mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-26 15:42:52 +01:00
PackageTemplate aims to replace InputMaterial, introducing a clean interface to manipulate a wide range of claim types without OnchainTxHandler aware of special content of each. This is used in next commits.
1583 lines
67 KiB
Rust
1583 lines
67 KiB
Rust
// This file is Copyright its original authors, visible in version control
|
|
// history.
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! Various utilities for building scripts and deriving keys related to channels. These are
|
|
//! largely of interest for those implementing chain::keysinterface::Sign message signing by hand.
|
|
|
|
use bitcoin::blockdata::script::{Script,Builder};
|
|
use bitcoin::blockdata::opcodes;
|
|
use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
|
|
use bitcoin::util::bip143;
|
|
|
|
use bitcoin::hashes::{Hash, HashEngine};
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::hashes::ripemd160::Hash as Ripemd160;
|
|
use bitcoin::hash_types::{Txid, PubkeyHash};
|
|
|
|
use ln::{PaymentHash, PaymentPreimage};
|
|
use ln::msgs::DecodeError;
|
|
use util::ser::{Readable, Writeable, Writer, MAX_BUF_SIZE};
|
|
use util::byte_utils;
|
|
|
|
use bitcoin::hash_types::WPubkeyHash;
|
|
use bitcoin::secp256k1::key::{SecretKey, PublicKey};
|
|
use bitcoin::secp256k1::{Secp256k1, Signature, Message};
|
|
use bitcoin::secp256k1::Error as SecpError;
|
|
use bitcoin::secp256k1;
|
|
|
|
use core::cmp;
|
|
use ln::chan_utils;
|
|
use util::transaction_utils::sort_outputs;
|
|
use ln::channel::INITIAL_COMMITMENT_NUMBER;
|
|
use std::io::Read;
|
|
use core::ops::Deref;
|
|
use chain;
|
|
|
|
// Maximum size of a serialized HTLCOutputInCommitment
|
|
pub(crate) const HTLC_OUTPUT_IN_COMMITMENT_SIZE: usize = 1 + 8 + 4 + 32 + 5;
|
|
|
|
pub(crate) const MAX_HTLCS: u16 = 483;
|
|
|
|
// This checks that the buffer size is greater than the maximum possible size for serialized HTLCS
|
|
const _EXCESS_BUFFER_SIZE: usize = MAX_BUF_SIZE - MAX_HTLCS as usize * HTLC_OUTPUT_IN_COMMITMENT_SIZE;
|
|
|
|
pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
|
|
pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
|
|
|
|
#[derive(PartialEq)]
|
|
pub(crate) enum HTLCType {
|
|
AcceptedHTLC,
|
|
OfferedHTLC
|
|
}
|
|
|
|
impl HTLCType {
|
|
/// Check if a given tx witnessScript len matchs one of a pre-signed HTLC
|
|
pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) -> Option<HTLCType> {
|
|
if witness_script_len == 133 {
|
|
Some(HTLCType::OfferedHTLC)
|
|
} else if witness_script_len >= 136 && witness_script_len <= 139 {
|
|
Some(HTLCType::AcceptedHTLC)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
// Various functions for key derivation and transaction creation for use within channels. Primarily
|
|
// used in Channel and ChannelMonitor.
|
|
|
|
/// Build the commitment secret from the seed and the commitment number
|
|
pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
|
|
let mut res: [u8; 32] = commitment_seed.clone();
|
|
for i in 0..48 {
|
|
let bitpos = 47 - i;
|
|
if idx & (1 << bitpos) == (1 << bitpos) {
|
|
res[bitpos / 8] ^= 1 << (bitpos & 7);
|
|
res = Sha256::hash(&res).into_inner();
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Implements the per-commitment secret storage scheme from
|
|
/// [BOLT 3](https://github.com/lightningnetwork/lightning-rfc/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md#efficient-per-commitment-secret-storage).
|
|
///
|
|
/// Allows us to keep track of all of the revocation secrets of counterarties in just 50*32 bytes
|
|
/// or so.
|
|
#[derive(Clone)]
|
|
pub(crate) struct CounterpartyCommitmentSecrets {
|
|
old_secrets: [([u8; 32], u64); 49],
|
|
}
|
|
|
|
impl PartialEq for CounterpartyCommitmentSecrets {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
|
|
if secret != o_secret || idx != o_idx {
|
|
return false
|
|
}
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl CounterpartyCommitmentSecrets {
|
|
pub(crate) fn new() -> Self {
|
|
Self { old_secrets: [([0; 32], 1 << 48); 49], }
|
|
}
|
|
|
|
#[inline]
|
|
fn place_secret(idx: u64) -> u8 {
|
|
for i in 0..48 {
|
|
if idx & (1 << i) == (1 << i) {
|
|
return i
|
|
}
|
|
}
|
|
48
|
|
}
|
|
|
|
pub(crate) fn get_min_seen_secret(&self) -> u64 {
|
|
//TODO This can be optimized?
|
|
let mut min = 1 << 48;
|
|
for &(_, idx) in self.old_secrets.iter() {
|
|
if idx < min {
|
|
min = idx;
|
|
}
|
|
}
|
|
min
|
|
}
|
|
|
|
#[inline]
|
|
fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
|
|
let mut res: [u8; 32] = secret;
|
|
for i in 0..bits {
|
|
let bitpos = bits - 1 - i;
|
|
if idx & (1 << bitpos) == (1 << bitpos) {
|
|
res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
|
|
res = Sha256::hash(&res).into_inner();
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
pub(crate) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> {
|
|
let pos = Self::place_secret(idx);
|
|
for i in 0..pos {
|
|
let (old_secret, old_idx) = self.old_secrets[i as usize];
|
|
if Self::derive_secret(secret, pos, old_idx) != old_secret {
|
|
return Err(());
|
|
}
|
|
}
|
|
if self.get_min_seen_secret() <= idx {
|
|
return Ok(());
|
|
}
|
|
self.old_secrets[pos as usize] = (secret, idx);
|
|
Ok(())
|
|
}
|
|
|
|
/// Can only fail if idx is < get_min_seen_secret
|
|
pub(crate) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
|
|
for i in 0..self.old_secrets.len() {
|
|
if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
|
|
return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx))
|
|
}
|
|
}
|
|
assert!(idx < self.get_min_seen_secret());
|
|
None
|
|
}
|
|
}
|
|
|
|
impl Writeable for CounterpartyCommitmentSecrets {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
for &(ref secret, ref idx) in self.old_secrets.iter() {
|
|
writer.write_all(secret)?;
|
|
writer.write_all(&byte_utils::be64_to_array(*idx))?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
impl Readable for CounterpartyCommitmentSecrets {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
|
|
let mut old_secrets = [([0; 32], 1 << 48); 49];
|
|
for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
|
|
*secret = Readable::read(reader)?;
|
|
*idx = Readable::read(reader)?;
|
|
}
|
|
|
|
Ok(Self { old_secrets })
|
|
}
|
|
}
|
|
|
|
/// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key)
|
|
/// from the base secret and the per_commitment_point.
|
|
///
|
|
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
/// generated (ie our own).
|
|
pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
|
|
let res = Sha256::from_engine(sha).into_inner();
|
|
|
|
let mut key = base_secret.clone();
|
|
key.add_assign(&res)?;
|
|
Ok(key)
|
|
}
|
|
|
|
/// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key)
|
|
/// from the base point and the per_commitment_key. This is the public equivalent of
|
|
/// derive_private_key - using only public keys to derive a public key instead of private keys.
|
|
///
|
|
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
/// generated (ie our own).
|
|
pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, SecpError> {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&base_point.serialize());
|
|
let res = Sha256::from_engine(sha).into_inner();
|
|
|
|
let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
|
|
base_point.combine(&hashkey)
|
|
}
|
|
|
|
/// Derives a per-commitment-transaction revocation key from its constituent parts.
|
|
///
|
|
/// Only the cheating participant owns a valid witness to propagate a revoked
|
|
/// commitment transaction, thus per_commitment_secret always come from cheater
|
|
/// and revocation_base_secret always come from punisher, which is the broadcaster
|
|
/// of the transaction spending with this key knowledge.
|
|
///
|
|
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
/// generated (ie our own).
|
|
pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey) -> Result<SecretKey, SecpError> {
|
|
let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret);
|
|
let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
|
|
|
|
let rev_append_commit_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&countersignatory_revocation_base_point.serialize());
|
|
sha.input(&per_commitment_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
let commit_append_rev_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&countersignatory_revocation_base_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let mut countersignatory_contrib = countersignatory_revocation_base_secret.clone();
|
|
countersignatory_contrib.mul_assign(&rev_append_commit_hash_key)?;
|
|
let mut broadcaster_contrib = per_commitment_secret.clone();
|
|
broadcaster_contrib.mul_assign(&commit_append_rev_hash_key)?;
|
|
countersignatory_contrib.add_assign(&broadcaster_contrib[..])?;
|
|
Ok(countersignatory_contrib)
|
|
}
|
|
|
|
/// Derives a per-commitment-transaction revocation public key from its constituent parts. This is
|
|
/// the public equivalend of derive_private_revocation_key - using only public keys to derive a
|
|
/// public key instead of private keys.
|
|
///
|
|
/// Only the cheating participant owns a valid witness to propagate a revoked
|
|
/// commitment transaction, thus per_commitment_point always come from cheater
|
|
/// and revocation_base_point always come from punisher, which is the broadcaster
|
|
/// of the transaction spending with this key knowledge.
|
|
///
|
|
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
/// generated (ie our own).
|
|
pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey) -> Result<PublicKey, SecpError> {
|
|
let rev_append_commit_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&countersignatory_revocation_base_point.serialize());
|
|
sha.input(&per_commitment_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
let commit_append_rev_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&countersignatory_revocation_base_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let mut countersignatory_contrib = countersignatory_revocation_base_point.clone();
|
|
countersignatory_contrib.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
|
|
let mut broadcaster_contrib = per_commitment_point.clone();
|
|
broadcaster_contrib.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
|
|
countersignatory_contrib.combine(&broadcaster_contrib)
|
|
}
|
|
|
|
/// The set of public keys which are used in the creation of one commitment transaction.
|
|
/// These are derived from the channel base keys and per-commitment data.
|
|
///
|
|
/// A broadcaster key is provided from potential broadcaster of the computed transaction.
|
|
/// A countersignatory key is coming from a protocol participant unable to broadcast the
|
|
/// transaction.
|
|
///
|
|
/// These keys are assumed to be good, either because the code derived them from
|
|
/// channel basepoints via the new function, or they were obtained via
|
|
/// CommitmentTransaction.trust().keys() because we trusted the source of the
|
|
/// pre-calculated keys.
|
|
#[derive(PartialEq, Clone)]
|
|
pub struct TxCreationKeys {
|
|
/// The broadcaster's per-commitment public key which was used to derive the other keys.
|
|
pub per_commitment_point: PublicKey,
|
|
/// The revocation key which is used to allow the broadcaster of the commitment
|
|
/// transaction to provide their counterparty the ability to punish them if they broadcast
|
|
/// an old state.
|
|
pub revocation_key: PublicKey,
|
|
/// Broadcaster's HTLC Key
|
|
pub broadcaster_htlc_key: PublicKey,
|
|
/// Countersignatory's HTLC Key
|
|
pub countersignatory_htlc_key: PublicKey,
|
|
/// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
|
|
pub broadcaster_delayed_payment_key: PublicKey,
|
|
}
|
|
|
|
impl_writeable!(TxCreationKeys, 33*5,
|
|
{ per_commitment_point, revocation_key, broadcaster_htlc_key, countersignatory_htlc_key, broadcaster_delayed_payment_key });
|
|
|
|
/// One counterparty's public keys which do not change over the life of a channel.
|
|
#[derive(Clone, PartialEq)]
|
|
pub struct ChannelPublicKeys {
|
|
/// The public key which is used to sign all commitment transactions, as it appears in the
|
|
/// on-chain channel lock-in 2-of-2 multisig output.
|
|
pub funding_pubkey: PublicKey,
|
|
/// The base point which is used (with derive_public_revocation_key) to derive per-commitment
|
|
/// revocation keys. This is combined with the per-commitment-secret generated by the
|
|
/// counterparty to create a secret which the counterparty can reveal to revoke previous
|
|
/// states.
|
|
pub revocation_basepoint: PublicKey,
|
|
/// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
|
|
/// spendable primary channel balance on the broadcaster's commitment transaction. This key is
|
|
/// static across every commitment transaction.
|
|
pub payment_point: PublicKey,
|
|
/// The base point which is used (with derive_public_key) to derive a per-commitment payment
|
|
/// public key which receives non-HTLC-encumbered funds which are only available for spending
|
|
/// after some delay (or can be claimed via the revocation path).
|
|
pub delayed_payment_basepoint: PublicKey,
|
|
/// The base point which is used (with derive_public_key) to derive a per-commitment public key
|
|
/// which is used to encumber HTLC-in-flight outputs.
|
|
pub htlc_basepoint: PublicKey,
|
|
}
|
|
|
|
impl_writeable!(ChannelPublicKeys, 33*5, {
|
|
funding_pubkey,
|
|
revocation_basepoint,
|
|
payment_point,
|
|
delayed_payment_basepoint,
|
|
htlc_basepoint
|
|
});
|
|
|
|
|
|
impl TxCreationKeys {
|
|
/// Create per-state keys from channel base points and the per-commitment point.
|
|
/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
|
|
pub fn derive_new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> Result<TxCreationKeys, SecpError> {
|
|
Ok(TxCreationKeys {
|
|
per_commitment_point: per_commitment_point.clone(),
|
|
revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base)?,
|
|
broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base)?,
|
|
countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base)?,
|
|
broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base)?,
|
|
})
|
|
}
|
|
|
|
/// Generate per-state keys from channel static keys.
|
|
/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
|
|
pub fn from_channel_static_keys<T: secp256k1::Signing + secp256k1::Verification>(per_commitment_point: &PublicKey, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> Result<TxCreationKeys, SecpError> {
|
|
TxCreationKeys::derive_new(
|
|
&secp_ctx,
|
|
&per_commitment_point,
|
|
&broadcaster_keys.delayed_payment_basepoint,
|
|
&broadcaster_keys.htlc_basepoint,
|
|
&countersignatory_keys.revocation_basepoint,
|
|
&countersignatory_keys.htlc_basepoint,
|
|
)
|
|
}
|
|
}
|
|
|
|
/// The maximum length of a script returned by get_revokeable_redeemscript.
|
|
// Calculated as 6 bytes of opcodes, 1 byte push plus 2 bytes for contest_delay, and two public
|
|
// keys of 33 bytes (+ 1 push).
|
|
pub const REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH: usize = 6 + 3 + 34*2;
|
|
|
|
/// A script either spendable by the revocation
|
|
/// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain.
|
|
/// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions.
|
|
pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script {
|
|
let res = Builder::new().push_opcode(opcodes::all::OP_IF)
|
|
.push_slice(&revocation_key.serialize())
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_int(contest_delay as i64)
|
|
.push_opcode(opcodes::all::OP_CSV)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_slice(&broadcaster_delayed_payment_key.serialize())
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.into_script();
|
|
debug_assert!(res.len() <= REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH);
|
|
res
|
|
}
|
|
|
|
#[derive(Clone, PartialEq)]
|
|
/// Information about an HTLC as it appears in a commitment transaction
|
|
pub struct HTLCOutputInCommitment {
|
|
/// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
|
|
/// Note that this is not the same as whether it is ountbound *from us*. To determine that you
|
|
/// need to compare this value to whether the commitment transaction in question is that of
|
|
/// the counterparty or our own.
|
|
pub offered: bool,
|
|
/// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
|
|
/// this divided by 1000.
|
|
pub amount_msat: u64,
|
|
/// The CLTV lock-time at which this HTLC expires.
|
|
pub cltv_expiry: u32,
|
|
/// The hash of the preimage which unlocks this HTLC.
|
|
pub payment_hash: PaymentHash,
|
|
/// The position within the commitment transactions' outputs. This may be None if the value is
|
|
/// below the dust limit (in which case no output appears in the commitment transaction and the
|
|
/// value is spent to additional transaction fees).
|
|
pub transaction_output_index: Option<u32>,
|
|
}
|
|
|
|
impl_writeable_len_match!(HTLCOutputInCommitment, {
|
|
{ HTLCOutputInCommitment { transaction_output_index: None, .. }, HTLC_OUTPUT_IN_COMMITMENT_SIZE - 4 },
|
|
{ _, HTLC_OUTPUT_IN_COMMITMENT_SIZE }
|
|
}, {
|
|
offered,
|
|
amount_msat,
|
|
cltv_expiry,
|
|
payment_hash,
|
|
transaction_output_index
|
|
});
|
|
|
|
#[inline]
|
|
pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
|
|
let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
|
|
if htlc.offered {
|
|
Builder::new().push_opcode(opcodes::all::OP_DUP)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_slice(&countersignatory_htlc_key.serialize()[..])
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_opcode(opcodes::all::OP_SIZE)
|
|
.push_int(32)
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_NOTIF)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_slice(&broadcaster_htlc_key.serialize()[..])
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&payment_hash160)
|
|
.push_opcode(opcodes::all::OP_EQUALVERIFY)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.into_script()
|
|
} else {
|
|
Builder::new().push_opcode(opcodes::all::OP_DUP)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_slice(&countersignatory_htlc_key.serialize()[..])
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_opcode(opcodes::all::OP_SIZE)
|
|
.push_int(32)
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&payment_hash160)
|
|
.push_opcode(opcodes::all::OP_EQUALVERIFY)
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_slice(&broadcaster_htlc_key.serialize()[..])
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_int(htlc.cltv_expiry as i64)
|
|
.push_opcode(opcodes::all::OP_CLTV)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.into_script()
|
|
}
|
|
}
|
|
|
|
/// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc
|
|
/// does not need to have its previous_output_index filled.
|
|
#[inline]
|
|
pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script {
|
|
get_htlc_redeemscript_with_explicit_keys(htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key)
|
|
}
|
|
|
|
/// Gets the redeemscript for a funding output from the two funding public keys.
|
|
/// Note that the order of funding public keys does not matter.
|
|
pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script {
|
|
let broadcaster_funding_key = broadcaster.serialize();
|
|
let countersignatory_funding_key = countersignatory.serialize();
|
|
|
|
let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
|
|
if broadcaster_funding_key[..] < countersignatory_funding_key[..] {
|
|
builder.push_slice(&broadcaster_funding_key)
|
|
.push_slice(&countersignatory_funding_key)
|
|
} else {
|
|
builder.push_slice(&countersignatory_funding_key)
|
|
.push_slice(&broadcaster_funding_key)
|
|
}.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
|
|
}
|
|
|
|
/// panics if htlc.transaction_output_index.is_none()!
|
|
pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
|
|
let mut txins: Vec<TxIn> = Vec::new();
|
|
txins.push(TxIn {
|
|
previous_output: OutPoint {
|
|
txid: prev_hash.clone(),
|
|
vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
|
|
},
|
|
script_sig: Script::new(),
|
|
sequence: 0,
|
|
witness: Vec::new(),
|
|
});
|
|
|
|
let total_fee = if htlc.offered {
|
|
feerate_per_kw as u64 * HTLC_TIMEOUT_TX_WEIGHT / 1000
|
|
} else {
|
|
feerate_per_kw as u64 * HTLC_SUCCESS_TX_WEIGHT / 1000
|
|
};
|
|
|
|
let mut txouts: Vec<TxOut> = Vec::new();
|
|
txouts.push(TxOut {
|
|
script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(),
|
|
value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
|
|
});
|
|
|
|
Transaction {
|
|
version: 2,
|
|
lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 },
|
|
input: txins,
|
|
output: txouts,
|
|
}
|
|
}
|
|
|
|
/// Per-channel data used to build transactions in conjunction with the per-commitment data (CommitmentTransaction).
|
|
/// The fields are organized by holder/counterparty.
|
|
///
|
|
/// Normally, this is converted to the broadcaster/countersignatory-organized DirectedChannelTransactionParameters
|
|
/// before use, via the as_holder_broadcastable and as_counterparty_broadcastable functions.
|
|
#[derive(Clone)]
|
|
pub struct ChannelTransactionParameters {
|
|
/// Holder public keys
|
|
pub holder_pubkeys: ChannelPublicKeys,
|
|
/// The contest delay selected by the holder, which applies to counterparty-broadcast transactions
|
|
pub holder_selected_contest_delay: u16,
|
|
/// Whether the holder is the initiator of this channel.
|
|
/// This is an input to the commitment number obscure factor computation.
|
|
pub is_outbound_from_holder: bool,
|
|
/// The late-bound counterparty channel transaction parameters.
|
|
/// These parameters are populated at the point in the protocol where the counterparty provides them.
|
|
pub counterparty_parameters: Option<CounterpartyChannelTransactionParameters>,
|
|
/// The late-bound funding outpoint
|
|
pub funding_outpoint: Option<chain::transaction::OutPoint>,
|
|
}
|
|
|
|
/// Late-bound per-channel counterparty data used to build transactions.
|
|
#[derive(Clone)]
|
|
pub struct CounterpartyChannelTransactionParameters {
|
|
/// Counter-party public keys
|
|
pub pubkeys: ChannelPublicKeys,
|
|
/// The contest delay selected by the counterparty, which applies to holder-broadcast transactions
|
|
pub selected_contest_delay: u16,
|
|
}
|
|
|
|
impl ChannelTransactionParameters {
|
|
/// Whether the late bound parameters are populated.
|
|
pub fn is_populated(&self) -> bool {
|
|
self.counterparty_parameters.is_some() && self.funding_outpoint.is_some()
|
|
}
|
|
|
|
/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
|
|
/// given that the holder is the broadcaster.
|
|
///
|
|
/// self.is_populated() must be true before calling this function.
|
|
pub fn as_holder_broadcastable(&self) -> DirectedChannelTransactionParameters {
|
|
assert!(self.is_populated(), "self.late_parameters must be set before using as_holder_broadcastable");
|
|
DirectedChannelTransactionParameters {
|
|
inner: self,
|
|
holder_is_broadcaster: true
|
|
}
|
|
}
|
|
|
|
/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
|
|
/// given that the counterparty is the broadcaster.
|
|
///
|
|
/// self.is_populated() must be true before calling this function.
|
|
pub fn as_counterparty_broadcastable(&self) -> DirectedChannelTransactionParameters {
|
|
assert!(self.is_populated(), "self.late_parameters must be set before using as_counterparty_broadcastable");
|
|
DirectedChannelTransactionParameters {
|
|
inner: self,
|
|
holder_is_broadcaster: false
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_writeable!(CounterpartyChannelTransactionParameters, 0, {
|
|
pubkeys,
|
|
selected_contest_delay
|
|
});
|
|
|
|
impl_writeable!(ChannelTransactionParameters, 0, {
|
|
holder_pubkeys,
|
|
holder_selected_contest_delay,
|
|
is_outbound_from_holder,
|
|
counterparty_parameters,
|
|
funding_outpoint
|
|
});
|
|
|
|
/// Static channel fields used to build transactions given per-commitment fields, organized by
|
|
/// broadcaster/countersignatory.
|
|
///
|
|
/// This is derived from the holder/counterparty-organized ChannelTransactionParameters via the
|
|
/// as_holder_broadcastable and as_counterparty_broadcastable functions.
|
|
pub struct DirectedChannelTransactionParameters<'a> {
|
|
/// The holder's channel static parameters
|
|
inner: &'a ChannelTransactionParameters,
|
|
/// Whether the holder is the broadcaster
|
|
holder_is_broadcaster: bool,
|
|
}
|
|
|
|
impl<'a> DirectedChannelTransactionParameters<'a> {
|
|
/// Get the channel pubkeys for the broadcaster
|
|
pub fn broadcaster_pubkeys(&self) -> &ChannelPublicKeys {
|
|
if self.holder_is_broadcaster {
|
|
&self.inner.holder_pubkeys
|
|
} else {
|
|
&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
|
|
}
|
|
}
|
|
|
|
/// Get the channel pubkeys for the countersignatory
|
|
pub fn countersignatory_pubkeys(&self) -> &ChannelPublicKeys {
|
|
if self.holder_is_broadcaster {
|
|
&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
|
|
} else {
|
|
&self.inner.holder_pubkeys
|
|
}
|
|
}
|
|
|
|
/// Get the contest delay applicable to the transactions.
|
|
/// Note that the contest delay was selected by the countersignatory.
|
|
pub fn contest_delay(&self) -> u16 {
|
|
let counterparty_parameters = self.inner.counterparty_parameters.as_ref().unwrap();
|
|
if self.holder_is_broadcaster { counterparty_parameters.selected_contest_delay } else { self.inner.holder_selected_contest_delay }
|
|
}
|
|
|
|
/// Whether the channel is outbound from the broadcaster.
|
|
///
|
|
/// The boolean representing the side that initiated the channel is
|
|
/// an input to the commitment number obscure factor computation.
|
|
pub fn is_outbound(&self) -> bool {
|
|
if self.holder_is_broadcaster { self.inner.is_outbound_from_holder } else { !self.inner.is_outbound_from_holder }
|
|
}
|
|
|
|
/// The funding outpoint
|
|
pub fn funding_outpoint(&self) -> OutPoint {
|
|
self.inner.funding_outpoint.unwrap().into_bitcoin_outpoint()
|
|
}
|
|
}
|
|
|
|
/// Information needed to build and sign a holder's commitment transaction.
|
|
///
|
|
/// The transaction is only signed once we are ready to broadcast.
|
|
#[derive(Clone)]
|
|
pub struct HolderCommitmentTransaction {
|
|
inner: CommitmentTransaction,
|
|
/// Our counterparty's signature for the transaction
|
|
pub counterparty_sig: Signature,
|
|
/// All non-dust counterparty HTLC signatures, in the order they appear in the transaction
|
|
pub counterparty_htlc_sigs: Vec<Signature>,
|
|
// Which order the signatures should go in when constructing the final commitment tx witness.
|
|
// The user should be able to reconstruct this themselves, so we don't bother to expose it.
|
|
holder_sig_first: bool,
|
|
}
|
|
|
|
impl Deref for HolderCommitmentTransaction {
|
|
type Target = CommitmentTransaction;
|
|
|
|
fn deref(&self) -> &Self::Target { &self.inner }
|
|
}
|
|
|
|
impl PartialEq for HolderCommitmentTransaction {
|
|
// We dont care whether we are signed in equality comparison
|
|
fn eq(&self, o: &Self) -> bool {
|
|
self.inner == o.inner
|
|
}
|
|
}
|
|
|
|
impl_writeable!(HolderCommitmentTransaction, 0, {
|
|
inner, counterparty_sig, counterparty_htlc_sigs, holder_sig_first
|
|
});
|
|
|
|
impl HolderCommitmentTransaction {
|
|
#[cfg(test)]
|
|
pub fn dummy() -> Self {
|
|
let secp_ctx = Secp256k1::new();
|
|
let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
|
|
let dummy_sig = secp_ctx.sign(&secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap());
|
|
|
|
let keys = TxCreationKeys {
|
|
per_commitment_point: dummy_key.clone(),
|
|
revocation_key: dummy_key.clone(),
|
|
broadcaster_htlc_key: dummy_key.clone(),
|
|
countersignatory_htlc_key: dummy_key.clone(),
|
|
broadcaster_delayed_payment_key: dummy_key.clone(),
|
|
};
|
|
let channel_pubkeys = ChannelPublicKeys {
|
|
funding_pubkey: dummy_key.clone(),
|
|
revocation_basepoint: dummy_key.clone(),
|
|
payment_point: dummy_key.clone(),
|
|
delayed_payment_basepoint: dummy_key.clone(),
|
|
htlc_basepoint: dummy_key.clone()
|
|
};
|
|
let channel_parameters = ChannelTransactionParameters {
|
|
holder_pubkeys: channel_pubkeys.clone(),
|
|
holder_selected_contest_delay: 0,
|
|
is_outbound_from_holder: false,
|
|
counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: channel_pubkeys.clone(), selected_contest_delay: 0 }),
|
|
funding_outpoint: Some(chain::transaction::OutPoint { txid: Default::default(), index: 0 })
|
|
};
|
|
let mut htlcs_with_aux: Vec<(_, ())> = Vec::new();
|
|
let inner = CommitmentTransaction::new_with_auxiliary_htlc_data(0, 0, 0, keys, 0, &mut htlcs_with_aux, &channel_parameters.as_counterparty_broadcastable());
|
|
HolderCommitmentTransaction {
|
|
inner,
|
|
counterparty_sig: dummy_sig,
|
|
counterparty_htlc_sigs: Vec::new(),
|
|
holder_sig_first: false
|
|
}
|
|
}
|
|
|
|
/// Create a new holder transaction with the given counterparty signatures.
|
|
/// The funding keys are used to figure out which signature should go first when building the transaction for broadcast.
|
|
pub fn new(commitment_tx: CommitmentTransaction, counterparty_sig: Signature, counterparty_htlc_sigs: Vec<Signature>, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey) -> Self {
|
|
Self {
|
|
inner: commitment_tx,
|
|
counterparty_sig,
|
|
counterparty_htlc_sigs,
|
|
holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..],
|
|
}
|
|
}
|
|
|
|
pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction {
|
|
// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
|
|
let mut tx = self.inner.built.transaction.clone();
|
|
tx.input[0].witness.push(Vec::new());
|
|
|
|
if self.holder_sig_first {
|
|
tx.input[0].witness.push(holder_sig.serialize_der().to_vec());
|
|
tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec());
|
|
} else {
|
|
tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec());
|
|
tx.input[0].witness.push(holder_sig.serialize_der().to_vec());
|
|
}
|
|
tx.input[0].witness[1].push(SigHashType::All as u8);
|
|
tx.input[0].witness[2].push(SigHashType::All as u8);
|
|
|
|
tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
|
|
tx
|
|
}
|
|
}
|
|
|
|
/// A pre-built Bitcoin commitment transaction and its txid.
|
|
#[derive(Clone)]
|
|
pub struct BuiltCommitmentTransaction {
|
|
/// The commitment transaction
|
|
pub transaction: Transaction,
|
|
/// The txid for the commitment transaction.
|
|
///
|
|
/// This is provided as a performance optimization, instead of calling transaction.txid()
|
|
/// multiple times.
|
|
pub txid: Txid,
|
|
}
|
|
|
|
impl_writeable!(BuiltCommitmentTransaction, 0, { transaction, txid });
|
|
|
|
impl BuiltCommitmentTransaction {
|
|
/// Get the SIGHASH_ALL sighash value of the transaction.
|
|
///
|
|
/// This can be used to verify a signature.
|
|
pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message {
|
|
let sighash = &bip143::SigHashCache::new(&self.transaction).signature_hash(0, funding_redeemscript, channel_value_satoshis, SigHashType::All)[..];
|
|
hash_to_message!(sighash)
|
|
}
|
|
|
|
/// Sign a transaction, either because we are counter-signing the counterparty's transaction or
|
|
/// because we are about to broadcast a holder transaction.
|
|
pub fn sign<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
|
|
let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
|
|
secp_ctx.sign(&sighash, funding_key)
|
|
}
|
|
}
|
|
|
|
/// This class tracks the per-transaction information needed to build a commitment transaction and to
|
|
/// actually build it and sign. It is used for holder transactions that we sign only when needed
|
|
/// and for transactions we sign for the counterparty.
|
|
///
|
|
/// This class can be used inside a signer implementation to generate a signature given the relevant
|
|
/// secret key.
|
|
#[derive(Clone)]
|
|
pub struct CommitmentTransaction {
|
|
commitment_number: u64,
|
|
to_broadcaster_value_sat: u64,
|
|
to_countersignatory_value_sat: u64,
|
|
feerate_per_kw: u32,
|
|
htlcs: Vec<HTLCOutputInCommitment>,
|
|
// A cache of the parties' pubkeys required to construct the transaction, see doc for trust()
|
|
keys: TxCreationKeys,
|
|
// For access to the pre-built transaction, see doc for trust()
|
|
built: BuiltCommitmentTransaction,
|
|
}
|
|
|
|
impl PartialEq for CommitmentTransaction {
|
|
fn eq(&self, o: &Self) -> bool {
|
|
let eq = self.commitment_number == o.commitment_number &&
|
|
self.to_broadcaster_value_sat == o.to_broadcaster_value_sat &&
|
|
self.to_countersignatory_value_sat == o.to_countersignatory_value_sat &&
|
|
self.feerate_per_kw == o.feerate_per_kw &&
|
|
self.htlcs == o.htlcs &&
|
|
self.keys == o.keys;
|
|
if eq {
|
|
debug_assert_eq!(self.built.transaction, o.built.transaction);
|
|
debug_assert_eq!(self.built.txid, o.built.txid);
|
|
}
|
|
eq
|
|
}
|
|
}
|
|
|
|
/// (C-not exported) as users never need to call this directly
|
|
impl Writeable for Vec<HTLCOutputInCommitment> {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
(self.len() as u16).write(w)?;
|
|
for e in self.iter() {
|
|
e.write(w)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// (C-not exported) as users never need to call this directly
|
|
impl Readable for Vec<HTLCOutputInCommitment> {
|
|
#[inline]
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let len: u16 = Readable::read(r)?;
|
|
let byte_size = (len as usize)
|
|
.checked_mul(HTLC_OUTPUT_IN_COMMITMENT_SIZE)
|
|
.ok_or(DecodeError::BadLengthDescriptor)?;
|
|
if byte_size > MAX_BUF_SIZE {
|
|
return Err(DecodeError::BadLengthDescriptor);
|
|
}
|
|
let mut ret = Vec::with_capacity(len as usize);
|
|
for _ in 0..len { ret.push(HTLCOutputInCommitment::read(r)?); }
|
|
Ok(ret)
|
|
}
|
|
}
|
|
|
|
impl_writeable!(CommitmentTransaction, 0, {
|
|
commitment_number,
|
|
to_broadcaster_value_sat,
|
|
to_countersignatory_value_sat,
|
|
feerate_per_kw,
|
|
htlcs,
|
|
keys,
|
|
built
|
|
});
|
|
|
|
impl CommitmentTransaction {
|
|
/// Construct an object of the class while assigning transaction output indices to HTLCs.
|
|
///
|
|
/// Populates HTLCOutputInCommitment.transaction_output_index in htlcs_with_aux.
|
|
///
|
|
/// The generic T allows the caller to match the HTLC output index with auxiliary data.
|
|
/// This auxiliary data is not stored in this object.
|
|
///
|
|
/// Only include HTLCs that are above the dust limit for the channel.
|
|
///
|
|
/// (C-not exported) due to the generic though we likely should expose a version without
|
|
pub fn new_with_auxiliary_htlc_data<T>(commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, keys: TxCreationKeys, feerate_per_kw: u32, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> CommitmentTransaction {
|
|
// Sort outputs and populate output indices while keeping track of the auxiliary data
|
|
let (outputs, htlcs) = Self::internal_build_outputs(&keys, to_broadcaster_value_sat, to_countersignatory_value_sat, htlcs_with_aux, channel_parameters).unwrap();
|
|
|
|
let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(commitment_number, channel_parameters);
|
|
let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
|
|
let txid = transaction.txid();
|
|
CommitmentTransaction {
|
|
commitment_number,
|
|
to_broadcaster_value_sat,
|
|
to_countersignatory_value_sat,
|
|
feerate_per_kw,
|
|
htlcs,
|
|
keys,
|
|
built: BuiltCommitmentTransaction {
|
|
transaction,
|
|
txid
|
|
},
|
|
}
|
|
}
|
|
|
|
fn internal_rebuild_transaction(&self, keys: &TxCreationKeys, channel_parameters: &DirectedChannelTransactionParameters) -> Result<BuiltCommitmentTransaction, ()> {
|
|
let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(self.commitment_number, channel_parameters);
|
|
|
|
let mut htlcs_with_aux = self.htlcs.iter().map(|h| (h.clone(), ())).collect();
|
|
let (outputs, _) = Self::internal_build_outputs(keys, self.to_broadcaster_value_sat, self.to_countersignatory_value_sat, &mut htlcs_with_aux, channel_parameters)?;
|
|
|
|
let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
|
|
let txid = transaction.txid();
|
|
let built_transaction = BuiltCommitmentTransaction {
|
|
transaction,
|
|
txid
|
|
};
|
|
Ok(built_transaction)
|
|
}
|
|
|
|
fn make_transaction(obscured_commitment_transaction_number: u64, txins: Vec<TxIn>, outputs: Vec<TxOut>) -> Transaction {
|
|
Transaction {
|
|
version: 2,
|
|
lock_time: ((0x20 as u32) << 8 * 3) | ((obscured_commitment_transaction_number & 0xffffffu64) as u32),
|
|
input: txins,
|
|
output: outputs,
|
|
}
|
|
}
|
|
|
|
// This is used in two cases:
|
|
// - initial sorting of outputs / HTLCs in the constructor, in which case T is auxiliary data the
|
|
// caller needs to have sorted together with the HTLCs so it can keep track of the output index
|
|
// - building of a bitcoin transaction during a verify() call, in which case T is just ()
|
|
fn internal_build_outputs<T>(keys: &TxCreationKeys, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> Result<(Vec<TxOut>, Vec<HTLCOutputInCommitment>), ()> {
|
|
let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
|
|
let contest_delay = channel_parameters.contest_delay();
|
|
|
|
let mut txouts: Vec<(TxOut, Option<&mut HTLCOutputInCommitment>)> = Vec::new();
|
|
|
|
if to_countersignatory_value_sat > 0 {
|
|
let script = script_for_p2wpkh(&countersignatory_pubkeys.payment_point);
|
|
txouts.push((
|
|
TxOut {
|
|
script_pubkey: script.clone(),
|
|
value: to_countersignatory_value_sat,
|
|
},
|
|
None,
|
|
))
|
|
}
|
|
|
|
if to_broadcaster_value_sat > 0 {
|
|
let redeem_script = get_revokeable_redeemscript(
|
|
&keys.revocation_key,
|
|
contest_delay,
|
|
&keys.broadcaster_delayed_payment_key,
|
|
);
|
|
txouts.push((
|
|
TxOut {
|
|
script_pubkey: redeem_script.to_v0_p2wsh(),
|
|
value: to_broadcaster_value_sat,
|
|
},
|
|
None,
|
|
));
|
|
}
|
|
|
|
let mut htlcs = Vec::with_capacity(htlcs_with_aux.len());
|
|
for (htlc, _) in htlcs_with_aux {
|
|
let script = chan_utils::get_htlc_redeemscript(&htlc, &keys);
|
|
let txout = TxOut {
|
|
script_pubkey: script.to_v0_p2wsh(),
|
|
value: htlc.amount_msat / 1000,
|
|
};
|
|
txouts.push((txout, Some(htlc)));
|
|
}
|
|
|
|
// Sort output in BIP-69 order (amount, scriptPubkey). Tie-breaks based on HTLC
|
|
// CLTV expiration height.
|
|
sort_outputs(&mut txouts, |a, b| {
|
|
if let &Some(ref a_htlcout) = a {
|
|
if let &Some(ref b_htlcout) = b {
|
|
a_htlcout.cltv_expiry.cmp(&b_htlcout.cltv_expiry)
|
|
// Note that due to hash collisions, we have to have a fallback comparison
|
|
// here for fuzztarget mode (otherwise at least chanmon_fail_consistency
|
|
// may fail)!
|
|
.then(a_htlcout.payment_hash.0.cmp(&b_htlcout.payment_hash.0))
|
|
// For non-HTLC outputs, if they're copying our SPK we don't really care if we
|
|
// close the channel due to mismatches - they're doing something dumb:
|
|
} else { cmp::Ordering::Equal }
|
|
} else { cmp::Ordering::Equal }
|
|
});
|
|
|
|
let mut outputs = Vec::with_capacity(txouts.len());
|
|
for (idx, out) in txouts.drain(..).enumerate() {
|
|
if let Some(htlc) = out.1 {
|
|
htlc.transaction_output_index = Some(idx as u32);
|
|
htlcs.push(htlc.clone());
|
|
}
|
|
outputs.push(out.0);
|
|
}
|
|
Ok((outputs, htlcs))
|
|
}
|
|
|
|
fn internal_build_inputs(commitment_number: u64, channel_parameters: &DirectedChannelTransactionParameters) -> (u64, Vec<TxIn>) {
|
|
let broadcaster_pubkeys = channel_parameters.broadcaster_pubkeys();
|
|
let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
|
|
let commitment_transaction_number_obscure_factor = get_commitment_transaction_number_obscure_factor(
|
|
&broadcaster_pubkeys.payment_point,
|
|
&countersignatory_pubkeys.payment_point,
|
|
channel_parameters.is_outbound(),
|
|
);
|
|
|
|
let obscured_commitment_transaction_number =
|
|
commitment_transaction_number_obscure_factor ^ (INITIAL_COMMITMENT_NUMBER - commitment_number);
|
|
|
|
let txins = {
|
|
let mut ins: Vec<TxIn> = Vec::new();
|
|
ins.push(TxIn {
|
|
previous_output: channel_parameters.funding_outpoint(),
|
|
script_sig: Script::new(),
|
|
sequence: ((0x80 as u32) << 8 * 3)
|
|
| ((obscured_commitment_transaction_number >> 3 * 8) as u32),
|
|
witness: Vec::new(),
|
|
});
|
|
ins
|
|
};
|
|
(obscured_commitment_transaction_number, txins)
|
|
}
|
|
|
|
/// The backwards-counting commitment number
|
|
pub fn commitment_number(&self) -> u64 {
|
|
self.commitment_number
|
|
}
|
|
|
|
/// The value to be sent to the broadcaster
|
|
pub fn to_broadcaster_value_sat(&self) -> u64 {
|
|
self.to_broadcaster_value_sat
|
|
}
|
|
|
|
/// The value to be sent to the counterparty
|
|
pub fn to_countersignatory_value_sat(&self) -> u64 {
|
|
self.to_countersignatory_value_sat
|
|
}
|
|
|
|
/// The feerate paid per 1000-weight-unit in this commitment transaction.
|
|
pub fn feerate_per_kw(&self) -> u32 {
|
|
self.feerate_per_kw
|
|
}
|
|
|
|
/// The non-dust HTLCs (direction, amt, height expiration, hash, transaction output index)
|
|
/// which were included in this commitment transaction in output order.
|
|
/// The transaction index is always populated.
|
|
///
|
|
/// (C-not exported) as we cannot currently convert Vec references to/from C, though we should
|
|
/// expose a less effecient version which creates a Vec of references in the future.
|
|
pub fn htlcs(&self) -> &Vec<HTLCOutputInCommitment> {
|
|
&self.htlcs
|
|
}
|
|
|
|
/// Trust our pre-built transaction and derived transaction creation public keys.
|
|
///
|
|
/// Applies a wrapper which allows access to these fields.
|
|
///
|
|
/// This should only be used if you fully trust the builder of this object. It should not
|
|
/// be used by an external signer - instead use the verify function.
|
|
pub fn trust(&self) -> TrustedCommitmentTransaction {
|
|
TrustedCommitmentTransaction { inner: self }
|
|
}
|
|
|
|
/// Verify our pre-built transaction and derived transaction creation public keys.
|
|
///
|
|
/// Applies a wrapper which allows access to these fields.
|
|
///
|
|
/// An external validating signer must call this method before signing
|
|
/// or using the built transaction.
|
|
pub fn verify<T: secp256k1::Signing + secp256k1::Verification>(&self, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> Result<TrustedCommitmentTransaction, ()> {
|
|
// This is the only field of the key cache that we trust
|
|
let per_commitment_point = self.keys.per_commitment_point;
|
|
let keys = TxCreationKeys::from_channel_static_keys(&per_commitment_point, broadcaster_keys, countersignatory_keys, secp_ctx).unwrap();
|
|
if keys != self.keys {
|
|
return Err(());
|
|
}
|
|
let tx = self.internal_rebuild_transaction(&keys, channel_parameters)?;
|
|
if self.built.transaction != tx.transaction || self.built.txid != tx.txid {
|
|
return Err(());
|
|
}
|
|
Ok(TrustedCommitmentTransaction { inner: self })
|
|
}
|
|
}
|
|
|
|
/// A wrapper on CommitmentTransaction indicating that the derived fields (the built bitcoin
|
|
/// transaction and the transaction creation keys) are trusted.
|
|
///
|
|
/// See trust() and verify() functions on CommitmentTransaction.
|
|
///
|
|
/// This structure implements Deref.
|
|
pub struct TrustedCommitmentTransaction<'a> {
|
|
inner: &'a CommitmentTransaction,
|
|
}
|
|
|
|
impl<'a> Deref for TrustedCommitmentTransaction<'a> {
|
|
type Target = CommitmentTransaction;
|
|
|
|
fn deref(&self) -> &Self::Target { self.inner }
|
|
}
|
|
|
|
impl<'a> TrustedCommitmentTransaction<'a> {
|
|
/// The transaction ID of the built Bitcoin transaction
|
|
pub fn txid(&self) -> Txid {
|
|
self.inner.built.txid
|
|
}
|
|
|
|
/// The pre-built Bitcoin commitment transaction
|
|
pub fn built_transaction(&self) -> &BuiltCommitmentTransaction {
|
|
&self.inner.built
|
|
}
|
|
|
|
/// The pre-calculated transaction creation public keys.
|
|
pub fn keys(&self) -> &TxCreationKeys {
|
|
&self.inner.keys
|
|
}
|
|
|
|
/// Get a signature for each HTLC which was included in the commitment transaction (ie for
|
|
/// which HTLCOutputInCommitment::transaction_output_index.is_some()).
|
|
///
|
|
/// The returned Vec has one entry for each HTLC, and in the same order.
|
|
pub fn get_htlc_sigs<T: secp256k1::Signing>(&self, htlc_base_key: &SecretKey, channel_parameters: &DirectedChannelTransactionParameters, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()> {
|
|
let inner = self.inner;
|
|
let keys = &inner.keys;
|
|
let txid = inner.built.txid;
|
|
let mut ret = Vec::with_capacity(inner.htlcs.len());
|
|
let holder_htlc_key = derive_private_key(secp_ctx, &inner.keys.per_commitment_point, htlc_base_key).map_err(|_| ())?;
|
|
|
|
for this_htlc in inner.htlcs.iter() {
|
|
assert!(this_htlc.transaction_output_index.is_some());
|
|
let htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
|
|
|
|
let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);
|
|
|
|
let sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, this_htlc.amount_msat / 1000, SigHashType::All)[..]);
|
|
ret.push(secp_ctx.sign(&sighash, &holder_htlc_key));
|
|
}
|
|
Ok(ret)
|
|
}
|
|
|
|
/// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature.
|
|
pub(crate) fn get_signed_htlc_tx(&self, channel_parameters: &DirectedChannelTransactionParameters, htlc_index: usize, counterparty_signature: &Signature, signature: &Signature, preimage: &Option<PaymentPreimage>) -> Transaction {
|
|
let inner = self.inner;
|
|
let keys = &inner.keys;
|
|
let txid = inner.built.txid;
|
|
let this_htlc = &inner.htlcs[htlc_index];
|
|
assert!(this_htlc.transaction_output_index.is_some());
|
|
// if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction.
|
|
if !this_htlc.offered && preimage.is_none() { unreachable!(); }
|
|
// Further, we should never be provided the preimage for an HTLC-Timeout transaction.
|
|
if this_htlc.offered && preimage.is_some() { unreachable!(); }
|
|
|
|
let mut htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
|
|
|
|
let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);
|
|
|
|
// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
|
|
htlc_tx.input[0].witness.push(Vec::new());
|
|
|
|
htlc_tx.input[0].witness.push(counterparty_signature.serialize_der().to_vec());
|
|
htlc_tx.input[0].witness.push(signature.serialize_der().to_vec());
|
|
htlc_tx.input[0].witness[1].push(SigHashType::All as u8);
|
|
htlc_tx.input[0].witness[2].push(SigHashType::All as u8);
|
|
|
|
if this_htlc.offered {
|
|
// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
|
|
htlc_tx.input[0].witness.push(Vec::new());
|
|
} else {
|
|
htlc_tx.input[0].witness.push(preimage.unwrap().0.to_vec());
|
|
}
|
|
|
|
htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
|
|
htlc_tx
|
|
}
|
|
}
|
|
|
|
/// Get the transaction number obscure factor
|
|
pub fn get_commitment_transaction_number_obscure_factor(
|
|
broadcaster_payment_basepoint: &PublicKey,
|
|
countersignatory_payment_basepoint: &PublicKey,
|
|
outbound_from_broadcaster: bool,
|
|
) -> u64 {
|
|
let mut sha = Sha256::engine();
|
|
|
|
if outbound_from_broadcaster {
|
|
sha.input(&broadcaster_payment_basepoint.serialize());
|
|
sha.input(&countersignatory_payment_basepoint.serialize());
|
|
} else {
|
|
sha.input(&countersignatory_payment_basepoint.serialize());
|
|
sha.input(&broadcaster_payment_basepoint.serialize());
|
|
}
|
|
let res = Sha256::from_engine(sha).into_inner();
|
|
|
|
((res[26] as u64) << 5 * 8)
|
|
| ((res[27] as u64) << 4 * 8)
|
|
| ((res[28] as u64) << 3 * 8)
|
|
| ((res[29] as u64) << 2 * 8)
|
|
| ((res[30] as u64) << 1 * 8)
|
|
| ((res[31] as u64) << 0 * 8)
|
|
}
|
|
|
|
fn script_for_p2wpkh(key: &PublicKey) -> Script {
|
|
Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
|
|
.push_slice(&WPubkeyHash::hash(&key.serialize())[..])
|
|
.into_script()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::CounterpartyCommitmentSecrets;
|
|
use hex;
|
|
|
|
#[test]
|
|
fn test_per_commitment_storage() {
|
|
// Test vectors from BOLT 3:
|
|
let mut secrets: Vec<[u8; 32]> = Vec::new();
|
|
let mut monitor;
|
|
|
|
macro_rules! test_secrets {
|
|
() => {
|
|
let mut idx = 281474976710655;
|
|
for secret in secrets.iter() {
|
|
assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
|
|
idx -= 1;
|
|
}
|
|
assert_eq!(monitor.get_min_seen_secret(), idx + 1);
|
|
assert!(monitor.get_secret(idx).is_none());
|
|
};
|
|
}
|
|
|
|
{
|
|
// insert_secret correct sequence
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
|
|
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
|
|
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
|
|
monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
}
|
|
|
|
{
|
|
// insert_secret #1 incorrect
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
assert!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #2 incorrect (#1 derived from incorrect)
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #3 incorrect
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #4 incorrect (1,2,3 derived from incorrect)
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
|
|
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
|
|
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
|
|
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #5 incorrect
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
|
|
assert!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #6 incorrect (5 derived from incorrect)
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
|
|
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
|
|
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
|
|
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #7 incorrect
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
|
|
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
|
|
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
|
|
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
|
|
{
|
|
// insert_secret #8 incorrect
|
|
monitor = CounterpartyCommitmentSecrets::new();
|
|
secrets.clear();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
|
|
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
|
|
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
|
|
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
|
|
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
|
|
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
|
|
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
|
|
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
|
|
test_secrets!();
|
|
|
|
secrets.push([0; 32]);
|
|
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
|
|
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
|
|
}
|
|
}
|
|
}
|