mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 00:06:34 +01:00
The only API change outside of additional derives is to change the inner field in `DecodeError::Io()` to an `std::io::ErrorKind` instead of an `std::io::Error`. While `std::io::Error` obviously makes more sense in context, it doesn't support Clone, and the inner error largely doesn't have a lot of value on its own.
755 lines
21 KiB
Rust
755 lines
21 KiB
Rust
// This file is Copyright its original authors, visible in version control
|
|
// history.
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! A very simple serialization framework which is used to serialize/deserialize messages as well
|
|
//! as ChannelsManagers and ChannelMonitors.
|
|
|
|
use std::io::{Read, Write};
|
|
use std::collections::HashMap;
|
|
use std::hash::Hash;
|
|
use std::sync::Mutex;
|
|
use std::cmp;
|
|
|
|
use bitcoin::secp256k1::Signature;
|
|
use bitcoin::secp256k1::key::{PublicKey, SecretKey};
|
|
use bitcoin::blockdata::script::Script;
|
|
use bitcoin::blockdata::transaction::{OutPoint, Transaction, TxOut};
|
|
use bitcoin::consensus;
|
|
use bitcoin::consensus::Encodable;
|
|
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
|
|
use bitcoin::hash_types::{Txid, BlockHash};
|
|
use std::marker::Sized;
|
|
use ln::msgs::DecodeError;
|
|
use ln::channelmanager::{PaymentPreimage, PaymentHash, PaymentSecret};
|
|
use util::byte_utils;
|
|
|
|
use util::byte_utils::{be64_to_array, be48_to_array, be32_to_array, be16_to_array, slice_to_be16, slice_to_be32, slice_to_be48, slice_to_be64};
|
|
|
|
/// serialization buffer size
|
|
pub const MAX_BUF_SIZE: usize = 64 * 1024;
|
|
|
|
/// A trait that is similar to std::io::Write but has one extra function which can be used to size
|
|
/// buffers being written into.
|
|
/// An impl is provided for any type that also impls std::io::Write which simply ignores size
|
|
/// hints.
|
|
///
|
|
/// (C-not exported) as we only export serialization to/from byte arrays instead
|
|
pub trait Writer {
|
|
/// Writes the given buf out. See std::io::Write::write_all for more
|
|
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error>;
|
|
/// Hints that data of the given size is about the be written. This may not always be called
|
|
/// prior to data being written and may be safely ignored.
|
|
fn size_hint(&mut self, size: usize);
|
|
}
|
|
|
|
impl<W: Write> Writer for W {
|
|
#[inline]
|
|
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
|
|
<Self as ::std::io::Write>::write_all(self, buf)
|
|
}
|
|
#[inline]
|
|
fn size_hint(&mut self, _size: usize) { }
|
|
}
|
|
|
|
pub(crate) struct WriterWriteAdaptor<'a, W: Writer + 'a>(pub &'a mut W);
|
|
impl<'a, W: Writer + 'a> Write for WriterWriteAdaptor<'a, W> {
|
|
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
|
|
self.0.write_all(buf)
|
|
}
|
|
fn write(&mut self, buf: &[u8]) -> Result<usize, ::std::io::Error> {
|
|
self.0.write_all(buf)?;
|
|
Ok(buf.len())
|
|
}
|
|
fn flush(&mut self) -> Result<(), ::std::io::Error> {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub(crate) struct VecWriter(pub Vec<u8>);
|
|
impl Writer for VecWriter {
|
|
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
|
|
self.0.extend_from_slice(buf);
|
|
Ok(())
|
|
}
|
|
fn size_hint(&mut self, size: usize) {
|
|
self.0.reserve_exact(size);
|
|
}
|
|
}
|
|
|
|
/// Writer that only tracks the amount of data written - useful if you need to calculate the length
|
|
/// of some data when serialized but don't yet need the full data.
|
|
pub(crate) struct LengthCalculatingWriter(pub usize);
|
|
impl Writer for LengthCalculatingWriter {
|
|
#[inline]
|
|
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
|
|
self.0 += buf.len();
|
|
Ok(())
|
|
}
|
|
#[inline]
|
|
fn size_hint(&mut self, _size: usize) {}
|
|
}
|
|
|
|
/// Essentially std::io::Take but a bit simpler and with a method to walk the underlying stream
|
|
/// forward to ensure we always consume exactly the fixed length specified.
|
|
pub(crate) struct FixedLengthReader<R: Read> {
|
|
read: R,
|
|
bytes_read: u64,
|
|
total_bytes: u64,
|
|
}
|
|
impl<R: Read> FixedLengthReader<R> {
|
|
pub fn new(read: R, total_bytes: u64) -> Self {
|
|
Self { read, bytes_read: 0, total_bytes }
|
|
}
|
|
|
|
pub fn bytes_remain(&mut self) -> bool {
|
|
self.bytes_read != self.total_bytes
|
|
}
|
|
|
|
pub fn eat_remaining(&mut self) -> Result<(), DecodeError> {
|
|
::std::io::copy(self, &mut ::std::io::sink()).unwrap();
|
|
if self.bytes_read != self.total_bytes {
|
|
Err(DecodeError::ShortRead)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
impl<R: Read> Read for FixedLengthReader<R> {
|
|
fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
|
|
if self.total_bytes == self.bytes_read {
|
|
Ok(0)
|
|
} else {
|
|
let read_len = cmp::min(dest.len() as u64, self.total_bytes - self.bytes_read);
|
|
match self.read.read(&mut dest[0..(read_len as usize)]) {
|
|
Ok(v) => {
|
|
self.bytes_read += v as u64;
|
|
Ok(v)
|
|
},
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A Read which tracks whether any bytes have been read at all. This allows us to distinguish
|
|
/// between "EOF reached before we started" and "EOF reached mid-read".
|
|
pub(crate) struct ReadTrackingReader<R: Read> {
|
|
read: R,
|
|
pub have_read: bool,
|
|
}
|
|
impl<R: Read> ReadTrackingReader<R> {
|
|
pub fn new(read: R) -> Self {
|
|
Self { read, have_read: false }
|
|
}
|
|
}
|
|
impl<R: Read> Read for ReadTrackingReader<R> {
|
|
fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
|
|
match self.read.read(dest) {
|
|
Ok(0) => Ok(0),
|
|
Ok(len) => {
|
|
self.have_read = true;
|
|
Ok(len)
|
|
},
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A trait that various rust-lightning types implement allowing them to be written out to a Writer
|
|
///
|
|
/// (C-not exported) as we only export serialization to/from byte arrays instead
|
|
pub trait Writeable {
|
|
/// Writes self out to the given Writer
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error>;
|
|
|
|
/// Writes self out to a Vec<u8>
|
|
fn encode(&self) -> Vec<u8> {
|
|
let mut msg = VecWriter(Vec::new());
|
|
self.write(&mut msg).unwrap();
|
|
msg.0
|
|
}
|
|
|
|
/// Writes self out to a Vec<u8>
|
|
fn encode_with_len(&self) -> Vec<u8> {
|
|
let mut msg = VecWriter(Vec::new());
|
|
0u16.write(&mut msg).unwrap();
|
|
self.write(&mut msg).unwrap();
|
|
let len = msg.0.len();
|
|
msg.0[..2].copy_from_slice(&byte_utils::be16_to_array(len as u16 - 2));
|
|
msg.0
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Writeable> Writeable for &'a T {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (*self).write(writer) }
|
|
}
|
|
|
|
/// A trait that various rust-lightning types implement allowing them to be read in from a Read
|
|
///
|
|
/// (C-not exported) as we only export serialization to/from byte arrays instead
|
|
pub trait Readable
|
|
where Self: Sized
|
|
{
|
|
/// Reads a Self in from the given Read
|
|
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError>;
|
|
}
|
|
|
|
/// A trait that various higher-level rust-lightning types implement allowing them to be read in
|
|
/// from a Read given some additional set of arguments which is required to deserialize.
|
|
///
|
|
/// (C-not exported) as we only export serialization to/from byte arrays instead
|
|
pub trait ReadableArgs<P>
|
|
where Self: Sized
|
|
{
|
|
/// Reads a Self in from the given Read
|
|
fn read<R: Read>(reader: &mut R, params: P) -> Result<Self, DecodeError>;
|
|
}
|
|
|
|
/// A trait that various rust-lightning types implement allowing them to (maybe) be read in from a Read
|
|
///
|
|
/// (C-not exported) as we only export serialization to/from byte arrays instead
|
|
pub trait MaybeReadable
|
|
where Self: Sized
|
|
{
|
|
/// Reads a Self in from the given Read
|
|
fn read<R: Read>(reader: &mut R) -> Result<Option<Self>, DecodeError>;
|
|
}
|
|
|
|
pub(crate) struct U48(pub u64);
|
|
impl Writeable for U48 {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
writer.write_all(&be48_to_array(self.0))
|
|
}
|
|
}
|
|
impl Readable for U48 {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<U48, DecodeError> {
|
|
let mut buf = [0; 6];
|
|
reader.read_exact(&mut buf)?;
|
|
Ok(U48(slice_to_be48(&buf)))
|
|
}
|
|
}
|
|
|
|
/// Lightning TLV uses a custom variable-length integer called BigSize. It is similar to Bitcoin's
|
|
/// variable-length integers except that it is serialized in big-endian instead of little-endian.
|
|
///
|
|
/// Like Bitcoin's variable-length integer, it exhibits ambiguity in that certain values can be
|
|
/// encoded in several different ways, which we must check for at deserialization-time. Thus, if
|
|
/// you're looking for an example of a variable-length integer to use for your own project, move
|
|
/// along, this is a rather poor design.
|
|
pub(crate) struct BigSize(pub u64);
|
|
impl Writeable for BigSize {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self.0 {
|
|
0...0xFC => {
|
|
(self.0 as u8).write(writer)
|
|
},
|
|
0xFD...0xFFFF => {
|
|
0xFDu8.write(writer)?;
|
|
(self.0 as u16).write(writer)
|
|
},
|
|
0x10000...0xFFFFFFFF => {
|
|
0xFEu8.write(writer)?;
|
|
(self.0 as u32).write(writer)
|
|
},
|
|
_ => {
|
|
0xFFu8.write(writer)?;
|
|
(self.0 as u64).write(writer)
|
|
},
|
|
}
|
|
}
|
|
}
|
|
impl Readable for BigSize {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<BigSize, DecodeError> {
|
|
let n: u8 = Readable::read(reader)?;
|
|
match n {
|
|
0xFF => {
|
|
let x: u64 = Readable::read(reader)?;
|
|
if x < 0x100000000 {
|
|
Err(DecodeError::InvalidValue)
|
|
} else {
|
|
Ok(BigSize(x))
|
|
}
|
|
}
|
|
0xFE => {
|
|
let x: u32 = Readable::read(reader)?;
|
|
if x < 0x10000 {
|
|
Err(DecodeError::InvalidValue)
|
|
} else {
|
|
Ok(BigSize(x as u64))
|
|
}
|
|
}
|
|
0xFD => {
|
|
let x: u16 = Readable::read(reader)?;
|
|
if x < 0xFD {
|
|
Err(DecodeError::InvalidValue)
|
|
} else {
|
|
Ok(BigSize(x as u64))
|
|
}
|
|
}
|
|
n => Ok(BigSize(n as u64))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// In TLV we occasionally send fields which only consist of, or potentially end with, a
|
|
/// variable-length integer which is simply truncated by skipping high zero bytes. This type
|
|
/// encapsulates such integers implementing Readable/Writeable for them.
|
|
#[cfg_attr(test, derive(PartialEq, Debug))]
|
|
pub(crate) struct HighZeroBytesDroppedVarInt<T>(pub T);
|
|
|
|
macro_rules! impl_writeable_primitive {
|
|
($val_type:ty, $meth_write:ident, $len: expr, $meth_read:ident) => {
|
|
impl Writeable for $val_type {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
writer.write_all(&$meth_write(*self))
|
|
}
|
|
}
|
|
impl Writeable for HighZeroBytesDroppedVarInt<$val_type> {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
// Skip any full leading 0 bytes when writing (in BE):
|
|
writer.write_all(&$meth_write(self.0)[(self.0.leading_zeros()/8) as usize..$len])
|
|
}
|
|
}
|
|
impl Readable for $val_type {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<$val_type, DecodeError> {
|
|
let mut buf = [0; $len];
|
|
reader.read_exact(&mut buf)?;
|
|
Ok($meth_read(&buf))
|
|
}
|
|
}
|
|
impl Readable for HighZeroBytesDroppedVarInt<$val_type> {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<HighZeroBytesDroppedVarInt<$val_type>, DecodeError> {
|
|
// We need to accept short reads (read_len == 0) as "EOF" and handle them as simply
|
|
// the high bytes being dropped. To do so, we start reading into the middle of buf
|
|
// and then convert the appropriate number of bytes with extra high bytes out of
|
|
// buf.
|
|
let mut buf = [0; $len*2];
|
|
let mut read_len = reader.read(&mut buf[$len..])?;
|
|
let mut total_read_len = read_len;
|
|
while read_len != 0 && total_read_len != $len {
|
|
read_len = reader.read(&mut buf[($len + total_read_len)..])?;
|
|
total_read_len += read_len;
|
|
}
|
|
if total_read_len == 0 || buf[$len] != 0 {
|
|
let first_byte = $len - ($len - total_read_len);
|
|
Ok(HighZeroBytesDroppedVarInt($meth_read(&buf[first_byte..first_byte + $len])))
|
|
} else {
|
|
// If the encoding had extra zero bytes, return a failure even though we know
|
|
// what they meant (as the TLV test vectors require this)
|
|
Err(DecodeError::InvalidValue)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_writeable_primitive!(u64, be64_to_array, 8, slice_to_be64);
|
|
impl_writeable_primitive!(u32, be32_to_array, 4, slice_to_be32);
|
|
impl_writeable_primitive!(u16, be16_to_array, 2, slice_to_be16);
|
|
|
|
impl Writeable for u8 {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
writer.write_all(&[*self])
|
|
}
|
|
}
|
|
impl Readable for u8 {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<u8, DecodeError> {
|
|
let mut buf = [0; 1];
|
|
reader.read_exact(&mut buf)?;
|
|
Ok(buf[0])
|
|
}
|
|
}
|
|
|
|
impl Writeable for bool {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
writer.write_all(&[if *self {1} else {0}])
|
|
}
|
|
}
|
|
impl Readable for bool {
|
|
#[inline]
|
|
fn read<R: Read>(reader: &mut R) -> Result<bool, DecodeError> {
|
|
let mut buf = [0; 1];
|
|
reader.read_exact(&mut buf)?;
|
|
if buf[0] != 0 && buf[0] != 1 {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
Ok(buf[0] == 1)
|
|
}
|
|
}
|
|
|
|
// u8 arrays
|
|
macro_rules! impl_array {
|
|
( $size:expr ) => (
|
|
impl Writeable for [u8; $size]
|
|
{
|
|
#[inline]
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
w.write_all(self)
|
|
}
|
|
}
|
|
|
|
impl Readable for [u8; $size]
|
|
{
|
|
#[inline]
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let mut buf = [0u8; $size];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(buf)
|
|
}
|
|
}
|
|
);
|
|
}
|
|
|
|
//TODO: performance issue with [u8; size] with impl_array!()
|
|
impl_array!(3); // for rgb
|
|
impl_array!(4); // for IPv4
|
|
impl_array!(10); // for OnionV2
|
|
impl_array!(16); // for IPv6
|
|
impl_array!(32); // for channel id & hmac
|
|
impl_array!(33); // for PublicKey
|
|
impl_array!(64); // for Signature
|
|
impl_array!(1300); // for OnionPacket.hop_data
|
|
|
|
// HashMap
|
|
impl<K, V> Writeable for HashMap<K, V>
|
|
where K: Writeable + Eq + Hash,
|
|
V: Writeable
|
|
{
|
|
#[inline]
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
(self.len() as u16).write(w)?;
|
|
for (key, value) in self.iter() {
|
|
key.write(w)?;
|
|
value.write(w)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<K, V> Readable for HashMap<K, V>
|
|
where K: Readable + Eq + Hash,
|
|
V: Readable
|
|
{
|
|
#[inline]
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let len: u16 = Readable::read(r)?;
|
|
let mut ret = HashMap::with_capacity(len as usize);
|
|
for _ in 0..len {
|
|
ret.insert(K::read(r)?, V::read(r)?);
|
|
}
|
|
Ok(ret)
|
|
}
|
|
}
|
|
|
|
// Vectors
|
|
impl Writeable for Vec<u8> {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
(self.len() as u16).write(w)?;
|
|
w.write_all(&self)
|
|
}
|
|
}
|
|
|
|
impl Readable for Vec<u8> {
|
|
#[inline]
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let len: u16 = Readable::read(r)?;
|
|
let mut ret = Vec::with_capacity(len as usize);
|
|
ret.resize(len as usize, 0);
|
|
r.read_exact(&mut ret)?;
|
|
Ok(ret)
|
|
}
|
|
}
|
|
impl Writeable for Vec<Signature> {
|
|
#[inline]
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
(self.len() as u16).write(w)?;
|
|
for e in self.iter() {
|
|
e.write(w)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for Vec<Signature> {
|
|
#[inline]
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let len: u16 = Readable::read(r)?;
|
|
let byte_size = (len as usize)
|
|
.checked_mul(33)
|
|
.ok_or(DecodeError::BadLengthDescriptor)?;
|
|
if byte_size > MAX_BUF_SIZE {
|
|
return Err(DecodeError::BadLengthDescriptor);
|
|
}
|
|
let mut ret = Vec::with_capacity(len as usize);
|
|
for _ in 0..len { ret.push(Signature::read(r)?); }
|
|
Ok(ret)
|
|
}
|
|
}
|
|
|
|
impl Writeable for Script {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
(self.len() as u16).write(w)?;
|
|
w.write_all(self.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl Readable for Script {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let len = <u16 as Readable>::read(r)? as usize;
|
|
let mut buf = vec![0; len];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(Script::from(buf))
|
|
}
|
|
}
|
|
|
|
impl Writeable for PublicKey {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.serialize().write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for PublicKey {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 33] = Readable::read(r)?;
|
|
match PublicKey::from_slice(&buf) {
|
|
Ok(key) => Ok(key),
|
|
Err(_) => return Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for SecretKey {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
let mut ser = [0; 32];
|
|
ser.copy_from_slice(&self[..]);
|
|
ser.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for SecretKey {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
match SecretKey::from_slice(&buf) {
|
|
Ok(key) => Ok(key),
|
|
Err(_) => return Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for Sha256dHash {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
w.write_all(&self[..])
|
|
}
|
|
}
|
|
|
|
impl Readable for Sha256dHash {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
use bitcoin::hashes::Hash;
|
|
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(Sha256dHash::from_slice(&buf[..]).unwrap())
|
|
}
|
|
}
|
|
|
|
impl Writeable for Signature {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.serialize_compact().write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for Signature {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 64] = Readable::read(r)?;
|
|
match Signature::from_compact(&buf) {
|
|
Ok(sig) => Ok(sig),
|
|
Err(_) => return Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for PaymentPreimage {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.0.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for PaymentPreimage {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(PaymentPreimage(buf))
|
|
}
|
|
}
|
|
|
|
impl Writeable for PaymentHash {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.0.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for PaymentHash {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(PaymentHash(buf))
|
|
}
|
|
}
|
|
|
|
impl Writeable for PaymentSecret {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.0.write(w)
|
|
}
|
|
}
|
|
|
|
impl Readable for PaymentSecret {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(PaymentSecret(buf))
|
|
}
|
|
}
|
|
|
|
impl<T: Writeable> Writeable for Option<T> {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
match *self {
|
|
None => 0u8.write(w)?,
|
|
Some(ref data) => {
|
|
let mut len_calc = LengthCalculatingWriter(0);
|
|
data.write(&mut len_calc).expect("No in-memory data may fail to serialize");
|
|
BigSize(len_calc.0 as u64 + 1).write(w)?;
|
|
data.write(w)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<T: Readable> Readable for Option<T>
|
|
{
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
match BigSize::read(r)?.0 {
|
|
0 => Ok(None),
|
|
len => {
|
|
let mut reader = FixedLengthReader::new(r, len - 1);
|
|
Ok(Some(Readable::read(&mut reader)?))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for Txid {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
w.write_all(&self[..])
|
|
}
|
|
}
|
|
|
|
impl Readable for Txid {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
use bitcoin::hashes::Hash;
|
|
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(Txid::from_slice(&buf[..]).unwrap())
|
|
}
|
|
}
|
|
|
|
impl Writeable for BlockHash {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
w.write_all(&self[..])
|
|
}
|
|
}
|
|
|
|
impl Readable for BlockHash {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
use bitcoin::hashes::Hash;
|
|
|
|
let buf: [u8; 32] = Readable::read(r)?;
|
|
Ok(BlockHash::from_slice(&buf[..]).unwrap())
|
|
}
|
|
}
|
|
|
|
impl Writeable for OutPoint {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.txid.write(w)?;
|
|
self.vout.write(w)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for OutPoint {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let txid = Readable::read(r)?;
|
|
let vout = Readable::read(r)?;
|
|
Ok(OutPoint {
|
|
txid,
|
|
vout,
|
|
})
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_consensus_ser {
|
|
($bitcoin_type: ty) => {
|
|
impl Writeable for $bitcoin_type {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self.consensus_encode(WriterWriteAdaptor(writer)) {
|
|
Ok(_) => Ok(()),
|
|
Err(consensus::encode::Error::Io(e)) => Err(e),
|
|
Err(_) => panic!("We shouldn't get a consensus::encode::Error unless our Write generated an std::io::Error"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Readable for $bitcoin_type {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
match consensus::encode::Decodable::consensus_decode(r) {
|
|
Ok(t) => Ok(t),
|
|
Err(consensus::encode::Error::Io(ref e)) if e.kind() == ::std::io::ErrorKind::UnexpectedEof => Err(DecodeError::ShortRead),
|
|
Err(consensus::encode::Error::Io(e)) => Err(DecodeError::Io(e.kind())),
|
|
Err(_) => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
impl_consensus_ser!(Transaction);
|
|
impl_consensus_ser!(TxOut);
|
|
|
|
impl<T: Readable> Readable for Mutex<T> {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let t: T = Readable::read(r)?;
|
|
Ok(Mutex::new(t))
|
|
}
|
|
}
|
|
impl<T: Writeable> Writeable for Mutex<T> {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.lock().unwrap().write(w)
|
|
}
|
|
}
|
|
|
|
impl<A: Readable, B: Readable> Readable for (A, B) {
|
|
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
|
|
let a: A = Readable::read(r)?;
|
|
let b: B = Readable::read(r)?;
|
|
Ok((a, b))
|
|
}
|
|
}
|
|
impl<A: Writeable, B: Writeable> Writeable for (A, B) {
|
|
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
|
|
self.0.write(w)?;
|
|
self.1.write(w)
|
|
}
|
|
}
|