rust-lightning/lightning/src/util/ser.rs
Matt Corallo 75d71cead3 Add additional Clone derives
The only API change outside of additional derives is to change
the inner field in `DecodeError::Io()` to an `std::io::ErrorKind`
instead of an `std::io::Error`. While `std::io::Error` obviously
makes more sense in context, it doesn't support Clone, and the
inner error largely doesn't have a lot of value on its own.
2021-02-10 22:34:19 -05:00

755 lines
21 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! A very simple serialization framework which is used to serialize/deserialize messages as well
//! as ChannelsManagers and ChannelMonitors.
use std::io::{Read, Write};
use std::collections::HashMap;
use std::hash::Hash;
use std::sync::Mutex;
use std::cmp;
use bitcoin::secp256k1::Signature;
use bitcoin::secp256k1::key::{PublicKey, SecretKey};
use bitcoin::blockdata::script::Script;
use bitcoin::blockdata::transaction::{OutPoint, Transaction, TxOut};
use bitcoin::consensus;
use bitcoin::consensus::Encodable;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
use bitcoin::hash_types::{Txid, BlockHash};
use std::marker::Sized;
use ln::msgs::DecodeError;
use ln::channelmanager::{PaymentPreimage, PaymentHash, PaymentSecret};
use util::byte_utils;
use util::byte_utils::{be64_to_array, be48_to_array, be32_to_array, be16_to_array, slice_to_be16, slice_to_be32, slice_to_be48, slice_to_be64};
/// serialization buffer size
pub const MAX_BUF_SIZE: usize = 64 * 1024;
/// A trait that is similar to std::io::Write but has one extra function which can be used to size
/// buffers being written into.
/// An impl is provided for any type that also impls std::io::Write which simply ignores size
/// hints.
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Writer {
/// Writes the given buf out. See std::io::Write::write_all for more
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error>;
/// Hints that data of the given size is about the be written. This may not always be called
/// prior to data being written and may be safely ignored.
fn size_hint(&mut self, size: usize);
}
impl<W: Write> Writer for W {
#[inline]
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
<Self as ::std::io::Write>::write_all(self, buf)
}
#[inline]
fn size_hint(&mut self, _size: usize) { }
}
pub(crate) struct WriterWriteAdaptor<'a, W: Writer + 'a>(pub &'a mut W);
impl<'a, W: Writer + 'a> Write for WriterWriteAdaptor<'a, W> {
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
self.0.write_all(buf)
}
fn write(&mut self, buf: &[u8]) -> Result<usize, ::std::io::Error> {
self.0.write_all(buf)?;
Ok(buf.len())
}
fn flush(&mut self) -> Result<(), ::std::io::Error> {
Ok(())
}
}
pub(crate) struct VecWriter(pub Vec<u8>);
impl Writer for VecWriter {
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
self.0.extend_from_slice(buf);
Ok(())
}
fn size_hint(&mut self, size: usize) {
self.0.reserve_exact(size);
}
}
/// Writer that only tracks the amount of data written - useful if you need to calculate the length
/// of some data when serialized but don't yet need the full data.
pub(crate) struct LengthCalculatingWriter(pub usize);
impl Writer for LengthCalculatingWriter {
#[inline]
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
self.0 += buf.len();
Ok(())
}
#[inline]
fn size_hint(&mut self, _size: usize) {}
}
/// Essentially std::io::Take but a bit simpler and with a method to walk the underlying stream
/// forward to ensure we always consume exactly the fixed length specified.
pub(crate) struct FixedLengthReader<R: Read> {
read: R,
bytes_read: u64,
total_bytes: u64,
}
impl<R: Read> FixedLengthReader<R> {
pub fn new(read: R, total_bytes: u64) -> Self {
Self { read, bytes_read: 0, total_bytes }
}
pub fn bytes_remain(&mut self) -> bool {
self.bytes_read != self.total_bytes
}
pub fn eat_remaining(&mut self) -> Result<(), DecodeError> {
::std::io::copy(self, &mut ::std::io::sink()).unwrap();
if self.bytes_read != self.total_bytes {
Err(DecodeError::ShortRead)
} else {
Ok(())
}
}
}
impl<R: Read> Read for FixedLengthReader<R> {
fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
if self.total_bytes == self.bytes_read {
Ok(0)
} else {
let read_len = cmp::min(dest.len() as u64, self.total_bytes - self.bytes_read);
match self.read.read(&mut dest[0..(read_len as usize)]) {
Ok(v) => {
self.bytes_read += v as u64;
Ok(v)
},
Err(e) => Err(e),
}
}
}
}
/// A Read which tracks whether any bytes have been read at all. This allows us to distinguish
/// between "EOF reached before we started" and "EOF reached mid-read".
pub(crate) struct ReadTrackingReader<R: Read> {
read: R,
pub have_read: bool,
}
impl<R: Read> ReadTrackingReader<R> {
pub fn new(read: R) -> Self {
Self { read, have_read: false }
}
}
impl<R: Read> Read for ReadTrackingReader<R> {
fn read(&mut self, dest: &mut [u8]) -> Result<usize, ::std::io::Error> {
match self.read.read(dest) {
Ok(0) => Ok(0),
Ok(len) => {
self.have_read = true;
Ok(len)
},
Err(e) => Err(e),
}
}
}
/// A trait that various rust-lightning types implement allowing them to be written out to a Writer
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Writeable {
/// Writes self out to the given Writer
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error>;
/// Writes self out to a Vec<u8>
fn encode(&self) -> Vec<u8> {
let mut msg = VecWriter(Vec::new());
self.write(&mut msg).unwrap();
msg.0
}
/// Writes self out to a Vec<u8>
fn encode_with_len(&self) -> Vec<u8> {
let mut msg = VecWriter(Vec::new());
0u16.write(&mut msg).unwrap();
self.write(&mut msg).unwrap();
let len = msg.0.len();
msg.0[..2].copy_from_slice(&byte_utils::be16_to_array(len as u16 - 2));
msg.0
}
}
impl<'a, T: Writeable> Writeable for &'a T {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (*self).write(writer) }
}
/// A trait that various rust-lightning types implement allowing them to be read in from a Read
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait Readable
where Self: Sized
{
/// Reads a Self in from the given Read
fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError>;
}
/// A trait that various higher-level rust-lightning types implement allowing them to be read in
/// from a Read given some additional set of arguments which is required to deserialize.
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait ReadableArgs<P>
where Self: Sized
{
/// Reads a Self in from the given Read
fn read<R: Read>(reader: &mut R, params: P) -> Result<Self, DecodeError>;
}
/// A trait that various rust-lightning types implement allowing them to (maybe) be read in from a Read
///
/// (C-not exported) as we only export serialization to/from byte arrays instead
pub trait MaybeReadable
where Self: Sized
{
/// Reads a Self in from the given Read
fn read<R: Read>(reader: &mut R) -> Result<Option<Self>, DecodeError>;
}
pub(crate) struct U48(pub u64);
impl Writeable for U48 {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
writer.write_all(&be48_to_array(self.0))
}
}
impl Readable for U48 {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<U48, DecodeError> {
let mut buf = [0; 6];
reader.read_exact(&mut buf)?;
Ok(U48(slice_to_be48(&buf)))
}
}
/// Lightning TLV uses a custom variable-length integer called BigSize. It is similar to Bitcoin's
/// variable-length integers except that it is serialized in big-endian instead of little-endian.
///
/// Like Bitcoin's variable-length integer, it exhibits ambiguity in that certain values can be
/// encoded in several different ways, which we must check for at deserialization-time. Thus, if
/// you're looking for an example of a variable-length integer to use for your own project, move
/// along, this is a rather poor design.
pub(crate) struct BigSize(pub u64);
impl Writeable for BigSize {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self.0 {
0...0xFC => {
(self.0 as u8).write(writer)
},
0xFD...0xFFFF => {
0xFDu8.write(writer)?;
(self.0 as u16).write(writer)
},
0x10000...0xFFFFFFFF => {
0xFEu8.write(writer)?;
(self.0 as u32).write(writer)
},
_ => {
0xFFu8.write(writer)?;
(self.0 as u64).write(writer)
},
}
}
}
impl Readable for BigSize {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<BigSize, DecodeError> {
let n: u8 = Readable::read(reader)?;
match n {
0xFF => {
let x: u64 = Readable::read(reader)?;
if x < 0x100000000 {
Err(DecodeError::InvalidValue)
} else {
Ok(BigSize(x))
}
}
0xFE => {
let x: u32 = Readable::read(reader)?;
if x < 0x10000 {
Err(DecodeError::InvalidValue)
} else {
Ok(BigSize(x as u64))
}
}
0xFD => {
let x: u16 = Readable::read(reader)?;
if x < 0xFD {
Err(DecodeError::InvalidValue)
} else {
Ok(BigSize(x as u64))
}
}
n => Ok(BigSize(n as u64))
}
}
}
/// In TLV we occasionally send fields which only consist of, or potentially end with, a
/// variable-length integer which is simply truncated by skipping high zero bytes. This type
/// encapsulates such integers implementing Readable/Writeable for them.
#[cfg_attr(test, derive(PartialEq, Debug))]
pub(crate) struct HighZeroBytesDroppedVarInt<T>(pub T);
macro_rules! impl_writeable_primitive {
($val_type:ty, $meth_write:ident, $len: expr, $meth_read:ident) => {
impl Writeable for $val_type {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
writer.write_all(&$meth_write(*self))
}
}
impl Writeable for HighZeroBytesDroppedVarInt<$val_type> {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
// Skip any full leading 0 bytes when writing (in BE):
writer.write_all(&$meth_write(self.0)[(self.0.leading_zeros()/8) as usize..$len])
}
}
impl Readable for $val_type {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<$val_type, DecodeError> {
let mut buf = [0; $len];
reader.read_exact(&mut buf)?;
Ok($meth_read(&buf))
}
}
impl Readable for HighZeroBytesDroppedVarInt<$val_type> {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<HighZeroBytesDroppedVarInt<$val_type>, DecodeError> {
// We need to accept short reads (read_len == 0) as "EOF" and handle them as simply
// the high bytes being dropped. To do so, we start reading into the middle of buf
// and then convert the appropriate number of bytes with extra high bytes out of
// buf.
let mut buf = [0; $len*2];
let mut read_len = reader.read(&mut buf[$len..])?;
let mut total_read_len = read_len;
while read_len != 0 && total_read_len != $len {
read_len = reader.read(&mut buf[($len + total_read_len)..])?;
total_read_len += read_len;
}
if total_read_len == 0 || buf[$len] != 0 {
let first_byte = $len - ($len - total_read_len);
Ok(HighZeroBytesDroppedVarInt($meth_read(&buf[first_byte..first_byte + $len])))
} else {
// If the encoding had extra zero bytes, return a failure even though we know
// what they meant (as the TLV test vectors require this)
Err(DecodeError::InvalidValue)
}
}
}
}
}
impl_writeable_primitive!(u64, be64_to_array, 8, slice_to_be64);
impl_writeable_primitive!(u32, be32_to_array, 4, slice_to_be32);
impl_writeable_primitive!(u16, be16_to_array, 2, slice_to_be16);
impl Writeable for u8 {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
writer.write_all(&[*self])
}
}
impl Readable for u8 {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<u8, DecodeError> {
let mut buf = [0; 1];
reader.read_exact(&mut buf)?;
Ok(buf[0])
}
}
impl Writeable for bool {
#[inline]
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
writer.write_all(&[if *self {1} else {0}])
}
}
impl Readable for bool {
#[inline]
fn read<R: Read>(reader: &mut R) -> Result<bool, DecodeError> {
let mut buf = [0; 1];
reader.read_exact(&mut buf)?;
if buf[0] != 0 && buf[0] != 1 {
return Err(DecodeError::InvalidValue);
}
Ok(buf[0] == 1)
}
}
// u8 arrays
macro_rules! impl_array {
( $size:expr ) => (
impl Writeable for [u8; $size]
{
#[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
w.write_all(self)
}
}
impl Readable for [u8; $size]
{
#[inline]
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let mut buf = [0u8; $size];
r.read_exact(&mut buf)?;
Ok(buf)
}
}
);
}
//TODO: performance issue with [u8; size] with impl_array!()
impl_array!(3); // for rgb
impl_array!(4); // for IPv4
impl_array!(10); // for OnionV2
impl_array!(16); // for IPv6
impl_array!(32); // for channel id & hmac
impl_array!(33); // for PublicKey
impl_array!(64); // for Signature
impl_array!(1300); // for OnionPacket.hop_data
// HashMap
impl<K, V> Writeable for HashMap<K, V>
where K: Writeable + Eq + Hash,
V: Writeable
{
#[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
(self.len() as u16).write(w)?;
for (key, value) in self.iter() {
key.write(w)?;
value.write(w)?;
}
Ok(())
}
}
impl<K, V> Readable for HashMap<K, V>
where K: Readable + Eq + Hash,
V: Readable
{
#[inline]
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let len: u16 = Readable::read(r)?;
let mut ret = HashMap::with_capacity(len as usize);
for _ in 0..len {
ret.insert(K::read(r)?, V::read(r)?);
}
Ok(ret)
}
}
// Vectors
impl Writeable for Vec<u8> {
#[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
(self.len() as u16).write(w)?;
w.write_all(&self)
}
}
impl Readable for Vec<u8> {
#[inline]
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let len: u16 = Readable::read(r)?;
let mut ret = Vec::with_capacity(len as usize);
ret.resize(len as usize, 0);
r.read_exact(&mut ret)?;
Ok(ret)
}
}
impl Writeable for Vec<Signature> {
#[inline]
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
(self.len() as u16).write(w)?;
for e in self.iter() {
e.write(w)?;
}
Ok(())
}
}
impl Readable for Vec<Signature> {
#[inline]
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let len: u16 = Readable::read(r)?;
let byte_size = (len as usize)
.checked_mul(33)
.ok_or(DecodeError::BadLengthDescriptor)?;
if byte_size > MAX_BUF_SIZE {
return Err(DecodeError::BadLengthDescriptor);
}
let mut ret = Vec::with_capacity(len as usize);
for _ in 0..len { ret.push(Signature::read(r)?); }
Ok(ret)
}
}
impl Writeable for Script {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
(self.len() as u16).write(w)?;
w.write_all(self.as_bytes())
}
}
impl Readable for Script {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let len = <u16 as Readable>::read(r)? as usize;
let mut buf = vec![0; len];
r.read_exact(&mut buf)?;
Ok(Script::from(buf))
}
}
impl Writeable for PublicKey {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.serialize().write(w)
}
}
impl Readable for PublicKey {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 33] = Readable::read(r)?;
match PublicKey::from_slice(&buf) {
Ok(key) => Ok(key),
Err(_) => return Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for SecretKey {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
let mut ser = [0; 32];
ser.copy_from_slice(&self[..]);
ser.write(w)
}
}
impl Readable for SecretKey {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 32] = Readable::read(r)?;
match SecretKey::from_slice(&buf) {
Ok(key) => Ok(key),
Err(_) => return Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for Sha256dHash {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
w.write_all(&self[..])
}
}
impl Readable for Sha256dHash {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
use bitcoin::hashes::Hash;
let buf: [u8; 32] = Readable::read(r)?;
Ok(Sha256dHash::from_slice(&buf[..]).unwrap())
}
}
impl Writeable for Signature {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.serialize_compact().write(w)
}
}
impl Readable for Signature {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 64] = Readable::read(r)?;
match Signature::from_compact(&buf) {
Ok(sig) => Ok(sig),
Err(_) => return Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for PaymentPreimage {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.0.write(w)
}
}
impl Readable for PaymentPreimage {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 32] = Readable::read(r)?;
Ok(PaymentPreimage(buf))
}
}
impl Writeable for PaymentHash {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.0.write(w)
}
}
impl Readable for PaymentHash {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 32] = Readable::read(r)?;
Ok(PaymentHash(buf))
}
}
impl Writeable for PaymentSecret {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.0.write(w)
}
}
impl Readable for PaymentSecret {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let buf: [u8; 32] = Readable::read(r)?;
Ok(PaymentSecret(buf))
}
}
impl<T: Writeable> Writeable for Option<T> {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
match *self {
None => 0u8.write(w)?,
Some(ref data) => {
let mut len_calc = LengthCalculatingWriter(0);
data.write(&mut len_calc).expect("No in-memory data may fail to serialize");
BigSize(len_calc.0 as u64 + 1).write(w)?;
data.write(w)?;
}
}
Ok(())
}
}
impl<T: Readable> Readable for Option<T>
{
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
match BigSize::read(r)?.0 {
0 => Ok(None),
len => {
let mut reader = FixedLengthReader::new(r, len - 1);
Ok(Some(Readable::read(&mut reader)?))
}
}
}
}
impl Writeable for Txid {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
w.write_all(&self[..])
}
}
impl Readable for Txid {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
use bitcoin::hashes::Hash;
let buf: [u8; 32] = Readable::read(r)?;
Ok(Txid::from_slice(&buf[..]).unwrap())
}
}
impl Writeable for BlockHash {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
w.write_all(&self[..])
}
}
impl Readable for BlockHash {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
use bitcoin::hashes::Hash;
let buf: [u8; 32] = Readable::read(r)?;
Ok(BlockHash::from_slice(&buf[..]).unwrap())
}
}
impl Writeable for OutPoint {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.txid.write(w)?;
self.vout.write(w)?;
Ok(())
}
}
impl Readable for OutPoint {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let txid = Readable::read(r)?;
let vout = Readable::read(r)?;
Ok(OutPoint {
txid,
vout,
})
}
}
macro_rules! impl_consensus_ser {
($bitcoin_type: ty) => {
impl Writeable for $bitcoin_type {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
match self.consensus_encode(WriterWriteAdaptor(writer)) {
Ok(_) => Ok(()),
Err(consensus::encode::Error::Io(e)) => Err(e),
Err(_) => panic!("We shouldn't get a consensus::encode::Error unless our Write generated an std::io::Error"),
}
}
}
impl Readable for $bitcoin_type {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
match consensus::encode::Decodable::consensus_decode(r) {
Ok(t) => Ok(t),
Err(consensus::encode::Error::Io(ref e)) if e.kind() == ::std::io::ErrorKind::UnexpectedEof => Err(DecodeError::ShortRead),
Err(consensus::encode::Error::Io(e)) => Err(DecodeError::Io(e.kind())),
Err(_) => Err(DecodeError::InvalidValue),
}
}
}
}
}
impl_consensus_ser!(Transaction);
impl_consensus_ser!(TxOut);
impl<T: Readable> Readable for Mutex<T> {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let t: T = Readable::read(r)?;
Ok(Mutex::new(t))
}
}
impl<T: Writeable> Writeable for Mutex<T> {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.lock().unwrap().write(w)
}
}
impl<A: Readable, B: Readable> Readable for (A, B) {
fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
let a: A = Readable::read(r)?;
let b: B = Readable::read(r)?;
Ok((a, b))
}
}
impl<A: Writeable, B: Writeable> Writeable for (A, B) {
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
self.0.write(w)?;
self.1.write(w)
}
}