
PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
|
|
Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
|
|
},
|
|
PendingOutboundPayment::Legacy { .. } => None
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Helper function that issues the channel close events
|
|
fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
|
|
let mut pending_events_lock = self.pending_events.lock().unwrap();
|
|
match channel.unbroadcasted_funding() {
|
|
Some(transaction) => {
|
|
pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
|
|
},
|
|
None => {},
|
|
}
|
|
pending_events_lock.push(events::Event::ChannelClosed {
|
|
channel_id: channel.channel_id(),
|
|
user_channel_id: channel.get_user_id(),
|
|
reason: closure_reason
|
|
});
|
|
}
|
|
|
|
fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
|
|
let result: Result<(), _> = loop {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
|
|
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
let funding_txo_opt = chan_entry.get().get_funding_txo();
|
|
let their_features = &peer_state.latest_features;
|
|
let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
|
|
.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
|
|
failed_htlcs = htlcs;
|
|
|
|
// We can send the `shutdown` message before updating the `ChannelMonitor`
|
|
// here as we don't need the monitor update to complete until we send a
|
|
// `shutdown_signed`, which we'll delay if we're pending a monitor update.
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: *counterparty_node_id,
|
|
msg: shutdown_msg,
|
|
});
|
|
|
|
// Update the monitor with the shutdown script if necessary.
|
|
if let Some(monitor_update) = monitor_update_opt.take() {
|
|
let update_id = monitor_update.update_id;
|
|
let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
|
|
break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
|
|
}
|
|
|
|
if chan_entry.get().is_shutdown() {
|
|
let channel = remove_channel!(self, chan_entry);
|
|
if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: channel_update
|
|
});
|
|
}
|
|
self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
|
|
}
|
|
break Ok(());
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
|
|
}
|
|
};
|
|
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
|
|
self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
|
|
}
|
|
|
|
let _ = handle_error!(self, result, *counterparty_node_id);
|
|
Ok(())
|
|
}
|
|
|
|
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
|
|
/// will be accepted on the given channel, and after additional timeout/the closing of all
|
|
/// pending HTLCs, the channel will be closed on chain.
|
|
///
|
|
/// * If we are the channel initiator, we will pay between our [`Background`] and
|
|
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
|
|
/// estimate.
|
|
/// * If our counterparty is the channel initiator, we will require a channel closing
|
|
/// transaction feerate of at least our [`Background`] feerate or the feerate which
|
|
/// would appear on a force-closure transaction, whichever is lower. We will allow our
|
|
/// counterparty to pay as much fee as they'd like, however.
|
|
///
|
|
/// May generate a [`SendShutdown`] message event on success, which should be relayed.
|
|
///
|
|
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
|
|
/// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
|
|
/// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
|
|
/// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
|
|
pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
|
|
self.close_channel_internal(channel_id, counterparty_node_id, None)
|
|
}
|
|
|
|
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
|
|
/// will be accepted on the given channel, and after additional timeout/the closing of all
|
|
/// pending HTLCs, the channel will be closed on chain.
|
|
///
|
|
/// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
|
|
/// the channel being closed or not:
|
|
/// * If we are the channel initiator, we will pay at least this feerate on the closing
|
|
/// transaction. The upper-bound is set by
|
|
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
|
|
/// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
|
|
/// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
|
|
/// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
|
|
/// will appear on a force-closure transaction, whichever is lower).
|
|
///
|
|
/// May generate a [`SendShutdown`] message event on success, which should be relayed.
|
|
///
|
|
/// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
|
|
/// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
|
|
/// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
|
|
/// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
|
|
pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
|
|
self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
|
|
}
|
|
|
|
#[inline]
|
|
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
|
|
let (monitor_update_option, mut failed_htlcs) = shutdown_res;
|
|
log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
|
|
let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
|
|
self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
|
|
}
|
|
if let Some((funding_txo, monitor_update)) = monitor_update_option {
|
|
// There isn't anything we can do if we get an update failure - we're already
|
|
// force-closing. The monitor update on the required in-memory copy should broadcast
|
|
// the latest local state, which is the best we can do anyway. Thus, it is safe to
|
|
// ignore the result here.
|
|
let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
|
|
}
|
|
}
|
|
|
|
/// `peer_msg` should be set when we receive a message from a peer, but not set when the
|
|
/// user closes, which will be re-exposed as the `ChannelClosed` reason.
|
|
fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
|
|
-> Result<PublicKey, APIError> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(peer_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
|
|
let mut chan = {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
|
|
if let Some(peer_msg) = peer_msg {
|
|
self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
|
|
} else {
|
|
self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
|
|
}
|
|
remove_channel!(self, chan)
|
|
} else {
|
|
return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
|
|
}
|
|
};
|
|
log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
|
|
self.finish_force_close_channel(chan.force_shutdown(broadcast));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
let mut peer_state = peer_state_mutex.lock().unwrap();
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
|
|
Ok(chan.get_counterparty_node_id())
|
|
}
|
|
|
|
fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
|
|
Ok(counterparty_node_id) => {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
|
|
let mut peer_state = peer_state_mutex.lock().unwrap();
|
|
peer_state.pending_msg_events.push(
|
|
events::MessageSendEvent::HandleError {
|
|
node_id: counterparty_node_id,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
|
|
},
|
|
}
|
|
);
|
|
}
|
|
Ok(())
|
|
},
|
|
Err(e) => Err(e)
|
|
}
|
|
}
|
|
|
|
/// Force closes a channel, immediately broadcasting the latest local transaction(s) and
|
|
/// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
|
|
/// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
|
|
/// channel.
|
|
pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
|
|
-> Result<(), APIError> {
|
|
self.force_close_sending_error(channel_id, counterparty_node_id, true)
|
|
}
|
|
|
|
/// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
|
|
/// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
|
|
/// `counterparty_node_id` isn't the counterparty of the corresponding channel.
|
|
///
|
|
/// You can always get the latest local transaction(s) to broadcast from
|
|
/// [`ChannelMonitor::get_latest_holder_commitment_txn`].
|
|
pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
|
|
-> Result<(), APIError> {
|
|
self.force_close_sending_error(channel_id, counterparty_node_id, false)
|
|
}
|
|
|
|
/// Force close all channels, immediately broadcasting the latest local commitment transaction
|
|
/// for each to the chain and rejecting new HTLCs on each.
|
|
pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
|
|
for chan in self.list_channels() {
|
|
let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
|
|
}
|
|
}
|
|
|
|
/// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
|
|
/// local transaction(s).
|
|
pub fn force_close_all_channels_without_broadcasting_txn(&self) {
|
|
for chan in self.list_channels() {
|
|
let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
|
|
}
|
|
}
|
|
|
|
fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
|
|
payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
|
|
{
|
|
// final_incorrect_cltv_expiry
|
|
if hop_data.outgoing_cltv_value > cltv_expiry {
|
|
return Err(ReceiveError {
|
|
msg: "Upstream node set CLTV to less than the CLTV set by the sender",
|
|
err_code: 18,
|
|
err_data: cltv_expiry.to_be_bytes().to_vec()
|
|
})
|
|
}
|
|
// final_expiry_too_soon
|
|
// We have to have some headroom to broadcast on chain if we have the preimage, so make sure
|
|
// we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
|
|
//
|
|
// Also, ensure that, in the case of an unknown preimage for the received payment hash, our
|
|
// payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
|
|
// channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
|
|
let current_height: u32 = self.best_block.read().unwrap().height();
|
|
if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
|
|
let mut err_data = Vec::with_capacity(12);
|
|
err_data.extend_from_slice(&amt_msat.to_be_bytes());
|
|
err_data.extend_from_slice(¤t_height.to_be_bytes());
|
|
return Err(ReceiveError {
|
|
err_code: 0x4000 | 15, err_data,
|
|
msg: "The final CLTV expiry is too soon to handle",
|
|
});
|
|
}
|
|
if hop_data.amt_to_forward > amt_msat {
|
|
return Err(ReceiveError {
|
|
err_code: 19,
|
|
err_data: amt_msat.to_be_bytes().to_vec(),
|
|
msg: "Upstream node sent less than we were supposed to receive in payment",
|
|
});
|
|
}
|
|
|
|
let routing = match hop_data.format {
|
|
msgs::OnionHopDataFormat::NonFinalNode { .. } => {
|
|
return Err(ReceiveError {
|
|
err_code: 0x4000|22,
|
|
err_data: Vec::new(),
|
|
msg: "Got non final data with an HMAC of 0",
|
|
});
|
|
},
|
|
msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage, payment_metadata } => {
|
|
if payment_data.is_some() && keysend_preimage.is_some() {
|
|
return Err(ReceiveError {
|
|
err_code: 0x4000|22,
|
|
err_data: Vec::new(),
|
|
msg: "We don't support MPP keysend payments",
|
|
});
|
|
} else if let Some(data) = payment_data {
|
|
PendingHTLCRouting::Receive {
|
|
payment_data: data,
|
|
payment_metadata,
|
|
incoming_cltv_expiry: hop_data.outgoing_cltv_value,
|
|
phantom_shared_secret,
|
|
}
|
|
} else if let Some(payment_preimage) = keysend_preimage {
|
|
// We need to check that the sender knows the keysend preimage before processing this
|
|
// payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
|
|
// could discover the final destination of X, by probing the adjacent nodes on the route
|
|
// with a keysend payment of identical payment hash to X and observing the processing
|
|
// time discrepancies due to a hash collision with X.
|
|
let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
if hashed_preimage != payment_hash {
|
|
return Err(ReceiveError {
|
|
err_code: 0x4000|22,
|
|
err_data: Vec::new(),
|
|
msg: "Payment preimage didn't match payment hash",
|
|
});
|
|
}
|
|
|
|
PendingHTLCRouting::ReceiveKeysend {
|
|
payment_preimage,
|
|
payment_metadata,
|
|
incoming_cltv_expiry: hop_data.outgoing_cltv_value,
|
|
}
|
|
} else {
|
|
return Err(ReceiveError {
|
|
err_code: 0x4000|0x2000|3,
|
|
err_data: Vec::new(),
|
|
msg: "We require payment_secrets",
|
|
});
|
|
}
|
|
},
|
|
};
|
|
Ok(PendingHTLCInfo {
|
|
routing,
|
|
payment_hash,
|
|
incoming_shared_secret: shared_secret,
|
|
incoming_amt_msat: Some(amt_msat),
|
|
outgoing_amt_msat: hop_data.amt_to_forward,
|
|
outgoing_cltv_value: hop_data.outgoing_cltv_value,
|
|
})
|
|
}
|
|
|
|
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
|
|
macro_rules! return_malformed_err {
|
|
($msg: expr, $err_code: expr) => {
|
|
{
|
|
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
|
|
failure_code: $err_code,
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Err(_) = msg.onion_routing_packet.public_key {
|
|
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
|
|
}
|
|
|
|
let shared_secret = self.node_signer.ecdh(
|
|
Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
|
|
).unwrap().secret_bytes();
|
|
|
|
if msg.onion_routing_packet.version != 0 {
|
|
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
|
|
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
|
|
//the hash doesn't really serve any purpose - in the case of hashing all data, the
|
|
//receiving node would have to brute force to figure out which version was put in the
|
|
//packet by the node that send us the message, in the case of hashing the hop_data, the
|
|
//node knows the HMAC matched, so they already know what is there...
|
|
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
|
|
}
|
|
macro_rules! return_err {
|
|
($msg: expr, $err_code: expr, $data: expr) => {
|
|
{
|
|
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason: HTLCFailReason::reason($err_code, $data.to_vec())
|
|
.get_encrypted_failure_packet(&shared_secret, &None),
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
|
|
let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
|
|
Ok(res) => res,
|
|
Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
|
|
return_malformed_err!(err_msg, err_code);
|
|
},
|
|
Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
|
|
return_err!(err_msg, err_code, &[0; 0]);
|
|
},
|
|
};
|
|
|
|
let pending_forward_info = match next_hop {
|
|
onion_utils::Hop::Receive(next_hop_data) => {
|
|
// OUR PAYMENT!
|
|
match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
|
|
Ok(info) => {
|
|
// Note that we could obviously respond immediately with an update_fulfill_htlc
|
|
// message, however that would leak that we are the recipient of this payment, so
|
|
// instead we stay symmetric with the forwarding case, only responding (after a
|
|
// delay) once they've send us a commitment_signed!
|
|
PendingHTLCStatus::Forward(info)
|
|
},
|
|
Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
|
|
}
|
|
},
|
|
onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
|
|
let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
|
|
let outgoing_packet = msgs::OnionPacket {
|
|
version: 0,
|
|
public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
|
|
hop_data: new_packet_bytes,
|
|
hmac: next_hop_hmac.clone(),
|
|
};
|
|
|
|
let short_channel_id = match next_hop_data.format {
|
|
msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
|
|
msgs::OnionHopDataFormat::FinalNode { .. } => {
|
|
return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
|
|
},
|
|
};
|
|
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Forward {
|
|
onion_packet: outgoing_packet,
|
|
short_channel_id,
|
|
},
|
|
payment_hash: msg.payment_hash.clone(),
|
|
incoming_shared_secret: shared_secret,
|
|
incoming_amt_msat: Some(msg.amount_msat),
|
|
outgoing_amt_msat: next_hop_data.amt_to_forward,
|
|
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
|
|
})
|
|
}
|
|
};
|
|
|
|
if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
|
|
// If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
|
|
// with a short_channel_id of 0. This is important as various things later assume
|
|
// short_channel_id is non-0 in any ::Forward.
|
|
if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
|
|
if let Some((err, mut code, chan_update)) = loop {
|
|
let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
|
|
let forwarding_chan_info_opt = match id_option {
|
|
None => { // unknown_next_peer
|
|
// Note that this is likely a timing oracle for detecting whether an scid is a
|
|
// phantom or an intercept.
|
|
if (self.default_configuration.accept_intercept_htlcs &&
|
|
fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
|
|
fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
|
|
{
|
|
None
|
|
} else {
|
|
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
|
|
}
|
|
},
|
|
Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
|
|
};
|
|
let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() {
|
|
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
|
|
}
|
|
let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
|
|
None => {
|
|
// Channel was removed. The short_to_chan_info and channel_by_id maps
|
|
// have no consistency guarantees.
|
|
break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
|
|
},
|
|
Some(chan) => chan
|
|
};
|
|
if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
|
|
// Note that the behavior here should be identical to the above block - we
|
|
// should NOT reveal the existence or non-existence of a private channel if
|
|
// we don't allow forwards outbound over them.
|
|
break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
|
|
}
|
|
if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
|
|
// `option_scid_alias` (referred to in LDK as `scid_privacy`) means
|
|
// "refuse to forward unless the SCID alias was used", so we pretend
|
|
// we don't have the channel here.
|
|
break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
|
|
}
|
|
let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
|
|
|
|
// Note that we could technically not return an error yet here and just hope
|
|
// that the connection is reestablished or monitor updated by the time we get
|
|
// around to doing the actual forward, but better to fail early if we can and
|
|
// hopefully an attacker trying to path-trace payments cannot make this occur
|
|
// on a small/per-node/per-channel scale.
|
|
if !chan.is_live() { // channel_disabled
|
|
// If the channel_update we're going to return is disabled (i.e. the
|
|
// peer has been disabled for some time), return `channel_disabled`,
|
|
// otherwise return `temporary_channel_failure`.
|
|
if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
|
|
break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
|
|
} else {
|
|
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
|
|
}
|
|
}
|
|
if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
|
|
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
|
|
}
|
|
if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
|
|
break Some((err, code, chan_update_opt));
|
|
}
|
|
chan_update_opt
|
|
} else {
|
|
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
|
|
// We really should set `incorrect_cltv_expiry` here but as we're not
|
|
// forwarding over a real channel we can't generate a channel_update
|
|
// for it. Instead we just return a generic temporary_node_failure.
|
|
break Some((
|
|
"Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
|
|
0x2000 | 2, None,
|
|
));
|
|
}
|
|
None
|
|
};
|
|
|
|
let cur_height = self.best_block.read().unwrap().height() + 1;
|
|
// Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
|
|
// but we want to be robust wrt to counterparty packet sanitization (see
|
|
// HTLC_FAIL_BACK_BUFFER rationale).
|
|
if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
|
|
break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
|
|
}
|
|
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
|
|
break Some(("CLTV expiry is too far in the future", 21, None));
|
|
}
|
|
// If the HTLC expires ~now, don't bother trying to forward it to our
|
|
// counterparty. They should fail it anyway, but we don't want to bother with
|
|
// the round-trips or risk them deciding they definitely want the HTLC and
|
|
// force-closing to ensure they get it if we're offline.
|
|
// We previously had a much more aggressive check here which tried to ensure
|
|
// our counterparty receives an HTLC which has *our* risk threshold met on it,
|
|
// but there is no need to do that, and since we're a bit conservative with our
|
|
// risk threshold it just results in failing to forward payments.
|
|
if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
|
|
break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
|
|
}
|
|
|
|
break None;
|
|
}
|
|
{
|
|
let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
|
|
if let Some(chan_update) = chan_update {
|
|
if code == 0x1000 | 11 || code == 0x1000 | 12 {
|
|
msg.amount_msat.write(&mut res).expect("Writes cannot fail");
|
|
}
|
|
else if code == 0x1000 | 13 {
|
|
msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
|
|
}
|
|
else if code == 0x1000 | 20 {
|
|
// TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
|
|
0u16.write(&mut res).expect("Writes cannot fail");
|
|
}
|
|
(chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
|
|
msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
|
|
chan_update.write(&mut res).expect("Writes cannot fail");
|
|
} else if code & 0x1000 == 0x1000 {
|
|
// If we're trying to return an error that requires a `channel_update` but
|
|
// we're forwarding to a phantom or intercept "channel" (i.e. cannot
|
|
// generate an update), just use the generic "temporary_node_failure"
|
|
// instead.
|
|
code = 0x2000 | 2;
|
|
}
|
|
return_err!(err, code, &res.0[..]);
|
|
}
|
|
}
|
|
}
|
|
|
|
pending_forward_info
|
|
}
|
|
|
|
/// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
|
|
/// public, and thus should be called whenever the result is going to be passed out in a
|
|
/// [`MessageSendEvent::BroadcastChannelUpdate`] event.
|
|
///
|
|
/// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
|
|
/// corresponding to the channel's counterparty locked, as the channel been removed from the
|
|
/// storage and the `peer_state` lock has been dropped.
|
|
///
|
|
/// [`channel_update`]: msgs::ChannelUpdate
|
|
/// [`internal_closing_signed`]: Self::internal_closing_signed
|
|
fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
if !chan.should_announce() {
|
|
return Err(LightningError {
|
|
err: "Cannot broadcast a channel_update for a private channel".to_owned(),
|
|
action: msgs::ErrorAction::IgnoreError
|
|
});
|
|
}
|
|
if chan.get_short_channel_id().is_none() {
|
|
return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
|
|
}
|
|
log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
|
|
self.get_channel_update_for_unicast(chan)
|
|
}
|
|
|
|
/// Gets the current [`channel_update`] for the given channel. This does not check if the channel
|
|
/// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
|
|
/// and thus MUST NOT be called unless the recipient of the resulting message has already
|
|
/// provided evidence that they know about the existence of the channel.
|
|
///
|
|
/// Note that through [`internal_closing_signed`], this function is called without the
|
|
/// `peer_state` corresponding to the channel's counterparty locked, as the channel been
|
|
/// removed from the storage and the `peer_state` lock has been dropped.
|
|
///
|
|
/// [`channel_update`]: msgs::ChannelUpdate
|
|
/// [`internal_closing_signed`]: Self::internal_closing_signed
|
|
fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
|
|
let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
|
|
None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
|
|
Some(id) => id,
|
|
};
|
|
|
|
self.get_channel_update_for_onion(short_channel_id, chan)
|
|
}
|
|
fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
|
|
let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
|
|
|
|
let enabled = chan.is_usable() && match chan.channel_update_status() {
|
|
ChannelUpdateStatus::Enabled => true,
|
|
ChannelUpdateStatus::DisabledStaged(_) => true,
|
|
ChannelUpdateStatus::Disabled => false,
|
|
ChannelUpdateStatus::EnabledStaged(_) => false,
|
|
};
|
|
|
|
let unsigned = msgs::UnsignedChannelUpdate {
|
|
chain_hash: self.genesis_hash,
|
|
short_channel_id,
|
|
timestamp: chan.get_update_time_counter(),
|
|
flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
|
|
cltv_expiry_delta: chan.get_cltv_expiry_delta(),
|
|
htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
|
|
htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
|
|
fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
|
|
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
|
|
excess_data: Vec::new(),
|
|
};
|
|
// Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
|
|
// If we returned an error and the `node_signer` cannot provide a signature for whatever
|
|
// reason`, we wouldn't be able to receive inbound payments through the corresponding
|
|
// channel.
|
|
let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
|
|
|
|
Ok(msgs::ChannelUpdate {
|
|
signature: sig,
|
|
contents: unsigned
|
|
})
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
|
|
let _lck = self.total_consistency_lock.read().unwrap();
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
|
|
}
|
|
|
|
fn send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
|
|
// The top-level caller should hold the total_consistency_lock read lock.
|
|
debug_assert!(self.total_consistency_lock.try_write().is_err());
|
|
|
|
log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.hops.first().unwrap().short_channel_id);
|
|
let prng_seed = self.entropy_source.get_secure_random_bytes();
|
|
let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
|
|
|
|
let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
|
|
.map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
|
|
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
|
|
if onion_utils::route_size_insane(&onion_payloads) {
|
|
return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
|
|
}
|
|
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
|
|
|
|
let err: Result<(), _> = loop {
|
|
let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
|
|
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
|
|
Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
|
|
};
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
|
|
if !chan.get().is_live() {
|
|
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
|
|
}
|
|
let funding_txo = chan.get().get_funding_txo().unwrap();
|
|
let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
|
|
htlc_cltv, HTLCSource::OutboundRoute {
|
|
path: path.clone(),
|
|
session_priv: session_priv.clone(),
|
|
first_hop_htlc_msat: htlc_msat,
|
|
payment_id,
|
|
}, onion_packet, &self.logger);
|
|
match break_chan_entry!(self, send_res, chan) {
|
|
Some(monitor_update) => {
|
|
let update_id = monitor_update.update_id;
|
|
let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
|
|
if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
|
|
break Err(e);
|
|
}
|
|
if update_res == ChannelMonitorUpdateStatus::InProgress {
|
|
// Note that MonitorUpdateInProgress here indicates (per function
|
|
// docs) that we will resend the commitment update once monitor
|
|
// updating completes. Therefore, we must return an error
|
|
// indicating that it is unsafe to retry the payment wholesale,
|
|
// which we do in the send_payment check for
|
|
// MonitorUpdateInProgress, below.
|
|
return Err(APIError::MonitorUpdateInProgress);
|
|
}
|
|
},
|
|
None => { },
|
|
}
|
|
} else {
|
|
// The channel was likely removed after we fetched the id from the
|
|
// `short_to_chan_info` map, but before we successfully locked the
|
|
// `channel_by_id` map.
|
|
// This can occur as no consistency guarantees exists between the two maps.
|
|
return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
|
|
}
|
|
return Ok(());
|
|
};
|
|
|
|
match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
|
|
Ok(_) => unreachable!(),
|
|
Err(e) => {
|
|
Err(APIError::ChannelUnavailable { err: e.err })
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Sends a payment along a given route.
|
|
///
|
|
/// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
|
|
/// fields for more info.
|
|
///
|
|
/// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
|
|
/// [`PeerManager::process_events`]).
|
|
///
|
|
/// # Avoiding Duplicate Payments
|
|
///
|
|
/// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
|
|
/// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
|
|
/// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
|
|
/// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
|
|
/// second payment with the same [`PaymentId`].
|
|
///
|
|
/// Thus, in order to ensure duplicate payments are not sent, you should implement your own
|
|
/// tracking of payments, including state to indicate once a payment has completed. Because you
|
|
/// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
|
|
/// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
|
|
/// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
|
|
///
|
|
/// Additionally, in the scenario where we begin the process of sending a payment, but crash
|
|
/// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
|
|
/// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
|
|
/// [`ChannelManager::list_recent_payments`] for more information.
|
|
///
|
|
/// # Possible Error States on [`PaymentSendFailure`]
|
|
///
|
|
/// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
|
|
/// each entry matching the corresponding-index entry in the route paths, see
|
|
/// [`PaymentSendFailure`] for more info.
|
|
///
|
|
/// In general, a path may raise:
|
|
/// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
|
|
/// node public key) is specified.
|
|
/// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
|
|
/// (including due to previous monitor update failure or new permanent monitor update
|
|
/// failure).
|
|
/// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
|
|
/// relevant updates.
|
|
///
|
|
/// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
|
|
/// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
|
|
/// different route unless you intend to pay twice!
|
|
///
|
|
/// [`Event::PaymentSent`]: events::Event::PaymentSent
|
|
/// [`Event::PaymentFailed`]: events::Event::PaymentFailed
|
|
/// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
|
|
/// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
|
|
/// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
|
|
pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments
|
|
.send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
/// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
|
|
/// `route_params` and retry failed payment paths based on `retry_strategy`.
|
|
pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments
|
|
.send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
|
|
&self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
|
|
&self.entropy_source, &self.node_signer, best_block_height, &self.logger,
|
|
&self.pending_events,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
|
|
self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
|
|
}
|
|
|
|
|
|
/// Signals that no further retries for the given payment should occur. Useful if you have a
|
|
/// pending outbound payment with retries remaining, but wish to stop retrying the payment before
|
|
/// retries are exhausted.
|
|
///
|
|
/// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
|
|
/// as there are no remaining pending HTLCs for this payment.
|
|
///
|
|
/// Note that calling this method does *not* prevent a payment from succeeding. You must still
|
|
/// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
|
|
/// determine the ultimate status of a payment.
|
|
///
|
|
/// If an [`Event::PaymentFailed`] event is generated and we restart without this
|
|
/// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
|
|
///
|
|
/// [`Event::PaymentFailed`]: events::Event::PaymentFailed
|
|
/// [`Event::PaymentSent`]: events::Event::PaymentSent
|
|
pub fn abandon_payment(&self, payment_id: PaymentId) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
|
|
}
|
|
|
|
/// Send a spontaneous payment, which is a payment that does not require the recipient to have
|
|
/// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
|
|
/// the preimage, it must be a cryptographically secure random value that no intermediate node
|
|
/// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
|
|
/// never reach the recipient.
|
|
///
|
|
/// See [`send_payment`] documentation for more details on the return value of this function
|
|
/// and idempotency guarantees provided by the [`PaymentId`] key.
|
|
///
|
|
/// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
|
|
/// [`send_payment`] for more information about the risks of duplicate preimage usage.
|
|
///
|
|
/// Note that `route` must have exactly one path.
|
|
///
|
|
/// [`send_payment`]: Self::send_payment
|
|
pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments.send_spontaneous_payment_with_route(
|
|
route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
|
|
&self.node_signer, best_block_height,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
/// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
|
|
/// based on `route_params` and retry failed payment paths based on `retry_strategy`.
|
|
///
|
|
/// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
|
|
/// payments.
|
|
///
|
|
/// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
|
|
pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
|
|
payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
|
|
|| self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
|
|
&self.logger, &self.pending_events,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
/// Send a payment that is probing the given route for liquidity. We calculate the
|
|
/// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
|
|
/// us to easily discern them from real payments.
|
|
pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
|
|
}
|
|
|
|
/// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
|
|
/// payment probe.
|
|
#[cfg(test)]
|
|
pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
|
|
outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
|
|
}
|
|
|
|
/// Handles the generation of a funding transaction, optionally (for tests) with a function
|
|
/// which checks the correctness of the funding transaction given the associated channel.
|
|
fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
|
|
&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
|
|
) -> Result<(), APIError> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
|
|
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let (msg, chan) = match peer_state.channel_by_id.remove(temporary_channel_id) {
|
|
Some(mut chan) => {
|
|
let funding_txo = find_funding_output(&chan, &funding_transaction)?;
|
|
|
|
let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
|
|
.map_err(|e| if let ChannelError::Close(msg) = e {
|
|
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
|
|
} else { unreachable!(); });
|
|
match funding_res {
|
|
Ok(funding_msg) => (funding_msg, chan),
|
|
Err(_) => {
|
|
mem::drop(peer_state_lock);
|
|
mem::drop(per_peer_state);
|
|
|
|
let _ = handle_error!(self, funding_res, chan.get_counterparty_node_id());
|
|
return Err(APIError::ChannelUnavailable {
|
|
err: "Signer refused to sign the initial commitment transaction".to_owned()
|
|
});
|
|
},
|
|
}
|
|
},
|
|
None => {
|
|
return Err(APIError::ChannelUnavailable {
|
|
err: format!(
|
|
"Channel with id {} not found for the passed counterparty node_id {}",
|
|
log_bytes!(*temporary_channel_id), counterparty_node_id),
|
|
})
|
|
},
|
|
};
|
|
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
msg,
|
|
});
|
|
match peer_state.channel_by_id.entry(chan.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
panic!("Generated duplicate funding txid?");
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
let mut id_to_peer = self.id_to_peer.lock().unwrap();
|
|
if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
|
|
panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
|
|
}
|
|
e.insert(chan);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
|
|
self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
|
|
Ok(OutPoint { txid: tx.txid(), index: output_index })
|
|
})
|
|
}
|
|
|
|
/// Call this upon creation of a funding transaction for the given channel.
|
|
///
|
|
/// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
|
|
/// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
|
|
///
|
|
/// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
|
|
/// across the p2p network.
|
|
///
|
|
/// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
|
|
/// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
|
|
///
|
|
/// May panic if the output found in the funding transaction is duplicative with some other
|
|
/// channel (note that this should be trivially prevented by using unique funding transaction
|
|
/// keys per-channel).
|
|
///
|
|
/// Do NOT broadcast the funding transaction yourself. When we have safely received our
|
|
/// counterparty's signature the funding transaction will automatically be broadcast via the
|
|
/// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
|
|
///
|
|
/// Note that this includes RBF or similar transaction replacement strategies - lightning does
|
|
/// not currently support replacing a funding transaction on an existing channel. Instead,
|
|
/// create a new channel with a conflicting funding transaction.
|
|
///
|
|
/// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
|
|
/// the wallet software generating the funding transaction to apply anti-fee sniping as
|
|
/// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
|
|
/// for more details.
|
|
///
|
|
/// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
|
|
/// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
|
|
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
for inp in funding_transaction.input.iter() {
|
|
if inp.witness.is_empty() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
|
|
});
|
|
}
|
|
}
|
|
{
|
|
let height = self.best_block.read().unwrap().height();
|
|
// Transactions are evaluated as final by network mempools if their locktime is strictly
|
|
// lower than the next block height. However, the modules constituting our Lightning
|
|
// node might not have perfect sync about their blockchain views. Thus, if the wallet
|
|
// module is ahead of LDK, only allow one more block of headroom.
|
|
if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Funding transaction absolute timelock is non-final".to_owned()
|
|
});
|
|
}
|
|
}
|
|
self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
|
|
let mut output_index = None;
|
|
let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
|
|
for (idx, outp) in tx.output.iter().enumerate() {
|
|
if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
|
|
if output_index.is_some() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Multiple outputs matched the expected script and value".to_owned()
|
|
});
|
|
}
|
|
if idx > u16::max_value() as usize {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
|
|
});
|
|
}
|
|
output_index = Some(idx as u16);
|
|
}
|
|
}
|
|
if output_index.is_none() {
|
|
return Err(APIError::APIMisuseError {
|
|
err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
|
|
});
|
|
}
|
|
Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
|
|
})
|
|
}
|
|
|
|
/// Atomically updates the [`ChannelConfig`] for the given channels.
|
|
///
|
|
/// Once the updates are applied, each eligible channel (advertised with a known short channel
|
|
/// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
|
|
/// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
|
|
/// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
|
|
///
|
|
/// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
|
|
/// `counterparty_node_id` is provided.
|
|
///
|
|
/// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
|
|
/// below [`MIN_CLTV_EXPIRY_DELTA`].
|
|
///
|
|
/// If an error is returned, none of the updates should be considered applied.
|
|
///
|
|
/// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
|
|
/// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
|
|
/// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
|
|
/// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
|
|
/// [`ChannelUpdate`]: msgs::ChannelUpdate
|
|
/// [`ChannelUnavailable`]: APIError::ChannelUnavailable
|
|
/// [`APIMisuseError`]: APIError::APIMisuseError
|
|
pub fn update_channel_config(
|
|
&self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
|
|
) -> Result<(), APIError> {
|
|
if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
|
|
return Err(APIError::APIMisuseError {
|
|
err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
|
|
});
|
|
}
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
|
|
&self.total_consistency_lock, &self.persistence_notifier,
|
|
);
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for channel_id in channel_ids {
|
|
if !peer_state.channel_by_id.contains_key(channel_id) {
|
|
return Err(APIError::ChannelUnavailable {
|
|
err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
|
|
});
|
|
}
|
|
}
|
|
for channel_id in channel_ids {
|
|
let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
|
|
if !channel.update_config(config) {
|
|
continue;
|
|
}
|
|
if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
|
|
} else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg,
|
|
});
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
|
|
/// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
|
|
///
|
|
/// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
|
|
/// channel to a receiving node if the node lacks sufficient inbound liquidity.
|
|
///
|
|
/// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
|
|
/// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
|
|
/// receiver's invoice route hints. These route hints will signal to LDK to generate an
|
|
/// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
|
|
/// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
|
|
///
|
|
/// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
|
|
/// you from forwarding more than you received.
|
|
///
|
|
/// Errors if the event was not handled in time, in which case the HTLC was automatically failed
|
|
/// backwards.
|
|
///
|
|
/// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
|
|
/// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
|
|
// TODO: when we move to deciding the best outbound channel at forward time, only take
|
|
// `next_node_id` and not `next_hop_channel_id`
|
|
pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let next_hop_scid = {
|
|
let peer_state_lock = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = peer_state_lock.get(&next_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.get(next_hop_channel_id) {
|
|
Some(chan) => {
|
|
if !chan.is_usable() {
|
|
return Err(APIError::ChannelUnavailable {
|
|
err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
|
|
})
|
|
}
|
|
chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
|
|
},
|
|
None => return Err(APIError::ChannelUnavailable {
|
|
err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
|
|
})
|
|
}
|
|
};
|
|
|
|
let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
|
|
.ok_or_else(|| APIError::APIMisuseError {
|
|
err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
|
|
})?;
|
|
|
|
let routing = match payment.forward_info.routing {
|
|
PendingHTLCRouting::Forward { onion_packet, .. } => {
|
|
PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
|
|
},
|
|
_ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
|
|
};
|
|
let pending_htlc_info = PendingHTLCInfo {
|
|
outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
|
|
};
|
|
|
|
let mut per_source_pending_forward = [(
|
|
payment.prev_short_channel_id,
|
|
payment.prev_funding_outpoint,
|
|
payment.prev_user_channel_id,
|
|
vec![(pending_htlc_info, payment.prev_htlc_id)]
|
|
)];
|
|
self.forward_htlcs(&mut per_source_pending_forward);
|
|
Ok(())
|
|
}
|
|
|
|
/// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
|
|
/// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
|
|
///
|
|
/// Errors if the event was not handled in time, in which case the HTLC was automatically failed
|
|
/// backwards.
|
|
///
|
|
/// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
|
|
pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
|
|
.ok_or_else(|| APIError::APIMisuseError {
|
|
err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
|
|
})?;
|
|
|
|
if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: payment.prev_short_channel_id,
|
|
outpoint: payment.prev_funding_outpoint,
|
|
htlc_id: payment.prev_htlc_id,
|
|
incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
|
|
phantom_shared_secret: None,
|
|
});
|
|
|
|
let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
|
|
let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
|
|
self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
|
|
} else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Processes HTLCs which are pending waiting on random forward delay.
|
|
///
|
|
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
|
|
/// Will likely generate further events.
|
|
pub fn process_pending_htlc_forwards(&self) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut new_events = Vec::new();
|
|
let mut failed_forwards = Vec::new();
|
|
let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
|
|
{
|
|
let mut forward_htlcs = HashMap::new();
|
|
mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
|
|
|
|
for (short_chan_id, mut pending_forwards) in forward_htlcs {
|
|
if short_chan_id != 0 {
|
|
macro_rules! forwarding_channel_not_found {
|
|
() => {
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
|
|
forward_info: PendingHTLCInfo {
|
|
routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
|
|
outgoing_cltv_value, incoming_amt_msat: _
|
|
}
|
|
}) => {
|
|
macro_rules! failure_handler {
|
|
($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
|
|
log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
phantom_shared_secret: $phantom_ss,
|
|
});
|
|
|
|
let reason = if $next_hop_unknown {
|
|
HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
|
|
} else {
|
|
HTLCDestination::FailedPayment{ payment_hash }
|
|
};
|
|
|
|
failed_forwards.push((htlc_source, payment_hash,
|
|
HTLCFailReason::reason($err_code, $err_data),
|
|
reason
|
|
));
|
|
continue;
|
|
}
|
|
}
|
|
macro_rules! fail_forward {
|
|
($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
|
|
{
|
|
failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
|
|
}
|
|
}
|
|
}
|
|
macro_rules! failed_payment {
|
|
($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
|
|
{
|
|
failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
|
|
}
|
|
}
|
|
}
|
|
if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
|
|
let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
|
|
if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
|
|
let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
|
|
let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
|
|
Ok(res) => res,
|
|
Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
|
|
let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
|
|
// In this scenario, the phantom would have sent us an
|
|
// `update_fail_malformed_htlc`, meaning here we encrypt the error as
|
|
// if it came from us (the second-to-last hop) but contains the sha256
|
|
// of the onion.
|
|
failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
|
|
},
|
|
Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
|
|
failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
|
|
},
|
|
};
|
|
match next_hop {
|
|
onion_utils::Hop::Receive(hop_data) => {
|
|
match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
|
|
Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
|
|
Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
|
|
}
|
|
},
|
|
_ => panic!(),
|
|
}
|
|
} else {
|
|
fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
|
|
}
|
|
} else {
|
|
fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
|
|
}
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
// Channel went away before we could fail it. This implies
|
|
// the channel is now on chain and our counterparty is
|
|
// trying to broadcast the HTLC-Timeout, but that's their
|
|
// problem, not ours.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
|
|
Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
|
|
None => {
|
|
forwarding_channel_not_found!();
|
|
continue;
|
|
}
|
|
};
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() {
|
|
forwarding_channel_not_found!();
|
|
continue;
|
|
}
|
|
let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(forward_chan_id) {
|
|
hash_map::Entry::Vacant(_) => {
|
|
forwarding_channel_not_found!();
|
|
continue;
|
|
},
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
|
|
forward_info: PendingHTLCInfo {
|
|
incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
|
|
routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
|
|
},
|
|
}) => {
|
|
log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
// Phantom payments are only PendingHTLCRouting::Receive.
|
|
phantom_shared_secret: None,
|
|
});
|
|
if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
|
|
payment_hash, outgoing_cltv_value, htlc_source.clone(),
|
|
onion_packet, &self.logger)
|
|
{
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
|
|
} else {
|
|
panic!("Stated return value requirements in send_htlc() were not met");
|
|
}
|
|
let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
|
|
failed_forwards.push((htlc_source, payment_hash,
|
|
HTLCFailReason::reason(failure_code, data),
|
|
HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
|
|
));
|
|
continue;
|
|
}
|
|
},
|
|
HTLCForwardInfo::AddHTLC { .. } => {
|
|
panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
|
|
},
|
|
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
|
|
log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
|
|
if let Err(e) = chan.get_mut().queue_fail_htlc(
|
|
htlc_id, err_packet, &self.logger
|
|
) {
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
|
|
} else {
|
|
panic!("Stated return value requirements in queue_fail_htlc() were not met");
|
|
}
|
|
// fail-backs are best-effort, we probably already have one
|
|
// pending, and if not that's OK, if not, the channel is on
|
|
// the chain and sending the HTLC-Timeout is their problem.
|
|
continue;
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
|
|
forward_info: PendingHTLCInfo {
|
|
routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
|
|
}
|
|
}) => {
|
|
let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
|
|
PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret } => {
|
|
let _legacy_hop_data = Some(payment_data.clone());
|
|
let onion_fields =
|
|
RecipientOnionFields { payment_secret: Some(payment_data.payment_secret), payment_metadata };
|
|
(incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
|
|
Some(payment_data), phantom_shared_secret, onion_fields)
|
|
},
|
|
PendingHTLCRouting::ReceiveKeysend { payment_preimage, payment_metadata, incoming_cltv_expiry } => {
|
|
let onion_fields = RecipientOnionFields { payment_secret: None, payment_metadata };
|
|
(incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
|
|
None, None, onion_fields)
|
|
},
|
|
_ => {
|
|
panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
|
|
}
|
|
};
|
|
let mut claimable_htlc = ClaimableHTLC {
|
|
prev_hop: HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
phantom_shared_secret,
|
|
},
|
|
// We differentiate the received value from the sender intended value
|
|
// if possible so that we don't prematurely mark MPP payments complete
|
|
// if routing nodes overpay
|
|
value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
|
|
sender_intended_value: outgoing_amt_msat,
|
|
timer_ticks: 0,
|
|
total_value_received: None,
|
|
total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
|
|
cltv_expiry,
|
|
onion_payload,
|
|
};
|
|
|
|
let mut committed_to_claimable = false;
|
|
|
|
macro_rules! fail_htlc {
|
|
($htlc: expr, $payment_hash: expr) => {
|
|
debug_assert!(!committed_to_claimable);
|
|
let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
|
|
htlc_msat_height_data.extend_from_slice(
|
|
&self.best_block.read().unwrap().height().to_be_bytes(),
|
|
);
|
|
failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: $htlc.prev_hop.short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: $htlc.prev_hop.htlc_id,
|
|
incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
|
|
phantom_shared_secret,
|
|
}), payment_hash,
|
|
HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
|
|
HTLCDestination::FailedPayment { payment_hash: $payment_hash },
|
|
));
|
|
continue 'next_forwardable_htlc;
|
|
}
|
|
}
|
|
let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
|
|
let mut receiver_node_id = self.our_network_pubkey;
|
|
if phantom_shared_secret.is_some() {
|
|
receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
|
|
.expect("Failed to get node_id for phantom node recipient");
|
|
}
|
|
|
|
macro_rules! check_total_value {
|
|
($payment_data: expr, $payment_preimage: expr) => {{
|
|
let mut payment_claimable_generated = false;
|
|
let purpose = || {
|
|
events::PaymentPurpose::InvoicePayment {
|
|
payment_preimage: $payment_preimage,
|
|
payment_secret: $payment_data.payment_secret,
|
|
}
|
|
};
|
|
let mut claimable_payments = self.claimable_payments.lock().unwrap();
|
|
if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
let ref mut claimable_payment = claimable_payments.claimable_payments
|
|
.entry(payment_hash)
|
|
// Note that if we insert here we MUST NOT fail_htlc!()
|
|
.or_insert_with(|| {
|
|
committed_to_claimable = true;
|
|
ClaimablePayment {
|
|
purpose: purpose(), htlcs: Vec::new(), onion_fields: None,
|
|
}
|
|
});
|
|
if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
|
|
if earlier_fields.check_merge(&mut onion_fields).is_err() {
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
} else {
|
|
claimable_payment.onion_fields = Some(onion_fields);
|
|
}
|
|
let ref mut htlcs = &mut claimable_payment.htlcs;
|
|
if htlcs.len() == 1 {
|
|
if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
}
|
|
let mut total_value = claimable_htlc.sender_intended_value;
|
|
let mut earliest_expiry = claimable_htlc.cltv_expiry;
|
|
for htlc in htlcs.iter() {
|
|
total_value += htlc.sender_intended_value;
|
|
earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
|
|
match &htlc.onion_payload {
|
|
OnionPayload::Invoice { .. } => {
|
|
if htlc.total_msat != $payment_data.total_msat {
|
|
log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
|
|
log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
|
|
total_value = msgs::MAX_VALUE_MSAT;
|
|
}
|
|
if total_value >= msgs::MAX_VALUE_MSAT { break; }
|
|
},
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
// The condition determining whether an MPP is complete must
|
|
// match exactly the condition used in `timer_tick_occurred`
|
|
if total_value >= msgs::MAX_VALUE_MSAT {
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
} else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
|
|
log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
|
|
log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
} else if total_value >= $payment_data.total_msat {
|
|
#[allow(unused_assignments)] {
|
|
committed_to_claimable = true;
|
|
}
|
|
let prev_channel_id = prev_funding_outpoint.to_channel_id();
|
|
htlcs.push(claimable_htlc);
|
|
let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
|
|
htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
|
|
new_events.push(events::Event::PaymentClaimable {
|
|
receiver_node_id: Some(receiver_node_id),
|
|
payment_hash,
|
|
purpose: purpose(),
|
|
amount_msat,
|
|
via_channel_id: Some(prev_channel_id),
|
|
via_user_channel_id: Some(prev_user_channel_id),
|
|
claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
|
|
onion_fields: claimable_payment.onion_fields.clone(),
|
|
});
|
|
payment_claimable_generated = true;
|
|
} else {
|
|
// Nothing to do - we haven't reached the total
|
|
// payment value yet, wait until we receive more
|
|
// MPP parts.
|
|
htlcs.push(claimable_htlc);
|
|
#[allow(unused_assignments)] {
|
|
committed_to_claimable = true;
|
|
}
|
|
}
|
|
payment_claimable_generated
|
|
}}
|
|
}
|
|
|
|
// Check that the payment hash and secret are known. Note that we
|
|
// MUST take care to handle the "unknown payment hash" and
|
|
// "incorrect payment secret" cases here identically or we'd expose
|
|
// that we are the ultimate recipient of the given payment hash.
|
|
// Further, we must not expose whether we have any other HTLCs
|
|
// associated with the same payment_hash pending or not.
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
match payment_secrets.entry(payment_hash) {
|
|
hash_map::Entry::Vacant(_) => {
|
|
match claimable_htlc.onion_payload {
|
|
OnionPayload::Invoice { .. } => {
|
|
let payment_data = payment_data.unwrap();
|
|
let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
|
|
Ok(result) => result,
|
|
Err(()) => {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
};
|
|
if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
|
|
let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
|
|
if (cltv_expiry as u64) < expected_min_expiry_height {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
|
|
log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
}
|
|
check_total_value!(payment_data, payment_preimage);
|
|
},
|
|
OnionPayload::Spontaneous(preimage) => {
|
|
let mut claimable_payments = self.claimable_payments.lock().unwrap();
|
|
if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
match claimable_payments.claimable_payments.entry(payment_hash) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
let amount_msat = claimable_htlc.value;
|
|
claimable_htlc.total_value_received = Some(amount_msat);
|
|
let claim_deadline = Some(claimable_htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER);
|
|
let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
|
|
e.insert(ClaimablePayment {
|
|
purpose: purpose.clone(),
|
|
onion_fields: Some(onion_fields.clone()),
|
|
htlcs: vec![claimable_htlc],
|
|
});
|
|
let prev_channel_id = prev_funding_outpoint.to_channel_id();
|
|
new_events.push(events::Event::PaymentClaimable {
|
|
receiver_node_id: Some(receiver_node_id),
|
|
payment_hash,
|
|
amount_msat,
|
|
purpose,
|
|
via_channel_id: Some(prev_channel_id),
|
|
via_user_channel_id: Some(prev_user_channel_id),
|
|
claim_deadline,
|
|
onion_fields: Some(onion_fields),
|
|
});
|
|
},
|
|
hash_map::Entry::Occupied(_) => {
|
|
log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
hash_map::Entry::Occupied(inbound_payment) => {
|
|
if payment_data.is_none() {
|
|
log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
};
|
|
let payment_data = payment_data.unwrap();
|
|
if inbound_payment.get().payment_secret != payment_data.payment_secret {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
} else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
|
|
log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
|
|
log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
|
|
fail_htlc!(claimable_htlc, payment_hash);
|
|
} else {
|
|
let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
|
|
if payment_claimable_generated {
|
|
inbound_payment.remove_entry();
|
|
}
|
|
}
|
|
},
|
|
};
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
panic!("Got pending fail of our own HTLC");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
|
|
|| self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
|
|
&self.pending_events, &self.logger,
|
|
|path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
|
|
self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
|
|
|
|
for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
|
|
self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
|
|
}
|
|
self.forward_htlcs(&mut phantom_receives);
|
|
|
|
// Freeing the holding cell here is relatively redundant - in practice we'll do it when we
|
|
// next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
|
|
// nice to do the work now if we can rather than while we're trying to get messages in the
|
|
// network stack.
|
|
self.check_free_holding_cells();
|
|
|
|
if new_events.is_empty() { return }
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
events.append(&mut new_events);
|
|
}
|
|
|
|
/// Free the background events, generally called from timer_tick_occurred.
|
|
///
|
|
/// Exposed for testing to allow us to process events quickly without generating accidental
|
|
/// BroadcastChannelUpdate events in timer_tick_occurred.
|
|
///
|
|
/// Expects the caller to have a total_consistency_lock read lock.
|
|
fn process_background_events(&self) -> bool {
|
|
let mut background_events = Vec::new();
|
|
mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
|
|
if background_events.is_empty() {
|
|
return false;
|
|
}
|
|
|
|
for event in background_events.drain(..) {
|
|
match event {
|
|
BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
|
|
// The channel has already been closed, so no use bothering to care about the
|
|
// monitor updating completing.
|
|
let _ = self.chain_monitor.update_channel(funding_txo, &update);
|
|
},
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
/// Process background events, for functional testing
|
|
pub fn test_process_background_events(&self) {
|
|
self.process_background_events();
|
|
}
|
|
|
|
fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
|
|
if !chan.is_outbound() { return NotifyOption::SkipPersist; }
|
|
// If the feerate has decreased by less than half, don't bother
|
|
if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
|
|
log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
|
|
log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
|
|
return NotifyOption::SkipPersist;
|
|
}
|
|
if !chan.is_live() {
|
|
log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
|
|
log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
|
|
return NotifyOption::SkipPersist;
|
|
}
|
|
log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
|
|
log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
|
|
|
|
chan.queue_update_fee(new_feerate, &self.logger);
|
|
NotifyOption::DoPersist
|
|
}
|
|
|
|
#[cfg(fuzzing)]
|
|
/// In chanmon_consistency we want to sometimes do the channel fee updates done in
|
|
/// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
|
|
/// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
|
|
/// it wants to detect). Thus, we have a variant exposed here for its benefit.
|
|
pub fn maybe_update_chan_fees(&self) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut should_persist = NotifyOption::SkipPersist;
|
|
|
|
let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
|
|
let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
|
|
if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
|
|
}
|
|
}
|
|
|
|
should_persist
|
|
});
|
|
}
|
|
|
|
/// Performs actions which should happen on startup and roughly once per minute thereafter.
|
|
///
|
|
/// This currently includes:
|
|
/// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
|
|
/// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
|
|
/// than a minute, informing the network that they should no longer attempt to route over
|
|
/// the channel.
|
|
/// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
|
|
/// with the current [`ChannelConfig`].
|
|
/// * Removing peers which have disconnected but and no longer have any channels.
|
|
///
|
|
/// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
|
|
/// estimate fetches.
|
|
///
|
|
/// [`ChannelUpdate`]: msgs::ChannelUpdate
|
|
/// [`ChannelConfig`]: crate::util::config::ChannelConfig
|
|
pub fn timer_tick_occurred(&self) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut should_persist = NotifyOption::SkipPersist;
|
|
if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
|
|
|
|
let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
|
|
|
|
let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
|
|
let mut timed_out_mpp_htlcs = Vec::new();
|
|
let mut pending_peers_awaiting_removal = Vec::new();
|
|
{
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
let counterparty_node_id = *counterparty_node_id;
|
|
peer_state.channel_by_id.retain(|chan_id, chan| {
|
|
let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
|
|
if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
|
|
|
|
if let Err(e) = chan.timer_check_closing_negotiation_progress() {
|
|
let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
|
|
handle_errors.push((Err(err), counterparty_node_id));
|
|
if needs_close { return false; }
|
|
}
|
|
|
|
match chan.channel_update_status() {
|
|
ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
|
|
ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
|
|
ChannelUpdateStatus::DisabledStaged(_) if chan.is_live()
|
|
=> chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
|
|
ChannelUpdateStatus::EnabledStaged(_) if !chan.is_live()
|
|
=> chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
|
|
ChannelUpdateStatus::DisabledStaged(mut n) if !chan.is_live() => {
|
|
n += 1;
|
|
if n >= DISABLE_GOSSIP_TICKS {
|
|
chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
should_persist = NotifyOption::DoPersist;
|
|
} else {
|
|
chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
|
|
}
|
|
},
|
|
ChannelUpdateStatus::EnabledStaged(mut n) if chan.is_live() => {
|
|
n += 1;
|
|
if n >= ENABLE_GOSSIP_TICKS {
|
|
chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
should_persist = NotifyOption::DoPersist;
|
|
} else {
|
|
chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
|
|
}
|
|
},
|
|
_ => {},
|
|
}
|
|
|
|
chan.maybe_expire_prev_config();
|
|
|
|
true
|
|
});
|
|
if peer_state.ok_to_remove(true) {
|
|
pending_peers_awaiting_removal.push(counterparty_node_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// When a peer disconnects but still has channels, the peer's `peer_state` entry in the
|
|
// `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
|
|
// of to that peer is later closed while still being disconnected (i.e. force closed),
|
|
// we therefore need to remove the peer from `peer_state` separately.
|
|
// To avoid having to take the `per_peer_state` `write` lock once the channels are
|
|
// closed, we instead remove such peers awaiting removal here on a timer, to limit the
|
|
// negative effects on parallelism as much as possible.
|
|
if pending_peers_awaiting_removal.len() > 0 {
|
|
let mut per_peer_state = self.per_peer_state.write().unwrap();
|
|
for counterparty_node_id in pending_peers_awaiting_removal {
|
|
match per_peer_state.entry(counterparty_node_id) {
|
|
hash_map::Entry::Occupied(entry) => {
|
|
// Remove the entry if the peer is still disconnected and we still
|
|
// have no channels to the peer.
|
|
let remove_entry = {
|
|
let peer_state = entry.get().lock().unwrap();
|
|
peer_state.ok_to_remove(true)
|
|
};
|
|
if remove_entry {
|
|
entry.remove_entry();
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
|
|
}
|
|
}
|
|
}
|
|
|
|
self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
|
|
if payment.htlcs.is_empty() {
|
|
// This should be unreachable
|
|
debug_assert!(false);
|
|
return false;
|
|
}
|
|
if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
|
|
// Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
|
|
// In this case we're not going to handle any timeouts of the parts here.
|
|
// This condition determining whether the MPP is complete here must match
|
|
// exactly the condition used in `process_pending_htlc_forwards`.
|
|
if payment.htlcs[0].total_msat <= payment.htlcs.iter()
|
|
.fold(0, |total, htlc| total + htlc.sender_intended_value)
|
|
{
|
|
return true;
|
|
} else if payment.htlcs.iter_mut().any(|htlc| {
|
|
htlc.timer_ticks += 1;
|
|
return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
|
|
}) {
|
|
timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
|
|
.map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
});
|
|
|
|
for htlc_source in timed_out_mpp_htlcs.drain(..) {
|
|
let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
|
|
let reason = HTLCFailReason::from_failure_code(23);
|
|
let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
|
|
self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
|
|
}
|
|
|
|
for (err, counterparty_node_id) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, counterparty_node_id);
|
|
}
|
|
|
|
self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
|
|
|
|
// Technically we don't need to do this here, but if we have holding cell entries in a
|
|
// channel that need freeing, it's better to do that here and block a background task
|
|
// than block the message queueing pipeline.
|
|
if self.check_free_holding_cells() {
|
|
should_persist = NotifyOption::DoPersist;
|
|
}
|
|
|
|
should_persist
|
|
});
|
|
}
|
|
|
|
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
|
|
/// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
|
|
/// along the path (including in our own channel on which we received it).
|
|
///
|
|
/// Note that in some cases around unclean shutdown, it is possible the payment may have
|
|
/// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
|
|
/// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
|
|
/// may have already been failed automatically by LDK if it was nearing its expiration time.
|
|
///
|
|
/// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
|
|
/// [`ChannelManager::claim_funds`]), you should still monitor for
|
|
/// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
|
|
/// startup during which time claims that were in-progress at shutdown may be replayed.
|
|
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
|
|
self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
|
|
}
|
|
|
|
/// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
|
|
/// reason for the failure.
|
|
///
|
|
/// See [`FailureCode`] for valid failure codes.
|
|
pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
|
|
if let Some(payment) = removed_source {
|
|
for htlc in payment.htlcs {
|
|
let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
|
|
let source = HTLCSource::PreviousHopData(htlc.prev_hop);
|
|
let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
|
|
self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
|
|
fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
|
|
match failure_code {
|
|
FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
|
|
FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
|
|
FailureCode::IncorrectOrUnknownPaymentDetails => {
|
|
let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
|
|
HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
|
|
/// that we want to return and a channel.
|
|
///
|
|
/// This is for failures on the channel on which the HTLC was *received*, not failures
|
|
/// forwarding
|
|
fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
|
|
// We can't be sure what SCID was used when relaying inbound towards us, so we have to
|
|
// guess somewhat. If its a public channel, we figure best to just use the real SCID (as
|
|
// we're not leaking that we have a channel with the counterparty), otherwise we try to use
|
|
// an inbound SCID alias before the real SCID.
|
|
let scid_pref = if chan.should_announce() {
|
|
chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
|
|
} else {
|
|
chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
|
|
};
|
|
if let Some(scid) = scid_pref {
|
|
self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
|
|
} else {
|
|
(0x4000|10, Vec::new())
|
|
}
|
|
}
|
|
|
|
|
|
/// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
|
|
/// that we want to return and a channel.
|
|
fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
|
|
debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
|
|
if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
|
|
let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
|
|
if desired_err_code == 0x1000 | 20 {
|
|
// No flags for `disabled_flags` are currently defined so they're always two zero bytes.
|
|
// See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
|
|
0u16.write(&mut enc).expect("Writes cannot fail");
|
|
}
|
|
(upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
|
|
msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
|
|
upd.write(&mut enc).expect("Writes cannot fail");
|
|
(desired_err_code, enc.0)
|
|
} else {
|
|
// If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
|
|
// which means we really shouldn't have gotten a payment to be forwarded over this
|
|
// channel yet, or if we did it's from a route hint. Either way, returning an error of
|
|
// PERM|no_such_channel should be fine.
|
|
(0x4000|10, Vec::new())
|
|
}
|
|
}
|
|
|
|
// Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
|
|
// failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
|
|
// be surfaced to the user.
|
|
fn fail_holding_cell_htlcs(
|
|
&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
|
|
counterparty_node_id: &PublicKey
|
|
) {
|
|
let (failure_code, onion_failure_data) = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(channel_id) {
|
|
hash_map::Entry::Occupied(chan_entry) => {
|
|
self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
|
|
},
|
|
hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
|
|
}
|
|
} else { (0x4000|10, Vec::new()) }
|
|
};
|
|
|
|
for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
|
|
let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
|
|
self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
|
|
}
|
|
}
|
|
|
|
/// Fails an HTLC backwards to the sender of it to us.
|
|
/// Note that we do not assume that channels corresponding to failed HTLCs are still available.
|
|
fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
|
|
// Ensure that no peer state channel storage lock is held when calling this function.
|
|
// This ensures that future code doesn't introduce a lock-order requirement for
|
|
// `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
|
|
// this function with any `per_peer_state` peer lock acquired would.
|
|
for (_, peer) in self.per_peer_state.read().unwrap().iter() {
|
|
debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
|
|
}
|
|
|
|
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
|
|
//identify whether we sent it or not based on the (I presume) very different runtime
|
|
//between the branches here. We should make this async and move it into the forward HTLCs
|
|
//timer handling.
|
|
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// from block_connected which may run during initialization prior to the chain_monitor
|
|
// being fully configured. See the docs for `ChannelManagerReadArgs` for more.
|
|
match source {
|
|
HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
|
|
if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
|
|
session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
|
|
&self.pending_events, &self.logger)
|
|
{ self.push_pending_forwards_ev(); }
|
|
},
|
|
HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
|
|
log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
|
|
let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
|
|
|
|
let mut push_forward_ev = false;
|
|
let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
|
|
if forward_htlcs.is_empty() {
|
|
push_forward_ev = true;
|
|
}
|
|
match forward_htlcs.entry(*short_channel_id) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
|
|
}
|
|
}
|
|
mem::drop(forward_htlcs);
|
|
if push_forward_ev { self.push_pending_forwards_ev(); }
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::HTLCHandlingFailed {
|
|
prev_channel_id: outpoint.to_channel_id(),
|
|
failed_next_destination: destination,
|
|
});
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
|
|
/// [`MessageSendEvent`]s needed to claim the payment.
|
|
///
|
|
/// This method is guaranteed to ensure the payment has been claimed but only if the current
|
|
/// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
|
|
/// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
|
|
/// successful. It will generally be available in the next [`process_pending_events`] call.
|
|
///
|
|
/// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
|
|
/// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
|
|
/// event matches your expectation. If you fail to do so and call this method, you may provide
|
|
/// the sender "proof-of-payment" when they did not fulfill the full expected payment.
|
|
///
|
|
/// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
|
|
/// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
|
|
/// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
|
|
/// [`process_pending_events`]: EventsProvider::process_pending_events
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
|
|
pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let mut sources = {
|
|
let mut claimable_payments = self.claimable_payments.lock().unwrap();
|
|
if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
|
|
let mut receiver_node_id = self.our_network_pubkey;
|
|
for htlc in payment.htlcs.iter() {
|
|
if htlc.prev_hop.phantom_shared_secret.is_some() {
|
|
let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
|
|
.expect("Failed to get node_id for phantom node recipient");
|
|
receiver_node_id = phantom_pubkey;
|
|
break;
|
|
}
|
|
}
|
|
|
|
let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
|
|
ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
|
|
payment_purpose: payment.purpose, receiver_node_id,
|
|
});
|
|
if dup_purpose.is_some() {
|
|
debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
|
|
log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
|
|
log_bytes!(payment_hash.0));
|
|
}
|
|
payment.htlcs
|
|
} else { return; }
|
|
};
|
|
debug_assert!(!sources.is_empty());
|
|
|
|
// Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
|
|
// and when we got here we need to check that the amount we're about to claim matches the
|
|
// amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
|
|
// the MPP parts all have the same `total_msat`.
|
|
let mut claimable_amt_msat = 0;
|
|
let mut prev_total_msat = None;
|
|
let mut expected_amt_msat = None;
|
|
let mut valid_mpp = true;
|
|
let mut errs = Vec::new();
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for htlc in sources.iter() {
|
|
if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
|
|
log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
|
|
debug_assert!(false);
|
|
valid_mpp = false;
|
|
break;
|
|
}
|
|
prev_total_msat = Some(htlc.total_msat);
|
|
|
|
if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
|
|
log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
|
|
debug_assert!(false);
|
|
valid_mpp = false;
|
|
break;
|
|
}
|
|
expected_amt_msat = htlc.total_value_received;
|
|
|
|
if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
|
|
// We don't currently support MPP for spontaneous payments, so just check
|
|
// that there's one payment here and move on.
|
|
if sources.len() != 1 {
|
|
log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
|
|
debug_assert!(false);
|
|
valid_mpp = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
claimable_amt_msat += htlc.value;
|
|
}
|
|
mem::drop(per_peer_state);
|
|
if sources.is_empty() || expected_amt_msat.is_none() {
|
|
self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
|
|
log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
|
|
return;
|
|
}
|
|
if claimable_amt_msat != expected_amt_msat.unwrap() {
|
|
self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
|
|
log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
|
|
expected_amt_msat.unwrap(), claimable_amt_msat);
|
|
return;
|
|
}
|
|
if valid_mpp {
|
|
for htlc in sources.drain(..) {
|
|
if let Err((pk, err)) = self.claim_funds_from_hop(
|
|
htlc.prev_hop, payment_preimage,
|
|
|_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
|
|
{
|
|
if let msgs::ErrorAction::IgnoreError = err.err.action {
|
|
// We got a temporary failure updating monitor, but will claim the
|
|
// HTLC when the monitor updating is restored (or on chain).
|
|
log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
|
|
} else { errs.push((pk, err)); }
|
|
}
|
|
}
|
|
}
|
|
if !valid_mpp {
|
|
for htlc in sources.drain(..) {
|
|
let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
|
|
let source = HTLCSource::PreviousHopData(htlc.prev_hop);
|
|
let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
|
|
let receiver = HTLCDestination::FailedPayment { payment_hash };
|
|
self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
|
|
}
|
|
self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
|
|
}
|
|
|
|
// Now we can handle any errors which were generated.
|
|
for (counterparty_node_id, err) in errs.drain(..) {
|
|
let res: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, res, counterparty_node_id);
|
|
}
|
|
}
|
|
|
|
fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
|
|
prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
|
|
-> Result<(), (PublicKey, MsgHandleErrInternal)> {
|
|
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
|
|
|
|
{
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let chan_id = prev_hop.outpoint.to_channel_id();
|
|
let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
|
|
Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
|
|
None => None
|
|
};
|
|
|
|
let peer_state_opt = counterparty_node_id_opt.as_ref().map(
|
|
|counterparty_node_id| per_peer_state.get(counterparty_node_id)
|
|
.map(|peer_mutex| peer_mutex.lock().unwrap())
|
|
).unwrap_or(None);
|
|
|
|
if peer_state_opt.is_some() {
|
|
let mut peer_state_lock = peer_state_opt.unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
|
|
let counterparty_node_id = chan.get().get_counterparty_node_id();
|
|
let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
|
|
|
|
if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
|
|
if let Some(action) = completion_action(Some(htlc_value_msat)) {
|
|
log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
|
|
log_bytes!(chan_id), action);
|
|
peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
|
|
}
|
|
let update_id = monitor_update.update_id;
|
|
let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
|
|
let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
|
|
peer_state, per_peer_state, chan);
|
|
if let Err(e) = res {
|
|
// TODO: This is a *critical* error - we probably updated the outbound edge
|
|
// of the HTLC's monitor with a preimage. We should retry this monitor
|
|
// update over and over again until morale improves.
|
|
log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
|
|
return Err((counterparty_node_id, e));
|
|
}
|
|
}
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
let preimage_update = ChannelMonitorUpdate {
|
|
update_id: CLOSED_CHANNEL_UPDATE_ID,
|
|
updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
|
|
payment_preimage,
|
|
}],
|
|
};
|
|
// We update the ChannelMonitor on the backward link, after
|
|
// receiving an `update_fulfill_htlc` from the forward link.
|
|
let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
|
|
if update_res != ChannelMonitorUpdateStatus::Completed {
|
|
// TODO: This needs to be handled somehow - if we receive a monitor update
|
|
// with a preimage we *must* somehow manage to propagate it to the upstream
|
|
// channel, or we must have an ability to receive the same event and try
|
|
// again on restart.
|
|
log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
|
|
payment_preimage, update_res);
|
|
}
|
|
// Note that we do process the completion action here. This totally could be a
|
|
// duplicate claim, but we have no way of knowing without interrogating the
|
|
// `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
|
|
// generally always allowed to be duplicative (and it's specifically noted in
|
|
// `PaymentForwarded`).
|
|
self.handle_monitor_update_completion_actions(completion_action(None));
|
|
Ok(())
|
|
}
|
|
|
|
fn finalize_claims(&self, sources: Vec<HTLCSource>) {
|
|
self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
|
|
}
|
|
|
|
fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
|
|
match source {
|
|
HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
|
|
self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
|
|
},
|
|
HTLCSource::PreviousHopData(hop_data) => {
|
|
let prev_outpoint = hop_data.outpoint;
|
|
let res = self.claim_funds_from_hop(hop_data, payment_preimage,
|
|
|htlc_claim_value_msat| {
|
|
if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
|
|
let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
|
|
Some(claimed_htlc_value - forwarded_htlc_value)
|
|
} else { None };
|
|
|
|
let prev_channel_id = Some(prev_outpoint.to_channel_id());
|
|
let next_channel_id = Some(next_channel_id);
|
|
|
|
Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
|
|
fee_earned_msat,
|
|
claim_from_onchain_tx: from_onchain,
|
|
prev_channel_id,
|
|
next_channel_id,
|
|
outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
|
|
}})
|
|
} else { None }
|
|
});
|
|
if let Err((pk, err)) = res {
|
|
let result: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, result, pk);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Gets the node_id held by this ChannelManager
|
|
pub fn get_our_node_id(&self) -> PublicKey {
|
|
self.our_network_pubkey.clone()
|
|
}
|
|
|
|
fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
|
|
for action in actions.into_iter() {
|
|
match action {
|
|
MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
|
|
let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
|
|
if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
|
|
self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
|
|
payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
|
|
});
|
|
}
|
|
},
|
|
MonitorUpdateCompletionAction::EmitEvent { event } => {
|
|
self.pending_events.lock().unwrap().push(event);
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Handles a channel reentering a functional state, either due to reconnect or a monitor
|
|
/// update completion.
|
|
fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
|
|
channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
|
|
commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
|
|
pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
|
|
channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
|
|
-> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
|
|
log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
|
|
log_bytes!(channel.channel_id()),
|
|
if raa.is_some() { "an" } else { "no" },
|
|
if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
|
|
if funding_broadcastable.is_some() { "" } else { "not " },
|
|
if channel_ready.is_some() { "sending" } else { "without" },
|
|
if announcement_sigs.is_some() { "sending" } else { "without" });
|
|
|
|
let mut htlc_forwards = None;
|
|
|
|
let counterparty_node_id = channel.get_counterparty_node_id();
|
|
if !pending_forwards.is_empty() {
|
|
htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
|
|
channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
|
|
}
|
|
|
|
if let Some(msg) = channel_ready {
|
|
send_channel_ready!(self, pending_msg_events, channel, msg);
|
|
}
|
|
if let Some(msg) = announcement_sigs {
|
|
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: counterparty_node_id,
|
|
msg,
|
|
});
|
|
}
|
|
|
|
macro_rules! handle_cs { () => {
|
|
if let Some(update) = commitment_update {
|
|
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: counterparty_node_id,
|
|
updates: update,
|
|
});
|
|
}
|
|
} }
|
|
macro_rules! handle_raa { () => {
|
|
if let Some(revoke_and_ack) = raa {
|
|
pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: counterparty_node_id,
|
|
msg: revoke_and_ack,
|
|
});
|
|
}
|
|
} }
|
|
match order {
|
|
RAACommitmentOrder::CommitmentFirst => {
|
|
handle_cs!();
|
|
handle_raa!();
|
|
},
|
|
RAACommitmentOrder::RevokeAndACKFirst => {
|
|
handle_raa!();
|
|
handle_cs!();
|
|
},
|
|
}
|
|
|
|
if let Some(tx) = funding_broadcastable {
|
|
log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
|
|
self.tx_broadcaster.broadcast_transaction(&tx);
|
|
}
|
|
|
|
{
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
emit_channel_pending_event!(pending_events, channel);
|
|
emit_channel_ready_event!(pending_events, channel);
|
|
}
|
|
|
|
htlc_forwards
|
|
}
|
|
|
|
fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
|
|
debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
|
|
|
|
let counterparty_node_id = match counterparty_node_id {
|
|
Some(cp_id) => cp_id.clone(),
|
|
None => {
|
|
// TODO: Once we can rely on the counterparty_node_id from the
|
|
// monitor event, this and the id_to_peer map should be removed.
|
|
let id_to_peer = self.id_to_peer.lock().unwrap();
|
|
match id_to_peer.get(&funding_txo.to_channel_id()) {
|
|
Some(cp_id) => cp_id.clone(),
|
|
None => return,
|
|
}
|
|
}
|
|
};
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let mut peer_state_lock;
|
|
let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() { return }
|
|
peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let mut channel = {
|
|
match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
|
|
hash_map::Entry::Occupied(chan) => chan,
|
|
hash_map::Entry::Vacant(_) => return,
|
|
}
|
|
};
|
|
log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
|
|
highest_applied_update_id, channel.get().get_latest_monitor_update_id());
|
|
if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
|
|
return;
|
|
}
|
|
handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
|
|
}
|
|
|
|
/// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
|
|
///
|
|
/// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
|
|
/// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
|
|
/// the channel.
|
|
///
|
|
/// The `user_channel_id` parameter will be provided back in
|
|
/// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
|
|
/// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
|
|
///
|
|
/// Note that this method will return an error and reject the channel, if it requires support
|
|
/// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
|
|
/// used to accept such channels.
|
|
///
|
|
/// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
|
|
/// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
|
|
pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
|
|
self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
|
|
}
|
|
|
|
/// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
|
|
/// it as confirmed immediately.
|
|
///
|
|
/// The `user_channel_id` parameter will be provided back in
|
|
/// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
|
|
/// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
|
|
///
|
|
/// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
|
|
/// and (if the counterparty agrees), enables forwarding of payments immediately.
|
|
///
|
|
/// This fully trusts that the counterparty has honestly and correctly constructed the funding
|
|
/// transaction and blindly assumes that it will eventually confirm.
|
|
///
|
|
/// If it does not confirm before we decide to close the channel, or if the funding transaction
|
|
/// does not pay to the correct script the correct amount, *you will lose funds*.
|
|
///
|
|
/// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
|
|
/// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
|
|
pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
|
|
self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
|
|
}
|
|
|
|
fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
|
|
match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut channel) => {
|
|
if !channel.get().inbound_is_awaiting_accept() {
|
|
return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
|
|
}
|
|
if accept_0conf {
|
|
channel.get_mut().set_0conf();
|
|
} else if channel.get().get_channel_type().requires_zero_conf() {
|
|
let send_msg_err_event = events::MessageSendEvent::HandleError {
|
|
node_id: channel.get().get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage{
|
|
msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
|
|
}
|
|
};
|
|
peer_state.pending_msg_events.push(send_msg_err_event);
|
|
let _ = remove_channel!(self, channel);
|
|
return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
|
|
} else {
|
|
// If this peer already has some channels, a new channel won't increase our number of peers
|
|
// with unfunded channels, so as long as we aren't over the maximum number of unfunded
|
|
// channels per-peer we can accept channels from a peer with existing ones.
|
|
if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
|
|
let send_msg_err_event = events::MessageSendEvent::HandleError {
|
|
node_id: channel.get().get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage{
|
|
msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
|
|
}
|
|
};
|
|
peer_state.pending_msg_events.push(send_msg_err_event);
|
|
let _ = remove_channel!(self, channel);
|
|
return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
|
|
}
|
|
}
|
|
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
|
|
node_id: channel.get().get_counterparty_node_id(),
|
|
msg: channel.get_mut().accept_inbound_channel(user_channel_id),
|
|
});
|
|
}
|
|
hash_map::Entry::Vacant(_) => {
|
|
return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Gets the number of peers which match the given filter and do not have any funded, outbound,
|
|
/// or 0-conf channels.
|
|
///
|
|
/// The filter is called for each peer and provided with the number of unfunded, inbound, and
|
|
/// non-0-conf channels we have with the peer.
|
|
fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
|
|
where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
|
|
let mut peers_without_funded_channels = 0;
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
{
|
|
let peer_state_lock = self.per_peer_state.read().unwrap();
|
|
for (_, peer_mtx) in peer_state_lock.iter() {
|
|
let peer = peer_mtx.lock().unwrap();
|
|
if !maybe_count_peer(&*peer) { continue; }
|
|
let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
|
|
if num_unfunded_channels == peer.channel_by_id.len() {
|
|
peers_without_funded_channels += 1;
|
|
}
|
|
}
|
|
}
|
|
return peers_without_funded_channels;
|
|
}
|
|
|
|
fn unfunded_channel_count(
|
|
peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
|
|
) -> usize {
|
|
let mut num_unfunded_channels = 0;
|
|
for (_, chan) in peer.channel_by_id.iter() {
|
|
if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
|
|
chan.get_funding_tx_confirmations(best_block_height) == 0
|
|
{
|
|
num_unfunded_channels += 1;
|
|
}
|
|
}
|
|
num_unfunded_channels
|
|
}
|
|
|
|
fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
|
|
if msg.chain_hash != self.genesis_hash {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
if !self.default_configuration.accept_inbound_channels {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
let mut random_bytes = [0u8; 16];
|
|
random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
|
|
let user_channel_id = u128::from_be_bytes(random_bytes);
|
|
let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
|
|
|
|
// Get the number of peers with channels, but without funded ones. We don't care too much
|
|
// about peers that never open a channel, so we filter by peers that have at least one
|
|
// channel, and then limit the number of those with unfunded channels.
|
|
let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
|
|
// If this peer already has some channels, a new channel won't increase our number of peers
|
|
// with unfunded channels, so as long as we aren't over the maximum number of unfunded
|
|
// channels per-peer we can accept channels from a peer with existing ones.
|
|
if peer_state.channel_by_id.is_empty() &&
|
|
channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
|
|
!self.default_configuration.manually_accept_inbound_channels
|
|
{
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close(
|
|
"Have too many peers with unfunded channels, not accepting new ones".to_owned(),
|
|
msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close(
|
|
format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
|
|
msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
|
|
counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
|
|
&self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
|
|
{
|
|
Err(e) => {
|
|
self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
|
|
return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
|
|
},
|
|
Ok(res) => res
|
|
};
|
|
match peer_state.channel_by_id.entry(channel.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
if !self.default_configuration.manually_accept_inbound_channels {
|
|
if channel.get_channel_type().requires_zero_conf() {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
|
|
}
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: channel.accept_inbound_channel(user_channel_id),
|
|
});
|
|
} else {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(
|
|
events::Event::OpenChannelRequest {
|
|
temporary_channel_id: msg.temporary_channel_id.clone(),
|
|
counterparty_node_id: counterparty_node_id.clone(),
|
|
funding_satoshis: msg.funding_satoshis,
|
|
push_msat: msg.push_msat,
|
|
channel_type: channel.get_channel_type().clone(),
|
|
}
|
|
);
|
|
}
|
|
|
|
entry.insert(channel);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
|
|
let (value, output_script, user_id) = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
|
|
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
|
|
}
|
|
};
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::FundingGenerationReady {
|
|
temporary_channel_id: msg.temporary_channel_id,
|
|
counterparty_node_id: *counterparty_node_id,
|
|
channel_value_satoshis: value,
|
|
output_script,
|
|
user_channel_id: user_id,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
|
|
let best_block = *self.best_block.read().unwrap();
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
|
|
})?;
|
|
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let ((funding_msg, monitor), chan) =
|
|
match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
(try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
|
|
};
|
|
|
|
match peer_state.channel_by_id.entry(funding_msg.channel_id) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close(
|
|
"The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
|
|
funding_msg.channel_id))
|
|
},
|
|
hash_map::Entry::Vacant(i_e) => {
|
|
i_e.insert(chan.get_counterparty_node_id());
|
|
}
|
|
}
|
|
|
|
// There's no problem signing a counterparty's funding transaction if our monitor
|
|
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
|
|
// accepted payment from yet. We do, however, need to wait to send our channel_ready
|
|
// until we have persisted our monitor.
|
|
let new_channel_id = funding_msg.channel_id;
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: funding_msg,
|
|
});
|
|
|
|
let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
|
|
|
|
let chan = e.insert(chan);
|
|
let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
|
|
per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
|
|
|
|
// Note that we reply with the new channel_id in error messages if we gave up on the
|
|
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
|
|
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
|
|
// any messages referencing a previously-closed channel anyway.
|
|
// We do not propagate the monitor update to the user as it would be for a monitor
|
|
// that we didn't manage to store (and that we don't care about - we don't respond
|
|
// with the funding_signed so the channel can never go on chain).
|
|
if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
|
|
res.0 = None;
|
|
}
|
|
res
|
|
}
|
|
}
|
|
}
|
|
|
|
fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let best_block = *self.best_block.read().unwrap();
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
let monitor = try_chan_entry!(self,
|
|
chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
|
|
let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
|
|
let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
|
|
if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
|
|
// We weren't able to watch the channel to begin with, so no updates should be made on
|
|
// it. Previously, full_stack_target found an (unreachable) panic when the
|
|
// monitor update contained within `shutdown_finish` was applied.
|
|
if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
|
|
shutdown_finish.0.take();
|
|
}
|
|
}
|
|
res
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
|
|
self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
|
|
if let Some(announcement_sigs) = announcement_sigs_opt {
|
|
log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg: announcement_sigs,
|
|
});
|
|
} else if chan.get().is_usable() {
|
|
// If we're sending an announcement_signatures, we'll send the (public)
|
|
// channel_update after sending a channel_announcement when we receive our
|
|
// counterparty's announcement_signatures. Thus, we only bother to send a
|
|
// channel_update here if the channel is not public, i.e. we're not sending an
|
|
// announcement_signatures.
|
|
log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
|
|
if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
}
|
|
|
|
{
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
emit_channel_ready_event!(pending_events, chan.get_mut());
|
|
}
|
|
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
|
|
let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
|
|
let result: Result<(), _> = loop {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
|
|
if !chan_entry.get().received_shutdown() {
|
|
log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
|
|
log_bytes!(msg.channel_id),
|
|
if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
|
|
}
|
|
|
|
let funding_txo_opt = chan_entry.get().get_funding_txo();
|
|
let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
|
|
chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
|
|
dropped_htlcs = htlcs;
|
|
|
|
if let Some(msg) = shutdown {
|
|
// We can send the `shutdown` message before updating the `ChannelMonitor`
|
|
// here as we don't need the monitor update to complete until we send a
|
|
// `shutdown_signed`, which we'll delay if we're pending a monitor update.
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: *counterparty_node_id,
|
|
msg,
|
|
});
|
|
}
|
|
|
|
// Update the monitor with the shutdown script if necessary.
|
|
if let Some(monitor_update) = monitor_update_opt {
|
|
let update_id = monitor_update.update_id;
|
|
let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
|
|
break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
|
|
}
|
|
break Ok(());
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
};
|
|
for htlc_source in dropped_htlcs.drain(..) {
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
|
|
let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
|
|
self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let (tx, chan_option) = {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
|
|
if let Some(msg) = closing_signed {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if tx.is_some() {
|
|
// We're done with this channel, we've got a signed closing transaction and
|
|
// will send the closing_signed back to the remote peer upon return. This
|
|
// also implies there are no pending HTLCs left on the channel, so we can
|
|
// fully delete it from tracking (the channel monitor is still around to
|
|
// watch for old state broadcasts)!
|
|
(tx, Some(remove_channel!(self, chan_entry)))
|
|
} else { (tx, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
};
|
|
if let Some(broadcast_tx) = tx {
|
|
log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
|
|
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
|
|
}
|
|
if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
|
|
//determine the state of the payment based on our response/if we forward anything/the time
|
|
//we take to respond. We should take care to avoid allowing such an attack.
|
|
//
|
|
//TODO: There exists a further attack where a node may garble the onion data, forward it to
|
|
//us repeatedly garbled in different ways, and compare our error messages, which are
|
|
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
|
|
//but we should prevent it anyway.
|
|
|
|
let pending_forward_info = self.decode_update_add_htlc_onion(msg);
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
|
|
let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
|
|
// If the update_add is completely bogus, the call will Err and we will close,
|
|
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
|
|
// want to reject the new HTLC and fail it backwards instead of forwarding.
|
|
match pending_forward_info {
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
|
|
let reason = if (error_code & 0x1000) != 0 {
|
|
let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
|
|
HTLCFailReason::reason(real_code, error_data)
|
|
} else {
|
|
HTLCFailReason::from_failure_code(error_code)
|
|
}.get_encrypted_failure_packet(incoming_shared_secret, &None);
|
|
let msg = msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason
|
|
};
|
|
PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
|
|
},
|
|
_ => pending_forward_info
|
|
}
|
|
};
|
|
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let (htlc_source, forwarded_htlc_value) = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
};
|
|
self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if (msg.failure_code & 0x8000) == 0 {
|
|
let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
|
|
try_chan_entry!(self, Err(chan_err), chan);
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
let funding_txo = chan.get().get_funding_txo();
|
|
let monitor_update_opt = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
|
|
if let Some(monitor_update) = monitor_update_opt {
|
|
let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
|
|
let update_id = monitor_update.update_id;
|
|
handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
|
|
peer_state, per_peer_state, chan)
|
|
} else { Ok(()) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
|
|
for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
|
|
let mut push_forward_event = false;
|
|
let mut new_intercept_events = Vec::new();
|
|
let mut failed_intercept_forwards = Vec::new();
|
|
if !pending_forwards.is_empty() {
|
|
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
|
|
let scid = match forward_info.routing {
|
|
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
|
|
PendingHTLCRouting::Receive { .. } => 0,
|
|
PendingHTLCRouting::ReceiveKeysend { .. } => 0,
|
|
};
|
|
// Pull this now to avoid introducing a lock order with `forward_htlcs`.
|
|
let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
|
|
|
|
let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
|
|
let forward_htlcs_empty = forward_htlcs.is_empty();
|
|
match forward_htlcs.entry(scid) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
|
|
fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
|
|
{
|
|
let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
|
|
let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
|
|
match pending_intercepts.entry(intercept_id) {
|
|
hash_map::Entry::Vacant(entry) => {
|
|
new_intercept_events.push(events::Event::HTLCIntercepted {
|
|
requested_next_hop_scid: scid,
|
|
payment_hash: forward_info.payment_hash,
|
|
inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
|
|
expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
|
|
intercept_id
|
|
});
|
|
entry.insert(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
|
|
},
|
|
hash_map::Entry::Occupied(_) => {
|
|
log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
outpoint: prev_funding_outpoint,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
|
|
phantom_shared_secret: None,
|
|
});
|
|
|
|
failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
|
|
HTLCFailReason::from_failure_code(0x4000 | 10),
|
|
HTLCDestination::InvalidForward { requested_forward_scid: scid },
|
|
));
|
|
}
|
|
}
|
|
} else {
|
|
// We don't want to generate a PendingHTLCsForwardable event if only intercepted
|
|
// payments are being processed.
|
|
if forward_htlcs_empty {
|
|
push_forward_event = true;
|
|
}
|
|
entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
|
|
prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
|
|
self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
|
|
}
|
|
|
|
if !new_intercept_events.is_empty() {
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
events.append(&mut new_intercept_events);
|
|
}
|
|
if push_forward_event { self.push_pending_forwards_ev() }
|
|
}
|
|
}
|
|
|
|
// We only want to push a PendingHTLCsForwardable event if no others are queued.
|
|
fn push_pending_forwards_ev(&self) {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
let forward_ev_exists = pending_events.iter()
|
|
.find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
|
|
.is_some();
|
|
if !forward_ev_exists {
|
|
pending_events.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable:
|
|
Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
|
|
});
|
|
}
|
|
}
|
|
|
|
fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
|
|
let (htlcs_to_fail, res) = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
}).map(|mtx| mtx.lock().unwrap())?;
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
let funding_txo = chan.get().get_funding_txo();
|
|
let (htlcs_to_fail, monitor_update_opt) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
|
|
let res = if let Some(monitor_update) = monitor_update_opt {
|
|
let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
|
|
let update_id = monitor_update.update_id;
|
|
handle_new_monitor_update!(self, update_res, update_id,
|
|
peer_state_lock, peer_state, per_peer_state, chan)
|
|
} else { Ok(()) };
|
|
(htlcs_to_fail, res)
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
};
|
|
self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
|
|
res
|
|
}
|
|
|
|
fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if !chan.get().is_usable() {
|
|
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
|
|
}
|
|
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
|
|
msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
|
|
&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
|
|
msg, &self.default_configuration
|
|
), chan),
|
|
// Note that announcement_signatures fails if the channel cannot be announced,
|
|
// so get_channel_update_for_broadcast will never fail by the time we get here.
|
|
update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
|
|
});
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
|
|
fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
|
|
let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
|
|
Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
|
|
None => {
|
|
// It's not a local channel
|
|
return Ok(NotifyOption::SkipPersist)
|
|
}
|
|
};
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() {
|
|
return Ok(NotifyOption::SkipPersist)
|
|
}
|
|
let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(chan_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_counterparty_node_id() != *counterparty_node_id {
|
|
if chan.get().should_announce() {
|
|
// If the announcement is about a channel of ours which is public, some
|
|
// other peer may simply be forwarding all its gossip to us. Don't provide
|
|
// a scary-looking error message and return Ok instead.
|
|
return Ok(NotifyOption::SkipPersist);
|
|
}
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
|
|
}
|
|
let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
|
|
let msg_from_node_one = msg.contents.flags & 1 == 0;
|
|
if were_node_one == msg_from_node_one {
|
|
return Ok(NotifyOption::SkipPersist);
|
|
} else {
|
|
log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
|
|
try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
|
|
}
|
|
Ok(NotifyOption::DoPersist)
|
|
}
|
|
|
|
fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
|
|
let htlc_forwards;
|
|
let need_lnd_workaround = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
|
|
let peer_state_mutex = per_peer_state.get(counterparty_node_id)
|
|
.ok_or_else(|| {
|
|
debug_assert!(false);
|
|
MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
|
|
})?;
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
match peer_state.channel_by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
// Currently, we expect all holding cell update_adds to be dropped on peer
|
|
// disconnect, so Channel's reestablish will never hand us any holding cell
|
|
// freed HTLCs to fail backwards. If in the future we no longer drop pending
|
|
// add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
|
|
let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
|
|
msg, &self.logger, &self.node_signer, self.genesis_hash,
|
|
&self.default_configuration, &*self.best_block.read().unwrap()), chan);
|
|
let mut channel_update = None;
|
|
if let Some(msg) = responses.shutdown_msg {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: counterparty_node_id.clone(),
|
|
msg,
|
|
});
|
|
} else if chan.get().is_usable() {
|
|
// If the channel is in a usable state (ie the channel is not being shut
|
|
// down), send a unicast channel_update to our counterparty to make sure
|
|
// they have the latest channel parameters.
|
|
if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
|
|
channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: chan.get().get_counterparty_node_id(),
|
|
msg,
|
|
});
|
|
}
|
|
}
|
|
let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
|
|
htlc_forwards = self.handle_channel_resumption(
|
|
&mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
|
|
Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
|
|
if let Some(upd) = channel_update {
|
|
peer_state.pending_msg_events.push(upd);
|
|
}
|
|
need_lnd_workaround
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
|
|
}
|
|
};
|
|
|
|
if let Some(forwards) = htlc_forwards {
|
|
self.forward_htlcs(&mut [forwards][..]);
|
|
}
|
|
|
|
if let Some(channel_ready_msg) = need_lnd_workaround {
|
|
self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Process pending events from the [`chain::Watch`], returning whether any events were processed.
|
|
fn process_pending_monitor_events(&self) -> bool {
|
|
debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
|
|
|
|
let mut failed_channels = Vec::new();
|
|
let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
|
|
let has_pending_monitor_events = !pending_monitor_events.is_empty();
|
|
for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
|
|
for monitor_event in monitor_events.drain(..) {
|
|
match monitor_event {
|
|
MonitorEvent::HTLCEvent(htlc_update) => {
|
|
if let Some(preimage) = htlc_update.payment_preimage {
|
|
log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
|
|
self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
|
|
} else {
|
|
log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
|
|
let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
|
|
self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
|
|
}
|
|
},
|
|
MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
|
|
MonitorEvent::UpdateFailed(funding_outpoint) => {
|
|
let counterparty_node_id_opt = match counterparty_node_id {
|
|
Some(cp_id) => Some(cp_id),
|
|
None => {
|
|
// TODO: Once we can rely on the counterparty_node_id from the
|
|
// monitor event, this and the id_to_peer map should be removed.
|
|
let id_to_peer = self.id_to_peer.lock().unwrap();
|
|
id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
|
|
}
|
|
};
|
|
if let Some(counterparty_node_id) = counterparty_node_id_opt {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
|
|
let mut chan = remove_channel!(self, chan_entry);
|
|
failed_channels.push(chan.force_shutdown(false));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
|
|
ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
|
|
} else {
|
|
ClosureReason::CommitmentTxConfirmed
|
|
};
|
|
self.issue_channel_close_events(&chan, reason);
|
|
pending_msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
|
|
},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
},
|
|
MonitorEvent::Completed { funding_txo, monitor_update_id } => {
|
|
self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
|
|
has_pending_monitor_events
|
|
}
|
|
|
|
/// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
|
|
/// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
|
|
/// update events as a separate process method here.
|
|
#[cfg(fuzzing)]
|
|
pub fn process_monitor_events(&self) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
if self.process_pending_monitor_events() {
|
|
NotifyOption::DoPersist
|
|
} else {
|
|
NotifyOption::SkipPersist
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Check the holding cell in each channel and free any pending HTLCs in them if possible.
|
|
/// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
|
|
/// update was applied.
|
|
fn check_free_holding_cells(&self) -> bool {
|
|
let mut has_monitor_update = false;
|
|
let mut failed_htlcs = Vec::new();
|
|
let mut handle_errors = Vec::new();
|
|
|
|
// Walk our list of channels and find any that need to update. Note that when we do find an
|
|
// update, if it includes actions that must be taken afterwards, we have to drop the
|
|
// per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
|
|
// manage to go through all our peers without finding a single channel to update.
|
|
'peer_loop: loop {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
'chan_loop: loop {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
|
|
for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
|
|
let counterparty_node_id = chan.get_counterparty_node_id();
|
|
let funding_txo = chan.get_funding_txo();
|
|
let (monitor_opt, holding_cell_failed_htlcs) =
|
|
chan.maybe_free_holding_cell_htlcs(&self.logger);
|
|
if !holding_cell_failed_htlcs.is_empty() {
|
|
failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
|
|
}
|
|
if let Some(monitor_update) = monitor_opt {
|
|
has_monitor_update = true;
|
|
|
|
let update_res = self.chain_monitor.update_channel(
|
|
funding_txo.expect("channel is live"), monitor_update);
|
|
let update_id = monitor_update.update_id;
|
|
let channel_id: [u8; 32] = *channel_id;
|
|
let res = handle_new_monitor_update!(self, update_res, update_id,
|
|
peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
|
|
peer_state.channel_by_id.remove(&channel_id));
|
|
if res.is_err() {
|
|
handle_errors.push((counterparty_node_id, res));
|
|
}
|
|
continue 'peer_loop;
|
|
}
|
|
}
|
|
break 'chan_loop;
|
|
}
|
|
}
|
|
break 'peer_loop;
|
|
}
|
|
|
|
let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
|
|
for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
|
|
self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
|
|
}
|
|
|
|
for (counterparty_node_id, err) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, counterparty_node_id);
|
|
}
|
|
|
|
has_update
|
|
}
|
|
|
|
/// Check whether any channels have finished removing all pending updates after a shutdown
|
|
/// exchange and can now send a closing_signed.
|
|
/// Returns whether any closing_signed messages were generated.
|
|
fn maybe_generate_initial_closing_signed(&self) -> bool {
|
|
let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
|
|
let mut has_update = false;
|
|
{
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
peer_state.channel_by_id.retain(|channel_id, chan| {
|
|
match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
|
|
Ok((msg_opt, tx_opt)) => {
|
|
if let Some(msg) = msg_opt {
|
|
has_update = true;
|
|
pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: chan.get_counterparty_node_id(), msg,
|
|
});
|
|
}
|
|
if let Some(tx) = tx_opt {
|
|
// We're done with this channel. We got a closing_signed and sent back
|
|
// a closing_signed with a closing transaction to broadcast.
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
|
|
self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
|
|
|
|
log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
|
|
self.tx_broadcaster.broadcast_transaction(&tx);
|
|
update_maps_on_chan_removal!(self, chan);
|
|
false
|
|
} else { true }
|
|
},
|
|
Err(e) => {
|
|
has_update = true;
|
|
let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
|
|
handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
|
|
!close_channel
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
for (counterparty_node_id, err) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, counterparty_node_id);
|
|
}
|
|
|
|
has_update
|
|
}
|
|
|
|
/// Handle a list of channel failures during a block_connected or block_disconnected call,
|
|
/// pushing the channel monitor update (if any) to the background events queue and removing the
|
|
/// Channel object.
|
|
fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
|
|
for mut failure in failed_channels.drain(..) {
|
|
// Either a commitment transactions has been confirmed on-chain or
|
|
// Channel::block_disconnected detected that the funding transaction has been
|
|
// reorganized out of the main chain.
|
|
// We cannot broadcast our latest local state via monitor update (as
|
|
// Channel::force_shutdown tries to make us do) as we may still be in initialization,
|
|
// so we track the update internally and handle it when the user next calls
|
|
// timer_tick_occurred, guaranteeing we're running normally.
|
|
if let Some((funding_txo, update)) = failure.0.take() {
|
|
assert_eq!(update.updates.len(), 1);
|
|
if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
|
|
assert!(should_broadcast);
|
|
} else { unreachable!(); }
|
|
self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
|
|
}
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
}
|
|
|
|
fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
|
|
assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
|
|
|
|
if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
|
|
return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
|
|
}
|
|
|
|
let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
match payment_secrets.entry(payment_hash) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(PendingInboundPayment {
|
|
payment_secret, min_value_msat, payment_preimage,
|
|
user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
|
|
// We assume that highest_seen_timestamp is pretty close to the current time -
|
|
// it's updated when we receive a new block with the maximum time we've seen in
|
|
// a header. It should never be more than two hours in the future.
|
|
// Thus, we add two hours here as a buffer to ensure we absolutely
|
|
// never fail a payment too early.
|
|
// Note that we assume that received blocks have reasonably up-to-date
|
|
// timestamps.
|
|
expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
|
|
});
|
|
},
|
|
hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
|
|
}
|
|
Ok(payment_secret)
|
|
}
|
|
|
|
/// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
|
|
/// to pay us.
|
|
///
|
|
/// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
|
|
/// [`PaymentHash`] and [`PaymentPreimage`] for you.
|
|
///
|
|
/// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
|
|
/// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
|
|
/// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
|
|
/// passed directly to [`claim_funds`].
|
|
///
|
|
/// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
|
|
///
|
|
/// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
|
|
/// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
|
|
/// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
|
|
///
|
|
/// Errors if `min_value_msat` is greater than total bitcoin supply.
|
|
///
|
|
/// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
|
|
/// on versions of LDK prior to 0.0.114.
|
|
///
|
|
/// [`claim_funds`]: Self::claim_funds
|
|
/// [`PaymentClaimable`]: events::Event::PaymentClaimable
|
|
/// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
|
|
/// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
|
|
/// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
|
|
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
|
|
pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
|
|
min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
|
|
inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
|
|
&self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
|
|
min_final_cltv_expiry_delta)
|
|
}
|
|
|
|
/// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
|
|
/// serialized state with LDK node(s) running 0.0.103 and earlier.
|
|
///
|
|
/// May panic if `invoice_expiry_delta_secs` is greater than one year.
|
|
///
|
|
/// # Note
|
|
/// This method is deprecated and will be removed soon.
|
|
///
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
#[deprecated]
|
|
pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
|
|
let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
|
|
Ok((payment_hash, payment_secret))
|
|
}
|
|
|
|
/// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
|
|
/// stored external to LDK.
|
|
///
|
|
/// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
|
|
/// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
|
|
/// the `min_value_msat` provided here, if one is provided.
|
|
///
|
|
/// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
|
|
/// note that LDK will not stop you from registering duplicate payment hashes for inbound
|
|
/// payments.
|
|
///
|
|
/// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
|
|
/// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
|
|
/// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
|
|
/// sender "proof-of-payment" unless they have paid the required amount.
|
|
///
|
|
/// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
|
|
/// in excess of the current time. This should roughly match the expiry time set in the invoice.
|
|
/// After this many seconds, we will remove the inbound payment, resulting in any attempts to
|
|
/// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
|
|
/// invoices when no timeout is set.
|
|
///
|
|
/// Note that we use block header time to time-out pending inbound payments (with some margin
|
|
/// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
|
|
/// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
|
|
/// If you need exact expiry semantics, you should enforce them upon receipt of
|
|
/// [`PaymentClaimable`].
|
|
///
|
|
/// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
|
|
/// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
|
|
///
|
|
/// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
|
|
/// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
|
|
///
|
|
/// # Note
|
|
///
|
|
/// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
|
|
/// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
|
|
///
|
|
/// Errors if `min_value_msat` is greater than total bitcoin supply.
|
|
///
|
|
/// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
|
|
/// on versions of LDK prior to 0.0.114.
|
|
///
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
/// [`PaymentClaimable`]: events::Event::PaymentClaimable
|
|
pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
|
|
invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
|
|
inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
|
|
invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
|
|
min_final_cltv_expiry)
|
|
}
|
|
|
|
/// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
|
|
/// serialized state with LDK node(s) running 0.0.103 and earlier.
|
|
///
|
|
/// May panic if `invoice_expiry_delta_secs` is greater than one year.
|
|
///
|
|
/// # Note
|
|
/// This method is deprecated and will be removed soon.
|
|
///
|
|
/// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
|
|
#[deprecated]
|
|
pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
|
|
self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
|
|
}
|
|
|
|
/// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
|
|
/// previously returned from [`create_inbound_payment`].
|
|
///
|
|
/// [`create_inbound_payment`]: Self::create_inbound_payment
|
|
pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
|
|
inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
|
|
}
|
|
|
|
/// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
|
|
/// are used when constructing the phantom invoice's route hints.
|
|
///
|
|
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
|
|
pub fn get_phantom_scid(&self) -> u64 {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let short_to_chan_info = self.short_to_chan_info.read().unwrap();
|
|
loop {
|
|
let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
|
|
// Ensure the generated scid doesn't conflict with a real channel.
|
|
match short_to_chan_info.get(&scid_candidate) {
|
|
Some(_) => continue,
|
|
None => return scid_candidate
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gets route hints for use in receiving [phantom node payments].
|
|
///
|
|
/// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
|
|
pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
|
|
PhantomRouteHints {
|
|
channels: self.list_usable_channels(),
|
|
phantom_scid: self.get_phantom_scid(),
|
|
real_node_pubkey: self.get_our_node_id(),
|
|
}
|
|
}
|
|
|
|
/// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
|
|
/// used when constructing the route hints for HTLCs intended to be intercepted. See
|
|
/// [`ChannelManager::forward_intercepted_htlc`].
|
|
///
|
|
/// Note that this method is not guaranteed to return unique values, you may need to call it a few
|
|
/// times to get a unique scid.
|
|
pub fn get_intercept_scid(&self) -> u64 {
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
let short_to_chan_info = self.short_to_chan_info.read().unwrap();
|
|
loop {
|
|
let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
|
|
// Ensure the generated scid doesn't conflict with a real channel.
|
|
if short_to_chan_info.contains_key(&scid_candidate) { continue }
|
|
return scid_candidate
|
|
}
|
|
}
|
|
|
|
/// Gets inflight HTLC information by processing pending outbound payments that are in
|
|
/// our channels. May be used during pathfinding to account for in-use channel liquidity.
|
|
pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
|
|
let mut inflight_htlcs = InFlightHtlcs::new();
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for chan in peer_state.channel_by_id.values() {
|
|
for (htlc_source, _) in chan.inflight_htlc_sources() {
|
|
if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
|
|
inflight_htlcs.process_path(path, self.get_our_node_id());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inflight_htlcs
|
|
}
|
|
|
|
#[cfg(any(test, fuzzing, feature = "_test_utils"))]
|
|
pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
|
|
let events = core::cell::RefCell::new(Vec::new());
|
|
let event_handler = |event: events::Event| events.borrow_mut().push(event);
|
|
self.process_pending_events(&event_handler);
|
|
events.into_inner()
|
|
}
|
|
|
|
#[cfg(feature = "_test_utils")]
|
|
pub fn push_pending_event(&self, event: events::Event) {
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
events.push(event);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub fn pop_pending_event(&self) -> Option<events::Event> {
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
if events.is_empty() { None } else { Some(events.remove(0)) }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub fn has_pending_payments(&self) -> bool {
|
|
self.pending_outbound_payments.has_pending_payments()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub fn clear_pending_payments(&self) {
|
|
self.pending_outbound_payments.clear_pending_payments()
|
|
}
|
|
|
|
/// Processes any events asynchronously in the order they were generated since the last call
|
|
/// using the given event handler.
|
|
///
|
|
/// See the trait-level documentation of [`EventsProvider`] for requirements.
|
|
pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
|
|
&self, handler: H
|
|
) {
|
|
let mut ev;
|
|
process_events_body!(self, ev, { handler(ev).await });
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
|
|
/// The returned array will contain `MessageSendEvent`s for different peers if
|
|
/// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
|
|
/// is always placed next to each other.
|
|
///
|
|
/// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
|
|
/// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
|
|
/// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
|
|
/// will randomly be placed first or last in the returned array.
|
|
///
|
|
/// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
|
|
/// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
|
|
/// the `MessageSendEvent`s to the specific peer they were generated under.
|
|
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
|
|
let events = RefCell::new(Vec::new());
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
let mut result = NotifyOption::SkipPersist;
|
|
|
|
// TODO: This behavior should be documented. It's unintuitive that we query
|
|
// ChannelMonitors when clearing other events.
|
|
if self.process_pending_monitor_events() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
if self.check_free_holding_cells() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
if self.maybe_generate_initial_closing_signed() {
|
|
result = NotifyOption::DoPersist;
|
|
}
|
|
|
|
let mut pending_events = Vec::new();
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if peer_state.pending_msg_events.len() > 0 {
|
|
pending_events.append(&mut peer_state.pending_msg_events);
|
|
}
|
|
}
|
|
|
|
if !pending_events.is_empty() {
|
|
events.replace(pending_events);
|
|
}
|
|
|
|
result
|
|
});
|
|
events.into_inner()
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// Processes events that must be periodically handled.
|
|
///
|
|
/// An [`EventHandler`] may safely call back to the provider in order to handle an event.
|
|
/// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
|
|
fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
|
|
let mut ev;
|
|
process_events_body!(self, ev, handler.handle_event(ev));
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
|
|
{
|
|
let best_block = self.best_block.read().unwrap();
|
|
assert_eq!(best_block.block_hash(), header.prev_blockhash,
|
|
"Blocks must be connected in chain-order - the connected header must build on the last connected header");
|
|
assert_eq!(best_block.height(), height - 1,
|
|
"Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
|
|
}
|
|
|
|
self.transactions_confirmed(header, txdata, height);
|
|
self.best_block_updated(header, height);
|
|
}
|
|
|
|
fn block_disconnected(&self, header: &BlockHeader, height: u32) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let new_height = height - 1;
|
|
{
|
|
let mut best_block = self.best_block.write().unwrap();
|
|
assert_eq!(best_block.block_hash(), header.block_hash(),
|
|
"Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
|
|
assert_eq!(best_block.height(), height,
|
|
"Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
|
|
*best_block = BestBlock::new(header.prev_blockhash, new_height)
|
|
}
|
|
|
|
self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let block_hash = header.block_hash();
|
|
log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
|
|
.map(|(a, b)| (a, Vec::new(), b)));
|
|
|
|
let last_best_block_height = self.best_block.read().unwrap().height();
|
|
if height < last_best_block_height {
|
|
let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
|
|
self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
|
|
}
|
|
}
|
|
|
|
fn best_block_updated(&self, header: &BlockHeader, height: u32) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let block_hash = header.block_hash();
|
|
log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
*self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
|
|
|
|
self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
|
|
|
|
macro_rules! max_time {
|
|
($timestamp: expr) => {
|
|
loop {
|
|
// Update $timestamp to be the max of its current value and the block
|
|
// timestamp. This should keep us close to the current time without relying on
|
|
// having an explicit local time source.
|
|
// Just in case we end up in a race, we loop until we either successfully
|
|
// update $timestamp or decide we don't need to.
|
|
let old_serial = $timestamp.load(Ordering::Acquire);
|
|
if old_serial >= header.time as usize { break; }
|
|
if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
max_time!(self.highest_seen_timestamp);
|
|
let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
|
|
payment_secrets.retain(|_, inbound_payment| {
|
|
inbound_payment.expiry_time > header.time as u64
|
|
});
|
|
}
|
|
|
|
fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
|
|
let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
|
|
for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for chan in peer_state.channel_by_id.values() {
|
|
if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
|
|
res.push((funding_txo.txid, Some(block_hash)));
|
|
}
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
fn transaction_unconfirmed(&self, txid: &Txid) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
self.do_chain_event(None, |channel| {
|
|
if let Some(funding_txo) = channel.get_funding_txo() {
|
|
if funding_txo.txid == *txid {
|
|
channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
|
|
} else { Ok((None, Vec::new(), None)) }
|
|
} else { Ok((None, Vec::new(), None)) }
|
|
});
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// Calls a function which handles an on-chain event (blocks dis/connected, transactions
|
|
/// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
|
|
/// the function.
|
|
fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
|
|
(&self, height_opt: Option<u32>, f: FN) {
|
|
// Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
|
|
// during initialization prior to the chain_monitor being fully configured in some cases.
|
|
// See the docs for `ChannelManagerReadArgs` for more.
|
|
|
|
let mut failed_channels = Vec::new();
|
|
let mut timed_out_htlcs = Vec::new();
|
|
{
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
peer_state.channel_by_id.retain(|_, channel| {
|
|
let res = f(channel);
|
|
if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
|
|
for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
|
|
let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
|
|
timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
|
|
HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
|
|
}
|
|
if let Some(channel_ready) = channel_ready_opt {
|
|
send_channel_ready!(self, pending_msg_events, channel, channel_ready);
|
|
if channel.is_usable() {
|
|
log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
|
|
if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg,
|
|
});
|
|
}
|
|
} else {
|
|
log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
|
|
}
|
|
}
|
|
|
|
{
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
emit_channel_ready_event!(pending_events, channel);
|
|
}
|
|
|
|
if let Some(announcement_sigs) = announcement_sigs {
|
|
log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
|
|
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
msg: announcement_sigs,
|
|
});
|
|
if let Some(height) = height_opt {
|
|
if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
|
|
msg: announcement,
|
|
// Note that announcement_signatures fails if the channel cannot be announced,
|
|
// so get_channel_update_for_broadcast will never fail by the time we get here.
|
|
update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
if channel.is_our_channel_ready() {
|
|
if let Some(real_scid) = channel.get_short_channel_id() {
|
|
// If we sent a 0conf channel_ready, and now have an SCID, we add it
|
|
// to the short_to_chan_info map here. Note that we check whether we
|
|
// can relay using the real SCID at relay-time (i.e.
|
|
// enforce option_scid_alias then), and if the funding tx is ever
|
|
// un-confirmed we force-close the channel, ensuring short_to_chan_info
|
|
// is always consistent.
|
|
let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
|
|
let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
|
|
assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
|
|
"SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
|
|
fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
|
|
}
|
|
}
|
|
} else if let Err(reason) = res {
|
|
update_maps_on_chan_removal!(self, channel);
|
|
// It looks like our counterparty went on-chain or funding transaction was
|
|
// reorged out of the main chain. Close the channel.
|
|
failed_channels.push(channel.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
let reason_message = format!("{}", reason);
|
|
self.issue_channel_close_events(channel, reason);
|
|
pending_msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: channel.get_counterparty_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
|
|
channel_id: channel.channel_id(),
|
|
data: reason_message,
|
|
} },
|
|
});
|
|
return false;
|
|
}
|
|
true
|
|
});
|
|
}
|
|
}
|
|
|
|
if let Some(height) = height_opt {
|
|
self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
|
|
payment.htlcs.retain(|htlc| {
|
|
// If height is approaching the number of blocks we think it takes us to get
|
|
// our commitment transaction confirmed before the HTLC expires, plus the
|
|
// number of blocks we generally consider it to take to do a commitment update,
|
|
// just give up on it and fail the HTLC.
|
|
if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
|
|
let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
|
|
|
|
timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
|
|
HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
|
|
HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
|
|
false
|
|
} else { true }
|
|
});
|
|
!payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
|
|
});
|
|
|
|
let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
|
|
intercepted_htlcs.retain(|_, htlc| {
|
|
if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
|
|
let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: htlc.prev_short_channel_id,
|
|
htlc_id: htlc.prev_htlc_id,
|
|
incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
|
|
phantom_shared_secret: None,
|
|
outpoint: htlc.prev_funding_outpoint,
|
|
});
|
|
|
|
let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
|
|
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
|
|
_ => unreachable!(),
|
|
};
|
|
timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
|
|
HTLCFailReason::from_failure_code(0x2000 | 2),
|
|
HTLCDestination::InvalidForward { requested_forward_scid }));
|
|
log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
|
|
false
|
|
} else { true }
|
|
});
|
|
}
|
|
|
|
self.handle_init_event_channel_failures(failed_channels);
|
|
|
|
for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
|
|
}
|
|
}
|
|
|
|
/// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
|
|
///
|
|
/// Note that callbacks registered on the [`Future`] MUST NOT call back into this
|
|
/// [`ChannelManager`] and should instead register actions to be taken later.
|
|
///
|
|
pub fn get_persistable_update_future(&self) -> Future {
|
|
self.persistence_notifier.get_future()
|
|
}
|
|
|
|
#[cfg(any(test, feature = "_test_utils"))]
|
|
pub fn get_persistence_condvar_value(&self) -> bool {
|
|
self.persistence_notifier.notify_pending()
|
|
}
|
|
|
|
/// Gets the latest best block which was connected either via the [`chain::Listen`] or
|
|
/// [`chain::Confirm`] interfaces.
|
|
pub fn current_best_block(&self) -> BestBlock {
|
|
self.best_block.read().unwrap().clone()
|
|
}
|
|
|
|
/// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub fn node_features(&self) -> NodeFeatures {
|
|
provided_node_features(&self.default_configuration)
|
|
}
|
|
|
|
/// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
///
|
|
/// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
|
|
/// or not. Thus, this method is not public.
|
|
#[cfg(any(feature = "_test_utils", test))]
|
|
pub fn invoice_features(&self) -> InvoiceFeatures {
|
|
provided_invoice_features(&self.default_configuration)
|
|
}
|
|
|
|
/// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub fn channel_features(&self) -> ChannelFeatures {
|
|
provided_channel_features(&self.default_configuration)
|
|
}
|
|
|
|
/// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub fn channel_type_features(&self) -> ChannelTypeFeatures {
|
|
provided_channel_type_features(&self.default_configuration)
|
|
}
|
|
|
|
/// Fetches the set of [`InitFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub fn init_features(&self) -> InitFeatures {
|
|
provided_init_features(&self.default_configuration)
|
|
}
|
|
}
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
|
|
PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
|
|
if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
|
|
persist
|
|
} else {
|
|
NotifyOption::SkipPersist
|
|
}
|
|
});
|
|
}
|
|
|
|
fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
|
|
}
|
|
|
|
fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
let mut failed_channels = Vec::new();
|
|
let mut per_peer_state = self.per_peer_state.write().unwrap();
|
|
let remove_peer = {
|
|
log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
|
|
log_pubkey!(counterparty_node_id));
|
|
if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
peer_state.channel_by_id.retain(|_, chan| {
|
|
chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
|
|
if chan.is_shutdown() {
|
|
update_maps_on_chan_removal!(self, chan);
|
|
self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
|
|
return false;
|
|
}
|
|
true
|
|
});
|
|
pending_msg_events.retain(|msg| {
|
|
match msg {
|
|
&events::MessageSendEvent::SendAcceptChannel { .. } => false,
|
|
&events::MessageSendEvent::SendOpenChannel { .. } => false,
|
|
&events::MessageSendEvent::SendFundingCreated { .. } => false,
|
|
&events::MessageSendEvent::SendFundingSigned { .. } => false,
|
|
&events::MessageSendEvent::SendChannelReady { .. } => false,
|
|
&events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
|
|
&events::MessageSendEvent::UpdateHTLCs { .. } => false,
|
|
&events::MessageSendEvent::SendRevokeAndACK { .. } => false,
|
|
&events::MessageSendEvent::SendClosingSigned { .. } => false,
|
|
&events::MessageSendEvent::SendShutdown { .. } => false,
|
|
&events::MessageSendEvent::SendChannelReestablish { .. } => false,
|
|
&events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
|
|
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
|
|
&events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::SendChannelUpdate { .. } => false,
|
|
&events::MessageSendEvent::HandleError { .. } => false,
|
|
&events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
|
|
&events::MessageSendEvent::SendShortIdsQuery { .. } => false,
|
|
&events::MessageSendEvent::SendReplyChannelRange { .. } => false,
|
|
&events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
|
|
}
|
|
});
|
|
debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
|
|
peer_state.is_connected = false;
|
|
peer_state.ok_to_remove(true)
|
|
} else { debug_assert!(false, "Unconnected peer disconnected"); true }
|
|
};
|
|
if remove_peer {
|
|
per_peer_state.remove(counterparty_node_id);
|
|
}
|
|
mem::drop(per_peer_state);
|
|
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
}
|
|
|
|
fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
|
|
if !init_msg.features.supports_static_remote_key() {
|
|
log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
|
|
return Err(());
|
|
}
|
|
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
// If we have too many peers connected which don't have funded channels, disconnect the
|
|
// peer immediately (as long as it doesn't have funded channels). If we have a bunch of
|
|
// unfunded channels taking up space in memory for disconnected peers, we still let new
|
|
// peers connect, but we'll reject new channels from them.
|
|
let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
|
|
let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
|
|
|
|
{
|
|
let mut peer_state_lock = self.per_peer_state.write().unwrap();
|
|
match peer_state_lock.entry(counterparty_node_id.clone()) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
if inbound_peer_limited {
|
|
return Err(());
|
|
}
|
|
e.insert(Mutex::new(PeerState {
|
|
channel_by_id: HashMap::new(),
|
|
latest_features: init_msg.features.clone(),
|
|
pending_msg_events: Vec::new(),
|
|
monitor_update_blocked_actions: BTreeMap::new(),
|
|
is_connected: true,
|
|
}));
|
|
},
|
|
hash_map::Entry::Occupied(e) => {
|
|
let mut peer_state = e.get().lock().unwrap();
|
|
peer_state.latest_features = init_msg.features.clone();
|
|
|
|
let best_block_height = self.best_block.read().unwrap().height();
|
|
if inbound_peer_limited &&
|
|
Self::unfunded_channel_count(&*peer_state, best_block_height) ==
|
|
peer_state.channel_by_id.len()
|
|
{
|
|
return Err(());
|
|
}
|
|
|
|
debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
|
|
peer_state.is_connected = true;
|
|
},
|
|
}
|
|
}
|
|
|
|
log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
|
|
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
let pending_msg_events = &mut peer_state.pending_msg_events;
|
|
peer_state.channel_by_id.retain(|_, chan| {
|
|
let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
|
|
if !chan.have_received_message() {
|
|
// If we created this (outbound) channel while we were disconnected from the
|
|
// peer we probably failed to send the open_channel message, which is now
|
|
// lost. We can't have had anything pending related to this channel, so we just
|
|
// drop it.
|
|
false
|
|
} else {
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
|
|
node_id: chan.get_counterparty_node_id(),
|
|
msg: chan.get_channel_reestablish(&self.logger),
|
|
});
|
|
true
|
|
}
|
|
} else { true };
|
|
if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
|
|
if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
|
|
if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
|
|
node_id: *counterparty_node_id,
|
|
msg, update_msg,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
retain
|
|
});
|
|
}
|
|
//TODO: Also re-broadcast announcement_signatures
|
|
Ok(())
|
|
}
|
|
|
|
fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
|
|
let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
|
|
|
|
if msg.channel_id == [0; 32] {
|
|
let channel_ids: Vec<[u8; 32]> = {
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() { return; }
|
|
let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
peer_state.channel_by_id.keys().cloned().collect()
|
|
};
|
|
for channel_id in channel_ids {
|
|
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
|
|
let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
|
|
}
|
|
} else {
|
|
{
|
|
// First check if we can advance the channel type and try again.
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
|
|
if peer_state_mutex_opt.is_none() { return; }
|
|
let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
|
|
if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
|
|
peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
|
|
node_id: *counterparty_node_id,
|
|
msg,
|
|
});
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Untrusted messages from peer, we throw away the error if id points to a non-existent channel
|
|
let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
|
|
}
|
|
}
|
|
|
|
fn provided_node_features(&self) -> NodeFeatures {
|
|
provided_node_features(&self.default_configuration)
|
|
}
|
|
|
|
fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
|
|
provided_init_features(&self.default_configuration)
|
|
}
|
|
}
|
|
|
|
/// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
|
|
provided_init_features(config).to_context()
|
|
}
|
|
|
|
/// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
///
|
|
/// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
|
|
/// or not. Thus, this method is not public.
|
|
#[cfg(any(feature = "_test_utils", test))]
|
|
pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
|
|
provided_init_features(config).to_context()
|
|
}
|
|
|
|
/// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
|
|
provided_init_features(config).to_context()
|
|
}
|
|
|
|
/// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
|
|
ChannelTypeFeatures::from_init(&provided_init_features(config))
|
|
}
|
|
|
|
/// Fetches the set of [`InitFeatures`] flags which are provided by or required by
|
|
/// [`ChannelManager`].
|
|
pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
|
|
// Note that if new features are added here which other peers may (eventually) require, we
|
|
// should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
|
|
// [`ErroringMessageHandler`].
|
|
let mut features = InitFeatures::empty();
|
|
features.set_data_loss_protect_optional();
|
|
features.set_upfront_shutdown_script_optional();
|
|
features.set_variable_length_onion_required();
|
|
features.set_static_remote_key_required();
|
|
features.set_payment_secret_required();
|
|
features.set_basic_mpp_optional();
|
|
features.set_wumbo_optional();
|
|
features.set_shutdown_any_segwit_optional();
|
|
features.set_channel_type_optional();
|
|
features.set_scid_privacy_optional();
|
|
features.set_zero_conf_optional();
|
|
#[cfg(anchors)]
|
|
{ // Attributes are not allowed on if expressions on our current MSRV of 1.41.
|
|
if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
|
|
features.set_anchors_zero_fee_htlc_tx_optional();
|
|
}
|
|
}
|
|
features
|
|
}
|
|
|
|
const SERIALIZATION_VERSION: u8 = 1;
|
|
const MIN_SERIALIZATION_VERSION: u8 = 1;
|
|
|
|
impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
|
|
(2, fee_base_msat, required),
|
|
(4, fee_proportional_millionths, required),
|
|
(6, cltv_expiry_delta, required),
|
|
});
|
|
|
|
impl_writeable_tlv_based!(ChannelCounterparty, {
|
|
(2, node_id, required),
|
|
(4, features, required),
|
|
(6, unspendable_punishment_reserve, required),
|
|
(8, forwarding_info, option),
|
|
(9, outbound_htlc_minimum_msat, option),
|
|
(11, outbound_htlc_maximum_msat, option),
|
|
});
|
|
|
|
impl Writeable for ChannelDetails {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
|
|
// `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
|
|
// versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
|
|
let user_channel_id_low = self.user_channel_id as u64;
|
|
let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
|
|
write_tlv_fields!(writer, {
|
|
(1, self.inbound_scid_alias, option),
|
|
(2, self.channel_id, required),
|
|
(3, self.channel_type, option),
|
|
(4, self.counterparty, required),
|
|
(5, self.outbound_scid_alias, option),
|
|
(6, self.funding_txo, option),
|
|
(7, self.config, option),
|
|
(8, self.short_channel_id, option),
|
|
(9, self.confirmations, option),
|
|
(10, self.channel_value_satoshis, required),
|
|
(12, self.unspendable_punishment_reserve, option),
|
|
(14, user_channel_id_low, required),
|
|
(16, self.balance_msat, required),
|
|
(18, self.outbound_capacity_msat, required),
|
|
// Note that by the time we get past the required read above, outbound_capacity_msat will be
|
|
// filled in, so we can safely unwrap it here.
|
|
(19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
|
|
(20, self.inbound_capacity_msat, required),
|
|
(22, self.confirmations_required, option),
|
|
(24, self.force_close_spend_delay, option),
|
|
(26, self.is_outbound, required),
|
|
(28, self.is_channel_ready, required),
|
|
(30, self.is_usable, required),
|
|
(32, self.is_public, required),
|
|
(33, self.inbound_htlc_minimum_msat, option),
|
|
(35, self.inbound_htlc_maximum_msat, option),
|
|
(37, user_channel_id_high_opt, option),
|
|
(39, self.feerate_sat_per_1000_weight, option),
|
|
});
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for ChannelDetails {
|
|
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
|
|
_init_and_read_tlv_fields!(reader, {
|
|
(1, inbound_scid_alias, option),
|
|
(2, channel_id, required),
|
|
(3, channel_type, option),
|
|
(4, counterparty, required),
|
|
(5, outbound_scid_alias, option),
|
|
(6, funding_txo, option),
|
|
(7, config, option),
|
|
(8, short_channel_id, option),
|
|
(9, confirmations, option),
|
|
(10, channel_value_satoshis, required),
|
|
(12, unspendable_punishment_reserve, option),
|
|
(14, user_channel_id_low, required),
|
|
(16, balance_msat, required),
|
|
(18, outbound_capacity_msat, required),
|
|
// Note that by the time we get past the required read above, outbound_capacity_msat will be
|
|
// filled in, so we can safely unwrap it here.
|
|
(19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
|
|
(20, inbound_capacity_msat, required),
|
|
(22, confirmations_required, option),
|
|
(24, force_close_spend_delay, option),
|
|
(26, is_outbound, required),
|
|
(28, is_channel_ready, required),
|
|
(30, is_usable, required),
|
|
(32, is_public, required),
|
|
(33, inbound_htlc_minimum_msat, option),
|
|
(35, inbound_htlc_maximum_msat, option),
|
|
(37, user_channel_id_high_opt, option),
|
|
(39, feerate_sat_per_1000_weight, option),
|
|
});
|
|
|
|
// `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
|
|
// versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
|
|
let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
|
|
let user_channel_id = user_channel_id_low as u128 +
|
|
((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
|
|
|
|
Ok(Self {
|
|
inbound_scid_alias,
|
|
channel_id: channel_id.0.unwrap(),
|
|
channel_type,
|
|
counterparty: counterparty.0.unwrap(),
|
|
outbound_scid_alias,
|
|
funding_txo,
|
|
config,
|
|
short_channel_id,
|
|
channel_value_satoshis: channel_value_satoshis.0.unwrap(),
|
|
unspendable_punishment_reserve,
|
|
user_channel_id,
|
|
balance_msat: balance_msat.0.unwrap(),
|
|
outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
|
|
next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
|
|
inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
|
|
confirmations_required,
|
|
confirmations,
|
|
force_close_spend_delay,
|
|
is_outbound: is_outbound.0.unwrap(),
|
|
is_channel_ready: is_channel_ready.0.unwrap(),
|
|
is_usable: is_usable.0.unwrap(),
|
|
is_public: is_public.0.unwrap(),
|
|
inbound_htlc_minimum_msat,
|
|
inbound_htlc_maximum_msat,
|
|
feerate_sat_per_1000_weight,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl_writeable_tlv_based!(PhantomRouteHints, {
|
|
(2, channels, vec_type),
|
|
(4, phantom_scid, required),
|
|
(6, real_node_pubkey, required),
|
|
});
|
|
|
|
impl_writeable_tlv_based_enum!(PendingHTLCRouting,
|
|
(0, Forward) => {
|
|
(0, onion_packet, required),
|
|
(2, short_channel_id, required),
|
|
},
|
|
(1, Receive) => {
|
|
(0, payment_data, required),
|
|
(1, phantom_shared_secret, option),
|
|
(2, incoming_cltv_expiry, required),
|
|
(3, payment_metadata, option),
|
|
},
|
|
(2, ReceiveKeysend) => {
|
|
(0, payment_preimage, required),
|
|
(2, incoming_cltv_expiry, required),
|
|
(3, payment_metadata, option),
|
|
},
|
|
;);
|
|
|
|
impl_writeable_tlv_based!(PendingHTLCInfo, {
|
|
(0, routing, required),
|
|
(2, incoming_shared_secret, required),
|
|
(4, payment_hash, required),
|
|
(6, outgoing_amt_msat, required),
|
|
(8, outgoing_cltv_value, required),
|
|
(9, incoming_amt_msat, option),
|
|
});
|
|
|
|
|
|
impl Writeable for HTLCFailureMsg {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
|
|
match self {
|
|
HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
|
|
0u8.write(writer)?;
|
|
channel_id.write(writer)?;
|
|
htlc_id.write(writer)?;
|
|
reason.write(writer)?;
|
|
},
|
|
HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
|
|
channel_id, htlc_id, sha256_of_onion, failure_code
|
|
}) => {
|
|
1u8.write(writer)?;
|
|
channel_id.write(writer)?;
|
|
htlc_id.write(writer)?;
|
|
sha256_of_onion.write(writer)?;
|
|
failure_code.write(writer)?;
|
|
},
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCFailureMsg {
|
|
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
|
|
let id: u8 = Readable::read(reader)?;
|
|
match id {
|
|
0 => {
|
|
Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
|
|
channel_id: Readable::read(reader)?,
|
|
htlc_id: Readable::read(reader)?,
|
|
reason: Readable::read(reader)?,
|
|
}))
|
|
},
|
|
1 => {
|
|
Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
|
|
channel_id: Readable::read(reader)?,
|
|
htlc_id: Readable::read(reader)?,
|
|
sha256_of_onion: Readable::read(reader)?,
|
|
failure_code: Readable::read(reader)?,
|
|
}))
|
|
},
|
|
// In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
|
|
// weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
|
|
// messages contained in the variants.
|
|
// In version 0.0.101, support for reading the variants with these types was added, and
|
|
// we should migrate to writing these variants when UpdateFailHTLC or
|
|
// UpdateFailMalformedHTLC get TLV fields.
|
|
2 => {
|
|
let length: BigSize = Readable::read(reader)?;
|
|
let mut s = FixedLengthReader::new(reader, length.0);
|
|
let res = Readable::read(&mut s)?;
|
|
s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
|
|
Ok(HTLCFailureMsg::Relay(res))
|
|
},
|
|
3 => {
|
|
let length: BigSize = Readable::read(reader)?;
|
|
let mut s = FixedLengthReader::new(reader, length.0);
|
|
let res = Readable::read(&mut s)?;
|
|
s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
|
|
Ok(HTLCFailureMsg::Malformed(res))
|
|
},
|
|
_ => Err(DecodeError::UnknownRequiredFeature),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
|
|
(0, Forward),
|
|
(1, Fail),
|
|
);
|
|
|
|
impl_writeable_tlv_based!(HTLCPreviousHopData, {
|
|
(0, short_channel_id, required),
|
|
(1, phantom_shared_secret, option),
|
|
(2, outpoint, required),
|
|
(4, htlc_id, required),
|
|
(6, incoming_packet_shared_secret, required)
|
|
});
|
|
|
|
impl Writeable for ClaimableHTLC {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
|
|
let (payment_data, keysend_preimage) = match &self.onion_payload {
|
|
OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
|
|
OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
|
|
};
|
|
write_tlv_fields!(writer, {
|
|
(0, self.prev_hop, required),
|
|
(1, self.total_msat, required),
|
|
(2, self.value, required),
|
|
(3, self.sender_intended_value, required),
|
|
(4, payment_data, option),
|
|
(5, self.total_value_received, option),
|
|
(6, self.cltv_expiry, required),
|
|
(8, keysend_preimage, option),
|
|
});
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for ClaimableHTLC {
|
|
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
|
|
let mut prev_hop = crate::util::ser::RequiredWrapper(None);
|
|
let mut value = 0;
|
|
let mut sender_intended_value = None;
|
|
let mut payment_data: Option<msgs::FinalOnionHopData> = None;
|
|
let mut cltv_expiry = 0;
|
|
let mut total_value_received = None;
|
|
let mut total_msat = None;
|
|
let mut keysend_preimage: Option<PaymentPreimage> = None;
|
|
read_tlv_fields!(reader, {
|
|
(0, prev_hop, required),
|
|
(1, total_msat, option),
|
|
(2, value, required),
|
|
(3, sender_intended_value, option),
|
|
(4, payment_data, option),
|
|
(5, total_value_received, option),
|
|
(6, cltv_expiry, required),
|
|
(8, keysend_preimage, option)
|
|
});
|
|
let onion_payload = match keysend_preimage {
|
|
Some(p) => {
|
|
if payment_data.is_some() {
|
|
return Err(DecodeError::InvalidValue)
|
|
}
|
|
if total_msat.is_none() {
|
|
total_msat = Some(value);
|
|
}
|
|
OnionPayload::Spontaneous(p)
|
|
},
|
|
None => {
|
|
if total_msat.is_none() {
|
|
if payment_data.is_none() {
|
|
return Err(DecodeError::InvalidValue)
|
|
}
|
|
total_msat = Some(payment_data.as_ref().unwrap().total_msat);
|
|
}
|
|
OnionPayload::Invoice { _legacy_hop_data: payment_data }
|
|
},
|
|
};
|
|
Ok(Self {
|
|
prev_hop: prev_hop.0.unwrap(),
|
|
timer_ticks: 0,
|
|
value,
|
|
sender_intended_value: sender_intended_value.unwrap_or(value),
|
|
total_value_received,
|
|
total_msat: total_msat.unwrap(),
|
|
onion_payload,
|
|
cltv_expiry,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCSource {
|
|
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
|
|
let id: u8 = Readable::read(reader)?;
|
|
match id {
|
|
0 => {
|
|
let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
|
|
let mut first_hop_htlc_msat: u64 = 0;
|
|
let mut path_hops: Option<Vec<RouteHop>> = Some(Vec::new());
|
|
let mut payment_id = None;
|
|
let mut payment_params: Option<PaymentParameters> = None;
|
|
let mut blinded_tail: Option<BlindedTail> = None;
|
|
read_tlv_fields!(reader, {
|
|
(0, session_priv, required),
|
|
(1, payment_id, option),
|
|
(2, first_hop_htlc_msat, required),
|
|
(4, path_hops, vec_type),
|
|
(5, payment_params, (option: ReadableArgs, 0)),
|
|
(6, blinded_tail, option),
|
|
});
|
|
if payment_id.is_none() {
|
|
// For backwards compat, if there was no payment_id written, use the session_priv bytes
|
|
// instead.
|
|
payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
|
|
}
|
|
let path = Path { hops: path_hops.ok_or(DecodeError::InvalidValue)?, blinded_tail };
|
|
if path.hops.len() == 0 {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
if let Some(params) = payment_params.as_mut() {
|
|
if params.final_cltv_expiry_delta == 0 {
|
|
params.final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
|
|
}
|
|
}
|
|
Ok(HTLCSource::OutboundRoute {
|
|
session_priv: session_priv.0.unwrap(),
|
|
first_hop_htlc_msat,
|
|
path,
|
|
payment_id: payment_id.unwrap(),
|
|
})
|
|
}
|
|
1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
|
|
_ => Err(DecodeError::UnknownRequiredFeature),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for HTLCSource {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
|
|
match self {
|
|
HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
|
|
0u8.write(writer)?;
|
|
let payment_id_opt = Some(payment_id);
|
|
write_tlv_fields!(writer, {
|
|
(0, session_priv, required),
|
|
(1, payment_id_opt, option),
|
|
(2, first_hop_htlc_msat, required),
|
|
// 3 was previously used to write a PaymentSecret for the payment.
|
|
(4, path.hops, vec_type),
|
|
(5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
|
|
(6, path.blinded_tail, option),
|
|
});
|
|
}
|
|
HTLCSource::PreviousHopData(ref field) => {
|
|
1u8.write(writer)?;
|
|
field.write(writer)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl_writeable_tlv_based!(PendingAddHTLCInfo, {
|
|
(0, forward_info, required),
|
|
(1, prev_user_channel_id, (default_value, 0)),
|
|
(2, prev_short_channel_id, required),
|
|
(4, prev_htlc_id, required),
|
|
(6, prev_funding_outpoint, required),
|
|
});
|
|
|
|
impl_writeable_tlv_based_enum!(HTLCForwardInfo,
|
|
(1, FailHTLC) => {
|
|
(0, htlc_id, required),
|
|
(2, err_packet, required),
|
|
};
|
|
(0, AddHTLC)
|
|
);
|
|
|
|
impl_writeable_tlv_based!(PendingInboundPayment, {
|
|
(0, payment_secret, required),
|
|
(2, expiry_time, required),
|
|
(4, user_payment_id, required),
|
|
(6, payment_preimage, required),
|
|
(8, min_value_msat, required),
|
|
});
|
|
|
|
impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
|
|
let _consistency_lock = self.total_consistency_lock.write().unwrap();
|
|
|
|
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
|
|
|
|
self.genesis_hash.write(writer)?;
|
|
{
|
|
let best_block = self.best_block.read().unwrap();
|
|
best_block.height().write(writer)?;
|
|
best_block.block_hash().write(writer)?;
|
|
}
|
|
|
|
let mut serializable_peer_count: u64 = 0;
|
|
{
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
let mut unfunded_channels = 0;
|
|
let mut number_of_channels = 0;
|
|
for (_, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if !peer_state.ok_to_remove(false) {
|
|
serializable_peer_count += 1;
|
|
}
|
|
number_of_channels += peer_state.channel_by_id.len();
|
|
for (_, channel) in peer_state.channel_by_id.iter() {
|
|
if !channel.is_funding_initiated() {
|
|
unfunded_channels += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
((number_of_channels - unfunded_channels) as u64).write(writer)?;
|
|
|
|
for (_, peer_state_mutex) in per_peer_state.iter() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for (_, channel) in peer_state.channel_by_id.iter() {
|
|
if channel.is_funding_initiated() {
|
|
channel.write(writer)?;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
let forward_htlcs = self.forward_htlcs.lock().unwrap();
|
|
(forward_htlcs.len() as u64).write(writer)?;
|
|
for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
|
|
short_channel_id.write(writer)?;
|
|
(pending_forwards.len() as u64).write(writer)?;
|
|
for forward in pending_forwards {
|
|
forward.write(writer)?;
|
|
}
|
|
}
|
|
}
|
|
|
|
let per_peer_state = self.per_peer_state.write().unwrap();
|
|
|
|
let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
|
|
let claimable_payments = self.claimable_payments.lock().unwrap();
|
|
let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
|
|
|
|
let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
|
|
let mut htlc_onion_fields: Vec<&_> = Vec::new();
|
|
(claimable_payments.claimable_payments.len() as u64).write(writer)?;
|
|
for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
|
|
payment_hash.write(writer)?;
|
|
(payment.htlcs.len() as u64).write(writer)?;
|
|
for htlc in payment.htlcs.iter() {
|
|
htlc.write(writer)?;
|
|
}
|
|
htlc_purposes.push(&payment.purpose);
|
|
htlc_onion_fields.push(&payment.onion_fields);
|
|
}
|
|
|
|
let mut monitor_update_blocked_actions_per_peer = None;
|
|
let mut peer_states = Vec::new();
|
|
for (_, peer_state_mutex) in per_peer_state.iter() {
|
|
// Because we're holding the owning `per_peer_state` write lock here there's no chance
|
|
// of a lockorder violation deadlock - no other thread can be holding any
|
|
// per_peer_state lock at all.
|
|
peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
|
|
}
|
|
|
|
(serializable_peer_count).write(writer)?;
|
|
for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
|
|
// Peers which we have no channels to should be dropped once disconnected. As we
|
|
// disconnect all peers when shutting down and serializing the ChannelManager, we
|
|
// consider all peers as disconnected here. There's therefore no need write peers with
|
|
// no channels.
|
|
if !peer_state.ok_to_remove(false) {
|
|
peer_pubkey.write(writer)?;
|
|
peer_state.latest_features.write(writer)?;
|
|
if !peer_state.monitor_update_blocked_actions.is_empty() {
|
|
monitor_update_blocked_actions_per_peer
|
|
.get_or_insert_with(Vec::new)
|
|
.push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
|
|
}
|
|
}
|
|
}
|
|
|
|
let events = self.pending_events.lock().unwrap();
|
|
(events.len() as u64).write(writer)?;
|
|
for event in events.iter() {
|
|
event.write(writer)?;
|
|
}
|
|
|
|
let background_events = self.pending_background_events.lock().unwrap();
|
|
(background_events.len() as u64).write(writer)?;
|
|
for event in background_events.iter() {
|
|
match event {
|
|
BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
|
|
0u8.write(writer)?;
|
|
funding_txo.write(writer)?;
|
|
monitor_update.write(writer)?;
|
|
},
|
|
}
|
|
}
|
|
|
|
// Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
|
|
// `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
|
|
// likely to be identical.
|
|
(self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
|
|
(self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
|
|
|
|
(pending_inbound_payments.len() as u64).write(writer)?;
|
|
for (hash, pending_payment) in pending_inbound_payments.iter() {
|
|
hash.write(writer)?;
|
|
pending_payment.write(writer)?;
|
|
}
|
|
|
|
// For backwards compat, write the session privs and their total length.
|
|
let mut num_pending_outbounds_compat: u64 = 0;
|
|
for (_, outbound) in pending_outbound_payments.iter() {
|
|
if !outbound.is_fulfilled() && !outbound.abandoned() {
|
|
num_pending_outbounds_compat += outbound.remaining_parts() as u64;
|
|
}
|
|
}
|
|
num_pending_outbounds_compat.write(writer)?;
|
|
for (_, outbound) in pending_outbound_payments.iter() {
|
|
match outbound {
|
|
PendingOutboundPayment::Legacy { session_privs } |
|
|
PendingOutboundPayment::Retryable { session_privs, .. } => {
|
|
for session_priv in session_privs.iter() {
|
|
session_priv.write(writer)?;
|
|
}
|
|
}
|
|
PendingOutboundPayment::Fulfilled { .. } => {},
|
|
PendingOutboundPayment::Abandoned { .. } => {},
|
|
}
|
|
}
|
|
|
|
// Encode without retry info for 0.0.101 compatibility.
|
|
let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
|
|
for (id, outbound) in pending_outbound_payments.iter() {
|
|
match outbound {
|
|
PendingOutboundPayment::Legacy { session_privs } |
|
|
PendingOutboundPayment::Retryable { session_privs, .. } => {
|
|
pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
|
|
},
|
|
_ => {},
|
|
}
|
|
}
|
|
|
|
let mut pending_intercepted_htlcs = None;
|
|
let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
|
|
if our_pending_intercepts.len() != 0 {
|
|
pending_intercepted_htlcs = Some(our_pending_intercepts);
|
|
}
|
|
|
|
let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
|
|
if pending_claiming_payments.as_ref().unwrap().is_empty() {
|
|
// LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
|
|
// map. Thus, if there are no entries we skip writing a TLV for it.
|
|
pending_claiming_payments = None;
|
|
}
|
|
|
|
write_tlv_fields!(writer, {
|
|
(1, pending_outbound_payments_no_retry, required),
|
|
(2, pending_intercepted_htlcs, option),
|
|
(3, pending_outbound_payments, required),
|
|
(4, pending_claiming_payments, option),
|
|
(5, self.our_network_pubkey, required),
|
|
(6, monitor_update_blocked_actions_per_peer, option),
|
|
(7, self.fake_scid_rand_bytes, required),
|
|
(9, htlc_purposes, vec_type),
|
|
(11, self.probing_cookie_secret, required),
|
|
(13, htlc_onion_fields, optional_vec),
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Arguments for the creation of a ChannelManager that are not deserialized.
|
|
///
|
|
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
|
|
/// is:
|
|
/// 1) Deserialize all stored [`ChannelMonitor`]s.
|
|
/// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
|
|
/// `<(BlockHash, ChannelManager)>::read(reader, args)`
|
|
/// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
|
|
/// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
|
|
/// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
|
|
/// same way you would handle a [`chain::Filter`] call using
|
|
/// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
|
|
/// 4) Reconnect blocks on your [`ChannelMonitor`]s.
|
|
/// 5) Disconnect/connect blocks on the [`ChannelManager`].
|
|
/// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
|
|
/// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
|
|
/// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
|
|
/// the next step.
|
|
/// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
|
|
/// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
|
|
///
|
|
/// Note that the ordering of #4-7 is not of importance, however all four must occur before you
|
|
/// call any other methods on the newly-deserialized [`ChannelManager`].
|
|
///
|
|
/// Note that because some channels may be closed during deserialization, it is critical that you
|
|
/// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
|
|
/// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
|
|
/// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
|
|
/// not force-close the same channels but consider them live), you may end up revoking a state for
|
|
/// which you've already broadcasted the transaction.
|
|
///
|
|
/// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
|
|
pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// A cryptographically secure source of entropy.
|
|
pub entropy_source: ES,
|
|
|
|
/// A signer that is able to perform node-scoped cryptographic operations.
|
|
pub node_signer: NS,
|
|
|
|
/// The keys provider which will give us relevant keys. Some keys will be loaded during
|
|
/// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
|
|
/// signing data.
|
|
pub signer_provider: SP,
|
|
|
|
/// The fee_estimator for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the FeeEstimator will be made during deserialization.
|
|
pub fee_estimator: F,
|
|
/// The chain::Watch for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the chain::Watch will be made during deserialization. It is assumed that
|
|
/// you have deserialized ChannelMonitors separately and will add them to your
|
|
/// chain::Watch after deserializing this ChannelManager.
|
|
pub chain_monitor: M,
|
|
|
|
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
|
|
/// used to broadcast the latest local commitment transactions of channels which must be
|
|
/// force-closed during deserialization.
|
|
pub tx_broadcaster: T,
|
|
/// The router which will be used in the ChannelManager in the future for finding routes
|
|
/// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
|
|
///
|
|
/// No calls to the router will be made during deserialization.
|
|
pub router: R,
|
|
/// The Logger for use in the ChannelManager and which may be used to log information during
|
|
/// deserialization.
|
|
pub logger: L,
|
|
/// Default settings used for new channels. Any existing channels will continue to use the
|
|
/// runtime settings which were stored when the ChannelManager was serialized.
|
|
pub default_config: UserConfig,
|
|
|
|
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
|
|
/// value.get_funding_txo() should be the key).
|
|
///
|
|
/// If a monitor is inconsistent with the channel state during deserialization the channel will
|
|
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
|
|
/// is true for missing channels as well. If there is a monitor missing for which we find
|
|
/// channel data Err(DecodeError::InvalidValue) will be returned.
|
|
///
|
|
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
|
|
/// this struct.
|
|
///
|
|
/// This is not exported to bindings users because we have no HashMap bindings
|
|
pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
|
|
}
|
|
|
|
impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
/// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
|
|
/// HashMap for you. This is primarily useful for C bindings where it is not practical to
|
|
/// populate a HashMap directly from C.
|
|
pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
|
|
mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
|
|
Self {
|
|
entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
|
|
channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
|
|
// SipmleArcChannelManager type:
|
|
impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
|
|
let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
|
|
Ok((blockhash, Arc::new(chan_manager)))
|
|
}
|
|
}
|
|
|
|
impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
|
|
where
|
|
M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
|
|
T::Target: BroadcasterInterface,
|
|
ES::Target: EntropySource,
|
|
NS::Target: NodeSigner,
|
|
SP::Target: SignerProvider,
|
|
F::Target: FeeEstimator,
|
|
R::Target: Router,
|
|
L::Target: Logger,
|
|
{
|
|
fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
|
|
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
|
|
|
|
let genesis_hash: BlockHash = Readable::read(reader)?;
|
|
let best_block_height: u32 = Readable::read(reader)?;
|
|
let best_block_hash: BlockHash = Readable::read(reader)?;
|
|
|
|
let mut failed_htlcs = Vec::new();
|
|
|
|
let channel_count: u64 = Readable::read(reader)?;
|
|
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut channel_closures = Vec::new();
|
|
let mut pending_background_events = Vec::new();
|
|
for _ in 0..channel_count {
|
|
let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
|
|
&args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
|
|
))?;
|
|
let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
|
|
funding_txo_set.insert(funding_txo.clone());
|
|
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
|
|
if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
|
|
channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
|
|
channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
|
|
// If the channel is ahead of the monitor, return InvalidValue:
|
|
log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
|
|
log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
|
|
log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
|
|
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
|
|
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
|
|
log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
|
|
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
|
|
return Err(DecodeError::InvalidValue);
|
|
} else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
|
|
channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
|
|
channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
|
|
// But if the channel is behind of the monitor, close the channel:
|
|
log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
|
|
log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
|
|
log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
|
|
log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
|
|
let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
|
|
if let Some(monitor_update) = monitor_update {
|
|
pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate(monitor_update));
|
|
}
|
|
failed_htlcs.append(&mut new_failed_htlcs);
|
|
channel_closures.push(events::Event::ChannelClosed {
|
|
channel_id: channel.channel_id(),
|
|
user_channel_id: channel.get_user_id(),
|
|
reason: ClosureReason::OutdatedChannelManager
|
|
});
|
|
for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
|
|
let mut found_htlc = false;
|
|
for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
|
|
if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
|
|
}
|
|
if !found_htlc {
|
|
// If we have some HTLCs in the channel which are not present in the newer
|
|
// ChannelMonitor, they have been removed and should be failed back to
|
|
// ensure we don't forget them entirely. Note that if the missing HTLC(s)
|
|
// were actually claimed we'd have generated and ensured the previous-hop
|
|
// claim update ChannelMonitor updates were persisted prior to persising
|
|
// the ChannelMonitor update for the forward leg, so attempting to fail the
|
|
// backwards leg of the HTLC will simply be rejected.
|
|
log_info!(args.logger,
|
|
"Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
|
|
log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
|
|
failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
|
|
}
|
|
}
|
|
} else {
|
|
log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
|
|
if let Some(short_channel_id) = channel.get_short_channel_id() {
|
|
short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
|
|
}
|
|
if channel.is_funding_initiated() {
|
|
id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
|
|
}
|
|
match peer_channels.entry(channel.get_counterparty_node_id()) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
let by_id_map = entry.get_mut();
|
|
by_id_map.insert(channel.channel_id(), channel);
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
let mut by_id_map = HashMap::new();
|
|
by_id_map.insert(channel.channel_id(), channel);
|
|
entry.insert(by_id_map);
|
|
}
|
|
}
|
|
}
|
|
} else if channel.is_awaiting_initial_mon_persist() {
|
|
// If we were persisted and shut down while the initial ChannelMonitor persistence
|
|
// was in-progress, we never broadcasted the funding transaction and can still
|
|
// safely discard the channel.
|
|
let _ = channel.force_shutdown(false);
|
|
channel_closures.push(events::Event::ChannelClosed {
|
|
channel_id: channel.channel_id(),
|
|
user_channel_id: channel.get_user_id(),
|
|
reason: ClosureReason::DisconnectedPeer,
|
|
});
|
|
} else {
|
|
log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
|
|
log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
|
|
log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
|
|
log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
|
|
log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
for (funding_txo, _) in args.channel_monitors.iter() {
|
|
if !funding_txo_set.contains(funding_txo) {
|
|
let monitor_update = ChannelMonitorUpdate {
|
|
update_id: CLOSED_CHANNEL_UPDATE_ID,
|
|
updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
|
|
};
|
|
pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((*funding_txo, monitor_update)));
|
|
}
|
|
}
|
|
|
|
const MAX_ALLOC_SIZE: usize = 1024 * 64;
|
|
let forward_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
|
|
for _ in 0..forward_htlcs_count {
|
|
let short_channel_id = Readable::read(reader)?;
|
|
let pending_forwards_count: u64 = Readable::read(reader)?;
|
|
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
|
|
for _ in 0..pending_forwards_count {
|
|
pending_forwards.push(Readable::read(reader)?);
|
|
}
|
|
forward_htlcs.insert(short_channel_id, pending_forwards);
|
|
}
|
|
|
|
let claimable_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
|
|
for _ in 0..claimable_htlcs_count {
|
|
let payment_hash = Readable::read(reader)?;
|
|
let previous_hops_len: u64 = Readable::read(reader)?;
|
|
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
|
|
for _ in 0..previous_hops_len {
|
|
previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
|
|
}
|
|
claimable_htlcs_list.push((payment_hash, previous_hops));
|
|
}
|
|
|
|
let peer_count: u64 = Readable::read(reader)?;
|
|
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
|
|
for _ in 0..peer_count {
|
|
let peer_pubkey = Readable::read(reader)?;
|
|
let peer_state = PeerState {
|
|
channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
|
|
latest_features: Readable::read(reader)?,
|
|
pending_msg_events: Vec::new(),
|
|
monitor_update_blocked_actions: BTreeMap::new(),
|
|
is_connected: false,
|
|
};
|
|
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
|
|
}
|
|
|
|
let event_count: u64 = Readable::read(reader)?;
|
|
let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
|
|
for _ in 0..event_count {
|
|
match MaybeReadable::read(reader)? {
|
|
Some(event) => pending_events_read.push(event),
|
|
None => continue,
|
|
}
|
|
}
|
|
|
|
let background_event_count: u64 = Readable::read(reader)?;
|
|
for _ in 0..background_event_count {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => {
|
|
let (funding_txo, monitor_update): (OutPoint, ChannelMonitorUpdate) = (Readable::read(reader)?, Readable::read(reader)?);
|
|
if pending_background_events.iter().find(|e| {
|
|
let BackgroundEvent::ClosingMonitorUpdate((pending_funding_txo, pending_monitor_update)) = e;
|
|
*pending_funding_txo == funding_txo && *pending_monitor_update == monitor_update
|
|
}).is_none() {
|
|
pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)));
|
|
}
|
|
}
|
|
_ => return Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
|
|
let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
|
|
let highest_seen_timestamp: u32 = Readable::read(reader)?;
|
|
|
|
let pending_inbound_payment_count: u64 = Readable::read(reader)?;
|
|
let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
|
|
for _ in 0..pending_inbound_payment_count {
|
|
if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
|
|
let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
|
|
HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
|
|
for _ in 0..pending_outbound_payments_count_compat {
|
|
let session_priv = Readable::read(reader)?;
|
|
let payment = PendingOutboundPayment::Legacy {
|
|
session_privs: [session_priv].iter().cloned().collect()
|
|
};
|
|
if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
|
|
return Err(DecodeError::InvalidValue)
|
|
};
|
|
}
|
|
|
|
// pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
|
|
let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
|
|
let mut pending_outbound_payments = None;
|
|
let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
|
|
let mut received_network_pubkey: Option<PublicKey> = None;
|
|
let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
|
|
let mut probing_cookie_secret: Option<[u8; 32]> = None;
|
|
let mut claimable_htlc_purposes = None;
|
|
let mut claimable_htlc_onion_fields = None;
|
|
let mut pending_claiming_payments = Some(HashMap::new());
|
|
let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
|
|
read_tlv_fields!(reader, {
|
|
(1, pending_outbound_payments_no_retry, option),
|
|
(2, pending_intercepted_htlcs, option),
|
|
(3, pending_outbound_payments, option),
|
|
(4, pending_claiming_payments, option),
|
|
(5, received_network_pubkey, option),
|
|
(6, monitor_update_blocked_actions_per_peer, option),
|
|
(7, fake_scid_rand_bytes, option),
|
|
(9, claimable_htlc_purposes, vec_type),
|
|
(11, probing_cookie_secret, option),
|
|
(13, claimable_htlc_onion_fields, optional_vec),
|
|
});
|
|
if fake_scid_rand_bytes.is_none() {
|
|
fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
|
|
}
|
|
|
|
if probing_cookie_secret.is_none() {
|
|
probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
|
|
}
|
|
|
|
if !channel_closures.is_empty() {
|
|
pending_events_read.append(&mut channel_closures);
|
|
}
|
|
|
|
if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
|
|
pending_outbound_payments = Some(pending_outbound_payments_compat);
|
|
} else if pending_outbound_payments.is_none() {
|
|
let mut outbounds = HashMap::new();
|
|
for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
|
|
outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
|
|
}
|
|
pending_outbound_payments = Some(outbounds);
|
|
}
|
|
let pending_outbounds = OutboundPayments {
|
|
pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
|
|
retry_lock: Mutex::new(())
|
|
};
|
|
|
|
{
|
|
// If we're tracking pending payments, ensure we haven't lost any by looking at the
|
|
// ChannelMonitor data for any channels for which we do not have authorative state
|
|
// (i.e. those for which we just force-closed above or we otherwise don't have a
|
|
// corresponding `Channel` at all).
|
|
// This avoids several edge-cases where we would otherwise "forget" about pending
|
|
// payments which are still in-flight via their on-chain state.
|
|
// We only rebuild the pending payments map if we were most recently serialized by
|
|
// 0.0.102+
|
|
for (_, monitor) in args.channel_monitors.iter() {
|
|
if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
|
|
for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
|
|
if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
|
|
if path.hops.is_empty() {
|
|
log_error!(args.logger, "Got an empty path for a pending payment");
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
|
|
let path_amt = path.final_value_msat();
|
|
let mut session_priv_bytes = [0; 32];
|
|
session_priv_bytes[..].copy_from_slice(&session_priv[..]);
|
|
match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
|
|
log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
|
|
if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
let path_fee = path.fee_msat();
|
|
entry.insert(PendingOutboundPayment::Retryable {
|
|
retry_strategy: None,
|
|
attempts: PaymentAttempts::new(),
|
|
payment_params: None,
|
|
session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
|
|
payment_hash: htlc.payment_hash,
|
|
payment_secret: None, // only used for retries, and we'll never retry on startup
|
|
payment_metadata: None, // only used for retries, and we'll never retry on startup
|
|
keysend_preimage: None, // only used for retries, and we'll never retry on startup
|
|
pending_amt_msat: path_amt,
|
|
pending_fee_msat: Some(path_fee),
|
|
total_msat: path_amt,
|
|
starting_block_height: best_block_height,
|
|
});
|
|
log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
|
|
path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
|
|
match htlc_source {
|
|
HTLCSource::PreviousHopData(prev_hop_data) => {
|
|
let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
|
|
info.prev_funding_outpoint == prev_hop_data.outpoint &&
|
|
info.prev_htlc_id == prev_hop_data.htlc_id
|
|
};
|
|
// The ChannelMonitor is now responsible for this HTLC's
|
|
// failure/success and will let us know what its outcome is. If we
|
|
// still have an entry for this HTLC in `forward_htlcs` or
|
|
// `pending_intercepted_htlcs`, we were apparently not persisted after
|
|
// the monitor was when forwarding the payment.
|
|
forward_htlcs.retain(|_, forwards| {
|
|
forwards.retain(|forward| {
|
|
if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
|
|
if pending_forward_matches_htlc(&htlc_info) {
|
|
log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
|
|
log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
|
|
false
|
|
} else { true }
|
|
} else { true }
|
|
});
|
|
!forwards.is_empty()
|
|
});
|
|
pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
|
|
if pending_forward_matches_htlc(&htlc_info) {
|
|
log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
|
|
log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
|
|
pending_events_read.retain(|event| {
|
|
if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
|
|
intercepted_id != ev_id
|
|
} else { true }
|
|
});
|
|
false
|
|
} else { true }
|
|
});
|
|
},
|
|
HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
|
|
if let Some(preimage) = preimage_opt {
|
|
let pending_events = Mutex::new(pending_events_read);
|
|
// Note that we set `from_onchain` to "false" here,
|
|
// deliberately keeping the pending payment around forever.
|
|
// Given it should only occur when we have a channel we're
|
|
// force-closing for being stale that's okay.
|
|
// The alternative would be to wipe the state when claiming,
|
|
// generating a `PaymentPathSuccessful` event but regenerating
|
|
// it and the `PaymentSent` on every restart until the
|
|
// `ChannelMonitor` is removed.
|
|
pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
|
|
pending_events_read = pending_events.into_inner().unwrap();
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
|
|
// If we have pending HTLCs to forward, assume we either dropped a
|
|
// `PendingHTLCsForwardable` or the user received it but never processed it as they
|
|
// shut down before the timer hit. Either way, set the time_forwardable to a small
|
|
// constant as enough time has likely passed that we should simply handle the forwards
|
|
// now, or at least after the user gets a chance to reconnect to our peers.
|
|
pending_events_read.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable: Duration::from_secs(2),
|
|
});
|
|
}
|
|
|
|
let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
|
|
let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
|
|
|
|
let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
|
|
if let Some(purposes) = claimable_htlc_purposes {
|
|
if purposes.len() != claimable_htlcs_list.len() {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
if let Some(onion_fields) = claimable_htlc_onion_fields {
|
|
if onion_fields.len() != claimable_htlcs_list.len() {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
for (purpose, (onion, (payment_hash, htlcs))) in
|
|
purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
|
|
{
|
|
let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
|
|
purpose, htlcs, onion_fields: onion,
|
|
});
|
|
if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
|
|
}
|
|
} else {
|
|
for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
|
|
let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
|
|
purpose, htlcs, onion_fields: None,
|
|
});
|
|
if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
|
|
}
|
|
}
|
|
} else {
|
|
// LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
|
|
// include a `_legacy_hop_data` in the `OnionPayload`.
|
|
for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
|
|
if htlcs.is_empty() {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
let purpose = match &htlcs[0].onion_payload {
|
|
OnionPayload::Invoice { _legacy_hop_data } => {
|
|
if let Some(hop_data) = _legacy_hop_data {
|
|
events::PaymentPurpose::InvoicePayment {
|
|
payment_preimage: match pending_inbound_payments.get(&payment_hash) {
|
|
Some(inbound_payment) => inbound_payment.payment_preimage,
|
|
None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
|
|
Ok((payment_preimage, _)) => payment_preimage,
|
|
Err(()) => {
|
|
log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
},
|
|
payment_secret: hop_data.payment_secret,
|
|
}
|
|
} else { return Err(DecodeError::InvalidValue); }
|
|
},
|
|
OnionPayload::Spontaneous(payment_preimage) =>
|
|
events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
|
|
};
|
|
claimable_payments.insert(payment_hash, ClaimablePayment {
|
|
purpose, htlcs, onion_fields: None,
|
|
});
|
|
}
|
|
}
|
|
|
|
let mut secp_ctx = Secp256k1::new();
|
|
secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
|
|
|
|
let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
|
|
Ok(key) => key,
|
|
Err(()) => return Err(DecodeError::InvalidValue)
|
|
};
|
|
if let Some(network_pubkey) = received_network_pubkey {
|
|
if network_pubkey != our_network_pubkey {
|
|
log_error!(args.logger, "Key that was generated does not match the existing key.");
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
let mut outbound_scid_aliases = HashSet::new();
|
|
for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
|
|
if chan.outbound_scid_alias() == 0 {
|
|
let mut outbound_scid_alias;
|
|
loop {
|
|
outbound_scid_alias = fake_scid::Namespace::OutboundAlias
|
|
.get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
|
|
if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
|
|
}
|
|
chan.set_outbound_scid_alias(outbound_scid_alias);
|
|
} else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
|
|
// Note that in rare cases its possible to hit this while reading an older
|
|
// channel if we just happened to pick a colliding outbound alias above.
|
|
log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
if chan.is_usable() {
|
|
if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
|
|
// Note that in rare cases its possible to hit this while reading an older
|
|
// channel if we just happened to pick a colliding outbound alias above.
|
|
log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
|
|
|
|
for (_, monitor) in args.channel_monitors.iter() {
|
|
for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
|
|
if let Some(payment) = claimable_payments.remove(&payment_hash) {
|
|
log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
|
|
let mut claimable_amt_msat = 0;
|
|
let mut receiver_node_id = Some(our_network_pubkey);
|
|
let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
|
|
if phantom_shared_secret.is_some() {
|
|
let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
|
|
.expect("Failed to get node_id for phantom node recipient");
|
|
receiver_node_id = Some(phantom_pubkey)
|
|
}
|
|
for claimable_htlc in payment.htlcs {
|
|
claimable_amt_msat += claimable_htlc.value;
|
|
|
|
// Add a holding-cell claim of the payment to the Channel, which should be
|
|
// applied ~immediately on peer reconnection. Because it won't generate a
|
|
// new commitment transaction we can just provide the payment preimage to
|
|
// the corresponding ChannelMonitor and nothing else.
|
|
//
|
|
// We do so directly instead of via the normal ChannelMonitor update
|
|
// procedure as the ChainMonitor hasn't yet been initialized, implying
|
|
// we're not allowed to call it directly yet. Further, we do the update
|
|
// without incrementing the ChannelMonitor update ID as there isn't any
|
|
// reason to.
|
|
// If we were to generate a new ChannelMonitor update ID here and then
|
|
// crash before the user finishes block connect we'd end up force-closing
|
|
// this channel as well. On the flip side, there's no harm in restarting
|
|
// without the new monitor persisted - we'll end up right back here on
|
|
// restart.
|
|
let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
|
|
if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
|
|
let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
|
|
let mut peer_state_lock = peer_state_mutex.lock().unwrap();
|
|
let peer_state = &mut *peer_state_lock;
|
|
if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
|
|
channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
|
|
}
|
|
}
|
|
if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
|
|
previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
|
|
}
|
|
}
|
|
pending_events_read.push(events::Event::PaymentClaimed {
|
|
receiver_node_id,
|
|
payment_hash,
|
|
purpose: payment.purpose,
|
|
amount_msat: claimable_amt_msat,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
|
|
if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
|
|
peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
|
|
} else {
|
|
log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
let channel_manager = ChannelManager {
|
|
genesis_hash,
|
|
fee_estimator: bounded_fee_estimator,
|
|
chain_monitor: args.chain_monitor,
|
|
tx_broadcaster: args.tx_broadcaster,
|
|
router: args.router,
|
|
|
|
best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
|
|
|
|
inbound_payment_key: expanded_inbound_key,
|
|
pending_inbound_payments: Mutex::new(pending_inbound_payments),
|
|
pending_outbound_payments: pending_outbounds,
|
|
pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
|
|
|
|
forward_htlcs: Mutex::new(forward_htlcs),
|
|
claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
|
|
outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
|
|
id_to_peer: Mutex::new(id_to_peer),
|
|
short_to_chan_info: FairRwLock::new(short_to_chan_info),
|
|
fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
|
|
|
|
probing_cookie_secret: probing_cookie_secret.unwrap(),
|
|
|
|
our_network_pubkey,
|
|
secp_ctx,
|
|
|
|
highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
|
|
|
|
per_peer_state: FairRwLock::new(per_peer_state),
|
|
|
|
pending_events: Mutex::new(pending_events_read),
|
|
pending_events_processor: AtomicBool::new(false),
|
|
pending_background_events: Mutex::new(pending_background_events),
|
|
total_consistency_lock: RwLock::new(()),
|
|
persistence_notifier: Notifier::new(),
|
|
|
|
entropy_source: args.entropy_source,
|
|
node_signer: args.node_signer,
|
|
signer_provider: args.signer_provider,
|
|
|
|
logger: args.logger,
|
|
default_configuration: args.default_config,
|
|
};
|
|
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
|
|
let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
|
|
let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
|
|
channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
|
|
}
|
|
|
|
//TODO: Broadcast channel update for closed channels, but only after we've made a
|
|
//connection or two.
|
|
|
|
Ok((best_block_hash.clone(), channel_manager))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use bitcoin::hashes::Hash;
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
|
|
use core::sync::atomic::Ordering;
|
|
use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
|
|
use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
|
|
use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
|
|
use crate::ln::functional_test_utils::*;
|
|
use crate::ln::msgs;
|
|
use crate::ln::msgs::ChannelMessageHandler;
|
|
use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
|
|
use crate::util::errors::APIError;
|
|
use crate::util::test_utils;
|
|
use crate::util::config::ChannelConfig;
|
|
use crate::chain::keysinterface::EntropySource;
|
|
|
|
#[test]
|
|
fn test_notify_limits() {
|
|
// Check that a few cases which don't require the persistence of a new ChannelManager,
|
|
// indeed, do not cause the persistence of a new ChannelManager.
|
|
let chanmon_cfgs = create_chanmon_cfgs(3);
|
|
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
|
|
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
|
|
|
|
// All nodes start with a persistable update pending as `create_network` connects each node
|
|
// with all other nodes to make most tests simpler.
|
|
assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
|
|
|
|
let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
|
|
|
|
// We check that the channel info nodes have doesn't change too early, even though we try
|
|
// to connect messages with new values
|
|
chan.0.contents.fee_base_msat *= 2;
|
|
chan.1.contents.fee_base_msat *= 2;
|
|
let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
|
|
&nodes[1].node.get_our_node_id()).pop().unwrap();
|
|
let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
|
|
&nodes[0].node.get_our_node_id()).pop().unwrap();
|
|
|
|
// The first two nodes (which opened a channel) should now require fresh persistence
|
|
assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
// ... but the last node should not.
|
|
assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
|
|
// After persisting the first two nodes they should no longer need fresh persistence.
|
|
assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
|
|
// Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
|
|
// about the channel.
|
|
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
|
|
nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
|
|
assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
|
|
|
|
// The nodes which are a party to the channel should also ignore messages from unrelated
|
|
// parties.
|
|
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
|
|
nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
|
|
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
|
|
nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
|
|
assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
|
|
// At this point the channel info given by peers should still be the same.
|
|
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
|
|
// An earlier version of handle_channel_update didn't check the directionality of the
|
|
// update message and would always update the local fee info, even if our peer was
|
|
// (spuriously) forwarding us our own channel_update.
|
|
let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
|
|
let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
|
|
let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
|
|
|
|
// First deliver each peers' own message, checking that the node doesn't need to be
|
|
// persisted and that its channel info remains the same.
|
|
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
|
|
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
|
|
assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
|
|
// Finally, deliver the other peers' message, ensuring each node needs to be persisted and
|
|
// the channel info has updated.
|
|
nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
|
|
nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
|
|
assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
|
|
assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
|
|
assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
|
|
assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
|
|
}
|
|
|
|
#[test]
|
|
fn test_keysend_dup_hash_partial_mpp() {
|
|
// Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
|
|
// expected.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
create_announced_chan_between_nodes(&nodes, 0, 1);
|
|
|
|
// First, send a partial MPP payment.
|
|
let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
|
|
let mut mpp_route = route.clone();
|
|
mpp_route.paths.push(mpp_route.paths[0].clone());
|
|
|
|
let payment_id = PaymentId([42; 32]);
|
|
// Use the utility function send_payment_along_path to send the payment with MPP data which
|
|
// indicates there are more HTLCs coming.
|
|
let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
|
|
let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
|
|
RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
|
|
nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
|
|
RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
|
|
|
|
// Next, send a keysend payment with the same payment_hash and make sure it fails.
|
|
nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
|
|
RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
let ev = events.drain(..).next().unwrap();
|
|
let payment_event = SendEvent::from_event(ev);
|
|
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
|
|
check_added_monitors!(nodes[1], 0);
|
|
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
|
|
expect_pending_htlcs_forwardable!(nodes[1]);
|
|
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
|
|
assert!(updates.update_add_htlcs.is_empty());
|
|
assert!(updates.update_fulfill_htlcs.is_empty());
|
|
assert_eq!(updates.update_fail_htlcs.len(), 1);
|
|
assert!(updates.update_fail_malformed_htlcs.is_empty());
|
|
assert!(updates.update_fee.is_none());
|
|
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
|
|
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
|
|
expect_payment_failed!(nodes[0], our_payment_hash, true);
|
|
|
|
// Send the second half of the original MPP payment.
|
|
nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
|
|
RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
|
|
|
|
// Claim the full MPP payment. Note that we can't use a test utility like
|
|
// claim_funds_along_route because the ordering of the messages causes the second half of the
|
|
// payment to be put in the holding cell, which confuses the test utilities. So we exchange the
|
|
// lightning messages manually.
|
|
nodes[1].node.claim_funds(payment_preimage);
|
|
expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
|
|
check_added_monitors!(nodes[1], 2);
|
|
|
|
let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
|
|
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
|
|
check_added_monitors!(nodes[0], 1);
|
|
let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
|
|
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
|
|
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
|
|
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
|
|
check_added_monitors!(nodes[0], 1);
|
|
let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
|
|
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
|
|
let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
|
|
check_added_monitors!(nodes[0], 1);
|
|
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
|
|
check_added_monitors!(nodes[1], 1);
|
|
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
|
|
check_added_monitors!(nodes[0], 1);
|
|
|
|
// Note that successful MPP payments will generate a single PaymentSent event upon the first
|
|
// path's success and a PaymentPathSuccessful event for each path's success.
|
|
let events = nodes[0].node.get_and_clear_pending_events();
|
|
assert_eq!(events.len(), 3);
|
|
match events[0] {
|
|
Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
|
|
assert_eq!(Some(payment_id), *id);
|
|
assert_eq!(payment_preimage, *preimage);
|
|
assert_eq!(our_payment_hash, *hash);
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
match events[1] {
|
|
Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
|
|
assert_eq!(payment_id, *actual_payment_id);
|
|
assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
|
|
assert_eq!(route.paths[0], *path);
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
match events[2] {
|
|
Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
|
|
assert_eq!(payment_id, *actual_payment_id);
|
|
assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
|
|
assert_eq!(route.paths[0], *path);
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_keysend_dup_payment_hash() {
|
|
// (1): Test that a keysend payment with a duplicate payment hash to an existing pending
|
|
// outbound regular payment fails as expected.
|
|
// (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
|
|
// fails as expected.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
create_announced_chan_between_nodes(&nodes, 0, 1);
|
|
let scorer = test_utils::TestScorer::new();
|
|
let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
|
|
|
|
// To start (1), send a regular payment but don't claim it.
|
|
let expected_route = [&nodes[1]];
|
|
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
|
|
|
|
// Next, attempt a keysend payment and make sure it fails.
|
|
let route_params = RouteParameters {
|
|
payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
|
|
final_value_msat: 100_000,
|
|
};
|
|
let route = find_route(
|
|
&nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
|
|
None, nodes[0].logger, &scorer, &random_seed_bytes
|
|
).unwrap();
|
|
nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
|
|
RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
let ev = events.drain(..).next().unwrap();
|
|
let payment_event = SendEvent::from_event(ev);
|
|
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
|
|
check_added_monitors!(nodes[1], 0);
|
|
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
|
|
// We have to forward pending HTLCs twice - once tries to forward the payment forward (and
|
|
// fails), the second will process the resulting failure and fail the HTLC backward
|
|
expect_pending_htlcs_forwardable!(nodes[1]);
|
|
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
|
|
assert!(updates.update_add_htlcs.is_empty());
|
|
assert!(updates.update_fulfill_htlcs.is_empty());
|
|
assert_eq!(updates.update_fail_htlcs.len(), 1);
|
|
assert!(updates.update_fail_malformed_htlcs.is_empty());
|
|
assert!(updates.update_fee.is_none());
|
|
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
|
|
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
|
|
expect_payment_failed!(nodes[0], payment_hash, true);
|
|
|
|
// Finally, claim the original payment.
|
|
claim_payment(&nodes[0], &expected_route, payment_preimage);
|
|
|
|
// To start (2), send a keysend payment but don't claim it.
|
|
let payment_preimage = PaymentPreimage([42; 32]);
|
|
let route = find_route(
|
|
&nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
|
|
None, nodes[0].logger, &scorer, &random_seed_bytes
|
|
).unwrap();
|
|
let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
|
|
RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
let event = events.pop().unwrap();
|
|
let path = vec![&nodes[1]];
|
|
pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
|
|
|
|
// Next, attempt a regular payment and make sure it fails.
|
|
let payment_secret = PaymentSecret([43; 32]);
|
|
nodes[0].node.send_payment_with_route(&route, payment_hash,
|
|
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
|
|
assert_eq!(events.len(), 1);
|
|
let ev = events.drain(..).next().unwrap();
|
|
let payment_event = SendEvent::from_event(ev);
|
|
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
|
|
check_added_monitors!(nodes[1], 0);
|
|
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
|
|
expect_pending_htlcs_forwardable!(nodes[1]);
|
|
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
|
|
check_added_monitors!(nodes[1], 1);
|
|
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
|
|
assert!(updates.update_add_htlcs.is_empty());
|
|
assert!(updates.update_fulfill_htlcs.is_empty());
|
|
assert_eq!(updates.update_fail_htlcs.len(), 1);
|
|
assert!(updates.update_fail_malformed_htlcs.is_empty());
|
|
assert!(updates.update_fee.is_none());
|
|
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
|
|
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
|
|
expect_payment_failed!(nodes[0], payment_hash, true);
|
|
|
|
// Finally, succeed the keysend payment.
|
|
claim_payment(&nodes[0], &expected_route, payment_preimage);
|
|
}
|
|
|
|
#[test]
|
|
fn test_keysend_hash_mismatch() {
|
|
// Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
|
|
// preimage doesn't match the msg's payment hash.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
let payer_pubkey = nodes[0].node.get_our_node_id();
|
|
let payee_pubkey = nodes[1].node.get_our_node_id();
|
|
|
|
let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
|
|
let route_params = RouteParameters {
|
|
payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
|
|
final_value_msat: 10_000,
|
|
};
|
|
let network_graph = nodes[0].network_graph.clone();
|
|
let first_hops = nodes[0].node.list_usable_channels();
|
|
let scorer = test_utils::TestScorer::new();
|
|
let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
|
|
let route = find_route(
|
|
&payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
|
|
nodes[0].logger, &scorer, &random_seed_bytes
|
|
).unwrap();
|
|
|
|
let test_preimage = PaymentPreimage([42; 32]);
|
|
let mismatch_payment_hash = PaymentHash([43; 32]);
|
|
let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
|
|
RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
|
|
nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
|
|
RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
|
|
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
|
|
assert_eq!(updates.update_add_htlcs.len(), 1);
|
|
assert!(updates.update_fulfill_htlcs.is_empty());
|
|
assert!(updates.update_fail_htlcs.is_empty());
|
|
assert!(updates.update_fail_malformed_htlcs.is_empty());
|
|
assert!(updates.update_fee.is_none());
|
|
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
|
|
|
|
nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_keysend_msg_with_secret_err() {
|
|
// Test that we error as expected if we receive a keysend payment that includes a payment secret.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
let payer_pubkey = nodes[0].node.get_our_node_id();
|
|
let payee_pubkey = nodes[1].node.get_our_node_id();
|
|
|
|
let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
|
|
let route_params = RouteParameters {
|
|
payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
|
|
final_value_msat: 10_000,
|
|
};
|
|
let network_graph = nodes[0].network_graph.clone();
|
|
let first_hops = nodes[0].node.list_usable_channels();
|
|
let scorer = test_utils::TestScorer::new();
|
|
let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
|
|
let route = find_route(
|
|
&payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
|
|
nodes[0].logger, &scorer, &random_seed_bytes
|
|
).unwrap();
|
|
|
|
let test_preimage = PaymentPreimage([42; 32]);
|
|
let test_secret = PaymentSecret([43; 32]);
|
|
let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
|
|
let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
|
|
RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
|
|
nodes[0].node.test_send_payment_internal(&route, payment_hash,
|
|
RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
|
|
PaymentId(payment_hash.0), None, session_privs).unwrap();
|
|
check_added_monitors!(nodes[0], 1);
|
|
|
|
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
|
|
assert_eq!(updates.update_add_htlcs.len(), 1);
|
|
assert!(updates.update_fulfill_htlcs.is_empty());
|
|
assert!(updates.update_fail_htlcs.is_empty());
|
|
assert!(updates.update_fail_malformed_htlcs.is_empty());
|
|
assert!(updates.update_fee.is_none());
|
|
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
|
|
|
|
nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_multi_hop_missing_secret() {
|
|
let chanmon_cfgs = create_chanmon_cfgs(4);
|
|
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
|
|
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
|
|
|
|
let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
|
|
let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
|
|
let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
|
|
let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
|
|
|
|
// Marshall an MPP route.
|
|
let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
|
|
let path = route.paths[0].clone();
|
|
route.paths.push(path);
|
|
route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
|
|
route.paths[0].hops[0].short_channel_id = chan_1_id;
|
|
route.paths[0].hops[1].short_channel_id = chan_3_id;
|
|
route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
|
|
route.paths[1].hops[0].short_channel_id = chan_2_id;
|
|
route.paths[1].hops[1].short_channel_id = chan_4_id;
|
|
|
|
match nodes[0].node.send_payment_with_route(&route, payment_hash,
|
|
RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
|
|
.unwrap_err() {
|
|
PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
|
|
assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
|
|
},
|
|
_ => panic!("unexpected error")
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_drop_disconnected_peers_when_removing_channels() {
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
|
|
|
|
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
|
|
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
|
|
|
|
nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
|
|
check_closed_broadcast!(nodes[0], true);
|
|
check_added_monitors!(nodes[0], 1);
|
|
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
|
|
|
|
{
|
|
// Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
|
|
// disconnected and the channel between has been force closed.
|
|
let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
|
|
// Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
|
|
assert_eq!(nodes_0_per_peer_state.len(), 1);
|
|
assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
|
|
}
|
|
|
|
nodes[0].node.timer_tick_occurred();
|
|
|
|
{
|
|
// Assert that nodes[1] has now been removed.
|
|
assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bad_inbound_payment_hash() {
|
|
// Add coverage for checking that a user-provided payment hash matches the payment secret.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
|
|
let payment_data = msgs::FinalOnionHopData {
|
|
payment_secret,
|
|
total_msat: 100_000,
|
|
};
|
|
|
|
// Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
|
|
// payment verification fails as expected.
|
|
let mut bad_payment_hash = payment_hash.clone();
|
|
bad_payment_hash.0[0] += 1;
|
|
match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
|
|
Ok(_) => panic!("Unexpected ok"),
|
|
Err(()) => {
|
|
nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
|
|
}
|
|
}
|
|
|
|
// Check that using the original payment hash succeeds.
|
|
assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
|
|
}
|
|
|
|
#[test]
|
|
fn test_id_to_peer_coverage() {
|
|
// Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
|
|
// a `channel_id` (i.e. have had the funding tx created), and that they are removed once
|
|
// the channel is successfully closed.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
|
|
let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
|
|
let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
|
|
|
|
let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
|
|
let channel_id = &tx.txid().into_inner();
|
|
{
|
|
// Ensure that the `id_to_peer` map is empty until either party has received the
|
|
// funding transaction, and have the real `channel_id`.
|
|
assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
|
|
assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
|
|
}
|
|
|
|
nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
|
|
{
|
|
// Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
|
|
// as it has the funding transaction.
|
|
let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_0_lock.len(), 1);
|
|
assert!(nodes_0_lock.contains_key(channel_id));
|
|
}
|
|
|
|
assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
|
|
|
|
let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
|
|
|
|
nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
|
|
{
|
|
let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_0_lock.len(), 1);
|
|
assert!(nodes_0_lock.contains_key(channel_id));
|
|
}
|
|
expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
|
|
|
|
{
|
|
// Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
|
|
// as it has the funding transaction.
|
|
let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_1_lock.len(), 1);
|
|
assert!(nodes_1_lock.contains_key(channel_id));
|
|
}
|
|
check_added_monitors!(nodes[1], 1);
|
|
let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
|
|
check_added_monitors!(nodes[0], 1);
|
|
expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
|
|
let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
|
|
let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
|
|
update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
|
|
|
|
nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
|
|
nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
|
|
let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
|
|
|
|
let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
|
|
nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
|
|
{
|
|
// Assert that the channel is kept in the `id_to_peer` map for both nodes until the
|
|
// channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
|
|
// fee for the closing transaction has been negotiated and the parties has the other
|
|
// party's signature for the fee negotiated closing transaction.)
|
|
let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_0_lock.len(), 1);
|
|
assert!(nodes_0_lock.contains_key(channel_id));
|
|
}
|
|
|
|
{
|
|
// At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
|
|
// `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
|
|
// from `nodes[0]` for the closing transaction with the proposed fee, the channel is
|
|
// kept in the `nodes[1]`'s `id_to_peer` map.
|
|
let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_1_lock.len(), 1);
|
|
assert!(nodes_1_lock.contains_key(channel_id));
|
|
}
|
|
|
|
nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
|
|
{
|
|
// `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
|
|
// therefore has all it needs to fully close the channel (both signatures for the
|
|
// closing transaction).
|
|
// Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
|
|
// fully closed by `nodes[0]`.
|
|
assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
|
|
|
|
// Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
|
|
// doesn't have `nodes[0]`'s signature for the closing transaction yet.
|
|
let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
|
|
assert_eq!(nodes_1_lock.len(), 1);
|
|
assert!(nodes_1_lock.contains_key(channel_id));
|
|
}
|
|
|
|
let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
|
|
|
|
nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
|
|
{
|
|
// Assert that the channel has now been removed from both parties `id_to_peer` map once
|
|
// they both have everything required to fully close the channel.
|
|
assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
|
|
}
|
|
let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
|
|
|
|
check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
|
|
check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
|
|
}
|
|
|
|
fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
|
|
let expected_message = format!("Not connected to node: {}", expected_public_key);
|
|
check_api_error_message(expected_message, res_err)
|
|
}
|
|
|
|
fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
|
|
let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
|
|
check_api_error_message(expected_message, res_err)
|
|
}
|
|
|
|
fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
|
|
match res_err {
|
|
Err(APIError::APIMisuseError { err }) => {
|
|
assert_eq!(err, expected_err_message);
|
|
},
|
|
Err(APIError::ChannelUnavailable { err }) => {
|
|
assert_eq!(err, expected_err_message);
|
|
},
|
|
Ok(_) => panic!("Unexpected Ok"),
|
|
Err(_) => panic!("Unexpected Error"),
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_api_calls_with_unkown_counterparty_node() {
|
|
// Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
|
|
// expected if the `counterparty_node_id` is an unkown peer in the
|
|
// `ChannelManager::per_peer_state` map.
|
|
let chanmon_cfg = create_chanmon_cfgs(2);
|
|
let node_cfg = create_node_cfgs(2, &chanmon_cfg);
|
|
let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
|
|
let nodes = create_network(2, &node_cfg, &node_chanmgr);
|
|
|
|
// Dummy values
|
|
let channel_id = [4; 32];
|
|
let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
|
|
let intercept_id = InterceptId([0; 32]);
|
|
|
|
// Test the API functions.
|
|
check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
|
|
|
|
check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
|
|
}
|
|
|
|
#[test]
|
|
fn test_connection_limiting() {
|
|
// Test that we limit un-channel'd peers and un-funded channels properly.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
// Note that create_network connects the nodes together for us
|
|
|
|
nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
|
|
let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
|
|
let mut funding_tx = None;
|
|
for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
|
|
|
|
if idx == 0 {
|
|
nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
|
|
let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
|
|
funding_tx = Some(tx.clone());
|
|
nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
|
|
let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
|
|
|
|
nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
|
|
check_added_monitors!(nodes[1], 1);
|
|
expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
|
|
|
|
let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
|
|
|
|
nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
|
|
check_added_monitors!(nodes[0], 1);
|
|
expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
|
|
}
|
|
open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
|
|
}
|
|
|
|
// A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
|
|
open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
|
|
open_channel_msg.temporary_channel_id);
|
|
|
|
// Further, because all of our channels with nodes[0] are inbound, and none of them funded,
|
|
// it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
|
|
// limit.
|
|
let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
|
|
for _ in 1..super::MAX_NO_CHANNEL_PEERS {
|
|
let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
|
|
&SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
|
|
peer_pks.push(random_pk);
|
|
nodes[1].node.peer_connected(&random_pk, &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
|
|
}
|
|
let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
|
|
&SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
|
|
nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
|
|
|
|
// Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
|
|
// them if we have too many un-channel'd peers.
|
|
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
|
|
let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
|
|
assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
|
|
for ev in chan_closed_events {
|
|
if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
|
|
}
|
|
nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
|
|
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
|
|
|
|
// but of course if the connection is outbound its allowed...
|
|
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
|
|
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
|
|
|
|
// Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
|
|
// Even though we accept one more connection from new peers, we won't actually let them
|
|
// open channels.
|
|
assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
|
|
for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
|
|
nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
|
|
open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
|
|
}
|
|
nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
|
|
assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
|
|
open_channel_msg.temporary_channel_id);
|
|
|
|
// Of course, however, outbound channels are always allowed
|
|
nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
|
|
|
|
// If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
|
|
// "protected" and can connect again.
|
|
mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
|
|
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
|
|
|
|
// Further, because the first channel was funded, we can open another channel with
|
|
// last_random_pk.
|
|
nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
|
|
}
|
|
|
|
#[test]
|
|
fn test_outbound_chans_unlimited() {
|
|
// Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
// Note that create_network connects the nodes together for us
|
|
|
|
nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
|
|
let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
|
|
for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
|
|
open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
|
|
}
|
|
|
|
// Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
|
|
// rejected.
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
|
|
open_channel_msg.temporary_channel_id);
|
|
|
|
// but we can still open an outbound channel.
|
|
nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
|
|
|
|
// but even with such an outbound channel, additional inbound channels will still fail.
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
|
|
open_channel_msg.temporary_channel_id);
|
|
}
|
|
|
|
#[test]
|
|
fn test_0conf_limiting() {
|
|
// Tests that we properly limit inbound channels when we have the manual-channel-acceptance
|
|
// flag set and (sometimes) accept channels as 0conf.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let mut settings = test_default_channel_config();
|
|
settings.manually_accept_inbound_channels = true;
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
// Note that create_network connects the nodes together for us
|
|
|
|
nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
|
|
let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
|
|
// First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
|
|
for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
|
|
let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
|
|
&SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
|
|
nodes[1].node.peer_connected(&random_pk, &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
|
|
|
|
nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
|
|
let events = nodes[1].node.get_and_clear_pending_events();
|
|
match events[0] {
|
|
Event::OpenChannelRequest { temporary_channel_id, .. } => {
|
|
nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
|
|
}
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
|
|
open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
|
|
}
|
|
|
|
// If we try to accept a channel from another peer non-0conf it will fail.
|
|
let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
|
|
&SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
|
|
nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
|
|
features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
|
|
nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
|
|
let events = nodes[1].node.get_and_clear_pending_events();
|
|
match events[0] {
|
|
Event::OpenChannelRequest { temporary_channel_id, .. } => {
|
|
match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
|
|
Err(APIError::APIMisuseError { err }) =>
|
|
assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
|
|
_ => panic!(),
|
|
}
|
|
}
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
|
|
open_channel_msg.temporary_channel_id);
|
|
|
|
// ...however if we accept the same channel 0conf it should work just fine.
|
|
nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
|
|
let events = nodes[1].node.get_and_clear_pending_events();
|
|
match events[0] {
|
|
Event::OpenChannelRequest { temporary_channel_id, .. } => {
|
|
nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
|
|
}
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
|
|
}
|
|
|
|
#[cfg(anchors)]
|
|
#[test]
|
|
fn test_anchors_zero_fee_htlc_tx_fallback() {
|
|
// Tests that if both nodes support anchors, but the remote node does not want to accept
|
|
// anchor channels at the moment, an error it sent to the local node such that it can retry
|
|
// the channel without the anchors feature.
|
|
let chanmon_cfgs = create_chanmon_cfgs(2);
|
|
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
|
|
let mut anchors_config = test_default_channel_config();
|
|
anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
|
|
anchors_config.manually_accept_inbound_channels = true;
|
|
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
|
|
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
|
|
|
|
nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
|
|
let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
|
|
|
|
nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
|
|
let events = nodes[1].node.get_and_clear_pending_events();
|
|
match events[0] {
|
|
Event::OpenChannelRequest { temporary_channel_id, .. } => {
|
|
nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
|
|
}
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
|
|
let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
|
|
nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
|
|
|
|
let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
|
|
assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
|
|
|
|
check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
|
|
}
|
|
}
|
|
|
|
#[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
|
|
pub mod bench {
|
|
use crate::chain::Listen;
|
|
use crate::chain::chainmonitor::{ChainMonitor, Persist};
|
|
use crate::chain::keysinterface::{KeysManager, InMemorySigner};
|
|
use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
|
|
use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
|
|
use crate::ln::functional_test_utils::*;
|
|
use crate::ln::msgs::{ChannelMessageHandler, Init};
|
|
use crate::routing::gossip::NetworkGraph;
|
|
use crate::routing::router::{PaymentParameters, RouteParameters};
|
|
use crate::util::test_utils;
|
|
use crate::util::config::UserConfig;
|
|
|
|
use bitcoin::hashes::Hash;
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
|
|
|
|
use crate::sync::{Arc, Mutex};
|
|
|
|
use test::Bencher;
|
|
|
|
type Manager<'a, P> = ChannelManager<
|
|
&'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
|
|
&'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
|
|
&'a test_utils::TestLogger, &'a P>,
|
|
&'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
|
|
&'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
|
|
&'a test_utils::TestLogger>;
|
|
|
|
struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
|
|
node: &'a Manager<'a, P>,
|
|
}
|
|
impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
|
|
type CM = Manager<'a, P>;
|
|
#[inline]
|
|
fn node(&self) -> &Manager<'a, P> { self.node }
|
|
#[inline]
|
|
fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[bench]
|
|
fn bench_sends(bench: &mut Bencher) {
|
|
bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
|
|
}
|
|
|
|
pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
|
|
// Do a simple benchmark of sending a payment back and forth between two nodes.
|
|
// Note that this is unrealistic as each payment send will require at least two fsync
|
|
// calls per node.
|
|
let network = bitcoin::Network::Testnet;
|
|
|
|
let tx_broadcaster = test_utils::TestBroadcaster::new(network);
|
|
let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
|
|
let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
|
|
let scorer = Mutex::new(test_utils::TestScorer::new());
|
|
let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
|
|
|
|
let mut config: UserConfig = Default::default();
|
|
config.channel_handshake_config.minimum_depth = 1;
|
|
|
|
let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
|
|
let seed_a = [1u8; 32];
|
|
let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
|
|
let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
|
|
network,
|
|
best_block: BestBlock::from_network(network),
|
|
});
|
|
let node_a_holder = ANodeHolder { node: &node_a };
|
|
|
|
let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
|
|
let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
|
|
let seed_b = [2u8; 32];
|
|
let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
|
|
let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
|
|
network,
|
|
best_block: BestBlock::from_network(network),
|
|
});
|
|
let node_b_holder = ANodeHolder { node: &node_b };
|
|
|
|
node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
|
|
node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
|
|
node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
|
|
node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
|
|
node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
|
|
|
|
let tx;
|
|
if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
|
|
tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
|
|
value: 8_000_000, script_pubkey: output_script,
|
|
}]};
|
|
node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
|
|
} else { panic!(); }
|
|
|
|
node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
|
|
let events_b = node_b.get_and_clear_pending_events();
|
|
assert_eq!(events_b.len(), 1);
|
|
match events_b[0] {
|
|
Event::ChannelPending{ ref counterparty_node_id, .. } => {
|
|
assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
|
|
node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
|
|
let events_a = node_a.get_and_clear_pending_events();
|
|
assert_eq!(events_a.len(), 1);
|
|
match events_a[0] {
|
|
Event::ChannelPending{ ref counterparty_node_id, .. } => {
|
|
assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
|
|
assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
|
|
|
|
let block = Block {
|
|
header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
|
|
txdata: vec![tx],
|
|
};
|
|
Listen::block_connected(&node_a, &block, 1);
|
|
Listen::block_connected(&node_b, &block, 1);
|
|
|
|
node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
|
|
let msg_events = node_a.get_and_clear_pending_msg_events();
|
|
assert_eq!(msg_events.len(), 2);
|
|
match msg_events[0] {
|
|
MessageSendEvent::SendChannelReady { ref msg, .. } => {
|
|
node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
|
|
get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
|
|
},
|
|
_ => panic!(),
|
|
}
|
|
match msg_events[1] {
|
|
MessageSendEvent::SendChannelUpdate { .. } => {},
|
|
_ => panic!(),
|
|
}
|
|
|
|
let events_a = node_a.get_and_clear_pending_events();
|
|
assert_eq!(events_a.len(), 1);
|
|
match events_a[0] {
|
|
Event::ChannelReady{ ref counterparty_node_id, .. } => {
|
|
assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
|
|
let events_b = node_b.get_and_clear_pending_events();
|
|
assert_eq!(events_b.len(), 1);
|
|
match events_b[0] {
|
|
Event::ChannelReady{ ref counterparty_node_id, .. } => {
|
|
assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
|
|
},
|
|
_ => panic!("Unexpected event"),
|
|
}
|
|
|
|
let mut payment_count: u64 = 0;
|
|
macro_rules! send_payment {
|
|
($node_a: expr, $node_b: expr) => {
|
|
let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
|
|
.with_features($node_b.invoice_features());
|
|
let mut payment_preimage = PaymentPreimage([0; 32]);
|
|
payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
|
|
payment_count += 1;
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
|
|
let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
|
|
|
|
$node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
|
|
PaymentId(payment_hash.0), RouteParameters {
|
|
payment_params, final_value_msat: 10_000,
|
|
}, Retry::Attempts(0)).unwrap();
|
|
let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
|
|
$node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
|
|
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
|
|
let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
|
|
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
|
|
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
|
|
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
|
|
|
|
expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
|
|
expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
|
|
$node_b.claim_funds(payment_preimage);
|
|
expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
|
|
|
|
match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
|
|
MessageSendEvent::UpdateHTLCs { node_id, updates } => {
|
|
assert_eq!(node_id, $node_a.get_our_node_id());
|
|
$node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
|
|
$node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
|
|
},
|
|
_ => panic!("Failed to generate claim event"),
|
|
}
|
|
|
|
let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
|
|
$node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
|
|
$node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
|
|
$node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
|
|
|
|
expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
|
|
}
|
|
}
|
|
|
|
bench.iter(|| {
|
|
send_payment!(node_a, node_b);
|
|
send_payment!(node_b, node_a);
|
|
});
|
|
}
|
|
}
|