rust-lightning/lightning/src/ln/chan_utils.rs
Wilmer Paulino 82b646c548
Remove anchors config flag
Now that all of the core functionality for anchor outputs has landed,
we're ready to remove the config flag that was temporarily hiding it
from our API.
2023-06-23 13:32:08 -07:00

2253 lines
97 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Various utilities for building scripts and deriving keys related to channels. These are
//! largely of interest for those implementing the traits on [`crate::sign`] by hand.
use bitcoin::blockdata::script::{Script,Builder};
use bitcoin::blockdata::opcodes;
use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, EcdsaSighashType};
use bitcoin::util::sighash;
use bitcoin::util::address::Payload;
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::ripemd160::Hash as Ripemd160;
use bitcoin::hash_types::{Txid, PubkeyHash};
use crate::sign::EntropySource;
use crate::ln::{PaymentHash, PaymentPreimage};
use crate::ln::msgs::DecodeError;
use crate::util::ser::{Readable, RequiredWrapper, Writeable, Writer};
use crate::util::transaction_utils;
use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Message};
use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
use bitcoin::PublicKey as BitcoinPublicKey;
use crate::io;
use crate::prelude::*;
use core::cmp;
use crate::ln::chan_utils;
use crate::util::transaction_utils::sort_outputs;
use crate::ln::channel::{INITIAL_COMMITMENT_NUMBER, ANCHOR_OUTPUT_VALUE_SATOSHI};
use core::ops::Deref;
use crate::chain;
use crate::ln::features::ChannelTypeFeatures;
use crate::util::crypto::{sign, sign_with_aux_rand};
/// Maximum number of one-way in-flight HTLC (protocol-level value).
pub const MAX_HTLCS: u16 = 483;
/// The weight of a BIP141 witnessScript for a BOLT3's "offered HTLC output" on a commitment transaction, non-anchor variant.
pub const OFFERED_HTLC_SCRIPT_WEIGHT: usize = 133;
/// The weight of a BIP141 witnessScript for a BOLT3's "offered HTLC output" on a commitment transaction, anchor variant.
pub const OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS: usize = 136;
/// The weight of a BIP141 witnessScript for a BOLT3's "received HTLC output" can vary in function of its CLTV argument value.
/// We define a range that encompasses both its non-anchors and anchors variants.
pub(crate) const MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT: usize = 136;
/// The weight of a BIP141 witnessScript for a BOLT3's "received HTLC output" can vary in function of its CLTV argument value.
/// We define a range that encompasses both its non-anchors and anchors variants.
/// This is the maximum post-anchor value.
pub const MAX_ACCEPTED_HTLC_SCRIPT_WEIGHT: usize = 143;
/// The upper bound weight of an anchor input.
pub const ANCHOR_INPUT_WITNESS_WEIGHT: u64 = 116;
/// The upper bound weight of an HTLC timeout input from a commitment transaction with anchor
/// outputs.
pub const HTLC_TIMEOUT_INPUT_ANCHOR_WITNESS_WEIGHT: u64 = 288;
/// The upper bound weight of an HTLC success input from a commitment transaction with anchor
/// outputs.
pub const HTLC_SUCCESS_INPUT_ANCHOR_WITNESS_WEIGHT: u64 = 327;
/// Gets the weight for an HTLC-Success transaction.
#[inline]
pub fn htlc_success_tx_weight(channel_type_features: &ChannelTypeFeatures) -> u64 {
const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
const HTLC_SUCCESS_ANCHOR_TX_WEIGHT: u64 = 706;
if channel_type_features.supports_anchors_zero_fee_htlc_tx() { HTLC_SUCCESS_ANCHOR_TX_WEIGHT } else { HTLC_SUCCESS_TX_WEIGHT }
}
/// Gets the weight for an HTLC-Timeout transaction.
#[inline]
pub fn htlc_timeout_tx_weight(channel_type_features: &ChannelTypeFeatures) -> u64 {
const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
const HTLC_TIMEOUT_ANCHOR_TX_WEIGHT: u64 = 666;
if channel_type_features.supports_anchors_zero_fee_htlc_tx() { HTLC_TIMEOUT_ANCHOR_TX_WEIGHT } else { HTLC_TIMEOUT_TX_WEIGHT }
}
/// Describes the type of HTLC claim as determined by analyzing the witness.
#[derive(PartialEq, Eq)]
pub enum HTLCClaim {
/// Claims an offered output on a commitment transaction through the timeout path.
OfferedTimeout,
/// Claims an offered output on a commitment transaction through the success path.
OfferedPreimage,
/// Claims an accepted output on a commitment transaction through the timeout path.
AcceptedTimeout,
/// Claims an accepted output on a commitment transaction through the success path.
AcceptedPreimage,
/// Claims an offered/accepted output on a commitment transaction through the revocation path.
Revocation,
}
impl HTLCClaim {
/// Check if a given input witness attempts to claim a HTLC.
pub fn from_witness(witness: &Witness) -> Option<Self> {
debug_assert_eq!(OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS, MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT);
if witness.len() < 2 {
return None;
}
let witness_script = witness.last().unwrap();
let second_to_last = witness.second_to_last().unwrap();
if witness_script.len() == OFFERED_HTLC_SCRIPT_WEIGHT {
if witness.len() == 3 && second_to_last.len() == 33 {
// <revocation sig> <revocationpubkey> <witness_script>
Some(Self::Revocation)
} else if witness.len() == 3 && second_to_last.len() == 32 {
// <remotehtlcsig> <payment_preimage> <witness_script>
Some(Self::OfferedPreimage)
} else if witness.len() == 5 && second_to_last.len() == 0 {
// 0 <remotehtlcsig> <localhtlcsig> <> <witness_script>
Some(Self::OfferedTimeout)
} else {
None
}
} else if witness_script.len() == OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS {
// It's possible for the weight of `offered_htlc_script` and `accepted_htlc_script` to
// match so we check for both here.
if witness.len() == 3 && second_to_last.len() == 33 {
// <revocation sig> <revocationpubkey> <witness_script>
Some(Self::Revocation)
} else if witness.len() == 3 && second_to_last.len() == 32 {
// <remotehtlcsig> <payment_preimage> <witness_script>
Some(Self::OfferedPreimage)
} else if witness.len() == 5 && second_to_last.len() == 0 {
// 0 <remotehtlcsig> <localhtlcsig> <> <witness_script>
Some(Self::OfferedTimeout)
} else if witness.len() == 3 && second_to_last.len() == 0 {
// <remotehtlcsig> <> <witness_script>
Some(Self::AcceptedTimeout)
} else if witness.len() == 5 && second_to_last.len() == 32 {
// 0 <remotehtlcsig> <localhtlcsig> <payment_preimage> <witness_script>
Some(Self::AcceptedPreimage)
} else {
None
}
} else if witness_script.len() > MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT &&
witness_script.len() <= MAX_ACCEPTED_HTLC_SCRIPT_WEIGHT {
// Handle remaining range of ACCEPTED_HTLC_SCRIPT_WEIGHT.
if witness.len() == 3 && second_to_last.len() == 33 {
// <revocation sig> <revocationpubkey> <witness_script>
Some(Self::Revocation)
} else if witness.len() == 3 && second_to_last.len() == 0 {
// <remotehtlcsig> <> <witness_script>
Some(Self::AcceptedTimeout)
} else if witness.len() == 5 && second_to_last.len() == 32 {
// 0 <remotehtlcsig> <localhtlcsig> <payment_preimage> <witness_script>
Some(Self::AcceptedPreimage)
} else {
None
}
} else {
None
}
}
}
// Various functions for key derivation and transaction creation for use within channels. Primarily
// used in Channel and ChannelMonitor.
/// Build the commitment secret from the seed and the commitment number
pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
let mut res: [u8; 32] = commitment_seed.clone();
for i in 0..48 {
let bitpos = 47 - i;
if idx & (1 << bitpos) == (1 << bitpos) {
res[bitpos / 8] ^= 1 << (bitpos & 7);
res = Sha256::hash(&res).into_inner();
}
}
res
}
/// Build a closing transaction
pub fn build_closing_transaction(to_holder_value_sat: u64, to_counterparty_value_sat: u64, to_holder_script: Script, to_counterparty_script: Script, funding_outpoint: OutPoint) -> Transaction {
let txins = {
let mut ins: Vec<TxIn> = Vec::new();
ins.push(TxIn {
previous_output: funding_outpoint,
script_sig: Script::new(),
sequence: Sequence::MAX,
witness: Witness::new(),
});
ins
};
let mut txouts: Vec<(TxOut, ())> = Vec::new();
if to_counterparty_value_sat > 0 {
txouts.push((TxOut {
script_pubkey: to_counterparty_script,
value: to_counterparty_value_sat
}, ()));
}
if to_holder_value_sat > 0 {
txouts.push((TxOut {
script_pubkey: to_holder_script,
value: to_holder_value_sat
}, ()));
}
transaction_utils::sort_outputs(&mut txouts, |_, _| { cmp::Ordering::Equal }); // Ordering doesnt matter if they used our pubkey...
let mut outputs: Vec<TxOut> = Vec::new();
for out in txouts.drain(..) {
outputs.push(out.0);
}
Transaction {
version: 2,
lock_time: PackedLockTime::ZERO,
input: txins,
output: outputs,
}
}
/// Implements the per-commitment secret storage scheme from
/// [BOLT 3](https://github.com/lightning/bolts/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md#efficient-per-commitment-secret-storage).
///
/// Allows us to keep track of all of the revocation secrets of our counterparty in just 50*32 bytes
/// or so.
#[derive(Clone)]
pub struct CounterpartyCommitmentSecrets {
old_secrets: [([u8; 32], u64); 49],
}
impl Eq for CounterpartyCommitmentSecrets {}
impl PartialEq for CounterpartyCommitmentSecrets {
fn eq(&self, other: &Self) -> bool {
for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
if secret != o_secret || idx != o_idx {
return false
}
}
true
}
}
impl CounterpartyCommitmentSecrets {
/// Creates a new empty `CounterpartyCommitmentSecrets` structure.
pub fn new() -> Self {
Self { old_secrets: [([0; 32], 1 << 48); 49], }
}
#[inline]
fn place_secret(idx: u64) -> u8 {
for i in 0..48 {
if idx & (1 << i) == (1 << i) {
return i
}
}
48
}
/// Returns the minimum index of all stored secrets. Note that indexes start
/// at 1 << 48 and get decremented by one for each new secret.
pub fn get_min_seen_secret(&self) -> u64 {
//TODO This can be optimized?
let mut min = 1 << 48;
for &(_, idx) in self.old_secrets.iter() {
if idx < min {
min = idx;
}
}
min
}
#[inline]
fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
let mut res: [u8; 32] = secret;
for i in 0..bits {
let bitpos = bits - 1 - i;
if idx & (1 << bitpos) == (1 << bitpos) {
res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
res = Sha256::hash(&res).into_inner();
}
}
res
}
/// Inserts the `secret` at `idx`. Returns `Ok(())` if the secret
/// was generated in accordance with BOLT 3 and is consistent with previous secrets.
pub fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> {
let pos = Self::place_secret(idx);
for i in 0..pos {
let (old_secret, old_idx) = self.old_secrets[i as usize];
if Self::derive_secret(secret, pos, old_idx) != old_secret {
return Err(());
}
}
if self.get_min_seen_secret() <= idx {
return Ok(());
}
self.old_secrets[pos as usize] = (secret, idx);
Ok(())
}
/// Returns the secret at `idx`.
/// Returns `None` if `idx` is < [`CounterpartyCommitmentSecrets::get_min_seen_secret`].
pub fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
for i in 0..self.old_secrets.len() {
if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx))
}
}
assert!(idx < self.get_min_seen_secret());
None
}
}
impl Writeable for CounterpartyCommitmentSecrets {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
for &(ref secret, ref idx) in self.old_secrets.iter() {
writer.write_all(secret)?;
writer.write_all(&idx.to_be_bytes())?;
}
write_tlv_fields!(writer, {});
Ok(())
}
}
impl Readable for CounterpartyCommitmentSecrets {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let mut old_secrets = [([0; 32], 1 << 48); 49];
for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
*secret = Readable::read(reader)?;
*idx = Readable::read(reader)?;
}
read_tlv_fields!(reader, {});
Ok(Self { old_secrets })
}
}
/// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key)
/// from the base secret and the per_commitment_point.
pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> SecretKey {
let mut sha = Sha256::engine();
sha.input(&per_commitment_point.serialize());
sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
let res = Sha256::from_engine(sha).into_inner();
base_secret.clone().add_tweak(&Scalar::from_be_bytes(res).unwrap())
.expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak contains the hash of the key.")
}
/// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key)
/// from the base point and the per_commitment_key. This is the public equivalent of
/// derive_private_key - using only public keys to derive a public key instead of private keys.
pub fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> PublicKey {
let mut sha = Sha256::engine();
sha.input(&per_commitment_point.serialize());
sha.input(&base_point.serialize());
let res = Sha256::from_engine(sha).into_inner();
let hashkey = PublicKey::from_secret_key(&secp_ctx,
&SecretKey::from_slice(&res).expect("Hashes should always be valid keys unless SHA-256 is broken"));
base_point.combine(&hashkey)
.expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak contains the hash of the key.")
}
/// Derives a per-commitment-transaction revocation key from its constituent parts.
///
/// Only the cheating participant owns a valid witness to propagate a revoked
/// commitment transaction, thus per_commitment_secret always come from cheater
/// and revocation_base_secret always come from punisher, which is the broadcaster
/// of the transaction spending with this key knowledge.
pub fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>,
per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey)
-> SecretKey {
let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret);
let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
let rev_append_commit_hash_key = {
let mut sha = Sha256::engine();
sha.input(&countersignatory_revocation_base_point.serialize());
sha.input(&per_commitment_point.serialize());
Sha256::from_engine(sha).into_inner()
};
let commit_append_rev_hash_key = {
let mut sha = Sha256::engine();
sha.input(&per_commitment_point.serialize());
sha.input(&countersignatory_revocation_base_point.serialize());
Sha256::from_engine(sha).into_inner()
};
let countersignatory_contrib = countersignatory_revocation_base_secret.clone().mul_tweak(&Scalar::from_be_bytes(rev_append_commit_hash_key).unwrap())
.expect("Multiplying a secret key by a hash is expected to never fail per secp256k1 docs");
let broadcaster_contrib = per_commitment_secret.clone().mul_tweak(&Scalar::from_be_bytes(commit_append_rev_hash_key).unwrap())
.expect("Multiplying a secret key by a hash is expected to never fail per secp256k1 docs");
countersignatory_contrib.add_tweak(&Scalar::from_be_bytes(broadcaster_contrib.secret_bytes()).unwrap())
.expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak commits to the key.")
}
/// Derives a per-commitment-transaction revocation public key from its constituent parts. This is
/// the public equivalend of derive_private_revocation_key - using only public keys to derive a
/// public key instead of private keys.
///
/// Only the cheating participant owns a valid witness to propagate a revoked
/// commitment transaction, thus per_commitment_point always come from cheater
/// and revocation_base_point always come from punisher, which is the broadcaster
/// of the transaction spending with this key knowledge.
///
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
/// generated (ie our own).
pub fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>,
per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey)
-> PublicKey {
let rev_append_commit_hash_key = {
let mut sha = Sha256::engine();
sha.input(&countersignatory_revocation_base_point.serialize());
sha.input(&per_commitment_point.serialize());
Sha256::from_engine(sha).into_inner()
};
let commit_append_rev_hash_key = {
let mut sha = Sha256::engine();
sha.input(&per_commitment_point.serialize());
sha.input(&countersignatory_revocation_base_point.serialize());
Sha256::from_engine(sha).into_inner()
};
let countersignatory_contrib = countersignatory_revocation_base_point.clone().mul_tweak(&secp_ctx, &Scalar::from_be_bytes(rev_append_commit_hash_key).unwrap())
.expect("Multiplying a valid public key by a hash is expected to never fail per secp256k1 docs");
let broadcaster_contrib = per_commitment_point.clone().mul_tweak(&secp_ctx, &Scalar::from_be_bytes(commit_append_rev_hash_key).unwrap())
.expect("Multiplying a valid public key by a hash is expected to never fail per secp256k1 docs");
countersignatory_contrib.combine(&broadcaster_contrib)
.expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak commits to the key.")
}
/// The set of public keys which are used in the creation of one commitment transaction.
/// These are derived from the channel base keys and per-commitment data.
///
/// A broadcaster key is provided from potential broadcaster of the computed transaction.
/// A countersignatory key is coming from a protocol participant unable to broadcast the
/// transaction.
///
/// These keys are assumed to be good, either because the code derived them from
/// channel basepoints via the new function, or they were obtained via
/// CommitmentTransaction.trust().keys() because we trusted the source of the
/// pre-calculated keys.
#[derive(PartialEq, Eq, Clone)]
pub struct TxCreationKeys {
/// The broadcaster's per-commitment public key which was used to derive the other keys.
pub per_commitment_point: PublicKey,
/// The revocation key which is used to allow the broadcaster of the commitment
/// transaction to provide their counterparty the ability to punish them if they broadcast
/// an old state.
pub revocation_key: PublicKey,
/// Broadcaster's HTLC Key
pub broadcaster_htlc_key: PublicKey,
/// Countersignatory's HTLC Key
pub countersignatory_htlc_key: PublicKey,
/// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
pub broadcaster_delayed_payment_key: PublicKey,
}
impl_writeable_tlv_based!(TxCreationKeys, {
(0, per_commitment_point, required),
(2, revocation_key, required),
(4, broadcaster_htlc_key, required),
(6, countersignatory_htlc_key, required),
(8, broadcaster_delayed_payment_key, required),
});
/// One counterparty's public keys which do not change over the life of a channel.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ChannelPublicKeys {
/// The public key which is used to sign all commitment transactions, as it appears in the
/// on-chain channel lock-in 2-of-2 multisig output.
pub funding_pubkey: PublicKey,
/// The base point which is used (with derive_public_revocation_key) to derive per-commitment
/// revocation keys. This is combined with the per-commitment-secret generated by the
/// counterparty to create a secret which the counterparty can reveal to revoke previous
/// states.
pub revocation_basepoint: PublicKey,
/// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
/// spendable primary channel balance on the broadcaster's commitment transaction. This key is
/// static across every commitment transaction.
pub payment_point: PublicKey,
/// The base point which is used (with derive_public_key) to derive a per-commitment payment
/// public key which receives non-HTLC-encumbered funds which are only available for spending
/// after some delay (or can be claimed via the revocation path).
pub delayed_payment_basepoint: PublicKey,
/// The base point which is used (with derive_public_key) to derive a per-commitment public key
/// which is used to encumber HTLC-in-flight outputs.
pub htlc_basepoint: PublicKey,
}
impl_writeable_tlv_based!(ChannelPublicKeys, {
(0, funding_pubkey, required),
(2, revocation_basepoint, required),
(4, payment_point, required),
(6, delayed_payment_basepoint, required),
(8, htlc_basepoint, required),
});
impl TxCreationKeys {
/// Create per-state keys from channel base points and the per-commitment point.
/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
pub fn derive_new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> TxCreationKeys {
TxCreationKeys {
per_commitment_point: per_commitment_point.clone(),
revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base),
broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base),
countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base),
broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base),
}
}
/// Generate per-state keys from channel static keys.
/// Key set is asymmetric and can't be used as part of counter-signatory set of transactions.
pub fn from_channel_static_keys<T: secp256k1::Signing + secp256k1::Verification>(per_commitment_point: &PublicKey, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> TxCreationKeys {
TxCreationKeys::derive_new(
&secp_ctx,
&per_commitment_point,
&broadcaster_keys.delayed_payment_basepoint,
&broadcaster_keys.htlc_basepoint,
&countersignatory_keys.revocation_basepoint,
&countersignatory_keys.htlc_basepoint,
)
}
}
/// The maximum length of a script returned by get_revokeable_redeemscript.
// Calculated as 6 bytes of opcodes, 1 byte push plus 2 bytes for contest_delay, and two public
// keys of 33 bytes (+ 1 push).
pub const REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH: usize = 6 + 3 + 34*2;
/// A script either spendable by the revocation
/// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain.
/// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions.
pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script {
let res = Builder::new().push_opcode(opcodes::all::OP_IF)
.push_slice(&revocation_key.serialize())
.push_opcode(opcodes::all::OP_ELSE)
.push_int(contest_delay as i64)
.push_opcode(opcodes::all::OP_CSV)
.push_opcode(opcodes::all::OP_DROP)
.push_slice(&broadcaster_delayed_payment_key.serialize())
.push_opcode(opcodes::all::OP_ENDIF)
.push_opcode(opcodes::all::OP_CHECKSIG)
.into_script();
debug_assert!(res.len() <= REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH);
res
}
/// Information about an HTLC as it appears in a commitment transaction
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct HTLCOutputInCommitment {
/// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
/// Note that this is not the same as whether it is ountbound *from us*. To determine that you
/// need to compare this value to whether the commitment transaction in question is that of
/// the counterparty or our own.
pub offered: bool,
/// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
/// this divided by 1000.
pub amount_msat: u64,
/// The CLTV lock-time at which this HTLC expires.
pub cltv_expiry: u32,
/// The hash of the preimage which unlocks this HTLC.
pub payment_hash: PaymentHash,
/// The position within the commitment transactions' outputs. This may be None if the value is
/// below the dust limit (in which case no output appears in the commitment transaction and the
/// value is spent to additional transaction fees).
pub transaction_output_index: Option<u32>,
}
impl_writeable_tlv_based!(HTLCOutputInCommitment, {
(0, offered, required),
(2, amount_msat, required),
(4, cltv_expiry, required),
(6, payment_hash, required),
(8, transaction_output_index, option),
});
#[inline]
pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
if htlc.offered {
let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP)
.push_opcode(opcodes::all::OP_HASH160)
.push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
.push_opcode(opcodes::all::OP_EQUAL)
.push_opcode(opcodes::all::OP_IF)
.push_opcode(opcodes::all::OP_CHECKSIG)
.push_opcode(opcodes::all::OP_ELSE)
.push_slice(&countersignatory_htlc_key.serialize()[..])
.push_opcode(opcodes::all::OP_SWAP)
.push_opcode(opcodes::all::OP_SIZE)
.push_int(32)
.push_opcode(opcodes::all::OP_EQUAL)
.push_opcode(opcodes::all::OP_NOTIF)
.push_opcode(opcodes::all::OP_DROP)
.push_int(2)
.push_opcode(opcodes::all::OP_SWAP)
.push_slice(&broadcaster_htlc_key.serialize()[..])
.push_int(2)
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
.push_opcode(opcodes::all::OP_ELSE)
.push_opcode(opcodes::all::OP_HASH160)
.push_slice(&payment_hash160)
.push_opcode(opcodes::all::OP_EQUALVERIFY)
.push_opcode(opcodes::all::OP_CHECKSIG)
.push_opcode(opcodes::all::OP_ENDIF);
if channel_type_features.supports_anchors_zero_fee_htlc_tx() {
bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1)
.push_opcode(opcodes::all::OP_CSV)
.push_opcode(opcodes::all::OP_DROP);
}
bldr.push_opcode(opcodes::all::OP_ENDIF)
.into_script()
} else {
let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP)
.push_opcode(opcodes::all::OP_HASH160)
.push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..])
.push_opcode(opcodes::all::OP_EQUAL)
.push_opcode(opcodes::all::OP_IF)
.push_opcode(opcodes::all::OP_CHECKSIG)
.push_opcode(opcodes::all::OP_ELSE)
.push_slice(&countersignatory_htlc_key.serialize()[..])
.push_opcode(opcodes::all::OP_SWAP)
.push_opcode(opcodes::all::OP_SIZE)
.push_int(32)
.push_opcode(opcodes::all::OP_EQUAL)
.push_opcode(opcodes::all::OP_IF)
.push_opcode(opcodes::all::OP_HASH160)
.push_slice(&payment_hash160)
.push_opcode(opcodes::all::OP_EQUALVERIFY)
.push_int(2)
.push_opcode(opcodes::all::OP_SWAP)
.push_slice(&broadcaster_htlc_key.serialize()[..])
.push_int(2)
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
.push_opcode(opcodes::all::OP_ELSE)
.push_opcode(opcodes::all::OP_DROP)
.push_int(htlc.cltv_expiry as i64)
.push_opcode(opcodes::all::OP_CLTV)
.push_opcode(opcodes::all::OP_DROP)
.push_opcode(opcodes::all::OP_CHECKSIG)
.push_opcode(opcodes::all::OP_ENDIF);
if channel_type_features.supports_anchors_zero_fee_htlc_tx() {
bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1)
.push_opcode(opcodes::all::OP_CSV)
.push_opcode(opcodes::all::OP_DROP);
}
bldr.push_opcode(opcodes::all::OP_ENDIF)
.into_script()
}
}
/// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc
/// does not need to have its previous_output_index filled.
#[inline]
pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, keys: &TxCreationKeys) -> Script {
get_htlc_redeemscript_with_explicit_keys(htlc, channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key)
}
/// Gets the redeemscript for a funding output from the two funding public keys.
/// Note that the order of funding public keys does not matter.
pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script {
let broadcaster_funding_key = broadcaster.serialize();
let countersignatory_funding_key = countersignatory.serialize();
make_funding_redeemscript_from_slices(&broadcaster_funding_key, &countersignatory_funding_key)
}
pub(crate) fn make_funding_redeemscript_from_slices(broadcaster_funding_key: &[u8], countersignatory_funding_key: &[u8]) -> Script {
let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
if broadcaster_funding_key[..] < countersignatory_funding_key[..] {
builder.push_slice(broadcaster_funding_key)
.push_slice(countersignatory_funding_key)
} else {
builder.push_slice(countersignatory_funding_key)
.push_slice(broadcaster_funding_key)
}.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
}
/// Builds an unsigned HTLC-Success or HTLC-Timeout transaction from the given channel and HTLC
/// parameters. This is used by [`TrustedCommitmentTransaction::get_htlc_sigs`] to fetch the
/// transaction which needs signing, and can be used to construct an HTLC transaction which is
/// broadcastable given a counterparty HTLC signature.
///
/// Panics if htlc.transaction_output_index.is_none() (as such HTLCs do not appear in the
/// commitment transaction).
pub fn build_htlc_transaction(commitment_txid: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
let mut txins: Vec<TxIn> = Vec::new();
txins.push(build_htlc_input(commitment_txid, htlc, channel_type_features));
let mut txouts: Vec<TxOut> = Vec::new();
txouts.push(build_htlc_output(
feerate_per_kw, contest_delay, htlc, channel_type_features,
broadcaster_delayed_payment_key, revocation_key
));
Transaction {
version: 2,
lock_time: PackedLockTime(if htlc.offered { htlc.cltv_expiry } else { 0 }),
input: txins,
output: txouts,
}
}
pub(crate) fn build_htlc_input(commitment_txid: &Txid, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures) -> TxIn {
TxIn {
previous_output: OutPoint {
txid: commitment_txid.clone(),
vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
},
script_sig: Script::new(),
sequence: Sequence(if channel_type_features.supports_anchors_zero_fee_htlc_tx() { 1 } else { 0 }),
witness: Witness::new(),
}
}
pub(crate) fn build_htlc_output(
feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey
) -> TxOut {
let weight = if htlc.offered {
htlc_timeout_tx_weight(channel_type_features)
} else {
htlc_success_tx_weight(channel_type_features)
};
let output_value = if channel_type_features.supports_anchors_zero_fee_htlc_tx() && !channel_type_features.supports_anchors_nonzero_fee_htlc_tx() {
htlc.amount_msat / 1000
} else {
let total_fee = feerate_per_kw as u64 * weight / 1000;
htlc.amount_msat / 1000 - total_fee
};
TxOut {
script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(),
value: output_value,
}
}
/// Returns the witness required to satisfy and spend a HTLC input.
pub fn build_htlc_input_witness(
local_sig: &Signature, remote_sig: &Signature, preimage: &Option<PaymentPreimage>,
redeem_script: &Script, channel_type_features: &ChannelTypeFeatures,
) -> Witness {
let remote_sighash_type = if channel_type_features.supports_anchors_zero_fee_htlc_tx() {
EcdsaSighashType::SinglePlusAnyoneCanPay
} else {
EcdsaSighashType::All
};
let mut witness = Witness::new();
// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
witness.push(vec![]);
witness.push_bitcoin_signature(&remote_sig.serialize_der(), remote_sighash_type);
witness.push_bitcoin_signature(&local_sig.serialize_der(), EcdsaSighashType::All);
if let Some(preimage) = preimage {
witness.push(preimage.0.to_vec());
} else {
// Due to BIP146 (MINIMALIF) this must be a zero-length element to relay.
witness.push(vec![]);
}
witness.push(redeem_script.to_bytes());
witness
}
/// Pre-anchors channel type features did not use to get serialized in the following six structs:
/// — [`ChannelTransactionParameters`]
/// — [`CommitmentTransaction`]
/// — [`CounterpartyOfferedHTLCOutput`]
/// — [`CounterpartyReceivedHTLCOutput`]
/// — [`HolderHTLCOutput`]
/// — [`HolderFundingOutput`]
///
/// To ensure a forwards-compatible serialization, we use odd TLV fields. However, if new features
/// are used that could break security, where old signers should be prevented from handling the
/// serialized data, an optional even-field TLV will be used as a stand-in to break compatibility.
///
/// This method determines whether or not that option needs to be set based on the chanenl type
/// features, and returns it.
///
/// [`CounterpartyOfferedHTLCOutput`]: crate::chain::package::CounterpartyOfferedHTLCOutput
/// [`CounterpartyReceivedHTLCOutput`]: crate::chain::package::CounterpartyReceivedHTLCOutput
/// [`HolderHTLCOutput`]: crate::chain::package::HolderHTLCOutput
/// [`HolderFundingOutput`]: crate::chain::package::HolderFundingOutput
pub(crate) fn legacy_deserialization_prevention_marker_for_channel_type_features(features: &ChannelTypeFeatures) -> Option<()> {
let mut legacy_version_bit_set = ChannelTypeFeatures::only_static_remote_key();
legacy_version_bit_set.set_scid_privacy_required();
legacy_version_bit_set.set_zero_conf_required();
if features.is_subset(&legacy_version_bit_set) {
None
} else {
Some(())
}
}
/// Gets the witnessScript for the to_remote output when anchors are enabled.
#[inline]
pub fn get_to_countersignatory_with_anchors_redeemscript(payment_point: &PublicKey) -> Script {
Builder::new()
.push_slice(&payment_point.serialize()[..])
.push_opcode(opcodes::all::OP_CHECKSIGVERIFY)
.push_int(1)
.push_opcode(opcodes::all::OP_CSV)
.into_script()
}
/// Gets the witnessScript for an anchor output from the funding public key.
/// The witness in the spending input must be:
/// <BIP 143 funding_signature>
/// After 16 blocks of confirmation, an alternative satisfying witness could be:
/// <>
/// (empty vector required to satisfy compliance with MINIMALIF-standard rule)
#[inline]
pub fn get_anchor_redeemscript(funding_pubkey: &PublicKey) -> Script {
Builder::new().push_slice(&funding_pubkey.serialize()[..])
.push_opcode(opcodes::all::OP_CHECKSIG)
.push_opcode(opcodes::all::OP_IFDUP)
.push_opcode(opcodes::all::OP_NOTIF)
.push_int(16)
.push_opcode(opcodes::all::OP_CSV)
.push_opcode(opcodes::all::OP_ENDIF)
.into_script()
}
/// Locates the output with an anchor script paying to `funding_pubkey` within `commitment_tx`.
pub(crate) fn get_anchor_output<'a>(commitment_tx: &'a Transaction, funding_pubkey: &PublicKey) -> Option<(u32, &'a TxOut)> {
let anchor_script = chan_utils::get_anchor_redeemscript(funding_pubkey).to_v0_p2wsh();
commitment_tx.output.iter().enumerate()
.find(|(_, txout)| txout.script_pubkey == anchor_script)
.map(|(idx, txout)| (idx as u32, txout))
}
/// Returns the witness required to satisfy and spend an anchor input.
pub fn build_anchor_input_witness(funding_key: &PublicKey, funding_sig: &Signature) -> Witness {
let anchor_redeem_script = chan_utils::get_anchor_redeemscript(funding_key);
let mut ret = Witness::new();
ret.push_bitcoin_signature(&funding_sig.serialize_der(), EcdsaSighashType::All);
ret.push(anchor_redeem_script.as_bytes());
ret
}
/// Per-channel data used to build transactions in conjunction with the per-commitment data (CommitmentTransaction).
/// The fields are organized by holder/counterparty.
///
/// Normally, this is converted to the broadcaster/countersignatory-organized DirectedChannelTransactionParameters
/// before use, via the as_holder_broadcastable and as_counterparty_broadcastable functions.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ChannelTransactionParameters {
/// Holder public keys
pub holder_pubkeys: ChannelPublicKeys,
/// The contest delay selected by the holder, which applies to counterparty-broadcast transactions
pub holder_selected_contest_delay: u16,
/// Whether the holder is the initiator of this channel.
/// This is an input to the commitment number obscure factor computation.
pub is_outbound_from_holder: bool,
/// The late-bound counterparty channel transaction parameters.
/// These parameters are populated at the point in the protocol where the counterparty provides them.
pub counterparty_parameters: Option<CounterpartyChannelTransactionParameters>,
/// The late-bound funding outpoint
pub funding_outpoint: Option<chain::transaction::OutPoint>,
/// This channel's type, as negotiated during channel open. For old objects where this field
/// wasn't serialized, it will default to static_remote_key at deserialization.
pub channel_type_features: ChannelTypeFeatures
}
/// Late-bound per-channel counterparty data used to build transactions.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CounterpartyChannelTransactionParameters {
/// Counter-party public keys
pub pubkeys: ChannelPublicKeys,
/// The contest delay selected by the counterparty, which applies to holder-broadcast transactions
pub selected_contest_delay: u16,
}
impl ChannelTransactionParameters {
/// Whether the late bound parameters are populated.
pub fn is_populated(&self) -> bool {
self.counterparty_parameters.is_some() && self.funding_outpoint.is_some()
}
/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
/// given that the holder is the broadcaster.
///
/// self.is_populated() must be true before calling this function.
pub fn as_holder_broadcastable(&self) -> DirectedChannelTransactionParameters {
assert!(self.is_populated(), "self.late_parameters must be set before using as_holder_broadcastable");
DirectedChannelTransactionParameters {
inner: self,
holder_is_broadcaster: true
}
}
/// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters,
/// given that the counterparty is the broadcaster.
///
/// self.is_populated() must be true before calling this function.
pub fn as_counterparty_broadcastable(&self) -> DirectedChannelTransactionParameters {
assert!(self.is_populated(), "self.late_parameters must be set before using as_counterparty_broadcastable");
DirectedChannelTransactionParameters {
inner: self,
holder_is_broadcaster: false
}
}
}
impl_writeable_tlv_based!(CounterpartyChannelTransactionParameters, {
(0, pubkeys, required),
(2, selected_contest_delay, required),
});
impl Writeable for ChannelTransactionParameters {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
let legacy_deserialization_prevention_marker = legacy_deserialization_prevention_marker_for_channel_type_features(&self.channel_type_features);
write_tlv_fields!(writer, {
(0, self.holder_pubkeys, required),
(2, self.holder_selected_contest_delay, required),
(4, self.is_outbound_from_holder, required),
(6, self.counterparty_parameters, option),
(8, self.funding_outpoint, option),
(10, legacy_deserialization_prevention_marker, option),
(11, self.channel_type_features, required),
});
Ok(())
}
}
impl Readable for ChannelTransactionParameters {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let mut holder_pubkeys = RequiredWrapper(None);
let mut holder_selected_contest_delay = RequiredWrapper(None);
let mut is_outbound_from_holder = RequiredWrapper(None);
let mut counterparty_parameters = None;
let mut funding_outpoint = None;
let mut legacy_deserialization_prevention_marker: Option<()> = None;
let mut channel_type_features = None;
read_tlv_fields!(reader, {
(0, holder_pubkeys, required),
(2, holder_selected_contest_delay, required),
(4, is_outbound_from_holder, required),
(6, counterparty_parameters, option),
(8, funding_outpoint, option),
(10, legacy_deserialization_prevention_marker, option),
(11, channel_type_features, option),
});
let mut additional_features = ChannelTypeFeatures::empty();
additional_features.set_anchors_nonzero_fee_htlc_tx_required();
chain::package::verify_channel_type_features(&channel_type_features, Some(&additional_features))?;
Ok(Self {
holder_pubkeys: holder_pubkeys.0.unwrap(),
holder_selected_contest_delay: holder_selected_contest_delay.0.unwrap(),
is_outbound_from_holder: is_outbound_from_holder.0.unwrap(),
counterparty_parameters,
funding_outpoint,
channel_type_features: channel_type_features.unwrap_or(ChannelTypeFeatures::only_static_remote_key())
})
}
}
/// Static channel fields used to build transactions given per-commitment fields, organized by
/// broadcaster/countersignatory.
///
/// This is derived from the holder/counterparty-organized ChannelTransactionParameters via the
/// as_holder_broadcastable and as_counterparty_broadcastable functions.
pub struct DirectedChannelTransactionParameters<'a> {
/// The holder's channel static parameters
inner: &'a ChannelTransactionParameters,
/// Whether the holder is the broadcaster
holder_is_broadcaster: bool,
}
impl<'a> DirectedChannelTransactionParameters<'a> {
/// Get the channel pubkeys for the broadcaster
pub fn broadcaster_pubkeys(&self) -> &ChannelPublicKeys {
if self.holder_is_broadcaster {
&self.inner.holder_pubkeys
} else {
&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
}
}
/// Get the channel pubkeys for the countersignatory
pub fn countersignatory_pubkeys(&self) -> &ChannelPublicKeys {
if self.holder_is_broadcaster {
&self.inner.counterparty_parameters.as_ref().unwrap().pubkeys
} else {
&self.inner.holder_pubkeys
}
}
/// Get the contest delay applicable to the transactions.
/// Note that the contest delay was selected by the countersignatory.
pub fn contest_delay(&self) -> u16 {
let counterparty_parameters = self.inner.counterparty_parameters.as_ref().unwrap();
if self.holder_is_broadcaster { counterparty_parameters.selected_contest_delay } else { self.inner.holder_selected_contest_delay }
}
/// Whether the channel is outbound from the broadcaster.
///
/// The boolean representing the side that initiated the channel is
/// an input to the commitment number obscure factor computation.
pub fn is_outbound(&self) -> bool {
if self.holder_is_broadcaster { self.inner.is_outbound_from_holder } else { !self.inner.is_outbound_from_holder }
}
/// The funding outpoint
pub fn funding_outpoint(&self) -> OutPoint {
self.inner.funding_outpoint.unwrap().into_bitcoin_outpoint()
}
/// Whether to use anchors for this channel
pub fn channel_type_features(&self) -> &ChannelTypeFeatures {
&self.inner.channel_type_features
}
}
/// Information needed to build and sign a holder's commitment transaction.
///
/// The transaction is only signed once we are ready to broadcast.
#[derive(Clone)]
pub struct HolderCommitmentTransaction {
inner: CommitmentTransaction,
/// Our counterparty's signature for the transaction
pub counterparty_sig: Signature,
/// All non-dust counterparty HTLC signatures, in the order they appear in the transaction
pub counterparty_htlc_sigs: Vec<Signature>,
// Which order the signatures should go in when constructing the final commitment tx witness.
// The user should be able to reconstruct this themselves, so we don't bother to expose it.
holder_sig_first: bool,
}
impl Deref for HolderCommitmentTransaction {
type Target = CommitmentTransaction;
fn deref(&self) -> &Self::Target { &self.inner }
}
impl Eq for HolderCommitmentTransaction {}
impl PartialEq for HolderCommitmentTransaction {
// We dont care whether we are signed in equality comparison
fn eq(&self, o: &Self) -> bool {
self.inner == o.inner
}
}
impl_writeable_tlv_based!(HolderCommitmentTransaction, {
(0, inner, required),
(2, counterparty_sig, required),
(4, holder_sig_first, required),
(6, counterparty_htlc_sigs, vec_type),
});
impl HolderCommitmentTransaction {
#[cfg(test)]
pub fn dummy(htlcs: &mut Vec<(HTLCOutputInCommitment, ())>) -> Self {
let secp_ctx = Secp256k1::new();
let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
let dummy_sig = sign(&secp_ctx, &secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap());
let keys = TxCreationKeys {
per_commitment_point: dummy_key.clone(),
revocation_key: dummy_key.clone(),
broadcaster_htlc_key: dummy_key.clone(),
countersignatory_htlc_key: dummy_key.clone(),
broadcaster_delayed_payment_key: dummy_key.clone(),
};
let channel_pubkeys = ChannelPublicKeys {
funding_pubkey: dummy_key.clone(),
revocation_basepoint: dummy_key.clone(),
payment_point: dummy_key.clone(),
delayed_payment_basepoint: dummy_key.clone(),
htlc_basepoint: dummy_key.clone()
};
let channel_parameters = ChannelTransactionParameters {
holder_pubkeys: channel_pubkeys.clone(),
holder_selected_contest_delay: 0,
is_outbound_from_holder: false,
counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: channel_pubkeys.clone(), selected_contest_delay: 0 }),
funding_outpoint: Some(chain::transaction::OutPoint { txid: Txid::all_zeros(), index: 0 }),
channel_type_features: ChannelTypeFeatures::only_static_remote_key(),
};
let mut counterparty_htlc_sigs = Vec::new();
for _ in 0..htlcs.len() {
counterparty_htlc_sigs.push(dummy_sig);
}
let inner = CommitmentTransaction::new_with_auxiliary_htlc_data(0, 0, 0, dummy_key.clone(), dummy_key.clone(), keys, 0, htlcs, &channel_parameters.as_counterparty_broadcastable());
htlcs.sort_by_key(|htlc| htlc.0.transaction_output_index);
HolderCommitmentTransaction {
inner,
counterparty_sig: dummy_sig,
counterparty_htlc_sigs,
holder_sig_first: false
}
}
/// Create a new holder transaction with the given counterparty signatures.
/// The funding keys are used to figure out which signature should go first when building the transaction for broadcast.
pub fn new(commitment_tx: CommitmentTransaction, counterparty_sig: Signature, counterparty_htlc_sigs: Vec<Signature>, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey) -> Self {
Self {
inner: commitment_tx,
counterparty_sig,
counterparty_htlc_sigs,
holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..],
}
}
pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction {
// First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element.
let mut tx = self.inner.built.transaction.clone();
tx.input[0].witness.push(Vec::new());
if self.holder_sig_first {
tx.input[0].witness.push_bitcoin_signature(&holder_sig.serialize_der(), EcdsaSighashType::All);
tx.input[0].witness.push_bitcoin_signature(&self.counterparty_sig.serialize_der(), EcdsaSighashType::All);
} else {
tx.input[0].witness.push_bitcoin_signature(&self.counterparty_sig.serialize_der(), EcdsaSighashType::All);
tx.input[0].witness.push_bitcoin_signature(&holder_sig.serialize_der(), EcdsaSighashType::All);
}
tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
tx
}
}
/// A pre-built Bitcoin commitment transaction and its txid.
#[derive(Clone)]
pub struct BuiltCommitmentTransaction {
/// The commitment transaction
pub transaction: Transaction,
/// The txid for the commitment transaction.
///
/// This is provided as a performance optimization, instead of calling transaction.txid()
/// multiple times.
pub txid: Txid,
}
impl_writeable_tlv_based!(BuiltCommitmentTransaction, {
(0, transaction, required),
(2, txid, required),
});
impl BuiltCommitmentTransaction {
/// Get the SIGHASH_ALL sighash value of the transaction.
///
/// This can be used to verify a signature.
pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message {
let sighash = &sighash::SighashCache::new(&self.transaction).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..];
hash_to_message!(sighash)
}
/// Signs the counterparty's commitment transaction.
pub fn sign_counterparty_commitment<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
sign(secp_ctx, &sighash, funding_key)
}
/// Signs the holder commitment transaction because we are about to broadcast it.
pub fn sign_holder_commitment<T: secp256k1::Signing, ES: Deref>(
&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64,
entropy_source: &ES, secp_ctx: &Secp256k1<T>
) -> Signature where ES::Target: EntropySource {
let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
sign_with_aux_rand(secp_ctx, &sighash, funding_key, entropy_source)
}
}
/// This class tracks the per-transaction information needed to build a closing transaction and will
/// actually build it and sign.
///
/// This class can be used inside a signer implementation to generate a signature given the relevant
/// secret key.
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct ClosingTransaction {
to_holder_value_sat: u64,
to_counterparty_value_sat: u64,
to_holder_script: Script,
to_counterparty_script: Script,
built: Transaction,
}
impl ClosingTransaction {
/// Construct an object of the class
pub fn new(
to_holder_value_sat: u64,
to_counterparty_value_sat: u64,
to_holder_script: Script,
to_counterparty_script: Script,
funding_outpoint: OutPoint,
) -> Self {
let built = build_closing_transaction(
to_holder_value_sat, to_counterparty_value_sat,
to_holder_script.clone(), to_counterparty_script.clone(),
funding_outpoint
);
ClosingTransaction {
to_holder_value_sat,
to_counterparty_value_sat,
to_holder_script,
to_counterparty_script,
built
}
}
/// Trust our pre-built transaction.
///
/// Applies a wrapper which allows access to the transaction.
///
/// This should only be used if you fully trust the builder of this object. It should not
/// be used by an external signer - instead use the verify function.
pub fn trust(&self) -> TrustedClosingTransaction {
TrustedClosingTransaction { inner: self }
}
/// Verify our pre-built transaction.
///
/// Applies a wrapper which allows access to the transaction.
///
/// An external validating signer must call this method before signing
/// or using the built transaction.
pub fn verify(&self, funding_outpoint: OutPoint) -> Result<TrustedClosingTransaction, ()> {
let built = build_closing_transaction(
self.to_holder_value_sat, self.to_counterparty_value_sat,
self.to_holder_script.clone(), self.to_counterparty_script.clone(),
funding_outpoint
);
if self.built != built {
return Err(())
}
Ok(TrustedClosingTransaction { inner: self })
}
/// The value to be sent to the holder, or zero if the output will be omitted
pub fn to_holder_value_sat(&self) -> u64 {
self.to_holder_value_sat
}
/// The value to be sent to the counterparty, or zero if the output will be omitted
pub fn to_counterparty_value_sat(&self) -> u64 {
self.to_counterparty_value_sat
}
/// The destination of the holder's output
pub fn to_holder_script(&self) -> &Script {
&self.to_holder_script
}
/// The destination of the counterparty's output
pub fn to_counterparty_script(&self) -> &Script {
&self.to_counterparty_script
}
}
/// A wrapper on ClosingTransaction indicating that the built bitcoin
/// transaction is trusted.
///
/// See trust() and verify() functions on CommitmentTransaction.
///
/// This structure implements Deref.
pub struct TrustedClosingTransaction<'a> {
inner: &'a ClosingTransaction,
}
impl<'a> Deref for TrustedClosingTransaction<'a> {
type Target = ClosingTransaction;
fn deref(&self) -> &Self::Target { self.inner }
}
impl<'a> TrustedClosingTransaction<'a> {
/// The pre-built Bitcoin commitment transaction
pub fn built_transaction(&self) -> &Transaction {
&self.inner.built
}
/// Get the SIGHASH_ALL sighash value of the transaction.
///
/// This can be used to verify a signature.
pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message {
let sighash = &sighash::SighashCache::new(&self.inner.built).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..];
hash_to_message!(sighash)
}
/// Sign a transaction, either because we are counter-signing the counterparty's transaction or
/// because we are about to broadcast a holder transaction.
pub fn sign<T: secp256k1::Signing>(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) -> Signature {
let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis);
sign(secp_ctx, &sighash, funding_key)
}
}
/// This class tracks the per-transaction information needed to build a commitment transaction and will
/// actually build it and sign. It is used for holder transactions that we sign only when needed
/// and for transactions we sign for the counterparty.
///
/// This class can be used inside a signer implementation to generate a signature given the relevant
/// secret key.
#[derive(Clone)]
pub struct CommitmentTransaction {
commitment_number: u64,
to_broadcaster_value_sat: u64,
to_countersignatory_value_sat: u64,
feerate_per_kw: u32,
htlcs: Vec<HTLCOutputInCommitment>,
// Note that on upgrades, some features of existing outputs may be missed.
channel_type_features: ChannelTypeFeatures,
// A cache of the parties' pubkeys required to construct the transaction, see doc for trust()
keys: TxCreationKeys,
// For access to the pre-built transaction, see doc for trust()
built: BuiltCommitmentTransaction,
}
impl Eq for CommitmentTransaction {}
impl PartialEq for CommitmentTransaction {
fn eq(&self, o: &Self) -> bool {
let eq = self.commitment_number == o.commitment_number &&
self.to_broadcaster_value_sat == o.to_broadcaster_value_sat &&
self.to_countersignatory_value_sat == o.to_countersignatory_value_sat &&
self.feerate_per_kw == o.feerate_per_kw &&
self.htlcs == o.htlcs &&
self.channel_type_features == o.channel_type_features &&
self.keys == o.keys;
if eq {
debug_assert_eq!(self.built.transaction, o.built.transaction);
debug_assert_eq!(self.built.txid, o.built.txid);
}
eq
}
}
impl Writeable for CommitmentTransaction {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
let legacy_deserialization_prevention_marker = legacy_deserialization_prevention_marker_for_channel_type_features(&self.channel_type_features);
write_tlv_fields!(writer, {
(0, self.commitment_number, required),
(2, self.to_broadcaster_value_sat, required),
(4, self.to_countersignatory_value_sat, required),
(6, self.feerate_per_kw, required),
(8, self.keys, required),
(10, self.built, required),
(12, self.htlcs, vec_type),
(14, legacy_deserialization_prevention_marker, option),
(15, self.channel_type_features, required),
});
Ok(())
}
}
impl Readable for CommitmentTransaction {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
let mut commitment_number = RequiredWrapper(None);
let mut to_broadcaster_value_sat = RequiredWrapper(None);
let mut to_countersignatory_value_sat = RequiredWrapper(None);
let mut feerate_per_kw = RequiredWrapper(None);
let mut keys = RequiredWrapper(None);
let mut built = RequiredWrapper(None);
_init_tlv_field_var!(htlcs, vec_type);
let mut legacy_deserialization_prevention_marker: Option<()> = None;
let mut channel_type_features = None;
read_tlv_fields!(reader, {
(0, commitment_number, required),
(2, to_broadcaster_value_sat, required),
(4, to_countersignatory_value_sat, required),
(6, feerate_per_kw, required),
(8, keys, required),
(10, built, required),
(12, htlcs, vec_type),
(14, legacy_deserialization_prevention_marker, option),
(15, channel_type_features, option),
});
let mut additional_features = ChannelTypeFeatures::empty();
additional_features.set_anchors_nonzero_fee_htlc_tx_required();
chain::package::verify_channel_type_features(&channel_type_features, Some(&additional_features))?;
Ok(Self {
commitment_number: commitment_number.0.unwrap(),
to_broadcaster_value_sat: to_broadcaster_value_sat.0.unwrap(),
to_countersignatory_value_sat: to_countersignatory_value_sat.0.unwrap(),
feerate_per_kw: feerate_per_kw.0.unwrap(),
keys: keys.0.unwrap(),
built: built.0.unwrap(),
htlcs: _init_tlv_based_struct_field!(htlcs, vec_type),
channel_type_features: channel_type_features.unwrap_or(ChannelTypeFeatures::only_static_remote_key())
})
}
}
impl CommitmentTransaction {
/// Construct an object of the class while assigning transaction output indices to HTLCs.
///
/// Populates HTLCOutputInCommitment.transaction_output_index in htlcs_with_aux.
///
/// The generic T allows the caller to match the HTLC output index with auxiliary data.
/// This auxiliary data is not stored in this object.
///
/// Only include HTLCs that are above the dust limit for the channel.
///
/// This is not exported to bindings users due to the generic though we likely should expose a version without
pub fn new_with_auxiliary_htlc_data<T>(commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, broadcaster_funding_key: PublicKey, countersignatory_funding_key: PublicKey, keys: TxCreationKeys, feerate_per_kw: u32, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> CommitmentTransaction {
// Sort outputs and populate output indices while keeping track of the auxiliary data
let (outputs, htlcs) = Self::internal_build_outputs(&keys, to_broadcaster_value_sat, to_countersignatory_value_sat, htlcs_with_aux, channel_parameters, &broadcaster_funding_key, &countersignatory_funding_key).unwrap();
let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(commitment_number, channel_parameters);
let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
let txid = transaction.txid();
CommitmentTransaction {
commitment_number,
to_broadcaster_value_sat,
to_countersignatory_value_sat,
feerate_per_kw,
htlcs,
channel_type_features: channel_parameters.channel_type_features().clone(),
keys,
built: BuiltCommitmentTransaction {
transaction,
txid
},
}
}
/// Use non-zero fee anchors
///
/// This is not exported to bindings users due to move, and also not likely to be useful for binding users
pub fn with_non_zero_fee_anchors(mut self) -> Self {
self.channel_type_features.set_anchors_nonzero_fee_htlc_tx_required();
self
}
fn internal_rebuild_transaction(&self, keys: &TxCreationKeys, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result<BuiltCommitmentTransaction, ()> {
let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(self.commitment_number, channel_parameters);
let mut htlcs_with_aux = self.htlcs.iter().map(|h| (h.clone(), ())).collect();
let (outputs, _) = Self::internal_build_outputs(keys, self.to_broadcaster_value_sat, self.to_countersignatory_value_sat, &mut htlcs_with_aux, channel_parameters, broadcaster_funding_key, countersignatory_funding_key)?;
let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs);
let txid = transaction.txid();
let built_transaction = BuiltCommitmentTransaction {
transaction,
txid
};
Ok(built_transaction)
}
fn make_transaction(obscured_commitment_transaction_number: u64, txins: Vec<TxIn>, outputs: Vec<TxOut>) -> Transaction {
Transaction {
version: 2,
lock_time: PackedLockTime(((0x20 as u32) << 8 * 3) | ((obscured_commitment_transaction_number & 0xffffffu64) as u32)),
input: txins,
output: outputs,
}
}
// This is used in two cases:
// - initial sorting of outputs / HTLCs in the constructor, in which case T is auxiliary data the
// caller needs to have sorted together with the HTLCs so it can keep track of the output index
// - building of a bitcoin transaction during a verify() call, in which case T is just ()
fn internal_build_outputs<T>(keys: &TxCreationKeys, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result<(Vec<TxOut>, Vec<HTLCOutputInCommitment>), ()> {
let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
let contest_delay = channel_parameters.contest_delay();
let mut txouts: Vec<(TxOut, Option<&mut HTLCOutputInCommitment>)> = Vec::new();
if to_countersignatory_value_sat > 0 {
let script = if channel_parameters.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
get_to_countersignatory_with_anchors_redeemscript(&countersignatory_pubkeys.payment_point).to_v0_p2wsh()
} else {
Payload::p2wpkh(&BitcoinPublicKey::new(countersignatory_pubkeys.payment_point)).unwrap().script_pubkey()
};
txouts.push((
TxOut {
script_pubkey: script.clone(),
value: to_countersignatory_value_sat,
},
None,
))
}
if to_broadcaster_value_sat > 0 {
let redeem_script = get_revokeable_redeemscript(
&keys.revocation_key,
contest_delay,
&keys.broadcaster_delayed_payment_key,
);
txouts.push((
TxOut {
script_pubkey: redeem_script.to_v0_p2wsh(),
value: to_broadcaster_value_sat,
},
None,
));
}
if channel_parameters.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
if to_broadcaster_value_sat > 0 || !htlcs_with_aux.is_empty() {
let anchor_script = get_anchor_redeemscript(broadcaster_funding_key);
txouts.push((
TxOut {
script_pubkey: anchor_script.to_v0_p2wsh(),
value: ANCHOR_OUTPUT_VALUE_SATOSHI,
},
None,
));
}
if to_countersignatory_value_sat > 0 || !htlcs_with_aux.is_empty() {
let anchor_script = get_anchor_redeemscript(countersignatory_funding_key);
txouts.push((
TxOut {
script_pubkey: anchor_script.to_v0_p2wsh(),
value: ANCHOR_OUTPUT_VALUE_SATOSHI,
},
None,
));
}
}
let mut htlcs = Vec::with_capacity(htlcs_with_aux.len());
for (htlc, _) in htlcs_with_aux {
let script = chan_utils::get_htlc_redeemscript(&htlc, &channel_parameters.channel_type_features(), &keys);
let txout = TxOut {
script_pubkey: script.to_v0_p2wsh(),
value: htlc.amount_msat / 1000,
};
txouts.push((txout, Some(htlc)));
}
// Sort output in BIP-69 order (amount, scriptPubkey). Tie-breaks based on HTLC
// CLTV expiration height.
sort_outputs(&mut txouts, |a, b| {
if let &Some(ref a_htlcout) = a {
if let &Some(ref b_htlcout) = b {
a_htlcout.cltv_expiry.cmp(&b_htlcout.cltv_expiry)
// Note that due to hash collisions, we have to have a fallback comparison
// here for fuzzing mode (otherwise at least chanmon_fail_consistency
// may fail)!
.then(a_htlcout.payment_hash.0.cmp(&b_htlcout.payment_hash.0))
// For non-HTLC outputs, if they're copying our SPK we don't really care if we
// close the channel due to mismatches - they're doing something dumb:
} else { cmp::Ordering::Equal }
} else { cmp::Ordering::Equal }
});
let mut outputs = Vec::with_capacity(txouts.len());
for (idx, out) in txouts.drain(..).enumerate() {
if let Some(htlc) = out.1 {
htlc.transaction_output_index = Some(idx as u32);
htlcs.push(htlc.clone());
}
outputs.push(out.0);
}
Ok((outputs, htlcs))
}
fn internal_build_inputs(commitment_number: u64, channel_parameters: &DirectedChannelTransactionParameters) -> (u64, Vec<TxIn>) {
let broadcaster_pubkeys = channel_parameters.broadcaster_pubkeys();
let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys();
let commitment_transaction_number_obscure_factor = get_commitment_transaction_number_obscure_factor(
&broadcaster_pubkeys.payment_point,
&countersignatory_pubkeys.payment_point,
channel_parameters.is_outbound(),
);
let obscured_commitment_transaction_number =
commitment_transaction_number_obscure_factor ^ (INITIAL_COMMITMENT_NUMBER - commitment_number);
let txins = {
let mut ins: Vec<TxIn> = Vec::new();
ins.push(TxIn {
previous_output: channel_parameters.funding_outpoint(),
script_sig: Script::new(),
sequence: Sequence(((0x80 as u32) << 8 * 3)
| ((obscured_commitment_transaction_number >> 3 * 8) as u32)),
witness: Witness::new(),
});
ins
};
(obscured_commitment_transaction_number, txins)
}
/// The backwards-counting commitment number
pub fn commitment_number(&self) -> u64 {
self.commitment_number
}
/// The value to be sent to the broadcaster
pub fn to_broadcaster_value_sat(&self) -> u64 {
self.to_broadcaster_value_sat
}
/// The value to be sent to the counterparty
pub fn to_countersignatory_value_sat(&self) -> u64 {
self.to_countersignatory_value_sat
}
/// The feerate paid per 1000-weight-unit in this commitment transaction.
pub fn feerate_per_kw(&self) -> u32 {
self.feerate_per_kw
}
/// The non-dust HTLCs (direction, amt, height expiration, hash, transaction output index)
/// which were included in this commitment transaction in output order.
/// The transaction index is always populated.
///
/// This is not exported to bindings users as we cannot currently convert Vec references to/from C, though we should
/// expose a less effecient version which creates a Vec of references in the future.
pub fn htlcs(&self) -> &Vec<HTLCOutputInCommitment> {
&self.htlcs
}
/// Trust our pre-built transaction and derived transaction creation public keys.
///
/// Applies a wrapper which allows access to these fields.
///
/// This should only be used if you fully trust the builder of this object. It should not
/// be used by an external signer - instead use the verify function.
pub fn trust(&self) -> TrustedCommitmentTransaction {
TrustedCommitmentTransaction { inner: self }
}
/// Verify our pre-built transaction and derived transaction creation public keys.
///
/// Applies a wrapper which allows access to these fields.
///
/// An external validating signer must call this method before signing
/// or using the built transaction.
pub fn verify<T: secp256k1::Signing + secp256k1::Verification>(&self, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1<T>) -> Result<TrustedCommitmentTransaction, ()> {
// This is the only field of the key cache that we trust
let per_commitment_point = self.keys.per_commitment_point;
let keys = TxCreationKeys::from_channel_static_keys(&per_commitment_point, broadcaster_keys, countersignatory_keys, secp_ctx);
if keys != self.keys {
return Err(());
}
let tx = self.internal_rebuild_transaction(&keys, channel_parameters, &broadcaster_keys.funding_pubkey, &countersignatory_keys.funding_pubkey)?;
if self.built.transaction != tx.transaction || self.built.txid != tx.txid {
return Err(());
}
Ok(TrustedCommitmentTransaction { inner: self })
}
}
/// A wrapper on CommitmentTransaction indicating that the derived fields (the built bitcoin
/// transaction and the transaction creation keys) are trusted.
///
/// See trust() and verify() functions on CommitmentTransaction.
///
/// This structure implements Deref.
pub struct TrustedCommitmentTransaction<'a> {
inner: &'a CommitmentTransaction,
}
impl<'a> Deref for TrustedCommitmentTransaction<'a> {
type Target = CommitmentTransaction;
fn deref(&self) -> &Self::Target { self.inner }
}
impl<'a> TrustedCommitmentTransaction<'a> {
/// The transaction ID of the built Bitcoin transaction
pub fn txid(&self) -> Txid {
self.inner.built.txid
}
/// The pre-built Bitcoin commitment transaction
pub fn built_transaction(&self) -> &BuiltCommitmentTransaction {
&self.inner.built
}
/// The pre-calculated transaction creation public keys.
pub fn keys(&self) -> &TxCreationKeys {
&self.inner.keys
}
/// Should anchors be used.
pub fn channel_type_features(&self) -> &ChannelTypeFeatures {
&self.inner.channel_type_features
}
/// Get a signature for each HTLC which was included in the commitment transaction (ie for
/// which HTLCOutputInCommitment::transaction_output_index.is_some()).
///
/// The returned Vec has one entry for each HTLC, and in the same order.
///
/// This function is only valid in the holder commitment context, it always uses EcdsaSighashType::All.
pub fn get_htlc_sigs<T: secp256k1::Signing, ES: Deref>(
&self, htlc_base_key: &SecretKey, channel_parameters: &DirectedChannelTransactionParameters,
entropy_source: &ES, secp_ctx: &Secp256k1<T>,
) -> Result<Vec<Signature>, ()> where ES::Target: EntropySource {
let inner = self.inner;
let keys = &inner.keys;
let txid = inner.built.txid;
let mut ret = Vec::with_capacity(inner.htlcs.len());
let holder_htlc_key = derive_private_key(secp_ctx, &inner.keys.per_commitment_point, htlc_base_key);
for this_htlc in inner.htlcs.iter() {
assert!(this_htlc.transaction_output_index.is_some());
let htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &self.channel_type_features, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &self.channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);
let sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, this_htlc.amount_msat / 1000, EcdsaSighashType::All).unwrap()[..]);
ret.push(sign_with_aux_rand(secp_ctx, &sighash, &holder_htlc_key, entropy_source));
}
Ok(ret)
}
/// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature.
pub(crate) fn get_signed_htlc_tx(&self, channel_parameters: &DirectedChannelTransactionParameters, htlc_index: usize, counterparty_signature: &Signature, signature: &Signature, preimage: &Option<PaymentPreimage>) -> Transaction {
let inner = self.inner;
let keys = &inner.keys;
let txid = inner.built.txid;
let this_htlc = &inner.htlcs[htlc_index];
assert!(this_htlc.transaction_output_index.is_some());
// if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction.
if !this_htlc.offered && preimage.is_none() { unreachable!(); }
// Further, we should never be provided the preimage for an HTLC-Timeout transaction.
if this_htlc.offered && preimage.is_some() { unreachable!(); }
let mut htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &self.channel_type_features, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &self.channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key);
htlc_tx.input[0].witness = chan_utils::build_htlc_input_witness(
signature, counterparty_signature, preimage, &htlc_redeemscript, &self.channel_type_features,
);
htlc_tx
}
}
/// Commitment transaction numbers which appear in the transactions themselves are XOR'd with a
/// shared secret first. This prevents on-chain observers from discovering how many commitment
/// transactions occurred in a channel before it was closed.
///
/// This function gets the shared secret from relevant channel public keys and can be used to
/// "decrypt" the commitment transaction number given a commitment transaction on-chain.
pub fn get_commitment_transaction_number_obscure_factor(
broadcaster_payment_basepoint: &PublicKey,
countersignatory_payment_basepoint: &PublicKey,
outbound_from_broadcaster: bool,
) -> u64 {
let mut sha = Sha256::engine();
if outbound_from_broadcaster {
sha.input(&broadcaster_payment_basepoint.serialize());
sha.input(&countersignatory_payment_basepoint.serialize());
} else {
sha.input(&countersignatory_payment_basepoint.serialize());
sha.input(&broadcaster_payment_basepoint.serialize());
}
let res = Sha256::from_engine(sha).into_inner();
((res[26] as u64) << 5 * 8)
| ((res[27] as u64) << 4 * 8)
| ((res[28] as u64) << 3 * 8)
| ((res[29] as u64) << 2 * 8)
| ((res[30] as u64) << 1 * 8)
| ((res[31] as u64) << 0 * 8)
}
#[cfg(test)]
mod tests {
use super::CounterpartyCommitmentSecrets;
use crate::{hex, chain};
use crate::prelude::*;
use crate::ln::chan_utils::{get_htlc_redeemscript, get_to_countersignatory_with_anchors_redeemscript, CommitmentTransaction, TxCreationKeys, ChannelTransactionParameters, CounterpartyChannelTransactionParameters, HTLCOutputInCommitment};
use bitcoin::secp256k1::{PublicKey, SecretKey, Secp256k1};
use crate::util::test_utils;
use crate::sign::{ChannelSigner, SignerProvider};
use bitcoin::{Network, Txid};
use bitcoin::hashes::Hash;
use crate::ln::PaymentHash;
use bitcoin::hashes::hex::ToHex;
use bitcoin::util::address::Payload;
use bitcoin::PublicKey as BitcoinPublicKey;
use crate::ln::features::ChannelTypeFeatures;
#[test]
fn test_anchors() {
let secp_ctx = Secp256k1::new();
let seed = [42; 32];
let network = Network::Testnet;
let keys_provider = test_utils::TestKeysInterface::new(&seed, network);
let signer = keys_provider.derive_channel_signer(3000, keys_provider.generate_channel_keys_id(false, 1_000_000, 0));
let counterparty_signer = keys_provider.derive_channel_signer(3000, keys_provider.generate_channel_keys_id(true, 1_000_000, 1));
let delayed_payment_base = &signer.pubkeys().delayed_payment_basepoint;
let per_commitment_secret = SecretKey::from_slice(&hex::decode("1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100").unwrap()[..]).unwrap();
let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
let htlc_basepoint = &signer.pubkeys().htlc_basepoint;
let holder_pubkeys = signer.pubkeys();
let counterparty_pubkeys = counterparty_signer.pubkeys();
let keys = TxCreationKeys::derive_new(&secp_ctx, &per_commitment_point, delayed_payment_base, htlc_basepoint, &counterparty_pubkeys.revocation_basepoint, &counterparty_pubkeys.htlc_basepoint);
let mut channel_parameters = ChannelTransactionParameters {
holder_pubkeys: holder_pubkeys.clone(),
holder_selected_contest_delay: 0,
is_outbound_from_holder: false,
counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: counterparty_pubkeys.clone(), selected_contest_delay: 0 }),
funding_outpoint: Some(chain::transaction::OutPoint { txid: Txid::all_zeros(), index: 0 }),
channel_type_features: ChannelTypeFeatures::only_static_remote_key(),
};
let mut htlcs_with_aux: Vec<(_, ())> = Vec::new();
// Generate broadcaster and counterparty outputs
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 1000, 2000,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 2);
assert_eq!(tx.built.transaction.output[1].script_pubkey, Payload::p2wpkh(&BitcoinPublicKey::new(counterparty_pubkeys.payment_point)).unwrap().script_pubkey());
// Generate broadcaster and counterparty outputs as well as two anchors
channel_parameters.channel_type_features = ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies();
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 1000, 2000,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 4);
assert_eq!(tx.built.transaction.output[3].script_pubkey, get_to_countersignatory_with_anchors_redeemscript(&counterparty_pubkeys.payment_point).to_v0_p2wsh());
// Generate broadcaster output and anchor
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 3000, 0,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 2);
// Generate counterparty output and anchor
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 0, 3000,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 2);
let received_htlc = HTLCOutputInCommitment {
offered: false,
amount_msat: 400000,
cltv_expiry: 100,
payment_hash: PaymentHash([42; 32]),
transaction_output_index: None,
};
let offered_htlc = HTLCOutputInCommitment {
offered: true,
amount_msat: 600000,
cltv_expiry: 100,
payment_hash: PaymentHash([43; 32]),
transaction_output_index: None,
};
// Generate broadcaster output and received and offered HTLC outputs, w/o anchors
channel_parameters.channel_type_features = ChannelTypeFeatures::only_static_remote_key();
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 3000, 0,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())],
&channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 3);
assert_eq!(tx.built.transaction.output[0].script_pubkey, get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh());
assert_eq!(tx.built.transaction.output[1].script_pubkey, get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh());
assert_eq!(get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh().to_hex(),
"0020e43a7c068553003fe68fcae424fb7b28ec5ce48cd8b6744b3945631389bad2fb");
assert_eq!(get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh().to_hex(),
"0020215d61bba56b19e9eadb6107f5a85d7f99c40f65992443f69229c290165bc00d");
// Generate broadcaster output and received and offered HTLC outputs, with anchors
channel_parameters.channel_type_features = ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies();
let tx = CommitmentTransaction::new_with_auxiliary_htlc_data(
0, 3000, 0,
holder_pubkeys.funding_pubkey,
counterparty_pubkeys.funding_pubkey,
keys.clone(), 1,
&mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())],
&channel_parameters.as_holder_broadcastable()
);
assert_eq!(tx.built.transaction.output.len(), 5);
assert_eq!(tx.built.transaction.output[2].script_pubkey, get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh());
assert_eq!(tx.built.transaction.output[3].script_pubkey, get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh());
assert_eq!(get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh().to_hex(),
"0020b70d0649c72b38756885c7a30908d912a7898dd5d79457a7280b8e9a20f3f2bc");
assert_eq!(get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh().to_hex(),
"002087a3faeb1950a469c0e2db4a79b093a41b9526e5a6fc6ef5cb949bde3be379c7");
}
#[test]
fn test_per_commitment_storage() {
// Test vectors from BOLT 3:
let mut secrets: Vec<[u8; 32]> = Vec::new();
let mut monitor;
macro_rules! test_secrets {
() => {
let mut idx = 281474976710655;
for secret in secrets.iter() {
assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
idx -= 1;
}
assert_eq!(monitor.get_min_seen_secret(), idx + 1);
assert!(monitor.get_secret(idx).is_none());
};
}
{
// insert_secret correct sequence
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
}
{
// insert_secret #1 incorrect
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
assert!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #2 incorrect (#1 derived from incorrect)
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #3 incorrect
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #4 incorrect (1,2,3 derived from incorrect)
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #5 incorrect
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
assert!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #6 incorrect (5 derived from incorrect)
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #7 incorrect
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
}
{
// insert_secret #8 incorrect
monitor = CounterpartyCommitmentSecrets::new();
secrets.clear();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
test_secrets!();
secrets.push([0; 32]);
secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err());
}
}
}