mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-25 23:30:59 +01:00
7273 lines
271 KiB
C
7273 lines
271 KiB
C
/* Text to put at the beginning of the generated file. Probably a license. */
|
|
|
|
/* Generated with cbindgen:0.14.4 */
|
|
|
|
/* Warning, this file is autogenerated by cbindgen. Don't modify this manually. */
|
|
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
/**
|
|
* An error when accessing the chain via [`Access`].
|
|
*
|
|
* [`Access`]: trait.Access.html
|
|
*/
|
|
typedef enum LDKAccessError {
|
|
/**
|
|
* The requested chain is unknown.
|
|
*/
|
|
LDKAccessError_UnknownChain,
|
|
/**
|
|
* The requested transaction doesn't exist or hasn't confirmed.
|
|
*/
|
|
LDKAccessError_UnknownTx,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKAccessError_Sentinel,
|
|
} LDKAccessError;
|
|
|
|
/**
|
|
* An error enum representing a failure to persist a channel monitor update.
|
|
*/
|
|
typedef enum LDKChannelMonitorUpdateErr {
|
|
/**
|
|
* Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
|
|
* our state failed, but is expected to succeed at some point in the future).
|
|
*
|
|
* Such a failure will \"freeze\" a channel, preventing us from revoking old states or
|
|
* submitting new commitment transactions to the counterparty. Once the update(s) which failed
|
|
* have been successfully applied, ChannelManager::channel_monitor_updated can be used to
|
|
* restore the channel to an operational state.
|
|
*
|
|
* Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
|
|
* you return a TemporaryFailure you must ensure that it is written to disk safely before
|
|
* writing out the latest ChannelManager state.
|
|
*
|
|
* Even when a channel has been \"frozen\" updates to the ChannelMonitor can continue to occur
|
|
* (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
|
|
* to claim it on this channel) and those updates must be applied wherever they can be. At
|
|
* least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
|
|
* be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
|
|
* the channel which would invalidate previous ChannelMonitors are not made when a channel has
|
|
* been \"frozen\".
|
|
*
|
|
* Note that even if updates made after TemporaryFailure succeed you must still call
|
|
* channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
|
|
* operation.
|
|
*
|
|
* Note that the update being processed here will not be replayed for you when you call
|
|
* ChannelManager::channel_monitor_updated, so you must store the update itself along
|
|
* with the persisted ChannelMonitor on your own local disk prior to returning a
|
|
* TemporaryFailure. You may, of course, employ a journaling approach, storing only the
|
|
* ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
|
|
* reload-time.
|
|
*
|
|
* For deployments where a copy of ChannelMonitors and other local state are backed up in a
|
|
* remote location (with local copies persisted immediately), it is anticipated that all
|
|
* updates will return TemporaryFailure until the remote copies could be updated.
|
|
*/
|
|
LDKChannelMonitorUpdateErr_TemporaryFailure,
|
|
/**
|
|
* Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
|
|
* different watchtower and cannot update with all watchtowers that were previously informed
|
|
* of this channel).
|
|
*
|
|
* At reception of this error, ChannelManager will force-close the channel and return at
|
|
* least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
|
|
* least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
|
|
* update must be rejected.
|
|
*
|
|
* This failure may also signal a failure to update the local persisted copy of one of
|
|
* the channel monitor instance.
|
|
*
|
|
* Note that even when you fail a holder commitment transaction update, you must store the
|
|
* update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
|
|
* broadcasts it (e.g distributed channel-monitor deployment)
|
|
*
|
|
* In case of distributed watchtowers deployment, the new version must be written to disk, as
|
|
* state may have been stored but rejected due to a block forcing a commitment broadcast. This
|
|
* storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
|
|
* lagging behind on block processing.
|
|
*/
|
|
LDKChannelMonitorUpdateErr_PermanentFailure,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKChannelMonitorUpdateErr_Sentinel,
|
|
} LDKChannelMonitorUpdateErr;
|
|
|
|
/**
|
|
* An enum that represents the speed at which we want a transaction to confirm used for feerate
|
|
* estimation.
|
|
*/
|
|
typedef enum LDKConfirmationTarget {
|
|
/**
|
|
* We are happy with this transaction confirming slowly when feerate drops some.
|
|
*/
|
|
LDKConfirmationTarget_Background,
|
|
/**
|
|
* We'd like this transaction to confirm without major delay, but 12-18 blocks is fine.
|
|
*/
|
|
LDKConfirmationTarget_Normal,
|
|
/**
|
|
* We'd like this transaction to confirm in the next few blocks.
|
|
*/
|
|
LDKConfirmationTarget_HighPriority,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKConfirmationTarget_Sentinel,
|
|
} LDKConfirmationTarget;
|
|
|
|
/**
|
|
* An enum representing the available verbosity levels of the logger.
|
|
*/
|
|
typedef enum LDKLevel {
|
|
/**
|
|
*Designates logger being silent
|
|
*/
|
|
LDKLevel_Off,
|
|
/**
|
|
* Designates very serious errors
|
|
*/
|
|
LDKLevel_Error,
|
|
/**
|
|
* Designates hazardous situations
|
|
*/
|
|
LDKLevel_Warn,
|
|
/**
|
|
* Designates useful information
|
|
*/
|
|
LDKLevel_Info,
|
|
/**
|
|
* Designates lower priority information
|
|
*/
|
|
LDKLevel_Debug,
|
|
/**
|
|
* Designates very low priority, often extremely verbose, information
|
|
*/
|
|
LDKLevel_Trace,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKLevel_Sentinel,
|
|
} LDKLevel;
|
|
|
|
typedef enum LDKNetwork {
|
|
LDKNetwork_Bitcoin,
|
|
LDKNetwork_Testnet,
|
|
LDKNetwork_Regtest,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKNetwork_Sentinel,
|
|
} LDKNetwork;
|
|
|
|
typedef enum LDKSecp256k1Error {
|
|
LDKSecp256k1Error_IncorrectSignature,
|
|
LDKSecp256k1Error_InvalidMessage,
|
|
LDKSecp256k1Error_InvalidPublicKey,
|
|
LDKSecp256k1Error_InvalidSignature,
|
|
LDKSecp256k1Error_InvalidSecretKey,
|
|
LDKSecp256k1Error_InvalidRecoveryId,
|
|
LDKSecp256k1Error_InvalidTweak,
|
|
LDKSecp256k1Error_NotEnoughMemory,
|
|
LDKSecp256k1Error_CallbackPanicked,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKSecp256k1Error_Sentinel,
|
|
} LDKSecp256k1Error;
|
|
|
|
/**
|
|
* A serialized transaction, in (pointer, length) form.
|
|
*
|
|
* This type optionally owns its own memory, and thus the semantics around access change based on
|
|
* the `data_is_owned` flag. If `data_is_owned` is set, you must call `Transaction_free` to free
|
|
* the underlying buffer before the object goes out of scope. If `data_is_owned` is not set, any
|
|
* access to the buffer after the scope in which the object was provided to you is invalid. eg,
|
|
* access after you return from the call in which a `!data_is_owned` `Transaction` is provided to
|
|
* you would be invalid.
|
|
*
|
|
* Note that, while it may change in the future, because transactions on the Rust side are stored
|
|
* in a deserialized form, all `Transaction`s generated on the Rust side will have `data_is_owned`
|
|
* set. Similarly, while it may change in the future, all `Transaction`s you pass to Rust may have
|
|
* `data_is_owned` either set or unset at your discretion.
|
|
*/
|
|
typedef struct LDKTransaction {
|
|
/**
|
|
* This is non-const for your convenience, an object passed to Rust is never written to.
|
|
*/
|
|
uint8_t *data;
|
|
uintptr_t datalen;
|
|
bool data_is_owned;
|
|
} LDKTransaction;
|
|
|
|
typedef struct LDKCVecTempl_u8 {
|
|
uint8_t *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_u8;
|
|
|
|
typedef LDKCVecTempl_u8 LDKCVec_u8Z;
|
|
|
|
/**
|
|
* A transaction output including a scriptPubKey and value.
|
|
* This type *does* own its own memory, so must be free'd appropriately.
|
|
*/
|
|
typedef struct LDKTxOut {
|
|
LDKCVec_u8Z script_pubkey;
|
|
uint64_t value;
|
|
} LDKTxOut;
|
|
|
|
typedef struct LDKC2TupleTempl_usize__Transaction {
|
|
uintptr_t a;
|
|
LDKTransaction b;
|
|
} LDKC2TupleTempl_usize__Transaction;
|
|
|
|
typedef LDKC2TupleTempl_usize__Transaction LDKC2Tuple_usizeTransactionZ;
|
|
|
|
typedef union LDKCResultPtr_u8__ChannelMonitorUpdateErr {
|
|
uint8_t *result;
|
|
LDKChannelMonitorUpdateErr *err;
|
|
} LDKCResultPtr_u8__ChannelMonitorUpdateErr;
|
|
|
|
typedef struct LDKCResultTempl_u8__ChannelMonitorUpdateErr {
|
|
LDKCResultPtr_u8__ChannelMonitorUpdateErr contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_u8__ChannelMonitorUpdateErr;
|
|
|
|
typedef LDKCResultTempl_u8__ChannelMonitorUpdateErr LDKCResult_NoneChannelMonitorUpdateErrZ;
|
|
|
|
|
|
|
|
/**
|
|
* General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
|
|
* inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
|
|
* means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
|
|
* corrupted.
|
|
* Contains a developer-readable error message.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKMonitorUpdateError {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeMonitorUpdateError *inner;
|
|
bool is_owned;
|
|
} LDKMonitorUpdateError;
|
|
|
|
typedef union LDKCResultPtr_u8__MonitorUpdateError {
|
|
uint8_t *result;
|
|
LDKMonitorUpdateError *err;
|
|
} LDKCResultPtr_u8__MonitorUpdateError;
|
|
|
|
typedef struct LDKCResultTempl_u8__MonitorUpdateError {
|
|
LDKCResultPtr_u8__MonitorUpdateError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_u8__MonitorUpdateError;
|
|
|
|
typedef LDKCResultTempl_u8__MonitorUpdateError LDKCResult_NoneMonitorUpdateErrorZ;
|
|
|
|
|
|
|
|
/**
|
|
* A reference to a transaction output.
|
|
*
|
|
* Differs from bitcoin::blockdata::transaction::OutPoint as the index is a u16 instead of u32
|
|
* due to LN's restrictions on index values. Should reduce (possibly) unsafe conversions this way.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKOutPoint {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeOutPoint *inner;
|
|
bool is_owned;
|
|
} LDKOutPoint;
|
|
|
|
typedef struct LDKC2TupleTempl_OutPoint__CVec_u8Z {
|
|
LDKOutPoint a;
|
|
LDKCVec_u8Z b;
|
|
} LDKC2TupleTempl_OutPoint__CVec_u8Z;
|
|
|
|
typedef LDKC2TupleTempl_OutPoint__CVec_u8Z LDKC2Tuple_OutPointScriptZ;
|
|
|
|
typedef struct LDKC2TupleTempl_u32__TxOut {
|
|
uint32_t a;
|
|
LDKTxOut b;
|
|
} LDKC2TupleTempl_u32__TxOut;
|
|
|
|
typedef LDKC2TupleTempl_u32__TxOut LDKC2Tuple_u32TxOutZ;
|
|
|
|
/**
|
|
* Arbitrary 32 bytes, which could represent one of a few different things. You probably want to
|
|
* look up the corresponding function in rust-lightning's docs.
|
|
*/
|
|
typedef struct LDKThirtyTwoBytes {
|
|
uint8_t data[32];
|
|
} LDKThirtyTwoBytes;
|
|
|
|
typedef struct LDKCVecTempl_C2TupleTempl_u32__TxOut {
|
|
LDKC2TupleTempl_u32__TxOut *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_C2TupleTempl_u32__TxOut;
|
|
|
|
typedef struct LDKC2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut {
|
|
LDKThirtyTwoBytes a;
|
|
LDKCVecTempl_C2TupleTempl_u32__TxOut b;
|
|
} LDKC2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut;
|
|
|
|
typedef LDKC2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut LDKC2Tuple_TxidCVec_C2Tuple_u32TxOutZZZ;
|
|
|
|
typedef LDKCVecTempl_C2TupleTempl_u32__TxOut LDKCVec_C2Tuple_u32TxOutZZ;
|
|
|
|
typedef struct LDKC2TupleTempl_u64__u64 {
|
|
uint64_t a;
|
|
uint64_t b;
|
|
} LDKC2TupleTempl_u64__u64;
|
|
|
|
typedef LDKC2TupleTempl_u64__u64 LDKC2Tuple_u64u64Z;
|
|
|
|
typedef struct LDKSignature {
|
|
uint8_t compact_form[64];
|
|
} LDKSignature;
|
|
|
|
typedef struct LDKCVecTempl_Signature {
|
|
LDKSignature *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_Signature;
|
|
|
|
typedef struct LDKC2TupleTempl_Signature__CVecTempl_Signature {
|
|
LDKSignature a;
|
|
LDKCVecTempl_Signature b;
|
|
} LDKC2TupleTempl_Signature__CVecTempl_Signature;
|
|
|
|
typedef LDKC2TupleTempl_Signature__CVecTempl_Signature LDKC2Tuple_SignatureCVec_SignatureZZ;
|
|
|
|
typedef LDKCVecTempl_Signature LDKCVec_SignatureZ;
|
|
|
|
typedef union LDKCResultPtr_C2TupleTempl_Signature__CVecTempl_Signature________u8 {
|
|
LDKC2TupleTempl_Signature__CVecTempl_Signature *result;
|
|
uint8_t *err;
|
|
} LDKCResultPtr_C2TupleTempl_Signature__CVecTempl_Signature________u8;
|
|
|
|
typedef struct LDKCResultTempl_C2TupleTempl_Signature__CVecTempl_Signature________u8 {
|
|
LDKCResultPtr_C2TupleTempl_Signature__CVecTempl_Signature________u8 contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_C2TupleTempl_Signature__CVecTempl_Signature________u8;
|
|
|
|
typedef LDKCResultTempl_C2TupleTempl_Signature__CVecTempl_Signature________u8 LDKCResult_C2Tuple_SignatureCVec_SignatureZZNoneZ;
|
|
|
|
typedef union LDKCResultPtr_Signature__u8 {
|
|
LDKSignature *result;
|
|
uint8_t *err;
|
|
} LDKCResultPtr_Signature__u8;
|
|
|
|
typedef struct LDKCResultTempl_Signature__u8 {
|
|
LDKCResultPtr_Signature__u8 contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_Signature__u8;
|
|
|
|
typedef LDKCResultTempl_Signature__u8 LDKCResult_SignatureNoneZ;
|
|
|
|
typedef union LDKCResultPtr_CVecTempl_Signature_____u8 {
|
|
LDKCVecTempl_Signature *result;
|
|
uint8_t *err;
|
|
} LDKCResultPtr_CVecTempl_Signature_____u8;
|
|
|
|
typedef struct LDKCResultTempl_CVecTempl_Signature_____u8 {
|
|
LDKCResultPtr_CVecTempl_Signature_____u8 contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_CVecTempl_Signature_____u8;
|
|
|
|
typedef LDKCResultTempl_CVecTempl_Signature_____u8 LDKCResult_CVec_SignatureZNoneZ;
|
|
|
|
/**
|
|
* A Rust str object, ie a reference to a UTF8-valid string.
|
|
* This is *not* null-terminated so cannot be used directly as a C string!
|
|
*/
|
|
typedef struct LDKStr {
|
|
const uint8_t *chars;
|
|
uintptr_t len;
|
|
} LDKStr;
|
|
|
|
/**
|
|
* Indicates an error on the client's part (usually some variant of attempting to use too-low or
|
|
* too-high values)
|
|
*/
|
|
typedef enum LDKAPIError_Tag {
|
|
/**
|
|
* Indicates the API was wholly misused (see err for more). Cases where these can be returned
|
|
* are documented, but generally indicates some precondition of a function was violated.
|
|
*/
|
|
LDKAPIError_APIMisuseError,
|
|
/**
|
|
* Due to a high feerate, we were unable to complete the request.
|
|
* For example, this may be returned if the feerate implies we cannot open a channel at the
|
|
* requested value, but opening a larger channel would succeed.
|
|
*/
|
|
LDKAPIError_FeeRateTooHigh,
|
|
/**
|
|
* A malformed Route was provided (eg overflowed value, node id mismatch, overly-looped route,
|
|
* too-many-hops, etc).
|
|
*/
|
|
LDKAPIError_RouteError,
|
|
/**
|
|
* We were unable to complete the request as the Channel required to do so is unable to
|
|
* complete the request (or was not found). This can take many forms, including disconnected
|
|
* peer, channel at capacity, channel shutting down, etc.
|
|
*/
|
|
LDKAPIError_ChannelUnavailable,
|
|
/**
|
|
* An attempt to call watch/update_channel returned an Err (ie you did this!), causing the
|
|
* attempted action to fail.
|
|
*/
|
|
LDKAPIError_MonitorUpdateFailed,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKAPIError_Sentinel,
|
|
} LDKAPIError_Tag;
|
|
|
|
typedef struct LDKAPIError_LDKAPIMisuseError_Body {
|
|
LDKCVec_u8Z err;
|
|
} LDKAPIError_LDKAPIMisuseError_Body;
|
|
|
|
typedef struct LDKAPIError_LDKFeeRateTooHigh_Body {
|
|
LDKCVec_u8Z err;
|
|
uint32_t feerate;
|
|
} LDKAPIError_LDKFeeRateTooHigh_Body;
|
|
|
|
typedef struct LDKAPIError_LDKRouteError_Body {
|
|
LDKStr err;
|
|
} LDKAPIError_LDKRouteError_Body;
|
|
|
|
typedef struct LDKAPIError_LDKChannelUnavailable_Body {
|
|
LDKCVec_u8Z err;
|
|
} LDKAPIError_LDKChannelUnavailable_Body;
|
|
|
|
typedef struct LDKAPIError {
|
|
LDKAPIError_Tag tag;
|
|
union {
|
|
LDKAPIError_LDKAPIMisuseError_Body api_misuse_error;
|
|
LDKAPIError_LDKFeeRateTooHigh_Body fee_rate_too_high;
|
|
LDKAPIError_LDKRouteError_Body route_error;
|
|
LDKAPIError_LDKChannelUnavailable_Body channel_unavailable;
|
|
};
|
|
} LDKAPIError;
|
|
|
|
typedef union LDKCResultPtr_u8__APIError {
|
|
uint8_t *result;
|
|
LDKAPIError *err;
|
|
} LDKCResultPtr_u8__APIError;
|
|
|
|
typedef struct LDKCResultTempl_u8__APIError {
|
|
LDKCResultPtr_u8__APIError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_u8__APIError;
|
|
|
|
typedef LDKCResultTempl_u8__APIError LDKCResult_NoneAPIErrorZ;
|
|
|
|
|
|
|
|
/**
|
|
* If a payment fails to send, it can be in one of several states. This enum is returned as the
|
|
* Err() type describing which state the payment is in, see the description of individual enum
|
|
* states for more.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPaymentSendFailure {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePaymentSendFailure *inner;
|
|
bool is_owned;
|
|
} LDKPaymentSendFailure;
|
|
|
|
typedef union LDKCResultPtr_u8__PaymentSendFailure {
|
|
uint8_t *result;
|
|
LDKPaymentSendFailure *err;
|
|
} LDKCResultPtr_u8__PaymentSendFailure;
|
|
|
|
typedef struct LDKCResultTempl_u8__PaymentSendFailure {
|
|
LDKCResultPtr_u8__PaymentSendFailure contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_u8__PaymentSendFailure;
|
|
|
|
typedef LDKCResultTempl_u8__PaymentSendFailure LDKCResult_NonePaymentSendFailureZ;
|
|
|
|
|
|
|
|
/**
|
|
* A channel_announcement message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelAnnouncement {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelAnnouncement *inner;
|
|
bool is_owned;
|
|
} LDKChannelAnnouncement;
|
|
|
|
|
|
|
|
/**
|
|
* A channel_update message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelUpdate {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelUpdate *inner;
|
|
bool is_owned;
|
|
} LDKChannelUpdate;
|
|
|
|
typedef struct LDKC3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate {
|
|
LDKChannelAnnouncement a;
|
|
LDKChannelUpdate b;
|
|
LDKChannelUpdate c;
|
|
} LDKC3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate;
|
|
|
|
typedef LDKC3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate LDKC3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZ;
|
|
|
|
|
|
|
|
/**
|
|
* Error for PeerManager errors. If you get one of these, you must disconnect the socket and
|
|
* generate no further read_event/write_buffer_space_avail calls for the descriptor, only
|
|
* triggering a single socket_disconnected call (unless it was provided in response to a
|
|
* new_*_connection event, in which case no such socket_disconnected() must be called and the
|
|
* socket silently disconencted).
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPeerHandleError {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePeerHandleError *inner;
|
|
bool is_owned;
|
|
} LDKPeerHandleError;
|
|
|
|
typedef union LDKCResultPtr_u8__PeerHandleError {
|
|
uint8_t *result;
|
|
LDKPeerHandleError *err;
|
|
} LDKCResultPtr_u8__PeerHandleError;
|
|
|
|
typedef struct LDKCResultTempl_u8__PeerHandleError {
|
|
LDKCResultPtr_u8__PeerHandleError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_u8__PeerHandleError;
|
|
|
|
typedef LDKCResultTempl_u8__PeerHandleError LDKCResult_NonePeerHandleErrorZ;
|
|
|
|
|
|
|
|
/**
|
|
* Information about an HTLC as it appears in a commitment transaction
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKHTLCOutputInCommitment {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeHTLCOutputInCommitment *inner;
|
|
bool is_owned;
|
|
} LDKHTLCOutputInCommitment;
|
|
|
|
typedef struct LDKC2TupleTempl_HTLCOutputInCommitment__Signature {
|
|
LDKHTLCOutputInCommitment a;
|
|
LDKSignature b;
|
|
} LDKC2TupleTempl_HTLCOutputInCommitment__Signature;
|
|
|
|
typedef LDKC2TupleTempl_HTLCOutputInCommitment__Signature LDKC2Tuple_HTLCOutputInCommitmentSignatureZ;
|
|
|
|
typedef struct LDKPublicKey {
|
|
uint8_t compressed_form[33];
|
|
} LDKPublicKey;
|
|
|
|
/**
|
|
* When on-chain outputs are created by rust-lightning (which our counterparty is not able to
|
|
* claim at any point in the future) an event is generated which you must track and be able to
|
|
* spend on-chain. The information needed to do this is provided in this enum, including the
|
|
* outpoint describing which txid and output index is available, the full output which exists at
|
|
* that txid/index, and any keys or other information required to sign.
|
|
*/
|
|
typedef enum LDKSpendableOutputDescriptor_Tag {
|
|
/**
|
|
* An output to a script which was provided via KeysInterface, thus you should already know
|
|
* how to spend it. No keys are provided as rust-lightning was never given any keys - only the
|
|
* script_pubkey as it appears in the output.
|
|
* These may include outputs from a transaction punishing our counterparty or claiming an HTLC
|
|
* on-chain using the payment preimage or after it has timed out.
|
|
*/
|
|
LDKSpendableOutputDescriptor_StaticOutput,
|
|
/**
|
|
* An output to a P2WSH script which can be spent with a single signature after a CSV delay.
|
|
*
|
|
* The witness in the spending input should be:
|
|
* <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
|
|
*
|
|
* Note that the nSequence field in the spending input must be set to to_self_delay
|
|
* (which means the transaction is not broadcastable until at least to_self_delay
|
|
* blocks after the outpoint confirms).
|
|
*
|
|
* These are generally the result of a \"revocable\" output to us, spendable only by us unless
|
|
* it is an output from an old state which we broadcast (which should never happen).
|
|
*
|
|
* To derive the delayed_payment key which is used to sign for this input, you must pass the
|
|
* holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
|
|
* ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
|
|
* chan_utils::derive_private_key. The public key can be generated without the secret key
|
|
* using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
|
|
* ChannelKeys::pubkeys().
|
|
*
|
|
* To derive the revocation_pubkey provided here (which is used in the witness
|
|
* script generation), you must pass the counterparty revocation_basepoint (which appears in the
|
|
* call to ChannelKeys::on_accept) and the provided per_commitment point
|
|
* to chan_utils::derive_public_revocation_key.
|
|
*
|
|
* The witness script which is hashed and included in the output script_pubkey may be
|
|
* regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
|
|
* (derived as above), and the to_self_delay contained here to
|
|
* chan_utils::get_revokeable_redeemscript.
|
|
*/
|
|
LDKSpendableOutputDescriptor_DynamicOutputP2WSH,
|
|
/**
|
|
* An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
|
|
* corresponds to the public key in ChannelKeys::pubkeys().payment_point).
|
|
* The witness in the spending input, is, thus, simply:
|
|
* <BIP 143 signature> <payment key>
|
|
*
|
|
* These are generally the result of our counterparty having broadcast the current state,
|
|
* allowing us to claim the non-HTLC-encumbered outputs immediately.
|
|
*/
|
|
LDKSpendableOutputDescriptor_StaticOutputCounterpartyPayment,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKSpendableOutputDescriptor_Sentinel,
|
|
} LDKSpendableOutputDescriptor_Tag;
|
|
|
|
typedef struct LDKSpendableOutputDescriptor_LDKStaticOutput_Body {
|
|
LDKOutPoint outpoint;
|
|
LDKTxOut output;
|
|
} LDKSpendableOutputDescriptor_LDKStaticOutput_Body;
|
|
|
|
typedef struct LDKSpendableOutputDescriptor_LDKDynamicOutputP2WSH_Body {
|
|
LDKOutPoint outpoint;
|
|
LDKPublicKey per_commitment_point;
|
|
uint16_t to_self_delay;
|
|
LDKTxOut output;
|
|
LDKC2Tuple_u64u64Z key_derivation_params;
|
|
LDKPublicKey revocation_pubkey;
|
|
} LDKSpendableOutputDescriptor_LDKDynamicOutputP2WSH_Body;
|
|
|
|
typedef struct LDKSpendableOutputDescriptor_LDKStaticOutputCounterpartyPayment_Body {
|
|
LDKOutPoint outpoint;
|
|
LDKTxOut output;
|
|
LDKC2Tuple_u64u64Z key_derivation_params;
|
|
} LDKSpendableOutputDescriptor_LDKStaticOutputCounterpartyPayment_Body;
|
|
|
|
typedef struct LDKSpendableOutputDescriptor {
|
|
LDKSpendableOutputDescriptor_Tag tag;
|
|
union {
|
|
LDKSpendableOutputDescriptor_LDKStaticOutput_Body static_output;
|
|
LDKSpendableOutputDescriptor_LDKDynamicOutputP2WSH_Body dynamic_output_p2wsh;
|
|
LDKSpendableOutputDescriptor_LDKStaticOutputCounterpartyPayment_Body static_output_counterparty_payment;
|
|
};
|
|
} LDKSpendableOutputDescriptor;
|
|
|
|
typedef struct LDKCVecTempl_SpendableOutputDescriptor {
|
|
LDKSpendableOutputDescriptor *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_SpendableOutputDescriptor;
|
|
|
|
typedef LDKCVecTempl_SpendableOutputDescriptor LDKCVec_SpendableOutputDescriptorZ;
|
|
|
|
/**
|
|
* An Event which you should probably take some action in response to.
|
|
*
|
|
* Note that while Writeable and Readable are implemented for Event, you probably shouldn't use
|
|
* them directly as they don't round-trip exactly (for example FundingGenerationReady is never
|
|
* written as it makes no sense to respond to it after reconnecting to peers).
|
|
*/
|
|
typedef enum LDKEvent_Tag {
|
|
/**
|
|
* Used to indicate that the client should generate a funding transaction with the given
|
|
* parameters and then call ChannelManager::funding_transaction_generated.
|
|
* Generated in ChannelManager message handling.
|
|
* Note that *all inputs* in the funding transaction must spend SegWit outputs or your
|
|
* counterparty can steal your funds!
|
|
*/
|
|
LDKEvent_FundingGenerationReady,
|
|
/**
|
|
* Used to indicate that the client may now broadcast the funding transaction it created for a
|
|
* channel. Broadcasting such a transaction prior to this event may lead to our counterparty
|
|
* trivially stealing all funds in the funding transaction!
|
|
*/
|
|
LDKEvent_FundingBroadcastSafe,
|
|
/**
|
|
* Indicates we've received money! Just gotta dig out that payment preimage and feed it to
|
|
* ChannelManager::claim_funds to get it....
|
|
* Note that if the preimage is not known or the amount paid is incorrect, you should call
|
|
* ChannelManager::fail_htlc_backwards to free up resources for this HTLC and avoid
|
|
* network congestion.
|
|
* The amount paid should be considered 'incorrect' when it is less than or more than twice
|
|
* the amount expected.
|
|
* If you fail to call either ChannelManager::claim_funds or
|
|
* ChannelManager::fail_htlc_backwards within the HTLC's timeout, the HTLC will be
|
|
* automatically failed.
|
|
*/
|
|
LDKEvent_PaymentReceived,
|
|
/**
|
|
* Indicates an outbound payment we made succeeded (ie it made it all the way to its target
|
|
* and we got back the payment preimage for it).
|
|
* Note that duplicative PaymentSent Events may be generated - it is your responsibility to
|
|
* deduplicate them by payment_preimage (which MUST be unique)!
|
|
*/
|
|
LDKEvent_PaymentSent,
|
|
/**
|
|
* Indicates an outbound payment we made failed. Probably some intermediary node dropped
|
|
* something. You may wish to retry with a different route.
|
|
* Note that duplicative PaymentFailed Events may be generated - it is your responsibility to
|
|
* deduplicate them by payment_hash (which MUST be unique)!
|
|
*/
|
|
LDKEvent_PaymentFailed,
|
|
/**
|
|
* Used to indicate that ChannelManager::process_pending_htlc_forwards should be called at a
|
|
* time in the future.
|
|
*/
|
|
LDKEvent_PendingHTLCsForwardable,
|
|
/**
|
|
* Used to indicate that an output was generated on-chain which you should know how to spend.
|
|
* Such an output will *not* ever be spent by rust-lightning, and are not at risk of your
|
|
* counterparty spending them due to some kind of timeout. Thus, you need to store them
|
|
* somewhere and spend them when you create on-chain transactions.
|
|
*/
|
|
LDKEvent_SpendableOutputs,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKEvent_Sentinel,
|
|
} LDKEvent_Tag;
|
|
|
|
typedef struct LDKEvent_LDKFundingGenerationReady_Body {
|
|
LDKThirtyTwoBytes temporary_channel_id;
|
|
uint64_t channel_value_satoshis;
|
|
LDKCVec_u8Z output_script;
|
|
uint64_t user_channel_id;
|
|
} LDKEvent_LDKFundingGenerationReady_Body;
|
|
|
|
typedef struct LDKEvent_LDKFundingBroadcastSafe_Body {
|
|
LDKOutPoint funding_txo;
|
|
uint64_t user_channel_id;
|
|
} LDKEvent_LDKFundingBroadcastSafe_Body;
|
|
|
|
typedef struct LDKEvent_LDKPaymentReceived_Body {
|
|
LDKThirtyTwoBytes payment_hash;
|
|
LDKThirtyTwoBytes payment_secret;
|
|
uint64_t amt;
|
|
} LDKEvent_LDKPaymentReceived_Body;
|
|
|
|
typedef struct LDKEvent_LDKPaymentSent_Body {
|
|
LDKThirtyTwoBytes payment_preimage;
|
|
} LDKEvent_LDKPaymentSent_Body;
|
|
|
|
typedef struct LDKEvent_LDKPaymentFailed_Body {
|
|
LDKThirtyTwoBytes payment_hash;
|
|
bool rejected_by_dest;
|
|
} LDKEvent_LDKPaymentFailed_Body;
|
|
|
|
typedef struct LDKEvent_LDKPendingHTLCsForwardable_Body {
|
|
uint64_t time_forwardable;
|
|
} LDKEvent_LDKPendingHTLCsForwardable_Body;
|
|
|
|
typedef struct LDKEvent_LDKSpendableOutputs_Body {
|
|
LDKCVec_SpendableOutputDescriptorZ outputs;
|
|
} LDKEvent_LDKSpendableOutputs_Body;
|
|
|
|
typedef struct LDKEvent {
|
|
LDKEvent_Tag tag;
|
|
union {
|
|
LDKEvent_LDKFundingGenerationReady_Body funding_generation_ready;
|
|
LDKEvent_LDKFundingBroadcastSafe_Body funding_broadcast_safe;
|
|
LDKEvent_LDKPaymentReceived_Body payment_received;
|
|
LDKEvent_LDKPaymentSent_Body payment_sent;
|
|
LDKEvent_LDKPaymentFailed_Body payment_failed;
|
|
LDKEvent_LDKPendingHTLCsForwardable_Body pending_htl_cs_forwardable;
|
|
LDKEvent_LDKSpendableOutputs_Body spendable_outputs;
|
|
};
|
|
} LDKEvent;
|
|
|
|
|
|
|
|
/**
|
|
* An accept_channel message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKAcceptChannel {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeAcceptChannel *inner;
|
|
bool is_owned;
|
|
} LDKAcceptChannel;
|
|
|
|
|
|
|
|
/**
|
|
* An open_channel message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKOpenChannel {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeOpenChannel *inner;
|
|
bool is_owned;
|
|
} LDKOpenChannel;
|
|
|
|
|
|
|
|
/**
|
|
* A funding_created message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKFundingCreated {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeFundingCreated *inner;
|
|
bool is_owned;
|
|
} LDKFundingCreated;
|
|
|
|
|
|
|
|
/**
|
|
* A funding_signed message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKFundingSigned {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeFundingSigned *inner;
|
|
bool is_owned;
|
|
} LDKFundingSigned;
|
|
|
|
|
|
|
|
/**
|
|
* A funding_locked message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKFundingLocked {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeFundingLocked *inner;
|
|
bool is_owned;
|
|
} LDKFundingLocked;
|
|
|
|
|
|
|
|
/**
|
|
* An announcement_signatures message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKAnnouncementSignatures {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeAnnouncementSignatures *inner;
|
|
bool is_owned;
|
|
} LDKAnnouncementSignatures;
|
|
|
|
|
|
|
|
/**
|
|
* Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
|
|
* transaction updates if they were pending.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKCommitmentUpdate {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeCommitmentUpdate *inner;
|
|
bool is_owned;
|
|
} LDKCommitmentUpdate;
|
|
|
|
|
|
|
|
/**
|
|
* A revoke_and_ack message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKRevokeAndACK {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeRevokeAndACK *inner;
|
|
bool is_owned;
|
|
} LDKRevokeAndACK;
|
|
|
|
|
|
|
|
/**
|
|
* A closing_signed message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKClosingSigned {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeClosingSigned *inner;
|
|
bool is_owned;
|
|
} LDKClosingSigned;
|
|
|
|
|
|
|
|
/**
|
|
* A shutdown message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKShutdown {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeShutdown *inner;
|
|
bool is_owned;
|
|
} LDKShutdown;
|
|
|
|
|
|
|
|
/**
|
|
* A channel_reestablish message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelReestablish {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelReestablish *inner;
|
|
bool is_owned;
|
|
} LDKChannelReestablish;
|
|
|
|
|
|
|
|
/**
|
|
* A node_announcement message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNodeAnnouncement {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNodeAnnouncement *inner;
|
|
bool is_owned;
|
|
} LDKNodeAnnouncement;
|
|
|
|
|
|
|
|
/**
|
|
* An error message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKErrorMessage {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeErrorMessage *inner;
|
|
bool is_owned;
|
|
} LDKErrorMessage;
|
|
|
|
/**
|
|
* Used to put an error message in a LightningError
|
|
*/
|
|
typedef enum LDKErrorAction_Tag {
|
|
/**
|
|
* The peer took some action which made us think they were useless. Disconnect them.
|
|
*/
|
|
LDKErrorAction_DisconnectPeer,
|
|
/**
|
|
* The peer did something harmless that we weren't able to process, just log and ignore
|
|
*/
|
|
LDKErrorAction_IgnoreError,
|
|
/**
|
|
* The peer did something incorrect. Tell them.
|
|
*/
|
|
LDKErrorAction_SendErrorMessage,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKErrorAction_Sentinel,
|
|
} LDKErrorAction_Tag;
|
|
|
|
typedef struct LDKErrorAction_LDKDisconnectPeer_Body {
|
|
LDKErrorMessage msg;
|
|
} LDKErrorAction_LDKDisconnectPeer_Body;
|
|
|
|
typedef struct LDKErrorAction_LDKSendErrorMessage_Body {
|
|
LDKErrorMessage msg;
|
|
} LDKErrorAction_LDKSendErrorMessage_Body;
|
|
|
|
typedef struct LDKErrorAction {
|
|
LDKErrorAction_Tag tag;
|
|
union {
|
|
LDKErrorAction_LDKDisconnectPeer_Body disconnect_peer;
|
|
LDKErrorAction_LDKSendErrorMessage_Body send_error_message;
|
|
};
|
|
} LDKErrorAction;
|
|
|
|
/**
|
|
* The information we received from a peer along the route of a payment we originated. This is
|
|
* returned by ChannelMessageHandler::handle_update_fail_htlc to be passed into
|
|
* RoutingMessageHandler::handle_htlc_fail_channel_update to update our network map.
|
|
*/
|
|
typedef enum LDKHTLCFailChannelUpdate_Tag {
|
|
/**
|
|
* We received an error which included a full ChannelUpdate message.
|
|
*/
|
|
LDKHTLCFailChannelUpdate_ChannelUpdateMessage,
|
|
/**
|
|
* We received an error which indicated only that a channel has been closed
|
|
*/
|
|
LDKHTLCFailChannelUpdate_ChannelClosed,
|
|
/**
|
|
* We received an error which indicated only that a node has failed
|
|
*/
|
|
LDKHTLCFailChannelUpdate_NodeFailure,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKHTLCFailChannelUpdate_Sentinel,
|
|
} LDKHTLCFailChannelUpdate_Tag;
|
|
|
|
typedef struct LDKHTLCFailChannelUpdate_LDKChannelUpdateMessage_Body {
|
|
LDKChannelUpdate msg;
|
|
} LDKHTLCFailChannelUpdate_LDKChannelUpdateMessage_Body;
|
|
|
|
typedef struct LDKHTLCFailChannelUpdate_LDKChannelClosed_Body {
|
|
uint64_t short_channel_id;
|
|
bool is_permanent;
|
|
} LDKHTLCFailChannelUpdate_LDKChannelClosed_Body;
|
|
|
|
typedef struct LDKHTLCFailChannelUpdate_LDKNodeFailure_Body {
|
|
LDKPublicKey node_id;
|
|
bool is_permanent;
|
|
} LDKHTLCFailChannelUpdate_LDKNodeFailure_Body;
|
|
|
|
typedef struct LDKHTLCFailChannelUpdate {
|
|
LDKHTLCFailChannelUpdate_Tag tag;
|
|
union {
|
|
LDKHTLCFailChannelUpdate_LDKChannelUpdateMessage_Body channel_update_message;
|
|
LDKHTLCFailChannelUpdate_LDKChannelClosed_Body channel_closed;
|
|
LDKHTLCFailChannelUpdate_LDKNodeFailure_Body node_failure;
|
|
};
|
|
} LDKHTLCFailChannelUpdate;
|
|
|
|
/**
|
|
* An event generated by ChannelManager which indicates a message should be sent to a peer (or
|
|
* broadcast to most peers).
|
|
* These events are handled by PeerManager::process_events if you are using a PeerManager.
|
|
*/
|
|
typedef enum LDKMessageSendEvent_Tag {
|
|
/**
|
|
* Used to indicate that we've accepted a channel open and should send the accept_channel
|
|
* message provided to the given peer.
|
|
*/
|
|
LDKMessageSendEvent_SendAcceptChannel,
|
|
/**
|
|
* Used to indicate that we've initiated a channel open and should send the open_channel
|
|
* message provided to the given peer.
|
|
*/
|
|
LDKMessageSendEvent_SendOpenChannel,
|
|
/**
|
|
* Used to indicate that a funding_created message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendFundingCreated,
|
|
/**
|
|
* Used to indicate that a funding_signed message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendFundingSigned,
|
|
/**
|
|
* Used to indicate that a funding_locked message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendFundingLocked,
|
|
/**
|
|
* Used to indicate that an announcement_signatures message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendAnnouncementSignatures,
|
|
/**
|
|
* Used to indicate that a series of HTLC update messages, as well as a commitment_signed
|
|
* message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_UpdateHTLCs,
|
|
/**
|
|
* Used to indicate that a revoke_and_ack message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendRevokeAndACK,
|
|
/**
|
|
* Used to indicate that a closing_signed message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendClosingSigned,
|
|
/**
|
|
* Used to indicate that a shutdown message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendShutdown,
|
|
/**
|
|
* Used to indicate that a channel_reestablish message should be sent to the peer with the given node_id.
|
|
*/
|
|
LDKMessageSendEvent_SendChannelReestablish,
|
|
/**
|
|
* Used to indicate that a channel_announcement and channel_update should be broadcast to all
|
|
* peers (except the peer with node_id either msg.contents.node_id_1 or msg.contents.node_id_2).
|
|
*
|
|
* Note that after doing so, you very likely (unless you did so very recently) want to call
|
|
* ChannelManager::broadcast_node_announcement to trigger a BroadcastNodeAnnouncement event.
|
|
* This ensures that any nodes which see our channel_announcement also have a relevant
|
|
* node_announcement, including relevant feature flags which may be important for routing
|
|
* through or to us.
|
|
*/
|
|
LDKMessageSendEvent_BroadcastChannelAnnouncement,
|
|
/**
|
|
* Used to indicate that a node_announcement should be broadcast to all peers.
|
|
*/
|
|
LDKMessageSendEvent_BroadcastNodeAnnouncement,
|
|
/**
|
|
* Used to indicate that a channel_update should be broadcast to all peers.
|
|
*/
|
|
LDKMessageSendEvent_BroadcastChannelUpdate,
|
|
/**
|
|
* Broadcast an error downstream to be handled
|
|
*/
|
|
LDKMessageSendEvent_HandleError,
|
|
/**
|
|
* When a payment fails we may receive updates back from the hop where it failed. In such
|
|
* cases this event is generated so that we can inform the network graph of this information.
|
|
*/
|
|
LDKMessageSendEvent_PaymentFailureNetworkUpdate,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKMessageSendEvent_Sentinel,
|
|
} LDKMessageSendEvent_Tag;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendAcceptChannel_Body {
|
|
LDKPublicKey node_id;
|
|
LDKAcceptChannel msg;
|
|
} LDKMessageSendEvent_LDKSendAcceptChannel_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendOpenChannel_Body {
|
|
LDKPublicKey node_id;
|
|
LDKOpenChannel msg;
|
|
} LDKMessageSendEvent_LDKSendOpenChannel_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendFundingCreated_Body {
|
|
LDKPublicKey node_id;
|
|
LDKFundingCreated msg;
|
|
} LDKMessageSendEvent_LDKSendFundingCreated_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendFundingSigned_Body {
|
|
LDKPublicKey node_id;
|
|
LDKFundingSigned msg;
|
|
} LDKMessageSendEvent_LDKSendFundingSigned_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendFundingLocked_Body {
|
|
LDKPublicKey node_id;
|
|
LDKFundingLocked msg;
|
|
} LDKMessageSendEvent_LDKSendFundingLocked_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendAnnouncementSignatures_Body {
|
|
LDKPublicKey node_id;
|
|
LDKAnnouncementSignatures msg;
|
|
} LDKMessageSendEvent_LDKSendAnnouncementSignatures_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKUpdateHTLCs_Body {
|
|
LDKPublicKey node_id;
|
|
LDKCommitmentUpdate updates;
|
|
} LDKMessageSendEvent_LDKUpdateHTLCs_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendRevokeAndACK_Body {
|
|
LDKPublicKey node_id;
|
|
LDKRevokeAndACK msg;
|
|
} LDKMessageSendEvent_LDKSendRevokeAndACK_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendClosingSigned_Body {
|
|
LDKPublicKey node_id;
|
|
LDKClosingSigned msg;
|
|
} LDKMessageSendEvent_LDKSendClosingSigned_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendShutdown_Body {
|
|
LDKPublicKey node_id;
|
|
LDKShutdown msg;
|
|
} LDKMessageSendEvent_LDKSendShutdown_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKSendChannelReestablish_Body {
|
|
LDKPublicKey node_id;
|
|
LDKChannelReestablish msg;
|
|
} LDKMessageSendEvent_LDKSendChannelReestablish_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKBroadcastChannelAnnouncement_Body {
|
|
LDKChannelAnnouncement msg;
|
|
LDKChannelUpdate update_msg;
|
|
} LDKMessageSendEvent_LDKBroadcastChannelAnnouncement_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKBroadcastNodeAnnouncement_Body {
|
|
LDKNodeAnnouncement msg;
|
|
} LDKMessageSendEvent_LDKBroadcastNodeAnnouncement_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKBroadcastChannelUpdate_Body {
|
|
LDKChannelUpdate msg;
|
|
} LDKMessageSendEvent_LDKBroadcastChannelUpdate_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKHandleError_Body {
|
|
LDKPublicKey node_id;
|
|
LDKErrorAction action;
|
|
} LDKMessageSendEvent_LDKHandleError_Body;
|
|
|
|
typedef struct LDKMessageSendEvent_LDKPaymentFailureNetworkUpdate_Body {
|
|
LDKHTLCFailChannelUpdate update;
|
|
} LDKMessageSendEvent_LDKPaymentFailureNetworkUpdate_Body;
|
|
|
|
typedef struct LDKMessageSendEvent {
|
|
LDKMessageSendEvent_Tag tag;
|
|
union {
|
|
LDKMessageSendEvent_LDKSendAcceptChannel_Body send_accept_channel;
|
|
LDKMessageSendEvent_LDKSendOpenChannel_Body send_open_channel;
|
|
LDKMessageSendEvent_LDKSendFundingCreated_Body send_funding_created;
|
|
LDKMessageSendEvent_LDKSendFundingSigned_Body send_funding_signed;
|
|
LDKMessageSendEvent_LDKSendFundingLocked_Body send_funding_locked;
|
|
LDKMessageSendEvent_LDKSendAnnouncementSignatures_Body send_announcement_signatures;
|
|
LDKMessageSendEvent_LDKUpdateHTLCs_Body update_htl_cs;
|
|
LDKMessageSendEvent_LDKSendRevokeAndACK_Body send_revoke_and_ack;
|
|
LDKMessageSendEvent_LDKSendClosingSigned_Body send_closing_signed;
|
|
LDKMessageSendEvent_LDKSendShutdown_Body send_shutdown;
|
|
LDKMessageSendEvent_LDKSendChannelReestablish_Body send_channel_reestablish;
|
|
LDKMessageSendEvent_LDKBroadcastChannelAnnouncement_Body broadcast_channel_announcement;
|
|
LDKMessageSendEvent_LDKBroadcastNodeAnnouncement_Body broadcast_node_announcement;
|
|
LDKMessageSendEvent_LDKBroadcastChannelUpdate_Body broadcast_channel_update;
|
|
LDKMessageSendEvent_LDKHandleError_Body handle_error;
|
|
LDKMessageSendEvent_LDKPaymentFailureNetworkUpdate_Body payment_failure_network_update;
|
|
};
|
|
} LDKMessageSendEvent;
|
|
|
|
typedef struct LDKCVecTempl_MessageSendEvent {
|
|
LDKMessageSendEvent *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_MessageSendEvent;
|
|
|
|
typedef LDKCVecTempl_MessageSendEvent LDKCVec_MessageSendEventZ;
|
|
|
|
/**
|
|
* A trait indicating an object may generate message send events
|
|
*/
|
|
typedef struct LDKMessageSendEventsProvider {
|
|
void *this_arg;
|
|
/**
|
|
* Gets the list of pending events which were generated by previous actions, clearing the list
|
|
* in the process.
|
|
*/
|
|
LDKCVec_MessageSendEventZ (*get_and_clear_pending_msg_events)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKMessageSendEventsProvider;
|
|
|
|
typedef struct LDKCVecTempl_Event {
|
|
LDKEvent *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_Event;
|
|
|
|
typedef LDKCVecTempl_Event LDKCVec_EventZ;
|
|
|
|
/**
|
|
* A trait indicating an object may generate events
|
|
*/
|
|
typedef struct LDKEventsProvider {
|
|
void *this_arg;
|
|
/**
|
|
* Gets the list of pending events which were generated by previous actions, clearing the list
|
|
* in the process.
|
|
*/
|
|
LDKCVec_EventZ (*get_and_clear_pending_events)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKEventsProvider;
|
|
|
|
/**
|
|
* A trait encapsulating the operations required of a logger
|
|
*/
|
|
typedef struct LDKLogger {
|
|
void *this_arg;
|
|
/**
|
|
* Logs the `Record`
|
|
*/
|
|
void (*log)(const void *this_arg, const char *record);
|
|
void (*free)(void *this_arg);
|
|
} LDKLogger;
|
|
|
|
|
|
|
|
/**
|
|
* Configuration we set when applicable.
|
|
*
|
|
* Default::default() provides sane defaults.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelHandshakeConfig {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelHandshakeConfig *inner;
|
|
bool is_owned;
|
|
} LDKChannelHandshakeConfig;
|
|
|
|
|
|
|
|
/**
|
|
* Optional channel limits which are applied during channel creation.
|
|
*
|
|
* These limits are only applied to our counterparty's limits, not our own.
|
|
*
|
|
* Use 0/<type>::max_value() as appropriate to skip checking.
|
|
*
|
|
* Provides sane defaults for most configurations.
|
|
*
|
|
* Most additional limits are disabled except those with which specify a default in individual
|
|
* field documentation. Note that this may result in barely-usable channels, but since they
|
|
* are applied mostly only to incoming channels that's not much of a problem.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelHandshakeLimits {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelHandshakeLimits *inner;
|
|
bool is_owned;
|
|
} LDKChannelHandshakeLimits;
|
|
|
|
|
|
|
|
/**
|
|
* Options which apply on a per-channel basis and may change at runtime or based on negotiation
|
|
* with our counterparty.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelConfig {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelConfig *inner;
|
|
bool is_owned;
|
|
} LDKChannelConfig;
|
|
|
|
typedef struct LDKu8slice {
|
|
const uint8_t *data;
|
|
uintptr_t datalen;
|
|
} LDKu8slice;
|
|
|
|
|
|
|
|
/**
|
|
* Top-level config which holds ChannelHandshakeLimits and ChannelConfig.
|
|
*
|
|
* Default::default() provides sane defaults for most configurations
|
|
* (but currently with 0 relay fees!)
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUserConfig {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUserConfig *inner;
|
|
bool is_owned;
|
|
} LDKUserConfig;
|
|
|
|
typedef union LDKCResultPtr_TxOut__AccessError {
|
|
LDKTxOut *result;
|
|
LDKAccessError *err;
|
|
} LDKCResultPtr_TxOut__AccessError;
|
|
|
|
typedef struct LDKCResultTempl_TxOut__AccessError {
|
|
LDKCResultPtr_TxOut__AccessError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_TxOut__AccessError;
|
|
|
|
typedef LDKCResultTempl_TxOut__AccessError LDKCResult_TxOutAccessErrorZ;
|
|
|
|
/**
|
|
* The `Access` trait defines behavior for accessing chain data and state, such as blocks and
|
|
* UTXOs.
|
|
*/
|
|
typedef struct LDKAccess {
|
|
void *this_arg;
|
|
/**
|
|
* Returns the transaction output of a funding transaction encoded by [`short_channel_id`].
|
|
* Returns an error if `genesis_hash` is for a different chain or if such a transaction output
|
|
* is unknown.
|
|
*
|
|
* [`short_channel_id`]: https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md#definition-of-short_channel_id
|
|
*/
|
|
LDKCResult_TxOutAccessErrorZ (*get_utxo)(const void *this_arg, const uint8_t (*genesis_hash)[32], uint64_t short_channel_id);
|
|
void (*free)(void *this_arg);
|
|
} LDKAccess;
|
|
|
|
|
|
|
|
/**
|
|
* One counterparty's public keys which do not change over the life of a channel.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelPublicKeys {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelPublicKeys *inner;
|
|
bool is_owned;
|
|
} LDKChannelPublicKeys;
|
|
|
|
|
|
|
|
/**
|
|
* The per-commitment point and a set of pre-calculated public keys used for transaction creation
|
|
* in the signer.
|
|
* The pre-calculated keys are an optimization, because ChannelKeys has enough
|
|
* information to re-derive them.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPreCalculatedTxCreationKeys {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePreCalculatedTxCreationKeys *inner;
|
|
bool is_owned;
|
|
} LDKPreCalculatedTxCreationKeys;
|
|
|
|
typedef struct LDKCVecTempl_HTLCOutputInCommitment {
|
|
LDKHTLCOutputInCommitment *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_HTLCOutputInCommitment;
|
|
|
|
typedef LDKCVecTempl_HTLCOutputInCommitment LDKCVec_HTLCOutputInCommitmentZ;
|
|
|
|
|
|
|
|
/**
|
|
* We use this to track holder commitment transactions and put off signing them until we are ready
|
|
* to broadcast. This class can be used inside a signer implementation to generate a signature
|
|
* given the relevant secret key.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKHolderCommitmentTransaction {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeHolderCommitmentTransaction *inner;
|
|
bool is_owned;
|
|
} LDKHolderCommitmentTransaction;
|
|
|
|
|
|
|
|
/**
|
|
* The unsigned part of a channel_announcement
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUnsignedChannelAnnouncement {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUnsignedChannelAnnouncement *inner;
|
|
bool is_owned;
|
|
} LDKUnsignedChannelAnnouncement;
|
|
|
|
/**
|
|
* Set of lightning keys needed to operate a channel as described in BOLT 3.
|
|
*
|
|
* Signing services could be implemented on a hardware wallet. In this case,
|
|
* the current ChannelKeys would be a front-end on top of a communication
|
|
* channel connected to your secure device and lightning key material wouldn't
|
|
* reside on a hot server. Nevertheless, a this deployment would still need
|
|
* to trust the ChannelManager to avoid loss of funds as this latest component
|
|
* could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
|
|
*
|
|
* A more secure iteration would be to use hashlock (or payment points) to pair
|
|
* invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
|
|
* at the price of more state and computation on the hardware wallet side. In the future,
|
|
* we are looking forward to design such interface.
|
|
*
|
|
* In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
|
|
* to act, as liveness and breach reply correctness are always going to be hard requirements
|
|
* of LN security model, orthogonal of key management issues.
|
|
*
|
|
* If you're implementing a custom signer, you almost certainly want to implement
|
|
* Readable/Writable to serialize out a unique reference to this set of keys so
|
|
* that you can serialize the full ChannelManager object.
|
|
*
|
|
*/
|
|
typedef struct LDKChannelKeys {
|
|
void *this_arg;
|
|
/**
|
|
* Gets the per-commitment point for a specific commitment number
|
|
*
|
|
* Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
|
|
*/
|
|
LDKPublicKey (*get_per_commitment_point)(const void *this_arg, uint64_t idx);
|
|
/**
|
|
* Gets the commitment secret for a specific commitment number as part of the revocation process
|
|
*
|
|
* An external signer implementation should error here if the commitment was already signed
|
|
* and should refuse to sign it in the future.
|
|
*
|
|
* May be called more than once for the same index.
|
|
*
|
|
* Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
|
|
* TODO: return a Result so we can signal a validation error
|
|
*/
|
|
LDKThirtyTwoBytes (*release_commitment_secret)(const void *this_arg, uint64_t idx);
|
|
/**
|
|
* Gets the holder's channel public keys and basepoints
|
|
*/
|
|
LDKChannelPublicKeys pubkeys;
|
|
/**
|
|
* Fill in the pubkeys field as a reference to it will be given to Rust after this returns
|
|
* Note that this takes a pointer to this object, not the this_ptr like other methods do
|
|
* This function pointer may be NULL if pubkeys is filled in when this object is created and never needs updating.
|
|
*/
|
|
void (*set_pubkeys)(const LDKChannelKeys*);
|
|
/**
|
|
* Gets arbitrary identifiers describing the set of keys which are provided back to you in
|
|
* some SpendableOutputDescriptor types. These should be sufficient to identify this
|
|
* ChannelKeys object uniquely and lookup or re-derive its keys.
|
|
*/
|
|
LDKC2Tuple_u64u64Z (*key_derivation_params)(const void *this_arg);
|
|
/**
|
|
* Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
|
|
*
|
|
* Note that if signing fails or is rejected, the channel will be force-closed.
|
|
*/
|
|
LDKCResult_C2Tuple_SignatureCVec_SignatureZZNoneZ (*sign_counterparty_commitment)(const void *this_arg, uint32_t feerate_per_kw, LDKTransaction commitment_tx, const LDKPreCalculatedTxCreationKeys *keys, LDKCVec_HTLCOutputInCommitmentZ htlcs);
|
|
/**
|
|
* Create a signature for a holder's commitment transaction. This will only ever be called with
|
|
* the same holder_commitment_tx (or a copy thereof), though there are currently no guarantees
|
|
* that it will not be called multiple times.
|
|
* An external signer implementation should check that the commitment has not been revoked.
|
|
*/
|
|
LDKCResult_SignatureNoneZ (*sign_holder_commitment)(const void *this_arg, const LDKHolderCommitmentTransaction *holder_commitment_tx);
|
|
/**
|
|
* Create a signature for each HTLC transaction spending a holder's commitment transaction.
|
|
*
|
|
* Unlike sign_holder_commitment, this may be called multiple times with *different*
|
|
* holder_commitment_tx values. While this will never be called with a revoked
|
|
* holder_commitment_tx, it is possible that it is called with the second-latest
|
|
* holder_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
|
|
* ChannelMonitor decided to broadcast before it had been updated to the latest.
|
|
*
|
|
* Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
|
|
* holder_commitment_tx. For those HTLCs which have transaction_output_index set to None
|
|
* (implying they were considered dust at the time the commitment transaction was negotiated),
|
|
* a corresponding None should be included in the return value. All other positions in the
|
|
* return value must contain a signature.
|
|
*/
|
|
LDKCResult_CVec_SignatureZNoneZ (*sign_holder_commitment_htlc_transactions)(const void *this_arg, const LDKHolderCommitmentTransaction *holder_commitment_tx);
|
|
/**
|
|
* Create a signature for the given input in a transaction spending an HTLC or commitment
|
|
* transaction output when our counterparty broadcasts an old state.
|
|
*
|
|
* A justice transaction may claim multiples outputs at the same time if timelocks are
|
|
* similar, but only a signature for the input at index `input` should be signed for here.
|
|
* It may be called multiples time for same output(s) if a fee-bump is needed with regards
|
|
* to an upcoming timelock expiration.
|
|
*
|
|
* Amount is value of the output spent by this input, committed to in the BIP 143 signature.
|
|
*
|
|
* per_commitment_key is revocation secret which was provided by our counterparty when they
|
|
* revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
|
|
* not allow the spending of any funds by itself (you need our holder revocation_secret to do
|
|
* so).
|
|
*
|
|
* htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
|
|
* changing the format of the witness script (which is committed to in the BIP 143
|
|
* signatures).
|
|
*/
|
|
LDKCResult_SignatureNoneZ (*sign_justice_transaction)(const void *this_arg, LDKTransaction justice_tx, uintptr_t input, uint64_t amount, const uint8_t (*per_commitment_key)[32], const LDKHTLCOutputInCommitment *htlc);
|
|
/**
|
|
* Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
|
|
* transaction, either offered or received.
|
|
*
|
|
* Such a transaction may claim multiples offered outputs at same time if we know the
|
|
* preimage for each when we create it, but only the input at index `input` should be
|
|
* signed for here. It may be called multiple times for same output(s) if a fee-bump is
|
|
* needed with regards to an upcoming timelock expiration.
|
|
*
|
|
* Witness_script is either a offered or received script as defined in BOLT3 for HTLC
|
|
* outputs.
|
|
*
|
|
* Amount is value of the output spent by this input, committed to in the BIP 143 signature.
|
|
*
|
|
* Per_commitment_point is the dynamic point corresponding to the channel state
|
|
* detected onchain. It has been generated by our counterparty and is used to derive
|
|
* channel state keys, which are then included in the witness script and committed to in the
|
|
* BIP 143 signature.
|
|
*/
|
|
LDKCResult_SignatureNoneZ (*sign_counterparty_htlc_transaction)(const void *this_arg, LDKTransaction htlc_tx, uintptr_t input, uint64_t amount, LDKPublicKey per_commitment_point, const LDKHTLCOutputInCommitment *htlc);
|
|
/**
|
|
* Create a signature for a (proposed) closing transaction.
|
|
*
|
|
* Note that, due to rounding, there may be one \"missing\" satoshi, and either party may have
|
|
* chosen to forgo their output as dust.
|
|
*/
|
|
LDKCResult_SignatureNoneZ (*sign_closing_transaction)(const void *this_arg, LDKTransaction closing_tx);
|
|
/**
|
|
* Signs a channel announcement message with our funding key, proving it comes from one
|
|
* of the channel participants.
|
|
*
|
|
* Note that if this fails or is rejected, the channel will not be publicly announced and
|
|
* our counterparty may (though likely will not) close the channel on us for violating the
|
|
* protocol.
|
|
*/
|
|
LDKCResult_SignatureNoneZ (*sign_channel_announcement)(const void *this_arg, const LDKUnsignedChannelAnnouncement *msg);
|
|
/**
|
|
* Set the counterparty channel basepoints and counterparty_selected/holder_selected_contest_delay.
|
|
* This is done immediately on incoming channels and as soon as the channel is accepted on outgoing channels.
|
|
*
|
|
* We bind holder_selected_contest_delay late here for API convenience.
|
|
*
|
|
* Will be called before any signatures are applied.
|
|
*/
|
|
void (*on_accept)(void *this_arg, const LDKChannelPublicKeys *channel_points, uint16_t counterparty_selected_contest_delay, uint16_t holder_selected_contest_delay);
|
|
void *(*clone)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKChannelKeys;
|
|
|
|
|
|
|
|
/**
|
|
* A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
|
|
* on-chain transactions to ensure no loss of funds occurs.
|
|
*
|
|
* You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
|
|
* information and are actively monitoring the chain.
|
|
*
|
|
* Pending Events or updated HTLCs which have not yet been read out by
|
|
* get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
|
|
* reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
|
|
* gotten are fully handled before re-serializing the new state.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelMonitor {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelMonitor *inner;
|
|
bool is_owned;
|
|
} LDKChannelMonitor;
|
|
|
|
|
|
|
|
/**
|
|
* An update generated by the underlying Channel itself which contains some new information the
|
|
* ChannelMonitor should be made aware of.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelMonitorUpdate {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelMonitorUpdate *inner;
|
|
bool is_owned;
|
|
} LDKChannelMonitorUpdate;
|
|
|
|
|
|
|
|
/**
|
|
* An event to be processed by the ChannelManager.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKMonitorEvent {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeMonitorEvent *inner;
|
|
bool is_owned;
|
|
} LDKMonitorEvent;
|
|
|
|
typedef struct LDKCVecTempl_MonitorEvent {
|
|
LDKMonitorEvent *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_MonitorEvent;
|
|
|
|
typedef LDKCVecTempl_MonitorEvent LDKCVec_MonitorEventZ;
|
|
|
|
/**
|
|
* The `Watch` trait defines behavior for watching on-chain activity pertaining to channels as
|
|
* blocks are connected and disconnected.
|
|
*
|
|
* Each channel is associated with a [`ChannelMonitor`]. Implementations of this trait are
|
|
* responsible for maintaining a set of monitors such that they can be updated accordingly as
|
|
* channel state changes and HTLCs are resolved. See method documentation for specific
|
|
* requirements.
|
|
*
|
|
* Implementations **must** ensure that updates are successfully applied and persisted upon method
|
|
* completion. If an update fails with a [`PermanentFailure`], then it must immediately shut down
|
|
* without taking any further action such as persisting the current state.
|
|
*
|
|
* If an implementation maintains multiple instances of a channel's monitor (e.g., by storing
|
|
* backup copies), then it must ensure that updates are applied across all instances. Otherwise, it
|
|
* could result in a revoked transaction being broadcast, allowing the counterparty to claim all
|
|
* funds in the channel. See [`ChannelMonitorUpdateErr`] for more details about how to handle
|
|
* multiple instances.
|
|
*
|
|
* [`ChannelMonitor`]: channelmonitor/struct.ChannelMonitor.html
|
|
* [`ChannelMonitorUpdateErr`]: channelmonitor/enum.ChannelMonitorUpdateErr.html
|
|
* [`PermanentFailure`]: channelmonitor/enum.ChannelMonitorUpdateErr.html#variant.PermanentFailure
|
|
*/
|
|
typedef struct LDKWatch {
|
|
void *this_arg;
|
|
/**
|
|
* Watches a channel identified by `funding_txo` using `monitor`.
|
|
*
|
|
* Implementations are responsible for watching the chain for the funding transaction along
|
|
* with any spends of outputs returned by [`get_outputs_to_watch`]. In practice, this means
|
|
* calling [`block_connected`] and [`block_disconnected`] on the monitor.
|
|
*
|
|
* [`get_outputs_to_watch`]: channelmonitor/struct.ChannelMonitor.html#method.get_outputs_to_watch
|
|
* [`block_connected`]: channelmonitor/struct.ChannelMonitor.html#method.block_connected
|
|
* [`block_disconnected`]: channelmonitor/struct.ChannelMonitor.html#method.block_disconnected
|
|
*/
|
|
LDKCResult_NoneChannelMonitorUpdateErrZ (*watch_channel)(const void *this_arg, LDKOutPoint funding_txo, LDKChannelMonitor monitor);
|
|
/**
|
|
* Updates a channel identified by `funding_txo` by applying `update` to its monitor.
|
|
*
|
|
* Implementations must call [`update_monitor`] with the given update. See
|
|
* [`ChannelMonitorUpdateErr`] for invariants around returning an error.
|
|
*
|
|
* [`update_monitor`]: channelmonitor/struct.ChannelMonitor.html#method.update_monitor
|
|
* [`ChannelMonitorUpdateErr`]: channelmonitor/enum.ChannelMonitorUpdateErr.html
|
|
*/
|
|
LDKCResult_NoneChannelMonitorUpdateErrZ (*update_channel)(const void *this_arg, LDKOutPoint funding_txo, LDKChannelMonitorUpdate update);
|
|
/**
|
|
* Returns any monitor events since the last call. Subsequent calls must only return new
|
|
* events.
|
|
*/
|
|
LDKCVec_MonitorEventZ (*release_pending_monitor_events)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKWatch;
|
|
|
|
/**
|
|
* The `Filter` trait defines behavior for indicating chain activity of interest pertaining to
|
|
* channels.
|
|
*
|
|
* This is useful in order to have a [`Watch`] implementation convey to a chain source which
|
|
* transactions to be notified of. Notification may take the form of pre-filtering blocks or, in
|
|
* the case of [BIP 157]/[BIP 158], only fetching a block if the compact filter matches. If
|
|
* receiving full blocks from a chain source, any further filtering is unnecessary.
|
|
*
|
|
* After an output has been registered, subsequent block retrievals from the chain source must not
|
|
* exclude any transactions matching the new criteria nor any in-block descendants of such
|
|
* transactions.
|
|
*
|
|
* Note that use as part of a [`Watch`] implementation involves reentrancy. Therefore, the `Filter`
|
|
* should not block on I/O. Implementations should instead queue the newly monitored data to be
|
|
* processed later. Then, in order to block until the data has been processed, any `Watch`
|
|
* invocation that has called the `Filter` must return [`TemporaryFailure`].
|
|
*
|
|
* [`Watch`]: trait.Watch.html
|
|
* [`TemporaryFailure`]: channelmonitor/enum.ChannelMonitorUpdateErr.html#variant.TemporaryFailure
|
|
* [BIP 157]: https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
|
|
* [BIP 158]: https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
|
|
*/
|
|
typedef struct LDKFilter {
|
|
void *this_arg;
|
|
/**
|
|
* Registers interest in a transaction with `txid` and having an output with `script_pubkey` as
|
|
* a spending condition.
|
|
*/
|
|
void (*register_tx)(const void *this_arg, const uint8_t (*txid)[32], LDKu8slice script_pubkey);
|
|
/**
|
|
* Registers interest in spends of a transaction output identified by `outpoint` having
|
|
* `script_pubkey` as the spending condition.
|
|
*/
|
|
void (*register_output)(const void *this_arg, const LDKOutPoint *outpoint, LDKu8slice script_pubkey);
|
|
void (*free)(void *this_arg);
|
|
} LDKFilter;
|
|
|
|
/**
|
|
* An interface to send a transaction to the Bitcoin network.
|
|
*/
|
|
typedef struct LDKBroadcasterInterface {
|
|
void *this_arg;
|
|
/**
|
|
* Sends a transaction out to (hopefully) be mined.
|
|
*/
|
|
void (*broadcast_transaction)(const void *this_arg, LDKTransaction tx);
|
|
void (*free)(void *this_arg);
|
|
} LDKBroadcasterInterface;
|
|
|
|
/**
|
|
* A trait which should be implemented to provide feerate information on a number of time
|
|
* horizons.
|
|
*
|
|
* Note that all of the functions implemented here *must* be reentrant-safe (obviously - they're
|
|
* called from inside the library in response to chain events, P2P events, or timer events).
|
|
*/
|
|
typedef struct LDKFeeEstimator {
|
|
void *this_arg;
|
|
/**
|
|
* Gets estimated satoshis of fee required per 1000 Weight-Units.
|
|
*
|
|
* Must be no smaller than 253 (ie 1 satoshi-per-byte rounded up to ensure later round-downs
|
|
* don't put us below 1 satoshi-per-byte).
|
|
*
|
|
* This translates to:
|
|
* * satoshis-per-byte * 250
|
|
* * ceil(satoshis-per-kbyte / 4)
|
|
*/
|
|
uint32_t (*get_est_sat_per_1000_weight)(const void *this_arg, LDKConfirmationTarget confirmation_target);
|
|
void (*free)(void *this_arg);
|
|
} LDKFeeEstimator;
|
|
|
|
/**
|
|
* `Persist` defines behavior for persisting channel monitors: this could mean
|
|
* writing once to disk, and/or uploading to one or more backup services.
|
|
*
|
|
* Note that for every new monitor, you **must** persist the new `ChannelMonitor`
|
|
* to disk/backups. And, on every update, you **must** persist either the
|
|
* `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
|
|
* of situations such as revoking a transaction, then crashing before this
|
|
* revocation can be persisted, then unintentionally broadcasting a revoked
|
|
* transaction and losing money. This is a risk because previous channel states
|
|
* are toxic, so it's important that whatever channel state is persisted is
|
|
* kept up-to-date.
|
|
*/
|
|
typedef struct LDKPersist {
|
|
void *this_arg;
|
|
/**
|
|
* Persist a new channel's data. The data can be stored any way you want, but
|
|
* the identifier provided by Rust-Lightning is the channel's outpoint (and
|
|
* it is up to you to maintain a correct mapping between the outpoint and the
|
|
* stored channel data). Note that you **must** persist every new monitor to
|
|
* disk. See the `Persist` trait documentation for more details.
|
|
*
|
|
* See [`ChannelMonitor::serialize_for_disk`] for writing out a `ChannelMonitor`,
|
|
* and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
|
|
*
|
|
* [`ChannelMonitor::serialize_for_disk`]: struct.ChannelMonitor.html#method.serialize_for_disk
|
|
* [`ChannelMonitorUpdateErr`]: enum.ChannelMonitorUpdateErr.html
|
|
*/
|
|
LDKCResult_NoneChannelMonitorUpdateErrZ (*persist_new_channel)(const void *this_arg, LDKOutPoint id, const LDKChannelMonitor *data);
|
|
/**
|
|
* Update one channel's data. The provided `ChannelMonitor` has already
|
|
* applied the given update.
|
|
*
|
|
* Note that on every update, you **must** persist either the
|
|
* `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
|
|
* the `Persist` trait documentation for more details.
|
|
*
|
|
* If an implementer chooses to persist the updates only, they need to make
|
|
* sure that all the updates are applied to the `ChannelMonitors` *before*
|
|
* the set of channel monitors is given to the `ChannelManager`
|
|
* deserialization routine. See [`ChannelMonitor::update_monitor`] for
|
|
* applying a monitor update to a monitor. If full `ChannelMonitors` are
|
|
* persisted, then there is no need to persist individual updates.
|
|
*
|
|
* Note that there could be a performance tradeoff between persisting complete
|
|
* channel monitors on every update vs. persisting only updates and applying
|
|
* them in batches. The size of each monitor grows `O(number of state updates)`
|
|
* whereas updates are small and `O(1)`.
|
|
*
|
|
* See [`ChannelMonitor::serialize_for_disk`] for writing out a `ChannelMonitor`,
|
|
* [`ChannelMonitorUpdate::write`] for writing out an update, and
|
|
* [`ChannelMonitorUpdateErr`] for requirements when returning errors.
|
|
*
|
|
* [`ChannelMonitor::update_monitor`]: struct.ChannelMonitor.html#impl-1
|
|
* [`ChannelMonitor::serialize_for_disk`]: struct.ChannelMonitor.html#method.serialize_for_disk
|
|
* [`ChannelMonitorUpdate::write`]: struct.ChannelMonitorUpdate.html#method.write
|
|
* [`ChannelMonitorUpdateErr`]: enum.ChannelMonitorUpdateErr.html
|
|
*/
|
|
LDKCResult_NoneChannelMonitorUpdateErrZ (*update_persisted_channel)(const void *this_arg, LDKOutPoint id, const LDKChannelMonitorUpdate *update, const LDKChannelMonitor *data);
|
|
void (*free)(void *this_arg);
|
|
} LDKPersist;
|
|
|
|
|
|
|
|
/**
|
|
* An implementation of [`chain::Watch`] for monitoring channels.
|
|
*
|
|
* Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
|
|
* [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
|
|
* or used independently to monitor channels remotely. See the [module-level documentation] for
|
|
* details.
|
|
*
|
|
* [`chain::Watch`]: ../trait.Watch.html
|
|
* [`ChannelManager`]: ../../ln/channelmanager/struct.ChannelManager.html
|
|
* [module-level documentation]: index.html
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChainMonitor {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChainMonitor *inner;
|
|
bool is_owned;
|
|
} LDKChainMonitor;
|
|
|
|
typedef struct LDKCVecTempl_C2TupleTempl_usize__Transaction {
|
|
LDKC2TupleTempl_usize__Transaction *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_C2TupleTempl_usize__Transaction;
|
|
|
|
typedef LDKCVecTempl_C2TupleTempl_usize__Transaction LDKCVec_C2Tuple_usizeTransactionZZ;
|
|
|
|
|
|
|
|
/**
|
|
* Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
|
|
* chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
|
|
* preimage claim backward will lead to loss of funds.
|
|
*
|
|
* [`chain::Watch`]: ../trait.Watch.html
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKHTLCUpdate {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeHTLCUpdate *inner;
|
|
bool is_owned;
|
|
} LDKHTLCUpdate;
|
|
|
|
typedef struct LDKCVecTempl_Transaction {
|
|
LDKTransaction *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_Transaction;
|
|
|
|
typedef LDKCVecTempl_Transaction LDKCVec_TransactionZ;
|
|
|
|
typedef struct LDKCVecTempl_C2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut {
|
|
LDKC2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_C2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut;
|
|
|
|
typedef LDKCVecTempl_C2TupleTempl_ThirtyTwoBytes__CVecTempl_C2TupleTempl_u32__TxOut LDKCVec_C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZZ;
|
|
|
|
typedef struct LDKSecretKey {
|
|
uint8_t bytes[32];
|
|
} LDKSecretKey;
|
|
|
|
/**
|
|
* A trait to describe an object which can get user secrets and key material.
|
|
*/
|
|
typedef struct LDKKeysInterface {
|
|
void *this_arg;
|
|
/**
|
|
* Get node secret key (aka node_id or network_key)
|
|
*/
|
|
LDKSecretKey (*get_node_secret)(const void *this_arg);
|
|
/**
|
|
* Get destination redeemScript to encumber static protocol exit points.
|
|
*/
|
|
LDKCVec_u8Z (*get_destination_script)(const void *this_arg);
|
|
/**
|
|
* Get shutdown_pubkey to use as PublicKey at channel closure
|
|
*/
|
|
LDKPublicKey (*get_shutdown_pubkey)(const void *this_arg);
|
|
/**
|
|
* Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
|
|
* restarted with some stale data!
|
|
*/
|
|
LDKChannelKeys (*get_channel_keys)(const void *this_arg, bool inbound, uint64_t channel_value_satoshis);
|
|
/**
|
|
* Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
|
|
* onion packets and for temporary channel IDs. There is no requirement that these be
|
|
* persisted anywhere, though they must be unique across restarts.
|
|
*/
|
|
LDKThirtyTwoBytes (*get_secure_random_bytes)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKKeysInterface;
|
|
|
|
|
|
|
|
/**
|
|
* A simple implementation of ChannelKeys that just keeps the private keys in memory.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKInMemoryChannelKeys {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeInMemoryChannelKeys *inner;
|
|
bool is_owned;
|
|
} LDKInMemoryChannelKeys;
|
|
|
|
|
|
|
|
/**
|
|
* Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
|
|
* and derives keys from that.
|
|
*
|
|
* Your node_id is seed/0'
|
|
* ChannelMonitor closes may use seed/1'
|
|
* Cooperative closes may use seed/2'
|
|
* The two close keys may be needed to claim on-chain funds!
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKKeysManager {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeKeysManager *inner;
|
|
bool is_owned;
|
|
} LDKKeysManager;
|
|
|
|
|
|
|
|
/**
|
|
* Manager which keeps track of a number of channels and sends messages to the appropriate
|
|
* channel, also tracking HTLC preimages and forwarding onion packets appropriately.
|
|
*
|
|
* Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
|
|
* to individual Channels.
|
|
*
|
|
* Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
|
|
* all peers during write/read (though does not modify this instance, only the instance being
|
|
* serialized). This will result in any channels which have not yet exchanged funding_created (ie
|
|
* called funding_transaction_generated for outbound channels).
|
|
*
|
|
* Note that you can be a bit lazier about writing out ChannelManager than you can be with
|
|
* ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
|
|
* returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
|
|
* happens out-of-band (and will prevent any other ChannelManager operations from occurring during
|
|
* the serialization process). If the deserialized version is out-of-date compared to the
|
|
* ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
|
|
* ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
|
|
*
|
|
* Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which
|
|
* tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
|
|
* the \"reorg path\" (ie call block_disconnected() until you get to a common block and then call
|
|
* block_connected() to step towards your best block) upon deserialization before using the
|
|
* object!
|
|
*
|
|
* Note that ChannelManager is responsible for tracking liveness of its channels and generating
|
|
* ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
|
|
* spam due to quick disconnection/reconnection, updates are not sent until the channel has been
|
|
* offline for a full minute. In order to track this, you must call
|
|
* timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
|
|
*
|
|
* Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
|
|
* a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
|
|
* essentially you should default to using a SimpleRefChannelManager, and use a
|
|
* SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
|
|
* you're using lightning-net-tokio.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelManager {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelManager *inner;
|
|
bool is_owned;
|
|
} LDKChannelManager;
|
|
|
|
|
|
|
|
/**
|
|
* Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelDetails {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelDetails *inner;
|
|
bool is_owned;
|
|
} LDKChannelDetails;
|
|
|
|
|
|
|
|
/**
|
|
* Features used within an `init` message.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKInitFeatures {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeInitFeatures *inner;
|
|
bool is_owned;
|
|
} LDKInitFeatures;
|
|
|
|
typedef struct LDKCVecTempl_ChannelDetails {
|
|
LDKChannelDetails *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_ChannelDetails;
|
|
|
|
typedef LDKCVecTempl_ChannelDetails LDKCVec_ChannelDetailsZ;
|
|
|
|
|
|
|
|
/**
|
|
* A route directs a payment from the sender (us) to the recipient. If the recipient supports MPP,
|
|
* it can take multiple paths. Each path is composed of one or more hops through the network.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKRoute {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeRoute *inner;
|
|
bool is_owned;
|
|
} LDKRoute;
|
|
|
|
typedef struct LDKThreeBytes {
|
|
uint8_t data[3];
|
|
} LDKThreeBytes;
|
|
|
|
typedef struct LDKFourBytes {
|
|
uint8_t data[4];
|
|
} LDKFourBytes;
|
|
|
|
typedef struct LDKSixteenBytes {
|
|
uint8_t data[16];
|
|
} LDKSixteenBytes;
|
|
|
|
typedef struct LDKTenBytes {
|
|
uint8_t data[10];
|
|
} LDKTenBytes;
|
|
|
|
/**
|
|
* An address which can be used to connect to a remote peer
|
|
*/
|
|
typedef enum LDKNetAddress_Tag {
|
|
/**
|
|
* An IPv4 address/port on which the peer is listening.
|
|
*/
|
|
LDKNetAddress_IPv4,
|
|
/**
|
|
* An IPv6 address/port on which the peer is listening.
|
|
*/
|
|
LDKNetAddress_IPv6,
|
|
/**
|
|
* An old-style Tor onion address/port on which the peer is listening.
|
|
*/
|
|
LDKNetAddress_OnionV2,
|
|
/**
|
|
* A new-style Tor onion address/port on which the peer is listening.
|
|
* To create the human-readable \"hostname\", concatenate ed25519_pubkey, checksum, and version,
|
|
* wrap as base32 and append \".onion\".
|
|
*/
|
|
LDKNetAddress_OnionV3,
|
|
/**
|
|
* Must be last for serialization purposes
|
|
*/
|
|
LDKNetAddress_Sentinel,
|
|
} LDKNetAddress_Tag;
|
|
|
|
typedef struct LDKNetAddress_LDKIPv4_Body {
|
|
LDKFourBytes addr;
|
|
uint16_t port;
|
|
} LDKNetAddress_LDKIPv4_Body;
|
|
|
|
typedef struct LDKNetAddress_LDKIPv6_Body {
|
|
LDKSixteenBytes addr;
|
|
uint16_t port;
|
|
} LDKNetAddress_LDKIPv6_Body;
|
|
|
|
typedef struct LDKNetAddress_LDKOnionV2_Body {
|
|
LDKTenBytes addr;
|
|
uint16_t port;
|
|
} LDKNetAddress_LDKOnionV2_Body;
|
|
|
|
typedef struct LDKNetAddress_LDKOnionV3_Body {
|
|
LDKThirtyTwoBytes ed25519_pubkey;
|
|
uint16_t checksum;
|
|
uint8_t version;
|
|
uint16_t port;
|
|
} LDKNetAddress_LDKOnionV3_Body;
|
|
|
|
typedef struct LDKNetAddress {
|
|
LDKNetAddress_Tag tag;
|
|
union {
|
|
LDKNetAddress_LDKIPv4_Body i_pv4;
|
|
LDKNetAddress_LDKIPv6_Body i_pv6;
|
|
LDKNetAddress_LDKOnionV2_Body onion_v2;
|
|
LDKNetAddress_LDKOnionV3_Body onion_v3;
|
|
};
|
|
} LDKNetAddress;
|
|
|
|
typedef struct LDKCVecTempl_NetAddress {
|
|
LDKNetAddress *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_NetAddress;
|
|
|
|
typedef LDKCVecTempl_NetAddress LDKCVec_NetAddressZ;
|
|
|
|
|
|
|
|
/**
|
|
* An update_add_htlc message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUpdateAddHTLC {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUpdateAddHTLC *inner;
|
|
bool is_owned;
|
|
} LDKUpdateAddHTLC;
|
|
|
|
|
|
|
|
/**
|
|
* An update_fulfill_htlc message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUpdateFulfillHTLC {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUpdateFulfillHTLC *inner;
|
|
bool is_owned;
|
|
} LDKUpdateFulfillHTLC;
|
|
|
|
|
|
|
|
/**
|
|
* An update_fail_htlc message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUpdateFailHTLC {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUpdateFailHTLC *inner;
|
|
bool is_owned;
|
|
} LDKUpdateFailHTLC;
|
|
|
|
|
|
|
|
/**
|
|
* An update_fail_malformed_htlc message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUpdateFailMalformedHTLC {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUpdateFailMalformedHTLC *inner;
|
|
bool is_owned;
|
|
} LDKUpdateFailMalformedHTLC;
|
|
|
|
|
|
|
|
/**
|
|
* A commitment_signed message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKCommitmentSigned {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeCommitmentSigned *inner;
|
|
bool is_owned;
|
|
} LDKCommitmentSigned;
|
|
|
|
|
|
|
|
/**
|
|
* An update_fee message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUpdateFee {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUpdateFee *inner;
|
|
bool is_owned;
|
|
} LDKUpdateFee;
|
|
|
|
|
|
|
|
/**
|
|
* An init message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKInit {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeInit *inner;
|
|
bool is_owned;
|
|
} LDKInit;
|
|
|
|
/**
|
|
* A trait to describe an object which can receive channel messages.
|
|
*
|
|
* Messages MAY be called in parallel when they originate from different their_node_ids, however
|
|
* they MUST NOT be called in parallel when the two calls have the same their_node_id.
|
|
*/
|
|
typedef struct LDKChannelMessageHandler {
|
|
void *this_arg;
|
|
/**
|
|
* Handle an incoming open_channel message from the given peer.
|
|
*/
|
|
void (*handle_open_channel)(const void *this_arg, LDKPublicKey their_node_id, LDKInitFeatures their_features, const LDKOpenChannel *msg);
|
|
/**
|
|
* Handle an incoming accept_channel message from the given peer.
|
|
*/
|
|
void (*handle_accept_channel)(const void *this_arg, LDKPublicKey their_node_id, LDKInitFeatures their_features, const LDKAcceptChannel *msg);
|
|
/**
|
|
* Handle an incoming funding_created message from the given peer.
|
|
*/
|
|
void (*handle_funding_created)(const void *this_arg, LDKPublicKey their_node_id, const LDKFundingCreated *msg);
|
|
/**
|
|
* Handle an incoming funding_signed message from the given peer.
|
|
*/
|
|
void (*handle_funding_signed)(const void *this_arg, LDKPublicKey their_node_id, const LDKFundingSigned *msg);
|
|
/**
|
|
* Handle an incoming funding_locked message from the given peer.
|
|
*/
|
|
void (*handle_funding_locked)(const void *this_arg, LDKPublicKey their_node_id, const LDKFundingLocked *msg);
|
|
/**
|
|
* Handle an incoming shutdown message from the given peer.
|
|
*/
|
|
void (*handle_shutdown)(const void *this_arg, LDKPublicKey their_node_id, const LDKShutdown *msg);
|
|
/**
|
|
* Handle an incoming closing_signed message from the given peer.
|
|
*/
|
|
void (*handle_closing_signed)(const void *this_arg, LDKPublicKey their_node_id, const LDKClosingSigned *msg);
|
|
/**
|
|
* Handle an incoming update_add_htlc message from the given peer.
|
|
*/
|
|
void (*handle_update_add_htlc)(const void *this_arg, LDKPublicKey their_node_id, const LDKUpdateAddHTLC *msg);
|
|
/**
|
|
* Handle an incoming update_fulfill_htlc message from the given peer.
|
|
*/
|
|
void (*handle_update_fulfill_htlc)(const void *this_arg, LDKPublicKey their_node_id, const LDKUpdateFulfillHTLC *msg);
|
|
/**
|
|
* Handle an incoming update_fail_htlc message from the given peer.
|
|
*/
|
|
void (*handle_update_fail_htlc)(const void *this_arg, LDKPublicKey their_node_id, const LDKUpdateFailHTLC *msg);
|
|
/**
|
|
* Handle an incoming update_fail_malformed_htlc message from the given peer.
|
|
*/
|
|
void (*handle_update_fail_malformed_htlc)(const void *this_arg, LDKPublicKey their_node_id, const LDKUpdateFailMalformedHTLC *msg);
|
|
/**
|
|
* Handle an incoming commitment_signed message from the given peer.
|
|
*/
|
|
void (*handle_commitment_signed)(const void *this_arg, LDKPublicKey their_node_id, const LDKCommitmentSigned *msg);
|
|
/**
|
|
* Handle an incoming revoke_and_ack message from the given peer.
|
|
*/
|
|
void (*handle_revoke_and_ack)(const void *this_arg, LDKPublicKey their_node_id, const LDKRevokeAndACK *msg);
|
|
/**
|
|
* Handle an incoming update_fee message from the given peer.
|
|
*/
|
|
void (*handle_update_fee)(const void *this_arg, LDKPublicKey their_node_id, const LDKUpdateFee *msg);
|
|
/**
|
|
* Handle an incoming announcement_signatures message from the given peer.
|
|
*/
|
|
void (*handle_announcement_signatures)(const void *this_arg, LDKPublicKey their_node_id, const LDKAnnouncementSignatures *msg);
|
|
/**
|
|
* Indicates a connection to the peer failed/an existing connection was lost. If no connection
|
|
* is believed to be possible in the future (eg they're sending us messages we don't
|
|
* understand or indicate they require unknown feature bits), no_connection_possible is set
|
|
* and any outstanding channels should be failed.
|
|
*/
|
|
void (*peer_disconnected)(const void *this_arg, LDKPublicKey their_node_id, bool no_connection_possible);
|
|
/**
|
|
* Handle a peer reconnecting, possibly generating channel_reestablish message(s).
|
|
*/
|
|
void (*peer_connected)(const void *this_arg, LDKPublicKey their_node_id, const LDKInit *msg);
|
|
/**
|
|
* Handle an incoming channel_reestablish message from the given peer.
|
|
*/
|
|
void (*handle_channel_reestablish)(const void *this_arg, LDKPublicKey their_node_id, const LDKChannelReestablish *msg);
|
|
/**
|
|
* Handle an incoming error message from the given peer.
|
|
*/
|
|
void (*handle_error)(const void *this_arg, LDKPublicKey their_node_id, const LDKErrorMessage *msg);
|
|
LDKMessageSendEventsProvider MessageSendEventsProvider;
|
|
void (*free)(void *this_arg);
|
|
} LDKChannelMessageHandler;
|
|
|
|
|
|
|
|
/**
|
|
* Arguments for the creation of a ChannelManager that are not deserialized.
|
|
*
|
|
* At a high-level, the process for deserializing a ChannelManager and resuming normal operation
|
|
* is:
|
|
* 1) Deserialize all stored ChannelMonitors.
|
|
* 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash,
|
|
* ChannelManager)>::read(reader, args).
|
|
* This may result in closing some Channels if the ChannelMonitor is newer than the stored
|
|
* ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
|
|
* 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using
|
|
* ChannelMonitor::get_outputs_to_watch() and ChannelMonitor::get_funding_txo().
|
|
* 4) Reconnect blocks on your ChannelMonitors.
|
|
* 5) Move the ChannelMonitors into your local chain::Watch.
|
|
* 6) Disconnect/connect blocks on the ChannelManager.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelManagerReadArgs {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelManagerReadArgs *inner;
|
|
bool is_owned;
|
|
} LDKChannelManagerReadArgs;
|
|
|
|
typedef struct LDKCVecTempl_ChannelMonitor {
|
|
LDKChannelMonitor *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_ChannelMonitor;
|
|
|
|
typedef LDKCVecTempl_ChannelMonitor LDKCVec_ChannelMonitorZ;
|
|
|
|
|
|
|
|
/**
|
|
* An error in decoding a message or struct.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKDecodeError {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeDecodeError *inner;
|
|
bool is_owned;
|
|
} LDKDecodeError;
|
|
|
|
|
|
|
|
/**
|
|
* A ping message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPing {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePing *inner;
|
|
bool is_owned;
|
|
} LDKPing;
|
|
|
|
|
|
|
|
/**
|
|
* A pong message to be sent or received from a peer
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPong {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePong *inner;
|
|
bool is_owned;
|
|
} LDKPong;
|
|
|
|
|
|
|
|
/**
|
|
* Proof that the sender knows the per-commitment secret of the previous commitment transaction.
|
|
* This is used to convince the recipient that the channel is at a certain commitment
|
|
* number even if they lost that data due to a local failure. Of course, the peer may lie
|
|
* and even later commitments may have been revoked.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKDataLossProtect {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeDataLossProtect *inner;
|
|
bool is_owned;
|
|
} LDKDataLossProtect;
|
|
|
|
|
|
|
|
/**
|
|
* The unsigned part of a node_announcement
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUnsignedNodeAnnouncement {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUnsignedNodeAnnouncement *inner;
|
|
bool is_owned;
|
|
} LDKUnsignedNodeAnnouncement;
|
|
|
|
|
|
|
|
/**
|
|
* Features used within a `node_announcement` message.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNodeFeatures {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNodeFeatures *inner;
|
|
bool is_owned;
|
|
} LDKNodeFeatures;
|
|
|
|
|
|
|
|
/**
|
|
* Features used within a `channel_announcement` message.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelFeatures {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelFeatures *inner;
|
|
bool is_owned;
|
|
} LDKChannelFeatures;
|
|
|
|
|
|
|
|
/**
|
|
* The unsigned part of a channel_update
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKUnsignedChannelUpdate {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeUnsignedChannelUpdate *inner;
|
|
bool is_owned;
|
|
} LDKUnsignedChannelUpdate;
|
|
|
|
|
|
|
|
/**
|
|
* A query_channel_range message is used to query a peer for channel
|
|
* UTXOs in a range of blocks. The recipient of a query makes a best
|
|
* effort to reply to the query using one or more reply_channel_range
|
|
* messages.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKQueryChannelRange {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeQueryChannelRange *inner;
|
|
bool is_owned;
|
|
} LDKQueryChannelRange;
|
|
|
|
|
|
|
|
/**
|
|
* A reply_channel_range message is a reply to a query_channel_range
|
|
* message. Multiple reply_channel_range messages can be sent in reply
|
|
* to a single query_channel_range message. The query recipient makes a
|
|
* best effort to respond based on their local network view which may
|
|
* not be a perfect view of the network. The short_channel_ids in the
|
|
* reply are encoded. We only support encoding_type=0 uncompressed
|
|
* serialization and do not support encoding_type=1 zlib serialization.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKReplyChannelRange {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeReplyChannelRange *inner;
|
|
bool is_owned;
|
|
} LDKReplyChannelRange;
|
|
|
|
typedef struct LDKCVecTempl_u64 {
|
|
uint64_t *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_u64;
|
|
|
|
typedef LDKCVecTempl_u64 LDKCVec_u64Z;
|
|
|
|
|
|
|
|
/**
|
|
* A query_short_channel_ids message is used to query a peer for
|
|
* routing gossip messages related to one or more short_channel_ids.
|
|
* The query recipient will reply with the latest, if available,
|
|
* channel_announcement, channel_update and node_announcement messages
|
|
* it maintains for the requested short_channel_ids followed by a
|
|
* reply_short_channel_ids_end message. The short_channel_ids sent in
|
|
* this query are encoded. We only support encoding_type=0 uncompressed
|
|
* serialization and do not support encoding_type=1 zlib serialization.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKQueryShortChannelIds {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeQueryShortChannelIds *inner;
|
|
bool is_owned;
|
|
} LDKQueryShortChannelIds;
|
|
|
|
|
|
|
|
/**
|
|
* A reply_short_channel_ids_end message is sent as a reply to a
|
|
* query_short_channel_ids message. The query recipient makes a best
|
|
* effort to respond based on their local network view which may not be
|
|
* a perfect view of the network.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKReplyShortChannelIdsEnd {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeReplyShortChannelIdsEnd *inner;
|
|
bool is_owned;
|
|
} LDKReplyShortChannelIdsEnd;
|
|
|
|
|
|
|
|
/**
|
|
* A gossip_timestamp_filter message is used by a node to request
|
|
* gossip relay for messages in the requested time range when the
|
|
* gossip_queries feature has been negotiated.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKGossipTimestampFilter {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeGossipTimestampFilter *inner;
|
|
bool is_owned;
|
|
} LDKGossipTimestampFilter;
|
|
|
|
|
|
|
|
/**
|
|
* An Err type for failure to process messages.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKLightningError {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeLightningError *inner;
|
|
bool is_owned;
|
|
} LDKLightningError;
|
|
|
|
typedef struct LDKCVecTempl_UpdateAddHTLC {
|
|
LDKUpdateAddHTLC *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_UpdateAddHTLC;
|
|
|
|
typedef LDKCVecTempl_UpdateAddHTLC LDKCVec_UpdateAddHTLCZ;
|
|
|
|
typedef struct LDKCVecTempl_UpdateFulfillHTLC {
|
|
LDKUpdateFulfillHTLC *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_UpdateFulfillHTLC;
|
|
|
|
typedef LDKCVecTempl_UpdateFulfillHTLC LDKCVec_UpdateFulfillHTLCZ;
|
|
|
|
typedef struct LDKCVecTempl_UpdateFailHTLC {
|
|
LDKUpdateFailHTLC *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_UpdateFailHTLC;
|
|
|
|
typedef LDKCVecTempl_UpdateFailHTLC LDKCVec_UpdateFailHTLCZ;
|
|
|
|
typedef struct LDKCVecTempl_UpdateFailMalformedHTLC {
|
|
LDKUpdateFailMalformedHTLC *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_UpdateFailMalformedHTLC;
|
|
|
|
typedef LDKCVecTempl_UpdateFailMalformedHTLC LDKCVec_UpdateFailMalformedHTLCZ;
|
|
|
|
typedef union LDKCResultPtr_bool__LightningError {
|
|
bool *result;
|
|
LDKLightningError *err;
|
|
} LDKCResultPtr_bool__LightningError;
|
|
|
|
typedef struct LDKCResultTempl_bool__LightningError {
|
|
LDKCResultPtr_bool__LightningError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_bool__LightningError;
|
|
|
|
typedef LDKCResultTempl_bool__LightningError LDKCResult_boolLightningErrorZ;
|
|
|
|
typedef struct LDKCVecTempl_C3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate {
|
|
LDKC3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_C3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate;
|
|
|
|
typedef LDKCVecTempl_C3TupleTempl_ChannelAnnouncement__ChannelUpdate__ChannelUpdate LDKCVec_C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZZ;
|
|
|
|
typedef struct LDKCVecTempl_NodeAnnouncement {
|
|
LDKNodeAnnouncement *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_NodeAnnouncement;
|
|
|
|
typedef LDKCVecTempl_NodeAnnouncement LDKCVec_NodeAnnouncementZ;
|
|
|
|
/**
|
|
* A trait to describe an object which can receive routing messages.
|
|
*/
|
|
typedef struct LDKRoutingMessageHandler {
|
|
void *this_arg;
|
|
/**
|
|
* Handle an incoming node_announcement message, returning true if it should be forwarded on,
|
|
* false or returning an Err otherwise.
|
|
*/
|
|
LDKCResult_boolLightningErrorZ (*handle_node_announcement)(const void *this_arg, const LDKNodeAnnouncement *msg);
|
|
/**
|
|
* Handle a channel_announcement message, returning true if it should be forwarded on, false
|
|
* or returning an Err otherwise.
|
|
*/
|
|
LDKCResult_boolLightningErrorZ (*handle_channel_announcement)(const void *this_arg, const LDKChannelAnnouncement *msg);
|
|
/**
|
|
* Handle an incoming channel_update message, returning true if it should be forwarded on,
|
|
* false or returning an Err otherwise.
|
|
*/
|
|
LDKCResult_boolLightningErrorZ (*handle_channel_update)(const void *this_arg, const LDKChannelUpdate *msg);
|
|
/**
|
|
* Handle some updates to the route graph that we learned due to an outbound failed payment.
|
|
*/
|
|
void (*handle_htlc_fail_channel_update)(const void *this_arg, const LDKHTLCFailChannelUpdate *update);
|
|
/**
|
|
* Gets a subset of the channel announcements and updates required to dump our routing table
|
|
* to a remote node, starting at the short_channel_id indicated by starting_point and
|
|
* including the batch_amount entries immediately higher in numerical value than starting_point.
|
|
*/
|
|
LDKCVec_C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZZ (*get_next_channel_announcements)(const void *this_arg, uint64_t starting_point, uint8_t batch_amount);
|
|
/**
|
|
* Gets a subset of the node announcements required to dump our routing table to a remote node,
|
|
* starting at the node *after* the provided publickey and including batch_amount entries
|
|
* immediately higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
|
|
* If None is provided for starting_point, we start at the first node.
|
|
*/
|
|
LDKCVec_NodeAnnouncementZ (*get_next_node_announcements)(const void *this_arg, LDKPublicKey starting_point, uint8_t batch_amount);
|
|
/**
|
|
* Returns whether a full sync should be requested from a peer.
|
|
*/
|
|
bool (*should_request_full_sync)(const void *this_arg, LDKPublicKey node_id);
|
|
void (*free)(void *this_arg);
|
|
} LDKRoutingMessageHandler;
|
|
|
|
|
|
|
|
/**
|
|
* Provides references to trait impls which handle different types of messages.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKMessageHandler {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeMessageHandler *inner;
|
|
bool is_owned;
|
|
} LDKMessageHandler;
|
|
|
|
/**
|
|
* Provides an object which can be used to send data to and which uniquely identifies a connection
|
|
* to a remote host. You will need to be able to generate multiple of these which meet Eq and
|
|
* implement Hash to meet the PeerManager API.
|
|
*
|
|
* For efficiency, Clone should be relatively cheap for this type.
|
|
*
|
|
* You probably want to just extend an int and put a file descriptor in a struct and implement
|
|
* send_data. Note that if you are using a higher-level net library that may call close() itself,
|
|
* be careful to ensure you don't have races whereby you might register a new connection with an
|
|
* fd which is the same as a previous one which has yet to be removed via
|
|
* PeerManager::socket_disconnected().
|
|
*/
|
|
typedef struct LDKSocketDescriptor {
|
|
void *this_arg;
|
|
/**
|
|
* Attempts to send some data from the given slice to the peer.
|
|
*
|
|
* Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
|
|
* Note that in the disconnected case, socket_disconnected must still fire and further write
|
|
* attempts may occur until that time.
|
|
*
|
|
* If the returned size is smaller than data.len(), a write_available event must
|
|
* trigger the next time more data can be written. Additionally, until the a send_data event
|
|
* completes fully, no further read_events should trigger on the same peer!
|
|
*
|
|
* If a read_event on this descriptor had previously returned true (indicating that read
|
|
* events should be paused to prevent DoS in the send buffer), resume_read may be set
|
|
* indicating that read events on this descriptor should resume. A resume_read of false does
|
|
* *not* imply that further read events should be paused.
|
|
*/
|
|
uintptr_t (*send_data)(void *this_arg, LDKu8slice data, bool resume_read);
|
|
/**
|
|
* Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
|
|
* more calls to write_buffer_space_avail, read_event or socket_disconnected may be made with
|
|
* this descriptor. No socket_disconnected call should be generated as a result of this call,
|
|
* though races may occur whereby disconnect_socket is called after a call to
|
|
* socket_disconnected but prior to socket_disconnected returning.
|
|
*/
|
|
void (*disconnect_socket)(void *this_arg);
|
|
bool (*eq)(const void *this_arg, const LDKSocketDescriptor *other_arg);
|
|
uint64_t (*hash)(const void *this_arg);
|
|
void *(*clone)(const void *this_arg);
|
|
void (*free)(void *this_arg);
|
|
} LDKSocketDescriptor;
|
|
|
|
|
|
|
|
/**
|
|
* A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
|
|
* events into messages which it passes on to its MessageHandlers.
|
|
*
|
|
* Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
|
|
* a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
|
|
* essentially you should default to using a SimpleRefPeerManager, and use a
|
|
* SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
|
|
* you're using lightning-net-tokio.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKPeerManager {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativePeerManager *inner;
|
|
bool is_owned;
|
|
} LDKPeerManager;
|
|
|
|
typedef struct LDKCVecTempl_PublicKey {
|
|
LDKPublicKey *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_PublicKey;
|
|
|
|
typedef LDKCVecTempl_PublicKey LDKCVec_PublicKeyZ;
|
|
|
|
typedef union LDKCResultPtr_CVecTempl_u8_____PeerHandleError {
|
|
LDKCVecTempl_u8 *result;
|
|
LDKPeerHandleError *err;
|
|
} LDKCResultPtr_CVecTempl_u8_____PeerHandleError;
|
|
|
|
typedef struct LDKCResultTempl_CVecTempl_u8_____PeerHandleError {
|
|
LDKCResultPtr_CVecTempl_u8_____PeerHandleError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_CVecTempl_u8_____PeerHandleError;
|
|
|
|
typedef LDKCResultTempl_CVecTempl_u8_____PeerHandleError LDKCResult_CVec_u8ZPeerHandleErrorZ;
|
|
|
|
typedef union LDKCResultPtr_bool__PeerHandleError {
|
|
bool *result;
|
|
LDKPeerHandleError *err;
|
|
} LDKCResultPtr_bool__PeerHandleError;
|
|
|
|
typedef struct LDKCResultTempl_bool__PeerHandleError {
|
|
LDKCResultPtr_bool__PeerHandleError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_bool__PeerHandleError;
|
|
|
|
typedef LDKCResultTempl_bool__PeerHandleError LDKCResult_boolPeerHandleErrorZ;
|
|
|
|
typedef union LDKCResultPtr_SecretKey__Secp256k1Error {
|
|
LDKSecretKey *result;
|
|
LDKSecp256k1Error *err;
|
|
} LDKCResultPtr_SecretKey__Secp256k1Error;
|
|
|
|
typedef struct LDKCResultTempl_SecretKey__Secp256k1Error {
|
|
LDKCResultPtr_SecretKey__Secp256k1Error contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_SecretKey__Secp256k1Error;
|
|
|
|
typedef LDKCResultTempl_SecretKey__Secp256k1Error LDKCResult_SecretKeySecpErrorZ;
|
|
|
|
typedef union LDKCResultPtr_PublicKey__Secp256k1Error {
|
|
LDKPublicKey *result;
|
|
LDKSecp256k1Error *err;
|
|
} LDKCResultPtr_PublicKey__Secp256k1Error;
|
|
|
|
typedef struct LDKCResultTempl_PublicKey__Secp256k1Error {
|
|
LDKCResultPtr_PublicKey__Secp256k1Error contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_PublicKey__Secp256k1Error;
|
|
|
|
typedef LDKCResultTempl_PublicKey__Secp256k1Error LDKCResult_PublicKeySecpErrorZ;
|
|
|
|
|
|
|
|
/**
|
|
* The set of public keys which are used in the creation of one commitment transaction.
|
|
* These are derived from the channel base keys and per-commitment data.
|
|
*
|
|
* A broadcaster key is provided from potential broadcaster of the computed transaction.
|
|
* A countersignatory key is coming from a protocol participant unable to broadcast the
|
|
* transaction.
|
|
*
|
|
* These keys are assumed to be good, either because the code derived them from
|
|
* channel basepoints via the new function, or they were obtained via
|
|
* PreCalculatedTxCreationKeys.trust_key_derivation because we trusted the source of the
|
|
* pre-calculated keys.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKTxCreationKeys {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeTxCreationKeys *inner;
|
|
bool is_owned;
|
|
} LDKTxCreationKeys;
|
|
|
|
typedef union LDKCResultPtr_TxCreationKeys__Secp256k1Error {
|
|
LDKTxCreationKeys *result;
|
|
LDKSecp256k1Error *err;
|
|
} LDKCResultPtr_TxCreationKeys__Secp256k1Error;
|
|
|
|
typedef struct LDKCResultTempl_TxCreationKeys__Secp256k1Error {
|
|
LDKCResultPtr_TxCreationKeys__Secp256k1Error contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_TxCreationKeys__Secp256k1Error;
|
|
|
|
typedef LDKCResultTempl_TxCreationKeys__Secp256k1Error LDKCResult_TxCreationKeysSecpErrorZ;
|
|
|
|
typedef struct LDKCVecTempl_C2TupleTempl_HTLCOutputInCommitment__Signature {
|
|
LDKC2TupleTempl_HTLCOutputInCommitment__Signature *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_C2TupleTempl_HTLCOutputInCommitment__Signature;
|
|
|
|
typedef LDKCVecTempl_C2TupleTempl_HTLCOutputInCommitment__Signature LDKCVec_C2Tuple_HTLCOutputInCommitmentSignatureZZ;
|
|
|
|
|
|
|
|
/**
|
|
* A hop in a route
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKRouteHop {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeRouteHop *inner;
|
|
bool is_owned;
|
|
} LDKRouteHop;
|
|
|
|
typedef struct LDKCVecTempl_RouteHop {
|
|
LDKRouteHop *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_RouteHop;
|
|
|
|
typedef struct LDKCVecTempl_CVecTempl_RouteHop {
|
|
LDKCVecTempl_RouteHop *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_CVecTempl_RouteHop;
|
|
|
|
typedef LDKCVecTempl_CVecTempl_RouteHop LDKCVec_CVec_RouteHopZZ;
|
|
|
|
|
|
|
|
/**
|
|
* A channel descriptor which provides a last-hop route to get_route
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKRouteHint {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeRouteHint *inner;
|
|
bool is_owned;
|
|
} LDKRouteHint;
|
|
|
|
|
|
|
|
/**
|
|
* Fees for routing via a given channel or a node
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKRoutingFees {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeRoutingFees *inner;
|
|
bool is_owned;
|
|
} LDKRoutingFees;
|
|
|
|
typedef union LDKCResultPtr_Route__LightningError {
|
|
LDKRoute *result;
|
|
LDKLightningError *err;
|
|
} LDKCResultPtr_Route__LightningError;
|
|
|
|
typedef struct LDKCResultTempl_Route__LightningError {
|
|
LDKCResultPtr_Route__LightningError contents;
|
|
bool result_ok;
|
|
} LDKCResultTempl_Route__LightningError;
|
|
|
|
typedef LDKCResultTempl_Route__LightningError LDKCResult_RouteLightningErrorZ;
|
|
|
|
|
|
|
|
/**
|
|
* Represents the network as nodes and channels between them
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNetworkGraph {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNetworkGraph *inner;
|
|
bool is_owned;
|
|
} LDKNetworkGraph;
|
|
|
|
typedef struct LDKCVecTempl_RouteHint {
|
|
LDKRouteHint *data;
|
|
uintptr_t datalen;
|
|
} LDKCVecTempl_RouteHint;
|
|
|
|
typedef LDKCVecTempl_RouteHint LDKCVec_RouteHintZ;
|
|
|
|
|
|
|
|
/**
|
|
* A simple newtype for RwLockReadGuard<'a, NetworkGraph>.
|
|
* This exists only to make accessing a RwLock<NetworkGraph> possible from
|
|
* the C bindings, as it can be done directly in Rust code.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKLockedNetworkGraph {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeLockedNetworkGraph *inner;
|
|
bool is_owned;
|
|
} LDKLockedNetworkGraph;
|
|
|
|
|
|
|
|
/**
|
|
* Receives and validates network updates from peers,
|
|
* stores authentic and relevant data as a network graph.
|
|
* This network graph is then used for routing payments.
|
|
* Provides interface to help with initial routing sync by
|
|
* serving historical announcements.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNetGraphMsgHandler {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNetGraphMsgHandler *inner;
|
|
bool is_owned;
|
|
} LDKNetGraphMsgHandler;
|
|
|
|
|
|
|
|
/**
|
|
* Details about one direction of a channel. Received
|
|
* within a channel update.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKDirectionalChannelInfo {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeDirectionalChannelInfo *inner;
|
|
bool is_owned;
|
|
} LDKDirectionalChannelInfo;
|
|
|
|
|
|
|
|
/**
|
|
* Details about a channel (both directions).
|
|
* Received within a channel announcement.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKChannelInfo {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeChannelInfo *inner;
|
|
bool is_owned;
|
|
} LDKChannelInfo;
|
|
|
|
|
|
|
|
/**
|
|
* Information received in the latest node_announcement from this node.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNodeAnnouncementInfo {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNodeAnnouncementInfo *inner;
|
|
bool is_owned;
|
|
} LDKNodeAnnouncementInfo;
|
|
|
|
|
|
|
|
/**
|
|
* Details about a node in the network, known from the network announcement.
|
|
*/
|
|
typedef struct MUST_USE_STRUCT LDKNodeInfo {
|
|
/**
|
|
* Nearly everywhere, inner must be non-null, however in places where
|
|
* the Rust equivalent takes an Option, it may be set to null to indicate None.
|
|
*/
|
|
LDKnativeNodeInfo *inner;
|
|
bool is_owned;
|
|
} LDKNodeInfo;
|
|
|
|
typedef LDKCVecTempl_RouteHop LDKCVec_RouteHopZ;
|
|
|
|
extern const void (*C2Tuple_HTLCOutputInCommitmentSignatureZ_free)(LDKC2Tuple_HTLCOutputInCommitmentSignatureZ);
|
|
|
|
extern const void (*C2Tuple_OutPointScriptZ_free)(LDKC2Tuple_OutPointScriptZ);
|
|
|
|
extern const void (*C2Tuple_SignatureCVec_SignatureZZ_free)(LDKC2Tuple_SignatureCVec_SignatureZZ);
|
|
|
|
extern const void (*C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZ_free)(LDKC2Tuple_TxidCVec_C2Tuple_u32TxOutZZZ);
|
|
|
|
extern const void (*C2Tuple_u32TxOutZ_free)(LDKC2Tuple_u32TxOutZ);
|
|
|
|
extern const void (*C2Tuple_u64u64Z_free)(LDKC2Tuple_u64u64Z);
|
|
|
|
extern const void (*C2Tuple_usizeTransactionZ_free)(LDKC2Tuple_usizeTransactionZ);
|
|
|
|
extern const void (*C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZ_free)(LDKC3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZ);
|
|
|
|
extern const uint64_t CLOSED_CHANNEL_UPDATE_ID;
|
|
|
|
extern const void (*CResult_C2Tuple_SignatureCVec_SignatureZZNoneZ_free)(LDKCResult_C2Tuple_SignatureCVec_SignatureZZNoneZ);
|
|
|
|
extern const LDKCResult_C2Tuple_SignatureCVec_SignatureZZNoneZ (*CResult_C2Tuple_SignatureCVec_SignatureZZNoneZ_ok)(LDKC2Tuple_SignatureCVec_SignatureZZ);
|
|
|
|
extern const void (*CResult_CVec_SignatureZNoneZ_free)(LDKCResult_CVec_SignatureZNoneZ);
|
|
|
|
extern const LDKCResult_CVec_SignatureZNoneZ (*CResult_CVec_SignatureZNoneZ_ok)(LDKCVec_SignatureZ);
|
|
|
|
extern const LDKCResult_CVec_u8ZPeerHandleErrorZ (*CResult_CVec_u8ZPeerHandleErrorZ_err)(LDKPeerHandleError);
|
|
|
|
extern const void (*CResult_CVec_u8ZPeerHandleErrorZ_free)(LDKCResult_CVec_u8ZPeerHandleErrorZ);
|
|
|
|
extern const LDKCResult_CVec_u8ZPeerHandleErrorZ (*CResult_CVec_u8ZPeerHandleErrorZ_ok)(LDKCVec_u8Z);
|
|
|
|
extern const LDKCResult_NoneAPIErrorZ (*CResult_NoneAPIErrorZ_err)(LDKAPIError);
|
|
|
|
extern const void (*CResult_NoneAPIErrorZ_free)(LDKCResult_NoneAPIErrorZ);
|
|
|
|
extern const LDKCResult_NoneChannelMonitorUpdateErrZ (*CResult_NoneChannelMonitorUpdateErrZ_err)(LDKChannelMonitorUpdateErr);
|
|
|
|
extern const void (*CResult_NoneChannelMonitorUpdateErrZ_free)(LDKCResult_NoneChannelMonitorUpdateErrZ);
|
|
|
|
extern const LDKCResult_NoneMonitorUpdateErrorZ (*CResult_NoneMonitorUpdateErrorZ_err)(LDKMonitorUpdateError);
|
|
|
|
extern const void (*CResult_NoneMonitorUpdateErrorZ_free)(LDKCResult_NoneMonitorUpdateErrorZ);
|
|
|
|
extern const LDKCResult_NonePaymentSendFailureZ (*CResult_NonePaymentSendFailureZ_err)(LDKPaymentSendFailure);
|
|
|
|
extern const void (*CResult_NonePaymentSendFailureZ_free)(LDKCResult_NonePaymentSendFailureZ);
|
|
|
|
extern const LDKCResult_NonePeerHandleErrorZ (*CResult_NonePeerHandleErrorZ_err)(LDKPeerHandleError);
|
|
|
|
extern const void (*CResult_NonePeerHandleErrorZ_free)(LDKCResult_NonePeerHandleErrorZ);
|
|
|
|
extern const LDKCResult_PublicKeySecpErrorZ (*CResult_PublicKeySecpErrorZ_err)(LDKSecp256k1Error);
|
|
|
|
extern const void (*CResult_PublicKeySecpErrorZ_free)(LDKCResult_PublicKeySecpErrorZ);
|
|
|
|
extern const LDKCResult_PublicKeySecpErrorZ (*CResult_PublicKeySecpErrorZ_ok)(LDKPublicKey);
|
|
|
|
extern const LDKCResult_RouteLightningErrorZ (*CResult_RouteLightningErrorZ_err)(LDKLightningError);
|
|
|
|
extern const void (*CResult_RouteLightningErrorZ_free)(LDKCResult_RouteLightningErrorZ);
|
|
|
|
extern const LDKCResult_RouteLightningErrorZ (*CResult_RouteLightningErrorZ_ok)(LDKRoute);
|
|
|
|
extern const LDKCResult_SecretKeySecpErrorZ (*CResult_SecretKeySecpErrorZ_err)(LDKSecp256k1Error);
|
|
|
|
extern const void (*CResult_SecretKeySecpErrorZ_free)(LDKCResult_SecretKeySecpErrorZ);
|
|
|
|
extern const LDKCResult_SecretKeySecpErrorZ (*CResult_SecretKeySecpErrorZ_ok)(LDKSecretKey);
|
|
|
|
extern const void (*CResult_SignatureNoneZ_free)(LDKCResult_SignatureNoneZ);
|
|
|
|
extern const LDKCResult_SignatureNoneZ (*CResult_SignatureNoneZ_ok)(LDKSignature);
|
|
|
|
extern const LDKCResult_TxCreationKeysSecpErrorZ (*CResult_TxCreationKeysSecpErrorZ_err)(LDKSecp256k1Error);
|
|
|
|
extern const void (*CResult_TxCreationKeysSecpErrorZ_free)(LDKCResult_TxCreationKeysSecpErrorZ);
|
|
|
|
extern const LDKCResult_TxCreationKeysSecpErrorZ (*CResult_TxCreationKeysSecpErrorZ_ok)(LDKTxCreationKeys);
|
|
|
|
extern const LDKCResult_TxOutAccessErrorZ (*CResult_TxOutAccessErrorZ_err)(LDKAccessError);
|
|
|
|
extern const void (*CResult_TxOutAccessErrorZ_free)(LDKCResult_TxOutAccessErrorZ);
|
|
|
|
extern const LDKCResult_TxOutAccessErrorZ (*CResult_TxOutAccessErrorZ_ok)(LDKTxOut);
|
|
|
|
extern const LDKCResult_boolLightningErrorZ (*CResult_boolLightningErrorZ_err)(LDKLightningError);
|
|
|
|
extern const void (*CResult_boolLightningErrorZ_free)(LDKCResult_boolLightningErrorZ);
|
|
|
|
extern const LDKCResult_boolLightningErrorZ (*CResult_boolLightningErrorZ_ok)(bool);
|
|
|
|
extern const LDKCResult_boolPeerHandleErrorZ (*CResult_boolPeerHandleErrorZ_err)(LDKPeerHandleError);
|
|
|
|
extern const void (*CResult_boolPeerHandleErrorZ_free)(LDKCResult_boolPeerHandleErrorZ);
|
|
|
|
extern const LDKCResult_boolPeerHandleErrorZ (*CResult_boolPeerHandleErrorZ_ok)(bool);
|
|
|
|
extern const void (*CVec_C2Tuple_HTLCOutputInCommitmentSignatureZZ_free)(LDKCVec_C2Tuple_HTLCOutputInCommitmentSignatureZZ);
|
|
|
|
extern const void (*CVec_C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZZ_free)(LDKCVec_C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZZ);
|
|
|
|
extern const void (*CVec_C2Tuple_u32TxOutZZ_free)(LDKCVec_C2Tuple_u32TxOutZZ);
|
|
|
|
extern const void (*CVec_C2Tuple_usizeTransactionZZ_free)(LDKCVec_C2Tuple_usizeTransactionZZ);
|
|
|
|
extern const void (*CVec_C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZZ_free)(LDKCVec_C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZZ);
|
|
|
|
extern const void (*CVec_CVec_RouteHopZZ_free)(LDKCVec_CVec_RouteHopZZ);
|
|
|
|
extern const void (*CVec_ChannelDetailsZ_free)(LDKCVec_ChannelDetailsZ);
|
|
|
|
extern const void (*CVec_ChannelMonitorZ_free)(LDKCVec_ChannelMonitorZ);
|
|
|
|
extern const void (*CVec_EventZ_free)(LDKCVec_EventZ);
|
|
|
|
extern const void (*CVec_HTLCOutputInCommitmentZ_free)(LDKCVec_HTLCOutputInCommitmentZ);
|
|
|
|
extern const void (*CVec_MessageSendEventZ_free)(LDKCVec_MessageSendEventZ);
|
|
|
|
extern const void (*CVec_MonitorEventZ_free)(LDKCVec_MonitorEventZ);
|
|
|
|
extern const void (*CVec_NetAddressZ_free)(LDKCVec_NetAddressZ);
|
|
|
|
extern const void (*CVec_NodeAnnouncementZ_free)(LDKCVec_NodeAnnouncementZ);
|
|
|
|
extern const void (*CVec_PublicKeyZ_free)(LDKCVec_PublicKeyZ);
|
|
|
|
extern const void (*CVec_RouteHintZ_free)(LDKCVec_RouteHintZ);
|
|
|
|
extern const void (*CVec_RouteHopZ_free)(LDKCVec_RouteHopZ);
|
|
|
|
extern const void (*CVec_SignatureZ_free)(LDKCVec_SignatureZ);
|
|
|
|
extern const void (*CVec_SpendableOutputDescriptorZ_free)(LDKCVec_SpendableOutputDescriptorZ);
|
|
|
|
extern const void (*CVec_TransactionZ_free)(LDKCVec_TransactionZ);
|
|
|
|
extern const void (*CVec_UpdateAddHTLCZ_free)(LDKCVec_UpdateAddHTLCZ);
|
|
|
|
extern const void (*CVec_UpdateFailHTLCZ_free)(LDKCVec_UpdateFailHTLCZ);
|
|
|
|
extern const void (*CVec_UpdateFailMalformedHTLCZ_free)(LDKCVec_UpdateFailMalformedHTLCZ);
|
|
|
|
extern const void (*CVec_UpdateFulfillHTLCZ_free)(LDKCVec_UpdateFulfillHTLCZ);
|
|
|
|
extern const void (*CVec_u64Z_free)(LDKCVec_u64Z);
|
|
|
|
extern const void (*CVec_u8Z_free)(LDKCVec_u8Z);
|
|
|
|
extern const uint64_t MIN_RELAY_FEE_SAT_PER_1000_WEIGHT;
|
|
|
|
void Transaction_free(LDKTransaction _res);
|
|
|
|
void TxOut_free(LDKTxOut _res);
|
|
|
|
LDKC2Tuple_usizeTransactionZ C2Tuple_usizeTransactionZ_new(uintptr_t a, LDKTransaction b);
|
|
|
|
LDKCResult_NoneChannelMonitorUpdateErrZ CResult_NoneChannelMonitorUpdateErrZ_ok(void);
|
|
|
|
LDKCResult_NoneMonitorUpdateErrorZ CResult_NoneMonitorUpdateErrorZ_ok(void);
|
|
|
|
LDKC2Tuple_OutPointScriptZ C2Tuple_OutPointScriptZ_new(LDKOutPoint a, LDKCVec_u8Z b);
|
|
|
|
LDKC2Tuple_u32TxOutZ C2Tuple_u32TxOutZ_new(uint32_t a, LDKTxOut b);
|
|
|
|
LDKC2Tuple_TxidCVec_C2Tuple_u32TxOutZZZ C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZ_new(LDKThirtyTwoBytes a, LDKCVec_C2Tuple_u32TxOutZZ b);
|
|
|
|
LDKC2Tuple_u64u64Z C2Tuple_u64u64Z_new(uint64_t a, uint64_t b);
|
|
|
|
LDKC2Tuple_SignatureCVec_SignatureZZ C2Tuple_SignatureCVec_SignatureZZ_new(LDKSignature a, LDKCVec_SignatureZ b);
|
|
|
|
LDKCResult_C2Tuple_SignatureCVec_SignatureZZNoneZ CResult_C2Tuple_SignatureCVec_SignatureZZNoneZ_err(void);
|
|
|
|
LDKCResult_SignatureNoneZ CResult_SignatureNoneZ_err(void);
|
|
|
|
LDKCResult_CVec_SignatureZNoneZ CResult_CVec_SignatureZNoneZ_err(void);
|
|
|
|
LDKCResult_NoneAPIErrorZ CResult_NoneAPIErrorZ_ok(void);
|
|
|
|
LDKCResult_NonePaymentSendFailureZ CResult_NonePaymentSendFailureZ_ok(void);
|
|
|
|
LDKC3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZ C3Tuple_ChannelAnnouncementChannelUpdateChannelUpdateZ_new(LDKChannelAnnouncement a, LDKChannelUpdate b, LDKChannelUpdate c);
|
|
|
|
LDKCResult_NonePeerHandleErrorZ CResult_NonePeerHandleErrorZ_ok(void);
|
|
|
|
LDKC2Tuple_HTLCOutputInCommitmentSignatureZ C2Tuple_HTLCOutputInCommitmentSignatureZ_new(LDKHTLCOutputInCommitment a, LDKSignature b);
|
|
|
|
void Event_free(LDKEvent this_ptr);
|
|
|
|
LDKEvent Event_clone(const LDKEvent *orig);
|
|
|
|
void MessageSendEvent_free(LDKMessageSendEvent this_ptr);
|
|
|
|
LDKMessageSendEvent MessageSendEvent_clone(const LDKMessageSendEvent *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void MessageSendEventsProvider_free(LDKMessageSendEventsProvider this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void EventsProvider_free(LDKEventsProvider this_ptr);
|
|
|
|
void APIError_free(LDKAPIError this_ptr);
|
|
|
|
LDKAPIError APIError_clone(const LDKAPIError *orig);
|
|
|
|
LDKLevel Level_clone(const LDKLevel *orig);
|
|
|
|
/**
|
|
* Returns the most verbose logging level.
|
|
*/
|
|
MUST_USE_RES LDKLevel Level_max(void);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void Logger_free(LDKLogger this_ptr);
|
|
|
|
void ChannelHandshakeConfig_free(LDKChannelHandshakeConfig this_ptr);
|
|
|
|
LDKChannelHandshakeConfig ChannelHandshakeConfig_clone(const LDKChannelHandshakeConfig *orig);
|
|
|
|
/**
|
|
* Confirmations we will wait for before considering the channel locked in.
|
|
* Applied only for inbound channels (see ChannelHandshakeLimits::max_minimum_depth for the
|
|
* equivalent limit applied to outbound channels).
|
|
*
|
|
* Default value: 6.
|
|
*/
|
|
uint32_t ChannelHandshakeConfig_get_minimum_depth(const LDKChannelHandshakeConfig *this_ptr);
|
|
|
|
/**
|
|
* Confirmations we will wait for before considering the channel locked in.
|
|
* Applied only for inbound channels (see ChannelHandshakeLimits::max_minimum_depth for the
|
|
* equivalent limit applied to outbound channels).
|
|
*
|
|
* Default value: 6.
|
|
*/
|
|
void ChannelHandshakeConfig_set_minimum_depth(LDKChannelHandshakeConfig *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Set to the amount of time we require our counterparty to wait to claim their money.
|
|
*
|
|
* It's one of the main parameter of our security model. We (or one of our watchtowers) MUST
|
|
* be online to check for peer having broadcast a revoked transaction to steal our funds
|
|
* at least once every our_to_self_delay blocks.
|
|
*
|
|
* Meanwhile, asking for a too high delay, we bother peer to freeze funds for nothing in
|
|
* case of an honest unilateral channel close, which implicitly decrease the economic value of
|
|
* our channel.
|
|
*
|
|
* Default value: BREAKDOWN_TIMEOUT (currently 144), we enforce it as a minimum at channel
|
|
* opening so you can tweak config to ask for more security, not less.
|
|
*/
|
|
uint16_t ChannelHandshakeConfig_get_our_to_self_delay(const LDKChannelHandshakeConfig *this_ptr);
|
|
|
|
/**
|
|
* Set to the amount of time we require our counterparty to wait to claim their money.
|
|
*
|
|
* It's one of the main parameter of our security model. We (or one of our watchtowers) MUST
|
|
* be online to check for peer having broadcast a revoked transaction to steal our funds
|
|
* at least once every our_to_self_delay blocks.
|
|
*
|
|
* Meanwhile, asking for a too high delay, we bother peer to freeze funds for nothing in
|
|
* case of an honest unilateral channel close, which implicitly decrease the economic value of
|
|
* our channel.
|
|
*
|
|
* Default value: BREAKDOWN_TIMEOUT (currently 144), we enforce it as a minimum at channel
|
|
* opening so you can tweak config to ask for more security, not less.
|
|
*/
|
|
void ChannelHandshakeConfig_set_our_to_self_delay(LDKChannelHandshakeConfig *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* Set to the smallest value HTLC we will accept to process.
|
|
*
|
|
* This value is sent to our counterparty on channel-open and we close the channel any time
|
|
* our counterparty misbehaves by sending us an HTLC with a value smaller than this.
|
|
*
|
|
* Default value: 1. If the value is less than 1, it is ignored and set to 1, as is required
|
|
* by the protocol.
|
|
*/
|
|
uint64_t ChannelHandshakeConfig_get_our_htlc_minimum_msat(const LDKChannelHandshakeConfig *this_ptr);
|
|
|
|
/**
|
|
* Set to the smallest value HTLC we will accept to process.
|
|
*
|
|
* This value is sent to our counterparty on channel-open and we close the channel any time
|
|
* our counterparty misbehaves by sending us an HTLC with a value smaller than this.
|
|
*
|
|
* Default value: 1. If the value is less than 1, it is ignored and set to 1, as is required
|
|
* by the protocol.
|
|
*/
|
|
void ChannelHandshakeConfig_set_our_htlc_minimum_msat(LDKChannelHandshakeConfig *this_ptr, uint64_t val);
|
|
|
|
MUST_USE_RES LDKChannelHandshakeConfig ChannelHandshakeConfig_new(uint32_t minimum_depth_arg, uint16_t our_to_self_delay_arg, uint64_t our_htlc_minimum_msat_arg);
|
|
|
|
MUST_USE_RES LDKChannelHandshakeConfig ChannelHandshakeConfig_default(void);
|
|
|
|
void ChannelHandshakeLimits_free(LDKChannelHandshakeLimits this_ptr);
|
|
|
|
LDKChannelHandshakeLimits ChannelHandshakeLimits_clone(const LDKChannelHandshakeLimits *orig);
|
|
|
|
/**
|
|
* Minimum allowed satoshis when a channel is funded, this is supplied by the sender and so
|
|
* only applies to inbound channels.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_min_funding_satoshis(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Minimum allowed satoshis when a channel is funded, this is supplied by the sender and so
|
|
* only applies to inbound channels.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
void ChannelHandshakeLimits_set_min_funding_satoshis(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The remote node sets a limit on the minimum size of HTLCs we can send to them. This allows
|
|
* you to limit the maximum minimum-size they can require.
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_max_htlc_minimum_msat(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* The remote node sets a limit on the minimum size of HTLCs we can send to them. This allows
|
|
* you to limit the maximum minimum-size they can require.
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
void ChannelHandshakeLimits_set_max_htlc_minimum_msat(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The remote node sets a limit on the maximum value of pending HTLCs to them at any given
|
|
* time to limit their funds exposure to HTLCs. This allows you to set a minimum such value.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_min_max_htlc_value_in_flight_msat(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* The remote node sets a limit on the maximum value of pending HTLCs to them at any given
|
|
* time to limit their funds exposure to HTLCs. This allows you to set a minimum such value.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
void ChannelHandshakeLimits_set_min_max_htlc_value_in_flight_msat(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The remote node will require we keep a certain amount in direct payment to ourselves at all
|
|
* time, ensuring that we are able to be punished if we broadcast an old state. This allows to
|
|
* you limit the amount which we will have to keep to ourselves (and cannot use for HTLCs).
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_max_channel_reserve_satoshis(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* The remote node will require we keep a certain amount in direct payment to ourselves at all
|
|
* time, ensuring that we are able to be punished if we broadcast an old state. This allows to
|
|
* you limit the amount which we will have to keep to ourselves (and cannot use for HTLCs).
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
void ChannelHandshakeLimits_set_max_channel_reserve_satoshis(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The remote node sets a limit on the maximum number of pending HTLCs to them at any given
|
|
* time. This allows you to set a minimum such value.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
uint16_t ChannelHandshakeLimits_get_min_max_accepted_htlcs(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* The remote node sets a limit on the maximum number of pending HTLCs to them at any given
|
|
* time. This allows you to set a minimum such value.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
void ChannelHandshakeLimits_set_min_max_accepted_htlcs(LDKChannelHandshakeLimits *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* Outputs below a certain value will not be added to on-chain transactions. The dust value is
|
|
* required to always be higher than this value so this only applies to HTLC outputs (and
|
|
* potentially to-self outputs before any payments have been made).
|
|
* Thus, HTLCs below this amount plus HTLC transaction fees are not enforceable on-chain.
|
|
* This setting allows you to set a minimum dust limit for their commitment transactions,
|
|
* reflecting the reality that tiny outputs are not considered standard transactions and will
|
|
* not propagate through the Bitcoin network.
|
|
*
|
|
* Default value: 546, the current dust limit on the Bitcoin network.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_min_dust_limit_satoshis(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Outputs below a certain value will not be added to on-chain transactions. The dust value is
|
|
* required to always be higher than this value so this only applies to HTLC outputs (and
|
|
* potentially to-self outputs before any payments have been made).
|
|
* Thus, HTLCs below this amount plus HTLC transaction fees are not enforceable on-chain.
|
|
* This setting allows you to set a minimum dust limit for their commitment transactions,
|
|
* reflecting the reality that tiny outputs are not considered standard transactions and will
|
|
* not propagate through the Bitcoin network.
|
|
*
|
|
* Default value: 546, the current dust limit on the Bitcoin network.
|
|
*/
|
|
void ChannelHandshakeLimits_set_min_dust_limit_satoshis(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* Maximum allowed threshold above which outputs will not be generated in their commitment
|
|
* transactions.
|
|
* HTLCs below this amount plus HTLC transaction fees are not enforceable on-chain.
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
uint64_t ChannelHandshakeLimits_get_max_dust_limit_satoshis(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Maximum allowed threshold above which outputs will not be generated in their commitment
|
|
* transactions.
|
|
* HTLCs below this amount plus HTLC transaction fees are not enforceable on-chain.
|
|
*
|
|
* Default value: u64::max_value.
|
|
*/
|
|
void ChannelHandshakeLimits_set_max_dust_limit_satoshis(LDKChannelHandshakeLimits *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* Before a channel is usable the funding transaction will need to be confirmed by at least a
|
|
* certain number of blocks, specified by the node which is not the funder (as the funder can
|
|
* assume they aren't going to double-spend themselves).
|
|
* This config allows you to set a limit on the maximum amount of time to wait.
|
|
*
|
|
* Default value: 144, or roughly one day and only applies to outbound channels.
|
|
*/
|
|
uint32_t ChannelHandshakeLimits_get_max_minimum_depth(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Before a channel is usable the funding transaction will need to be confirmed by at least a
|
|
* certain number of blocks, specified by the node which is not the funder (as the funder can
|
|
* assume they aren't going to double-spend themselves).
|
|
* This config allows you to set a limit on the maximum amount of time to wait.
|
|
*
|
|
* Default value: 144, or roughly one day and only applies to outbound channels.
|
|
*/
|
|
void ChannelHandshakeLimits_set_max_minimum_depth(LDKChannelHandshakeLimits *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Set to force the incoming channel to match our announced channel preference in
|
|
* ChannelConfig.
|
|
*
|
|
* Default value: true, to make the default that no announced channels are possible (which is
|
|
* appropriate for any nodes which are not online very reliably).
|
|
*/
|
|
bool ChannelHandshakeLimits_get_force_announced_channel_preference(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Set to force the incoming channel to match our announced channel preference in
|
|
* ChannelConfig.
|
|
*
|
|
* Default value: true, to make the default that no announced channels are possible (which is
|
|
* appropriate for any nodes which are not online very reliably).
|
|
*/
|
|
void ChannelHandshakeLimits_set_force_announced_channel_preference(LDKChannelHandshakeLimits *this_ptr, bool val);
|
|
|
|
/**
|
|
* Set to the amount of time we're willing to wait to claim money back to us.
|
|
*
|
|
* Not checking this value would be a security issue, as our peer would be able to set it to
|
|
* max relative lock-time (a year) and we would \"lose\" money as it would be locked for a long time.
|
|
*
|
|
* Default value: MAX_LOCAL_BREAKDOWN_TIMEOUT (1008), which we also enforce as a maximum value
|
|
* so you can tweak config to reduce the loss of having useless locked funds (if your peer accepts)
|
|
*/
|
|
uint16_t ChannelHandshakeLimits_get_their_to_self_delay(const LDKChannelHandshakeLimits *this_ptr);
|
|
|
|
/**
|
|
* Set to the amount of time we're willing to wait to claim money back to us.
|
|
*
|
|
* Not checking this value would be a security issue, as our peer would be able to set it to
|
|
* max relative lock-time (a year) and we would \"lose\" money as it would be locked for a long time.
|
|
*
|
|
* Default value: MAX_LOCAL_BREAKDOWN_TIMEOUT (1008), which we also enforce as a maximum value
|
|
* so you can tweak config to reduce the loss of having useless locked funds (if your peer accepts)
|
|
*/
|
|
void ChannelHandshakeLimits_set_their_to_self_delay(LDKChannelHandshakeLimits *this_ptr, uint16_t val);
|
|
|
|
MUST_USE_RES LDKChannelHandshakeLimits ChannelHandshakeLimits_new(uint64_t min_funding_satoshis_arg, uint64_t max_htlc_minimum_msat_arg, uint64_t min_max_htlc_value_in_flight_msat_arg, uint64_t max_channel_reserve_satoshis_arg, uint16_t min_max_accepted_htlcs_arg, uint64_t min_dust_limit_satoshis_arg, uint64_t max_dust_limit_satoshis_arg, uint32_t max_minimum_depth_arg, bool force_announced_channel_preference_arg, uint16_t their_to_self_delay_arg);
|
|
|
|
MUST_USE_RES LDKChannelHandshakeLimits ChannelHandshakeLimits_default(void);
|
|
|
|
void ChannelConfig_free(LDKChannelConfig this_ptr);
|
|
|
|
LDKChannelConfig ChannelConfig_clone(const LDKChannelConfig *orig);
|
|
|
|
/**
|
|
* Amount (in millionths of a satoshi) the channel will charge per transferred satoshi.
|
|
* This may be allowed to change at runtime in a later update, however doing so must result in
|
|
* update messages sent to notify all nodes of our updated relay fee.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
uint32_t ChannelConfig_get_fee_proportional_millionths(const LDKChannelConfig *this_ptr);
|
|
|
|
/**
|
|
* Amount (in millionths of a satoshi) the channel will charge per transferred satoshi.
|
|
* This may be allowed to change at runtime in a later update, however doing so must result in
|
|
* update messages sent to notify all nodes of our updated relay fee.
|
|
*
|
|
* Default value: 0.
|
|
*/
|
|
void ChannelConfig_set_fee_proportional_millionths(LDKChannelConfig *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Set to announce the channel publicly and notify all nodes that they can route via this
|
|
* channel.
|
|
*
|
|
* This should only be set to true for nodes which expect to be online reliably.
|
|
*
|
|
* As the node which funds a channel picks this value this will only apply for new outbound
|
|
* channels unless ChannelHandshakeLimits::force_announced_channel_preferences is set.
|
|
*
|
|
* This cannot be changed after the initial channel handshake.
|
|
*
|
|
* Default value: false.
|
|
*/
|
|
bool ChannelConfig_get_announced_channel(const LDKChannelConfig *this_ptr);
|
|
|
|
/**
|
|
* Set to announce the channel publicly and notify all nodes that they can route via this
|
|
* channel.
|
|
*
|
|
* This should only be set to true for nodes which expect to be online reliably.
|
|
*
|
|
* As the node which funds a channel picks this value this will only apply for new outbound
|
|
* channels unless ChannelHandshakeLimits::force_announced_channel_preferences is set.
|
|
*
|
|
* This cannot be changed after the initial channel handshake.
|
|
*
|
|
* Default value: false.
|
|
*/
|
|
void ChannelConfig_set_announced_channel(LDKChannelConfig *this_ptr, bool val);
|
|
|
|
/**
|
|
* When set, we commit to an upfront shutdown_pubkey at channel open. If our counterparty
|
|
* supports it, they will then enforce the mutual-close output to us matches what we provided
|
|
* at intialization, preventing us from closing to an alternate pubkey.
|
|
*
|
|
* This is set to true by default to provide a slight increase in security, though ultimately
|
|
* any attacker who is able to take control of a channel can just as easily send the funds via
|
|
* lightning payments, so we never require that our counterparties support this option.
|
|
*
|
|
* This cannot be changed after a channel has been initialized.
|
|
*
|
|
* Default value: true.
|
|
*/
|
|
bool ChannelConfig_get_commit_upfront_shutdown_pubkey(const LDKChannelConfig *this_ptr);
|
|
|
|
/**
|
|
* When set, we commit to an upfront shutdown_pubkey at channel open. If our counterparty
|
|
* supports it, they will then enforce the mutual-close output to us matches what we provided
|
|
* at intialization, preventing us from closing to an alternate pubkey.
|
|
*
|
|
* This is set to true by default to provide a slight increase in security, though ultimately
|
|
* any attacker who is able to take control of a channel can just as easily send the funds via
|
|
* lightning payments, so we never require that our counterparties support this option.
|
|
*
|
|
* This cannot be changed after a channel has been initialized.
|
|
*
|
|
* Default value: true.
|
|
*/
|
|
void ChannelConfig_set_commit_upfront_shutdown_pubkey(LDKChannelConfig *this_ptr, bool val);
|
|
|
|
MUST_USE_RES LDKChannelConfig ChannelConfig_new(uint32_t fee_proportional_millionths_arg, bool announced_channel_arg, bool commit_upfront_shutdown_pubkey_arg);
|
|
|
|
MUST_USE_RES LDKChannelConfig ChannelConfig_default(void);
|
|
|
|
LDKCVec_u8Z ChannelConfig_write(const LDKChannelConfig *obj);
|
|
|
|
LDKChannelConfig ChannelConfig_read(LDKu8slice ser);
|
|
|
|
void UserConfig_free(LDKUserConfig this_ptr);
|
|
|
|
LDKUserConfig UserConfig_clone(const LDKUserConfig *orig);
|
|
|
|
/**
|
|
* Channel config that we propose to our counterparty.
|
|
*/
|
|
LDKChannelHandshakeConfig UserConfig_get_own_channel_config(const LDKUserConfig *this_ptr);
|
|
|
|
/**
|
|
* Channel config that we propose to our counterparty.
|
|
*/
|
|
void UserConfig_set_own_channel_config(LDKUserConfig *this_ptr, LDKChannelHandshakeConfig val);
|
|
|
|
/**
|
|
* Limits applied to our counterparty's proposed channel config settings.
|
|
*/
|
|
LDKChannelHandshakeLimits UserConfig_get_peer_channel_config_limits(const LDKUserConfig *this_ptr);
|
|
|
|
/**
|
|
* Limits applied to our counterparty's proposed channel config settings.
|
|
*/
|
|
void UserConfig_set_peer_channel_config_limits(LDKUserConfig *this_ptr, LDKChannelHandshakeLimits val);
|
|
|
|
/**
|
|
* Channel config which affects behavior during channel lifetime.
|
|
*/
|
|
LDKChannelConfig UserConfig_get_channel_options(const LDKUserConfig *this_ptr);
|
|
|
|
/**
|
|
* Channel config which affects behavior during channel lifetime.
|
|
*/
|
|
void UserConfig_set_channel_options(LDKUserConfig *this_ptr, LDKChannelConfig val);
|
|
|
|
MUST_USE_RES LDKUserConfig UserConfig_new(LDKChannelHandshakeConfig own_channel_config_arg, LDKChannelHandshakeLimits peer_channel_config_limits_arg, LDKChannelConfig channel_options_arg);
|
|
|
|
MUST_USE_RES LDKUserConfig UserConfig_default(void);
|
|
|
|
LDKAccessError AccessError_clone(const LDKAccessError *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void Access_free(LDKAccess this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void Watch_free(LDKWatch this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void Filter_free(LDKFilter this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void BroadcasterInterface_free(LDKBroadcasterInterface this_ptr);
|
|
|
|
LDKConfirmationTarget ConfirmationTarget_clone(const LDKConfirmationTarget *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void FeeEstimator_free(LDKFeeEstimator this_ptr);
|
|
|
|
void ChainMonitor_free(LDKChainMonitor this_ptr);
|
|
|
|
/**
|
|
* Dispatches to per-channel monitors, which are responsible for updating their on-chain view
|
|
* of a channel and reacting accordingly based on transactions in the connected block. See
|
|
* [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
|
|
* be returned by [`chain::Watch::release_pending_monitor_events`].
|
|
*
|
|
* Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
|
|
* calls must not exclude any transactions matching the new outputs nor any in-block
|
|
* descendants of such transactions. It is not necessary to re-fetch the block to obtain
|
|
* updated `txdata`.
|
|
*
|
|
* [`ChannelMonitor::block_connected`]: ../channelmonitor/struct.ChannelMonitor.html#method.block_connected
|
|
* [`chain::Watch::release_pending_monitor_events`]: ../trait.Watch.html#tymethod.release_pending_monitor_events
|
|
* [`chain::Filter`]: ../trait.Filter.html
|
|
*/
|
|
void ChainMonitor_block_connected(const LDKChainMonitor *this_arg, const uint8_t (*header)[80], LDKCVec_C2Tuple_usizeTransactionZZ txdata, uint32_t height);
|
|
|
|
/**
|
|
* Dispatches to per-channel monitors, which are responsible for updating their on-chain view
|
|
* of a channel based on the disconnected block. See [`ChannelMonitor::block_disconnected`] for
|
|
* details.
|
|
*
|
|
* [`ChannelMonitor::block_disconnected`]: ../channelmonitor/struct.ChannelMonitor.html#method.block_disconnected
|
|
*/
|
|
void ChainMonitor_block_disconnected(const LDKChainMonitor *this_arg, const uint8_t (*header)[80], uint32_t disconnected_height);
|
|
|
|
/**
|
|
* Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
|
|
*
|
|
* When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
|
|
* will call back to it indicating transactions and outputs of interest. This allows clients to
|
|
* pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
|
|
* always need to fetch full blocks absent another means for determining which blocks contain
|
|
* transactions relevant to the watched channels.
|
|
*
|
|
* [`chain::Filter`]: ../trait.Filter.html
|
|
*/
|
|
MUST_USE_RES LDKChainMonitor ChainMonitor_new(LDKFilter *chain_source, LDKBroadcasterInterface broadcaster, LDKLogger logger, LDKFeeEstimator feeest, LDKPersist persister);
|
|
|
|
LDKWatch ChainMonitor_as_Watch(const LDKChainMonitor *this_arg);
|
|
|
|
LDKEventsProvider ChainMonitor_as_EventsProvider(const LDKChainMonitor *this_arg);
|
|
|
|
void ChannelMonitorUpdate_free(LDKChannelMonitorUpdate this_ptr);
|
|
|
|
LDKChannelMonitorUpdate ChannelMonitorUpdate_clone(const LDKChannelMonitorUpdate *orig);
|
|
|
|
/**
|
|
* The sequence number of this update. Updates *must* be replayed in-order according to this
|
|
* sequence number (and updates may panic if they are not). The update_id values are strictly
|
|
* increasing and increase by one for each new update, with one exception specified below.
|
|
*
|
|
* This sequence number is also used to track up to which points updates which returned
|
|
* ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
|
|
* ChannelMonitor when ChannelManager::channel_monitor_updated is called.
|
|
*
|
|
* The only instance where update_id values are not strictly increasing is the case where we
|
|
* allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
|
|
* its docs for more details.
|
|
*
|
|
* [`CLOSED_CHANNEL_UPDATE_ID`]: constant.CLOSED_CHANNEL_UPDATE_ID.html
|
|
*/
|
|
uint64_t ChannelMonitorUpdate_get_update_id(const LDKChannelMonitorUpdate *this_ptr);
|
|
|
|
/**
|
|
* The sequence number of this update. Updates *must* be replayed in-order according to this
|
|
* sequence number (and updates may panic if they are not). The update_id values are strictly
|
|
* increasing and increase by one for each new update, with one exception specified below.
|
|
*
|
|
* This sequence number is also used to track up to which points updates which returned
|
|
* ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
|
|
* ChannelMonitor when ChannelManager::channel_monitor_updated is called.
|
|
*
|
|
* The only instance where update_id values are not strictly increasing is the case where we
|
|
* allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
|
|
* its docs for more details.
|
|
*
|
|
* [`CLOSED_CHANNEL_UPDATE_ID`]: constant.CLOSED_CHANNEL_UPDATE_ID.html
|
|
*/
|
|
void ChannelMonitorUpdate_set_update_id(LDKChannelMonitorUpdate *this_ptr, uint64_t val);
|
|
|
|
LDKCVec_u8Z ChannelMonitorUpdate_write(const LDKChannelMonitorUpdate *obj);
|
|
|
|
LDKChannelMonitorUpdate ChannelMonitorUpdate_read(LDKu8slice ser);
|
|
|
|
LDKChannelMonitorUpdateErr ChannelMonitorUpdateErr_clone(const LDKChannelMonitorUpdateErr *orig);
|
|
|
|
void MonitorUpdateError_free(LDKMonitorUpdateError this_ptr);
|
|
|
|
void MonitorEvent_free(LDKMonitorEvent this_ptr);
|
|
|
|
LDKMonitorEvent MonitorEvent_clone(const LDKMonitorEvent *orig);
|
|
|
|
void HTLCUpdate_free(LDKHTLCUpdate this_ptr);
|
|
|
|
LDKHTLCUpdate HTLCUpdate_clone(const LDKHTLCUpdate *orig);
|
|
|
|
LDKCVec_u8Z HTLCUpdate_write(const LDKHTLCUpdate *obj);
|
|
|
|
LDKHTLCUpdate HTLCUpdate_read(LDKu8slice ser);
|
|
|
|
void ChannelMonitor_free(LDKChannelMonitor this_ptr);
|
|
|
|
/**
|
|
* Updates a ChannelMonitor on the basis of some new information provided by the Channel
|
|
* itself.
|
|
*
|
|
* panics if the given update is not the next update by update_id.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NoneMonitorUpdateErrorZ ChannelMonitor_update_monitor(LDKChannelMonitor *this_arg, const LDKChannelMonitorUpdate *updates, const LDKBroadcasterInterface *broadcaster, const LDKFeeEstimator *fee_estimator, const LDKLogger *logger);
|
|
|
|
/**
|
|
* Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
|
|
* ChannelMonitor.
|
|
*/
|
|
MUST_USE_RES uint64_t ChannelMonitor_get_latest_update_id(const LDKChannelMonitor *this_arg);
|
|
|
|
/**
|
|
* Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
|
|
*/
|
|
MUST_USE_RES LDKC2Tuple_OutPointScriptZ ChannelMonitor_get_funding_txo(const LDKChannelMonitor *this_arg);
|
|
|
|
/**
|
|
* Get the list of HTLCs who's status has been updated on chain. This should be called by
|
|
* ChannelManager via [`chain::Watch::release_pending_monitor_events`].
|
|
*
|
|
* [`chain::Watch::release_pending_monitor_events`]: ../trait.Watch.html#tymethod.release_pending_monitor_events
|
|
*/
|
|
MUST_USE_RES LDKCVec_MonitorEventZ ChannelMonitor_get_and_clear_pending_monitor_events(LDKChannelMonitor *this_arg);
|
|
|
|
/**
|
|
* Gets the list of pending events which were generated by previous actions, clearing the list
|
|
* in the process.
|
|
*
|
|
* This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
|
|
* EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
|
|
* no internal locking in ChannelMonitors.
|
|
*/
|
|
MUST_USE_RES LDKCVec_EventZ ChannelMonitor_get_and_clear_pending_events(LDKChannelMonitor *this_arg);
|
|
|
|
/**
|
|
* Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
|
|
* the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
|
|
* fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
|
|
* a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
|
|
* transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
|
|
* broadcast them if counterparty don't close channel with his higher commitment transaction after a
|
|
* substantial amount of time (a month or even a year) to get back funds. Best may be to contact
|
|
* out-of-band the other node operator to coordinate with him if option is available to you.
|
|
* In any-case, choice is up to the user.
|
|
*/
|
|
MUST_USE_RES LDKCVec_TransactionZ ChannelMonitor_get_latest_holder_commitment_txn(LDKChannelMonitor *this_arg, const LDKLogger *logger);
|
|
|
|
/**
|
|
* Processes transactions in a newly connected block, which may result in any of the following:
|
|
* - update the monitor's state against resolved HTLCs
|
|
* - punish the counterparty in the case of seeing a revoked commitment transaction
|
|
* - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
|
|
* - detect settled outputs for later spending
|
|
* - schedule and bump any in-flight claims
|
|
*
|
|
* Returns any new outputs to watch from `txdata`; after called, these are also included in
|
|
* [`get_outputs_to_watch`].
|
|
*
|
|
* [`get_outputs_to_watch`]: #method.get_outputs_to_watch
|
|
*/
|
|
MUST_USE_RES LDKCVec_C2Tuple_TxidCVec_C2Tuple_u32TxOutZZZZ ChannelMonitor_block_connected(LDKChannelMonitor *this_arg, const uint8_t (*header)[80], LDKCVec_C2Tuple_usizeTransactionZZ txdata, uint32_t height, LDKBroadcasterInterface broadcaster, LDKFeeEstimator fee_estimator, LDKLogger logger);
|
|
|
|
/**
|
|
* Determines if the disconnected block contained any transactions of interest and updates
|
|
* appropriately.
|
|
*/
|
|
void ChannelMonitor_block_disconnected(LDKChannelMonitor *this_arg, const uint8_t (*header)[80], uint32_t height, LDKBroadcasterInterface broadcaster, LDKFeeEstimator fee_estimator, LDKLogger logger);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void Persist_free(LDKPersist this_ptr);
|
|
|
|
void OutPoint_free(LDKOutPoint this_ptr);
|
|
|
|
LDKOutPoint OutPoint_clone(const LDKOutPoint *orig);
|
|
|
|
/**
|
|
* The referenced transaction's txid.
|
|
*/
|
|
const uint8_t (*OutPoint_get_txid(const LDKOutPoint *this_ptr))[32];
|
|
|
|
/**
|
|
* The referenced transaction's txid.
|
|
*/
|
|
void OutPoint_set_txid(LDKOutPoint *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The index of the referenced output in its transaction's vout.
|
|
*/
|
|
uint16_t OutPoint_get_index(const LDKOutPoint *this_ptr);
|
|
|
|
/**
|
|
* The index of the referenced output in its transaction's vout.
|
|
*/
|
|
void OutPoint_set_index(LDKOutPoint *this_ptr, uint16_t val);
|
|
|
|
MUST_USE_RES LDKOutPoint OutPoint_new(LDKThirtyTwoBytes txid_arg, uint16_t index_arg);
|
|
|
|
/**
|
|
* Convert an `OutPoint` to a lightning channel id.
|
|
*/
|
|
MUST_USE_RES LDKThirtyTwoBytes OutPoint_to_channel_id(const LDKOutPoint *this_arg);
|
|
|
|
LDKCVec_u8Z OutPoint_write(const LDKOutPoint *obj);
|
|
|
|
LDKOutPoint OutPoint_read(LDKu8slice ser);
|
|
|
|
void SpendableOutputDescriptor_free(LDKSpendableOutputDescriptor this_ptr);
|
|
|
|
LDKSpendableOutputDescriptor SpendableOutputDescriptor_clone(const LDKSpendableOutputDescriptor *orig);
|
|
|
|
LDKChannelKeys ChannelKeys_clone(const LDKChannelKeys *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void ChannelKeys_free(LDKChannelKeys this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void KeysInterface_free(LDKKeysInterface this_ptr);
|
|
|
|
void InMemoryChannelKeys_free(LDKInMemoryChannelKeys this_ptr);
|
|
|
|
LDKInMemoryChannelKeys InMemoryChannelKeys_clone(const LDKInMemoryChannelKeys *orig);
|
|
|
|
/**
|
|
* Private key of anchor tx
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_funding_key(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Private key of anchor tx
|
|
*/
|
|
void InMemoryChannelKeys_set_funding_key(LDKInMemoryChannelKeys *this_ptr, LDKSecretKey val);
|
|
|
|
/**
|
|
* Holder secret key for blinded revocation pubkey
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_revocation_base_key(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Holder secret key for blinded revocation pubkey
|
|
*/
|
|
void InMemoryChannelKeys_set_revocation_base_key(LDKInMemoryChannelKeys *this_ptr, LDKSecretKey val);
|
|
|
|
/**
|
|
* Holder secret key used for our balance in counterparty-broadcasted commitment transactions
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_payment_key(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Holder secret key used for our balance in counterparty-broadcasted commitment transactions
|
|
*/
|
|
void InMemoryChannelKeys_set_payment_key(LDKInMemoryChannelKeys *this_ptr, LDKSecretKey val);
|
|
|
|
/**
|
|
* Holder secret key used in HTLC tx
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_delayed_payment_base_key(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Holder secret key used in HTLC tx
|
|
*/
|
|
void InMemoryChannelKeys_set_delayed_payment_base_key(LDKInMemoryChannelKeys *this_ptr, LDKSecretKey val);
|
|
|
|
/**
|
|
* Holder htlc secret key used in commitment tx htlc outputs
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_htlc_base_key(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Holder htlc secret key used in commitment tx htlc outputs
|
|
*/
|
|
void InMemoryChannelKeys_set_htlc_base_key(LDKInMemoryChannelKeys *this_ptr, LDKSecretKey val);
|
|
|
|
/**
|
|
* Commitment seed
|
|
*/
|
|
const uint8_t (*InMemoryChannelKeys_get_commitment_seed(const LDKInMemoryChannelKeys *this_ptr))[32];
|
|
|
|
/**
|
|
* Commitment seed
|
|
*/
|
|
void InMemoryChannelKeys_set_commitment_seed(LDKInMemoryChannelKeys *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* Create a new InMemoryChannelKeys
|
|
*/
|
|
MUST_USE_RES LDKInMemoryChannelKeys InMemoryChannelKeys_new(LDKSecretKey funding_key, LDKSecretKey revocation_base_key, LDKSecretKey payment_key, LDKSecretKey delayed_payment_base_key, LDKSecretKey htlc_base_key, LDKThirtyTwoBytes commitment_seed, uint64_t channel_value_satoshis, LDKC2Tuple_u64u64Z key_derivation_params);
|
|
|
|
/**
|
|
* Counterparty pubkeys.
|
|
* Will panic if on_accept wasn't called.
|
|
*/
|
|
MUST_USE_RES LDKChannelPublicKeys InMemoryChannelKeys_counterparty_pubkeys(const LDKInMemoryChannelKeys *this_arg);
|
|
|
|
/**
|
|
* The contest_delay value specified by our counterparty and applied on holder-broadcastable
|
|
* transactions, ie the amount of time that we have to wait to recover our funds if we
|
|
* broadcast a transaction. You'll likely want to pass this to the
|
|
* ln::chan_utils::build*_transaction functions when signing holder's transactions.
|
|
* Will panic if on_accept wasn't called.
|
|
*/
|
|
MUST_USE_RES uint16_t InMemoryChannelKeys_counterparty_selected_contest_delay(const LDKInMemoryChannelKeys *this_arg);
|
|
|
|
/**
|
|
* The contest_delay value specified by us and applied on transactions broadcastable
|
|
* by our counterparty, ie the amount of time that they have to wait to recover their funds
|
|
* if they broadcast a transaction.
|
|
* Will panic if on_accept wasn't called.
|
|
*/
|
|
MUST_USE_RES uint16_t InMemoryChannelKeys_holder_selected_contest_delay(const LDKInMemoryChannelKeys *this_arg);
|
|
|
|
LDKChannelKeys InMemoryChannelKeys_as_ChannelKeys(const LDKInMemoryChannelKeys *this_arg);
|
|
|
|
LDKCVec_u8Z InMemoryChannelKeys_write(const LDKInMemoryChannelKeys *obj);
|
|
|
|
LDKInMemoryChannelKeys InMemoryChannelKeys_read(LDKu8slice ser);
|
|
|
|
void KeysManager_free(LDKKeysManager this_ptr);
|
|
|
|
/**
|
|
* Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
|
|
* CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
|
|
* starting_time isn't strictly required to actually be a time, but it must absolutely,
|
|
* without a doubt, be unique to this instance. ie if you start multiple times with the same
|
|
* seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
|
|
* simply use the current time (with very high precision).
|
|
*
|
|
* The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
|
|
* obviously, starting_time should be unique every time you reload the library - it is only
|
|
* used to generate new ephemeral key data (which will be stored by the individual channel if
|
|
* necessary).
|
|
*
|
|
* Note that the seed is required to recover certain on-chain funds independent of
|
|
* ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
|
|
* channel, and some on-chain during-closing funds.
|
|
*
|
|
* Note that until the 0.1 release there is no guarantee of backward compatibility between
|
|
* versions. Once the library is more fully supported, the docs will be updated to include a
|
|
* detailed description of the guarantee.
|
|
*/
|
|
MUST_USE_RES LDKKeysManager KeysManager_new(const uint8_t (*seed)[32], LDKNetwork network, uint64_t starting_time_secs, uint32_t starting_time_nanos);
|
|
|
|
/**
|
|
* Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
|
|
* parameters.
|
|
* Key derivation parameters are accessible through a per-channel secrets
|
|
* ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
|
|
* onchain output detection for which a corresponding delayed_payment_key must be derived.
|
|
*/
|
|
MUST_USE_RES LDKInMemoryChannelKeys KeysManager_derive_channel_keys(const LDKKeysManager *this_arg, uint64_t channel_value_satoshis, uint64_t params_1, uint64_t params_2);
|
|
|
|
LDKKeysInterface KeysManager_as_KeysInterface(const LDKKeysManager *this_arg);
|
|
|
|
void ChannelManager_free(LDKChannelManager this_ptr);
|
|
|
|
void ChannelDetails_free(LDKChannelDetails this_ptr);
|
|
|
|
LDKChannelDetails ChannelDetails_clone(const LDKChannelDetails *orig);
|
|
|
|
/**
|
|
* The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
|
|
* thereafter this is the txid of the funding transaction xor the funding transaction output).
|
|
* Note that this means this value is *not* persistent - it can change once during the
|
|
* lifetime of the channel.
|
|
*/
|
|
const uint8_t (*ChannelDetails_get_channel_id(const LDKChannelDetails *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
|
|
* thereafter this is the txid of the funding transaction xor the funding transaction output).
|
|
* Note that this means this value is *not* persistent - it can change once during the
|
|
* lifetime of the channel.
|
|
*/
|
|
void ChannelDetails_set_channel_id(LDKChannelDetails *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The node_id of our counterparty
|
|
*/
|
|
LDKPublicKey ChannelDetails_get_remote_network_id(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The node_id of our counterparty
|
|
*/
|
|
void ChannelDetails_set_remote_network_id(LDKChannelDetails *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The Features the channel counterparty provided upon last connection.
|
|
* Useful for routing as it is the most up-to-date copy of the counterparty's features and
|
|
* many routing-relevant features are present in the init context.
|
|
*/
|
|
LDKInitFeatures ChannelDetails_get_counterparty_features(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The Features the channel counterparty provided upon last connection.
|
|
* Useful for routing as it is the most up-to-date copy of the counterparty's features and
|
|
* many routing-relevant features are present in the init context.
|
|
*/
|
|
void ChannelDetails_set_counterparty_features(LDKChannelDetails *this_ptr, LDKInitFeatures val);
|
|
|
|
/**
|
|
* The value, in satoshis, of this channel as appears in the funding output
|
|
*/
|
|
uint64_t ChannelDetails_get_channel_value_satoshis(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The value, in satoshis, of this channel as appears in the funding output
|
|
*/
|
|
void ChannelDetails_set_channel_value_satoshis(LDKChannelDetails *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The user_id passed in to create_channel, or 0 if the channel was inbound.
|
|
*/
|
|
uint64_t ChannelDetails_get_user_id(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The user_id passed in to create_channel, or 0 if the channel was inbound.
|
|
*/
|
|
void ChannelDetails_set_user_id(LDKChannelDetails *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The available outbound capacity for sending HTLCs to the remote peer. This does not include
|
|
* any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
* available for inclusion in new outbound HTLCs). This further does not include any pending
|
|
* outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
*/
|
|
uint64_t ChannelDetails_get_outbound_capacity_msat(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The available outbound capacity for sending HTLCs to the remote peer. This does not include
|
|
* any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
* available for inclusion in new outbound HTLCs). This further does not include any pending
|
|
* outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
*/
|
|
void ChannelDetails_set_outbound_capacity_msat(LDKChannelDetails *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The available inbound capacity for the remote peer to send HTLCs to us. This does not
|
|
* include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
* available for inclusion in new inbound HTLCs).
|
|
* Note that there are some corner cases not fully handled here, so the actual available
|
|
* inbound capacity may be slightly higher than this.
|
|
*/
|
|
uint64_t ChannelDetails_get_inbound_capacity_msat(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* The available inbound capacity for the remote peer to send HTLCs to us. This does not
|
|
* include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
* available for inclusion in new inbound HTLCs).
|
|
* Note that there are some corner cases not fully handled here, so the actual available
|
|
* inbound capacity may be slightly higher than this.
|
|
*/
|
|
void ChannelDetails_set_inbound_capacity_msat(LDKChannelDetails *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
|
|
* the peer is connected, and (c) no monitor update failure is pending resolution.
|
|
*/
|
|
bool ChannelDetails_get_is_live(const LDKChannelDetails *this_ptr);
|
|
|
|
/**
|
|
* True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
|
|
* the peer is connected, and (c) no monitor update failure is pending resolution.
|
|
*/
|
|
void ChannelDetails_set_is_live(LDKChannelDetails *this_ptr, bool val);
|
|
|
|
void PaymentSendFailure_free(LDKPaymentSendFailure this_ptr);
|
|
|
|
/**
|
|
* Constructs a new ChannelManager to hold several channels and route between them.
|
|
*
|
|
* This is the main \"logic hub\" for all channel-related actions, and implements
|
|
* ChannelMessageHandler.
|
|
*
|
|
* Non-proportional fees are fixed according to our risk using the provided fee estimator.
|
|
*
|
|
* panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
|
|
*
|
|
* Users must provide the current blockchain height from which to track onchain channel
|
|
* funding outpoints and send payments with reliable timelocks.
|
|
*
|
|
* Users need to notify the new ChannelManager when a new block is connected or
|
|
* disconnected using its `block_connected` and `block_disconnected` methods.
|
|
*/
|
|
MUST_USE_RES LDKChannelManager ChannelManager_new(LDKNetwork network, LDKFeeEstimator fee_est, LDKWatch chain_monitor, LDKBroadcasterInterface tx_broadcaster, LDKLogger logger, LDKKeysInterface keys_manager, LDKUserConfig config, uintptr_t current_blockchain_height);
|
|
|
|
/**
|
|
* Creates a new outbound channel to the given remote node and with the given value.
|
|
*
|
|
* user_id will be provided back as user_channel_id in FundingGenerationReady and
|
|
* FundingBroadcastSafe events to allow tracking of which events correspond with which
|
|
* create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
|
|
* may wish to avoid using 0 for user_id here.
|
|
*
|
|
* If successful, will generate a SendOpenChannel message event, so you should probably poll
|
|
* PeerManager::process_events afterwards.
|
|
*
|
|
* Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
|
|
* greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NoneAPIErrorZ ChannelManager_create_channel(const LDKChannelManager *this_arg, LDKPublicKey their_network_key, uint64_t channel_value_satoshis, uint64_t push_msat, uint64_t user_id, LDKUserConfig override_config);
|
|
|
|
/**
|
|
* Gets the list of open channels, in random order. See ChannelDetail field documentation for
|
|
* more information.
|
|
*/
|
|
MUST_USE_RES LDKCVec_ChannelDetailsZ ChannelManager_list_channels(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Gets the list of usable channels, in random order. Useful as an argument to
|
|
* get_route to ensure non-announced channels are used.
|
|
*
|
|
* These are guaranteed to have their is_live value set to true, see the documentation for
|
|
* ChannelDetails::is_live for more info on exactly what the criteria are.
|
|
*/
|
|
MUST_USE_RES LDKCVec_ChannelDetailsZ ChannelManager_list_usable_channels(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
|
|
* will be accepted on the given channel, and after additional timeout/the closing of all
|
|
* pending HTLCs, the channel will be closed on chain.
|
|
*
|
|
* May generate a SendShutdown message event on success, which should be relayed.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NoneAPIErrorZ ChannelManager_close_channel(const LDKChannelManager *this_arg, const uint8_t (*channel_id)[32]);
|
|
|
|
/**
|
|
* Force closes a channel, immediately broadcasting the latest local commitment transaction to
|
|
* the chain and rejecting new HTLCs on the given channel.
|
|
*/
|
|
void ChannelManager_force_close_channel(const LDKChannelManager *this_arg, const uint8_t (*channel_id)[32]);
|
|
|
|
/**
|
|
* Force close all channels, immediately broadcasting the latest local commitment transaction
|
|
* for each to the chain and rejecting new HTLCs on each.
|
|
*/
|
|
void ChannelManager_force_close_all_channels(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Sends a payment along a given route.
|
|
*
|
|
* Value parameters are provided via the last hop in route, see documentation for RouteHop
|
|
* fields for more info.
|
|
*
|
|
* Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
|
|
* payment), we don't do anything to stop you! We always try to ensure that if the provided
|
|
* next hop knows the preimage to payment_hash they can claim an additional amount as
|
|
* specified in the last hop in the route! Thus, you should probably do your own
|
|
* payment_preimage tracking (which you should already be doing as they represent \"proof of
|
|
* payment\") and prevent double-sends yourself.
|
|
*
|
|
* May generate SendHTLCs message(s) event on success, which should be relayed.
|
|
*
|
|
* Each path may have a different return value, and PaymentSendValue may return a Vec with
|
|
* each entry matching the corresponding-index entry in the route paths, see
|
|
* PaymentSendFailure for more info.
|
|
*
|
|
* In general, a path may raise:
|
|
* * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
|
|
* node public key) is specified.
|
|
* * APIError::ChannelUnavailable if the next-hop channel is not available for updates
|
|
* (including due to previous monitor update failure or new permanent monitor update
|
|
* failure).
|
|
* * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
|
|
* relevant updates.
|
|
*
|
|
* Note that depending on the type of the PaymentSendFailure the HTLC may have been
|
|
* irrevocably committed to on our end. In such a case, do NOT retry the payment with a
|
|
* different route unless you intend to pay twice!
|
|
*
|
|
* payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
|
|
* the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
|
|
* newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
|
|
* must not contain multiple paths as multi-path payments require a recipient-provided
|
|
* payment_secret.
|
|
* If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
|
|
* bit set (either as required or as available). If multiple paths are present in the Route,
|
|
* we assume the invoice had the basic_mpp feature set.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NonePaymentSendFailureZ ChannelManager_send_payment(const LDKChannelManager *this_arg, const LDKRoute *route, LDKThirtyTwoBytes payment_hash, LDKThirtyTwoBytes payment_secret);
|
|
|
|
/**
|
|
* Call this upon creation of a funding transaction for the given channel.
|
|
*
|
|
* Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
|
|
* or your counterparty can steal your funds!
|
|
*
|
|
* Panics if a funding transaction has already been provided for this channel.
|
|
*
|
|
* May panic if the funding_txo is duplicative with some other channel (note that this should
|
|
* be trivially prevented by using unique funding transaction keys per-channel).
|
|
*/
|
|
void ChannelManager_funding_transaction_generated(const LDKChannelManager *this_arg, const uint8_t (*temporary_channel_id)[32], LDKOutPoint funding_txo);
|
|
|
|
/**
|
|
* Generates a signed node_announcement from the given arguments and creates a
|
|
* BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
|
|
* seen a channel_announcement from us (ie unless we have public channels open).
|
|
*
|
|
* RGB is a node \"color\" and alias is a printable human-readable string to describe this node
|
|
* to humans. They carry no in-protocol meaning.
|
|
*
|
|
* addresses represent the set (possibly empty) of socket addresses on which this node accepts
|
|
* incoming connections. These will be broadcast to the network, publicly tying these
|
|
* addresses together. If you wish to preserve user privacy, addresses should likely contain
|
|
* only Tor Onion addresses.
|
|
*
|
|
* Panics if addresses is absurdly large (more than 500).
|
|
*/
|
|
void ChannelManager_broadcast_node_announcement(const LDKChannelManager *this_arg, LDKThreeBytes rgb, LDKThirtyTwoBytes alias, LDKCVec_NetAddressZ addresses);
|
|
|
|
/**
|
|
* Processes HTLCs which are pending waiting on random forward delay.
|
|
*
|
|
* Should only really ever be called in response to a PendingHTLCsForwardable event.
|
|
* Will likely generate further events.
|
|
*/
|
|
void ChannelManager_process_pending_htlc_forwards(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* If a peer is disconnected we mark any channels with that peer as 'disabled'.
|
|
* After some time, if channels are still disabled we need to broadcast a ChannelUpdate
|
|
* to inform the network about the uselessness of these channels.
|
|
*
|
|
* This method handles all the details, and must be called roughly once per minute.
|
|
*/
|
|
void ChannelManager_timer_chan_freshness_every_min(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
|
|
* after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
|
|
* along the path (including in our own channel on which we received it).
|
|
* Returns false if no payment was found to fail backwards, true if the process of failing the
|
|
* HTLC backwards has been started.
|
|
*/
|
|
MUST_USE_RES bool ChannelManager_fail_htlc_backwards(const LDKChannelManager *this_arg, const uint8_t (*payment_hash)[32], LDKThirtyTwoBytes payment_secret);
|
|
|
|
/**
|
|
* Provides a payment preimage in response to a PaymentReceived event, returning true and
|
|
* generating message events for the net layer to claim the payment, if possible. Thus, you
|
|
* should probably kick the net layer to go send messages if this returns true!
|
|
*
|
|
* You must specify the expected amounts for this HTLC, and we will only claim HTLCs
|
|
* available within a few percent of the expected amount. This is critical for several
|
|
* reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
|
|
* payment_preimage without having provided the full value and b) it avoids certain
|
|
* privacy-breaking recipient-probing attacks which may reveal payment activity to
|
|
* motivated attackers.
|
|
*
|
|
* Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
|
|
* set. Thus, for such payments we will claim any payments which do not under-pay.
|
|
*
|
|
* May panic if called except in response to a PaymentReceived event.
|
|
*/
|
|
MUST_USE_RES bool ChannelManager_claim_funds(const LDKChannelManager *this_arg, LDKThirtyTwoBytes payment_preimage, LDKThirtyTwoBytes payment_secret, uint64_t expected_amount);
|
|
|
|
/**
|
|
* Gets the node_id held by this ChannelManager
|
|
*/
|
|
MUST_USE_RES LDKPublicKey ChannelManager_get_our_node_id(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Restores a single, given channel to normal operation after a
|
|
* ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
|
|
* operation.
|
|
*
|
|
* All ChannelMonitor updates up to and including highest_applied_update_id must have been
|
|
* fully committed in every copy of the given channels' ChannelMonitors.
|
|
*
|
|
* Note that there is no effect to calling with a highest_applied_update_id other than the
|
|
* current latest ChannelMonitorUpdate and one call to this function after multiple
|
|
* ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
|
|
* exists largely only to prevent races between this and concurrent update_monitor calls.
|
|
*
|
|
* Thus, the anticipated use is, at a high level:
|
|
* 1) You register a chain::Watch with this ChannelManager,
|
|
* 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
|
|
* said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
|
|
* any time it cannot do so instantly,
|
|
* 3) update(s) are applied to each remote copy of a ChannelMonitor,
|
|
* 4) once all remote copies are updated, you call this function with the update_id that
|
|
* completed, and once it is the latest the Channel will be re-enabled.
|
|
*/
|
|
void ChannelManager_channel_monitor_updated(const LDKChannelManager *this_arg, const LDKOutPoint *funding_txo, uint64_t highest_applied_update_id);
|
|
|
|
LDKMessageSendEventsProvider ChannelManager_as_MessageSendEventsProvider(const LDKChannelManager *this_arg);
|
|
|
|
LDKEventsProvider ChannelManager_as_EventsProvider(const LDKChannelManager *this_arg);
|
|
|
|
/**
|
|
* Updates channel state based on transactions seen in a connected block.
|
|
*/
|
|
void ChannelManager_block_connected(const LDKChannelManager *this_arg, const uint8_t (*header)[80], LDKCVec_C2Tuple_usizeTransactionZZ txdata, uint32_t height);
|
|
|
|
/**
|
|
* Updates channel state based on a disconnected block.
|
|
*
|
|
* If necessary, the channel may be force-closed without letting the counterparty participate
|
|
* in the shutdown.
|
|
*/
|
|
void ChannelManager_block_disconnected(const LDKChannelManager *this_arg, const uint8_t (*header)[80]);
|
|
|
|
LDKChannelMessageHandler ChannelManager_as_ChannelMessageHandler(const LDKChannelManager *this_arg);
|
|
|
|
void ChannelManagerReadArgs_free(LDKChannelManagerReadArgs this_ptr);
|
|
|
|
/**
|
|
* The keys provider which will give us relevant keys. Some keys will be loaded during
|
|
* deserialization.
|
|
*/
|
|
const LDKKeysInterface *ChannelManagerReadArgs_get_keys_manager(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* The keys provider which will give us relevant keys. Some keys will be loaded during
|
|
* deserialization.
|
|
*/
|
|
void ChannelManagerReadArgs_set_keys_manager(LDKChannelManagerReadArgs *this_ptr, LDKKeysInterface val);
|
|
|
|
/**
|
|
* The fee_estimator for use in the ChannelManager in the future.
|
|
*
|
|
* No calls to the FeeEstimator will be made during deserialization.
|
|
*/
|
|
const LDKFeeEstimator *ChannelManagerReadArgs_get_fee_estimator(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* The fee_estimator for use in the ChannelManager in the future.
|
|
*
|
|
* No calls to the FeeEstimator will be made during deserialization.
|
|
*/
|
|
void ChannelManagerReadArgs_set_fee_estimator(LDKChannelManagerReadArgs *this_ptr, LDKFeeEstimator val);
|
|
|
|
/**
|
|
* The chain::Watch for use in the ChannelManager in the future.
|
|
*
|
|
* No calls to the chain::Watch will be made during deserialization. It is assumed that
|
|
* you have deserialized ChannelMonitors separately and will add them to your
|
|
* chain::Watch after deserializing this ChannelManager.
|
|
*/
|
|
const LDKWatch *ChannelManagerReadArgs_get_chain_monitor(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* The chain::Watch for use in the ChannelManager in the future.
|
|
*
|
|
* No calls to the chain::Watch will be made during deserialization. It is assumed that
|
|
* you have deserialized ChannelMonitors separately and will add them to your
|
|
* chain::Watch after deserializing this ChannelManager.
|
|
*/
|
|
void ChannelManagerReadArgs_set_chain_monitor(LDKChannelManagerReadArgs *this_ptr, LDKWatch val);
|
|
|
|
/**
|
|
* The BroadcasterInterface which will be used in the ChannelManager in the future and may be
|
|
* used to broadcast the latest local commitment transactions of channels which must be
|
|
* force-closed during deserialization.
|
|
*/
|
|
const LDKBroadcasterInterface *ChannelManagerReadArgs_get_tx_broadcaster(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* The BroadcasterInterface which will be used in the ChannelManager in the future and may be
|
|
* used to broadcast the latest local commitment transactions of channels which must be
|
|
* force-closed during deserialization.
|
|
*/
|
|
void ChannelManagerReadArgs_set_tx_broadcaster(LDKChannelManagerReadArgs *this_ptr, LDKBroadcasterInterface val);
|
|
|
|
/**
|
|
* The Logger for use in the ChannelManager and which may be used to log information during
|
|
* deserialization.
|
|
*/
|
|
const LDKLogger *ChannelManagerReadArgs_get_logger(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* The Logger for use in the ChannelManager and which may be used to log information during
|
|
* deserialization.
|
|
*/
|
|
void ChannelManagerReadArgs_set_logger(LDKChannelManagerReadArgs *this_ptr, LDKLogger val);
|
|
|
|
/**
|
|
* Default settings used for new channels. Any existing channels will continue to use the
|
|
* runtime settings which were stored when the ChannelManager was serialized.
|
|
*/
|
|
LDKUserConfig ChannelManagerReadArgs_get_default_config(const LDKChannelManagerReadArgs *this_ptr);
|
|
|
|
/**
|
|
* Default settings used for new channels. Any existing channels will continue to use the
|
|
* runtime settings which were stored when the ChannelManager was serialized.
|
|
*/
|
|
void ChannelManagerReadArgs_set_default_config(LDKChannelManagerReadArgs *this_ptr, LDKUserConfig val);
|
|
|
|
/**
|
|
* Simple utility function to create a ChannelManagerReadArgs which creates the monitor
|
|
* HashMap for you. This is primarily useful for C bindings where it is not practical to
|
|
* populate a HashMap directly from C.
|
|
*/
|
|
MUST_USE_RES LDKChannelManagerReadArgs ChannelManagerReadArgs_new(LDKKeysInterface keys_manager, LDKFeeEstimator fee_estimator, LDKWatch chain_monitor, LDKBroadcasterInterface tx_broadcaster, LDKLogger logger, LDKUserConfig default_config, LDKCVec_ChannelMonitorZ channel_monitors);
|
|
|
|
void DecodeError_free(LDKDecodeError this_ptr);
|
|
|
|
void Init_free(LDKInit this_ptr);
|
|
|
|
LDKInit Init_clone(const LDKInit *orig);
|
|
|
|
void ErrorMessage_free(LDKErrorMessage this_ptr);
|
|
|
|
LDKErrorMessage ErrorMessage_clone(const LDKErrorMessage *orig);
|
|
|
|
/**
|
|
* The channel ID involved in the error
|
|
*/
|
|
const uint8_t (*ErrorMessage_get_channel_id(const LDKErrorMessage *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID involved in the error
|
|
*/
|
|
void ErrorMessage_set_channel_id(LDKErrorMessage *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* A possibly human-readable error description.
|
|
* The string should be sanitized before it is used (e.g. emitted to logs
|
|
* or printed to stdout). Otherwise, a well crafted error message may trigger a security
|
|
* vulnerability in the terminal emulator or the logging subsystem.
|
|
*/
|
|
LDKStr ErrorMessage_get_data(const LDKErrorMessage *this_ptr);
|
|
|
|
/**
|
|
* A possibly human-readable error description.
|
|
* The string should be sanitized before it is used (e.g. emitted to logs
|
|
* or printed to stdout). Otherwise, a well crafted error message may trigger a security
|
|
* vulnerability in the terminal emulator or the logging subsystem.
|
|
*/
|
|
void ErrorMessage_set_data(LDKErrorMessage *this_ptr, LDKCVec_u8Z val);
|
|
|
|
MUST_USE_RES LDKErrorMessage ErrorMessage_new(LDKThirtyTwoBytes channel_id_arg, LDKCVec_u8Z data_arg);
|
|
|
|
void Ping_free(LDKPing this_ptr);
|
|
|
|
LDKPing Ping_clone(const LDKPing *orig);
|
|
|
|
/**
|
|
* The desired response length
|
|
*/
|
|
uint16_t Ping_get_ponglen(const LDKPing *this_ptr);
|
|
|
|
/**
|
|
* The desired response length
|
|
*/
|
|
void Ping_set_ponglen(LDKPing *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The ping packet size.
|
|
* This field is not sent on the wire. byteslen zeros are sent.
|
|
*/
|
|
uint16_t Ping_get_byteslen(const LDKPing *this_ptr);
|
|
|
|
/**
|
|
* The ping packet size.
|
|
* This field is not sent on the wire. byteslen zeros are sent.
|
|
*/
|
|
void Ping_set_byteslen(LDKPing *this_ptr, uint16_t val);
|
|
|
|
MUST_USE_RES LDKPing Ping_new(uint16_t ponglen_arg, uint16_t byteslen_arg);
|
|
|
|
void Pong_free(LDKPong this_ptr);
|
|
|
|
LDKPong Pong_clone(const LDKPong *orig);
|
|
|
|
/**
|
|
* The pong packet size.
|
|
* This field is not sent on the wire. byteslen zeros are sent.
|
|
*/
|
|
uint16_t Pong_get_byteslen(const LDKPong *this_ptr);
|
|
|
|
/**
|
|
* The pong packet size.
|
|
* This field is not sent on the wire. byteslen zeros are sent.
|
|
*/
|
|
void Pong_set_byteslen(LDKPong *this_ptr, uint16_t val);
|
|
|
|
MUST_USE_RES LDKPong Pong_new(uint16_t byteslen_arg);
|
|
|
|
void OpenChannel_free(LDKOpenChannel this_ptr);
|
|
|
|
LDKOpenChannel OpenChannel_clone(const LDKOpenChannel *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
const uint8_t (*OpenChannel_get_chain_hash(const LDKOpenChannel *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
void OpenChannel_set_chain_hash(LDKOpenChannel *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding outpoint is announced
|
|
*/
|
|
const uint8_t (*OpenChannel_get_temporary_channel_id(const LDKOpenChannel *this_ptr))[32];
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding outpoint is announced
|
|
*/
|
|
void OpenChannel_set_temporary_channel_id(LDKOpenChannel *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The channel value
|
|
*/
|
|
uint64_t OpenChannel_get_funding_satoshis(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The channel value
|
|
*/
|
|
void OpenChannel_set_funding_satoshis(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The amount to push to the counterparty as part of the open, in milli-satoshi
|
|
*/
|
|
uint64_t OpenChannel_get_push_msat(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The amount to push to the counterparty as part of the open, in milli-satoshi
|
|
*/
|
|
void OpenChannel_set_push_msat(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The threshold below which outputs on transactions broadcast by sender will be omitted
|
|
*/
|
|
uint64_t OpenChannel_get_dust_limit_satoshis(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The threshold below which outputs on transactions broadcast by sender will be omitted
|
|
*/
|
|
void OpenChannel_set_dust_limit_satoshis(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The maximum inbound HTLC value in flight towards sender, in milli-satoshi
|
|
*/
|
|
uint64_t OpenChannel_get_max_htlc_value_in_flight_msat(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The maximum inbound HTLC value in flight towards sender, in milli-satoshi
|
|
*/
|
|
void OpenChannel_set_max_htlc_value_in_flight_msat(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
|
|
*/
|
|
uint64_t OpenChannel_get_channel_reserve_satoshis(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
|
|
*/
|
|
void OpenChannel_set_channel_reserve_satoshis(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
uint64_t OpenChannel_get_htlc_minimum_msat(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
void OpenChannel_set_htlc_minimum_msat(LDKOpenChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The feerate per 1000-weight of sender generated transactions, until updated by update_fee
|
|
*/
|
|
uint32_t OpenChannel_get_feerate_per_kw(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The feerate per 1000-weight of sender generated transactions, until updated by update_fee
|
|
*/
|
|
void OpenChannel_set_feerate_per_kw(LDKOpenChannel *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
|
|
*/
|
|
uint16_t OpenChannel_get_to_self_delay(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
|
|
*/
|
|
void OpenChannel_set_to_self_delay(LDKOpenChannel *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The maximum number of inbound HTLCs towards sender
|
|
*/
|
|
uint16_t OpenChannel_get_max_accepted_htlcs(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The maximum number of inbound HTLCs towards sender
|
|
*/
|
|
void OpenChannel_set_max_accepted_htlcs(LDKOpenChannel *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The sender's key controlling the funding transaction
|
|
*/
|
|
LDKPublicKey OpenChannel_get_funding_pubkey(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The sender's key controlling the funding transaction
|
|
*/
|
|
void OpenChannel_set_funding_pubkey(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive a revocation key for transactions broadcast by counterparty
|
|
*/
|
|
LDKPublicKey OpenChannel_get_revocation_basepoint(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive a revocation key for transactions broadcast by counterparty
|
|
*/
|
|
void OpenChannel_set_revocation_basepoint(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* A payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
LDKPublicKey OpenChannel_get_payment_point(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* A payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
void OpenChannel_set_payment_point(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive a payment key to sender for transactions broadcast by sender
|
|
*/
|
|
LDKPublicKey OpenChannel_get_delayed_payment_basepoint(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive a payment key to sender for transactions broadcast by sender
|
|
*/
|
|
void OpenChannel_set_delayed_payment_basepoint(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive an HTLC payment key to sender
|
|
*/
|
|
LDKPublicKey OpenChannel_get_htlc_basepoint(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive an HTLC payment key to sender
|
|
*/
|
|
void OpenChannel_set_htlc_basepoint(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The first to-be-broadcast-by-sender transaction's per commitment point
|
|
*/
|
|
LDKPublicKey OpenChannel_get_first_per_commitment_point(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* The first to-be-broadcast-by-sender transaction's per commitment point
|
|
*/
|
|
void OpenChannel_set_first_per_commitment_point(LDKOpenChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Channel flags
|
|
*/
|
|
uint8_t OpenChannel_get_channel_flags(const LDKOpenChannel *this_ptr);
|
|
|
|
/**
|
|
* Channel flags
|
|
*/
|
|
void OpenChannel_set_channel_flags(LDKOpenChannel *this_ptr, uint8_t val);
|
|
|
|
void AcceptChannel_free(LDKAcceptChannel this_ptr);
|
|
|
|
LDKAcceptChannel AcceptChannel_clone(const LDKAcceptChannel *orig);
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding outpoint is announced
|
|
*/
|
|
const uint8_t (*AcceptChannel_get_temporary_channel_id(const LDKAcceptChannel *this_ptr))[32];
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding outpoint is announced
|
|
*/
|
|
void AcceptChannel_set_temporary_channel_id(LDKAcceptChannel *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The threshold below which outputs on transactions broadcast by sender will be omitted
|
|
*/
|
|
uint64_t AcceptChannel_get_dust_limit_satoshis(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The threshold below which outputs on transactions broadcast by sender will be omitted
|
|
*/
|
|
void AcceptChannel_set_dust_limit_satoshis(LDKAcceptChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The maximum inbound HTLC value in flight towards sender, in milli-satoshi
|
|
*/
|
|
uint64_t AcceptChannel_get_max_htlc_value_in_flight_msat(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The maximum inbound HTLC value in flight towards sender, in milli-satoshi
|
|
*/
|
|
void AcceptChannel_set_max_htlc_value_in_flight_msat(LDKAcceptChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
|
|
*/
|
|
uint64_t AcceptChannel_get_channel_reserve_satoshis(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
|
|
*/
|
|
void AcceptChannel_set_channel_reserve_satoshis(LDKAcceptChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
uint64_t AcceptChannel_get_htlc_minimum_msat(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
void AcceptChannel_set_htlc_minimum_msat(LDKAcceptChannel *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* Minimum depth of the funding transaction before the channel is considered open
|
|
*/
|
|
uint32_t AcceptChannel_get_minimum_depth(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* Minimum depth of the funding transaction before the channel is considered open
|
|
*/
|
|
void AcceptChannel_set_minimum_depth(LDKAcceptChannel *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
|
|
*/
|
|
uint16_t AcceptChannel_get_to_self_delay(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
|
|
*/
|
|
void AcceptChannel_set_to_self_delay(LDKAcceptChannel *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The maximum number of inbound HTLCs towards sender
|
|
*/
|
|
uint16_t AcceptChannel_get_max_accepted_htlcs(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The maximum number of inbound HTLCs towards sender
|
|
*/
|
|
void AcceptChannel_set_max_accepted_htlcs(LDKAcceptChannel *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The sender's key controlling the funding transaction
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_funding_pubkey(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The sender's key controlling the funding transaction
|
|
*/
|
|
void AcceptChannel_set_funding_pubkey(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive a revocation key for transactions broadcast by counterparty
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_revocation_basepoint(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive a revocation key for transactions broadcast by counterparty
|
|
*/
|
|
void AcceptChannel_set_revocation_basepoint(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* A payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_payment_point(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* A payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
void AcceptChannel_set_payment_point(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive a payment key to sender for transactions broadcast by sender
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_delayed_payment_basepoint(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive a payment key to sender for transactions broadcast by sender
|
|
*/
|
|
void AcceptChannel_set_delayed_payment_basepoint(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_htlc_basepoint(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
|
|
*/
|
|
void AcceptChannel_set_htlc_basepoint(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The first to-be-broadcast-by-sender transaction's per commitment point
|
|
*/
|
|
LDKPublicKey AcceptChannel_get_first_per_commitment_point(const LDKAcceptChannel *this_ptr);
|
|
|
|
/**
|
|
* The first to-be-broadcast-by-sender transaction's per commitment point
|
|
*/
|
|
void AcceptChannel_set_first_per_commitment_point(LDKAcceptChannel *this_ptr, LDKPublicKey val);
|
|
|
|
void FundingCreated_free(LDKFundingCreated this_ptr);
|
|
|
|
LDKFundingCreated FundingCreated_clone(const LDKFundingCreated *orig);
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding is established
|
|
*/
|
|
const uint8_t (*FundingCreated_get_temporary_channel_id(const LDKFundingCreated *this_ptr))[32];
|
|
|
|
/**
|
|
* A temporary channel ID, until the funding is established
|
|
*/
|
|
void FundingCreated_set_temporary_channel_id(LDKFundingCreated *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The funding transaction ID
|
|
*/
|
|
const uint8_t (*FundingCreated_get_funding_txid(const LDKFundingCreated *this_ptr))[32];
|
|
|
|
/**
|
|
* The funding transaction ID
|
|
*/
|
|
void FundingCreated_set_funding_txid(LDKFundingCreated *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The specific output index funding this channel
|
|
*/
|
|
uint16_t FundingCreated_get_funding_output_index(const LDKFundingCreated *this_ptr);
|
|
|
|
/**
|
|
* The specific output index funding this channel
|
|
*/
|
|
void FundingCreated_set_funding_output_index(LDKFundingCreated *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The signature of the channel initiator (funder) on the funding transaction
|
|
*/
|
|
LDKSignature FundingCreated_get_signature(const LDKFundingCreated *this_ptr);
|
|
|
|
/**
|
|
* The signature of the channel initiator (funder) on the funding transaction
|
|
*/
|
|
void FundingCreated_set_signature(LDKFundingCreated *this_ptr, LDKSignature val);
|
|
|
|
MUST_USE_RES LDKFundingCreated FundingCreated_new(LDKThirtyTwoBytes temporary_channel_id_arg, LDKThirtyTwoBytes funding_txid_arg, uint16_t funding_output_index_arg, LDKSignature signature_arg);
|
|
|
|
void FundingSigned_free(LDKFundingSigned this_ptr);
|
|
|
|
LDKFundingSigned FundingSigned_clone(const LDKFundingSigned *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*FundingSigned_get_channel_id(const LDKFundingSigned *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void FundingSigned_set_channel_id(LDKFundingSigned *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The signature of the channel acceptor (fundee) on the funding transaction
|
|
*/
|
|
LDKSignature FundingSigned_get_signature(const LDKFundingSigned *this_ptr);
|
|
|
|
/**
|
|
* The signature of the channel acceptor (fundee) on the funding transaction
|
|
*/
|
|
void FundingSigned_set_signature(LDKFundingSigned *this_ptr, LDKSignature val);
|
|
|
|
MUST_USE_RES LDKFundingSigned FundingSigned_new(LDKThirtyTwoBytes channel_id_arg, LDKSignature signature_arg);
|
|
|
|
void FundingLocked_free(LDKFundingLocked this_ptr);
|
|
|
|
LDKFundingLocked FundingLocked_clone(const LDKFundingLocked *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*FundingLocked_get_channel_id(const LDKFundingLocked *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void FundingLocked_set_channel_id(LDKFundingLocked *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The per-commitment point of the second commitment transaction
|
|
*/
|
|
LDKPublicKey FundingLocked_get_next_per_commitment_point(const LDKFundingLocked *this_ptr);
|
|
|
|
/**
|
|
* The per-commitment point of the second commitment transaction
|
|
*/
|
|
void FundingLocked_set_next_per_commitment_point(LDKFundingLocked *this_ptr, LDKPublicKey val);
|
|
|
|
MUST_USE_RES LDKFundingLocked FundingLocked_new(LDKThirtyTwoBytes channel_id_arg, LDKPublicKey next_per_commitment_point_arg);
|
|
|
|
void Shutdown_free(LDKShutdown this_ptr);
|
|
|
|
LDKShutdown Shutdown_clone(const LDKShutdown *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*Shutdown_get_channel_id(const LDKShutdown *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void Shutdown_set_channel_id(LDKShutdown *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The destination of this peer's funds on closing.
|
|
* Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
|
|
*/
|
|
LDKu8slice Shutdown_get_scriptpubkey(const LDKShutdown *this_ptr);
|
|
|
|
/**
|
|
* The destination of this peer's funds on closing.
|
|
* Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
|
|
*/
|
|
void Shutdown_set_scriptpubkey(LDKShutdown *this_ptr, LDKCVec_u8Z val);
|
|
|
|
MUST_USE_RES LDKShutdown Shutdown_new(LDKThirtyTwoBytes channel_id_arg, LDKCVec_u8Z scriptpubkey_arg);
|
|
|
|
void ClosingSigned_free(LDKClosingSigned this_ptr);
|
|
|
|
LDKClosingSigned ClosingSigned_clone(const LDKClosingSigned *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*ClosingSigned_get_channel_id(const LDKClosingSigned *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void ClosingSigned_set_channel_id(LDKClosingSigned *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The proposed total fee for the closing transaction
|
|
*/
|
|
uint64_t ClosingSigned_get_fee_satoshis(const LDKClosingSigned *this_ptr);
|
|
|
|
/**
|
|
* The proposed total fee for the closing transaction
|
|
*/
|
|
void ClosingSigned_set_fee_satoshis(LDKClosingSigned *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* A signature on the closing transaction
|
|
*/
|
|
LDKSignature ClosingSigned_get_signature(const LDKClosingSigned *this_ptr);
|
|
|
|
/**
|
|
* A signature on the closing transaction
|
|
*/
|
|
void ClosingSigned_set_signature(LDKClosingSigned *this_ptr, LDKSignature val);
|
|
|
|
MUST_USE_RES LDKClosingSigned ClosingSigned_new(LDKThirtyTwoBytes channel_id_arg, uint64_t fee_satoshis_arg, LDKSignature signature_arg);
|
|
|
|
void UpdateAddHTLC_free(LDKUpdateAddHTLC this_ptr);
|
|
|
|
LDKUpdateAddHTLC UpdateAddHTLC_clone(const LDKUpdateAddHTLC *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*UpdateAddHTLC_get_channel_id(const LDKUpdateAddHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void UpdateAddHTLC_set_channel_id(LDKUpdateAddHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
uint64_t UpdateAddHTLC_get_htlc_id(const LDKUpdateAddHTLC *this_ptr);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
void UpdateAddHTLC_set_htlc_id(LDKUpdateAddHTLC *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The HTLC value in milli-satoshi
|
|
*/
|
|
uint64_t UpdateAddHTLC_get_amount_msat(const LDKUpdateAddHTLC *this_ptr);
|
|
|
|
/**
|
|
* The HTLC value in milli-satoshi
|
|
*/
|
|
void UpdateAddHTLC_set_amount_msat(LDKUpdateAddHTLC *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The payment hash, the pre-image of which controls HTLC redemption
|
|
*/
|
|
const uint8_t (*UpdateAddHTLC_get_payment_hash(const LDKUpdateAddHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The payment hash, the pre-image of which controls HTLC redemption
|
|
*/
|
|
void UpdateAddHTLC_set_payment_hash(LDKUpdateAddHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The expiry height of the HTLC
|
|
*/
|
|
uint32_t UpdateAddHTLC_get_cltv_expiry(const LDKUpdateAddHTLC *this_ptr);
|
|
|
|
/**
|
|
* The expiry height of the HTLC
|
|
*/
|
|
void UpdateAddHTLC_set_cltv_expiry(LDKUpdateAddHTLC *this_ptr, uint32_t val);
|
|
|
|
void UpdateFulfillHTLC_free(LDKUpdateFulfillHTLC this_ptr);
|
|
|
|
LDKUpdateFulfillHTLC UpdateFulfillHTLC_clone(const LDKUpdateFulfillHTLC *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*UpdateFulfillHTLC_get_channel_id(const LDKUpdateFulfillHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void UpdateFulfillHTLC_set_channel_id(LDKUpdateFulfillHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
uint64_t UpdateFulfillHTLC_get_htlc_id(const LDKUpdateFulfillHTLC *this_ptr);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
void UpdateFulfillHTLC_set_htlc_id(LDKUpdateFulfillHTLC *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The pre-image of the payment hash, allowing HTLC redemption
|
|
*/
|
|
const uint8_t (*UpdateFulfillHTLC_get_payment_preimage(const LDKUpdateFulfillHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The pre-image of the payment hash, allowing HTLC redemption
|
|
*/
|
|
void UpdateFulfillHTLC_set_payment_preimage(LDKUpdateFulfillHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
MUST_USE_RES LDKUpdateFulfillHTLC UpdateFulfillHTLC_new(LDKThirtyTwoBytes channel_id_arg, uint64_t htlc_id_arg, LDKThirtyTwoBytes payment_preimage_arg);
|
|
|
|
void UpdateFailHTLC_free(LDKUpdateFailHTLC this_ptr);
|
|
|
|
LDKUpdateFailHTLC UpdateFailHTLC_clone(const LDKUpdateFailHTLC *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*UpdateFailHTLC_get_channel_id(const LDKUpdateFailHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void UpdateFailHTLC_set_channel_id(LDKUpdateFailHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
uint64_t UpdateFailHTLC_get_htlc_id(const LDKUpdateFailHTLC *this_ptr);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
void UpdateFailHTLC_set_htlc_id(LDKUpdateFailHTLC *this_ptr, uint64_t val);
|
|
|
|
void UpdateFailMalformedHTLC_free(LDKUpdateFailMalformedHTLC this_ptr);
|
|
|
|
LDKUpdateFailMalformedHTLC UpdateFailMalformedHTLC_clone(const LDKUpdateFailMalformedHTLC *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*UpdateFailMalformedHTLC_get_channel_id(const LDKUpdateFailMalformedHTLC *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void UpdateFailMalformedHTLC_set_channel_id(LDKUpdateFailMalformedHTLC *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
uint64_t UpdateFailMalformedHTLC_get_htlc_id(const LDKUpdateFailMalformedHTLC *this_ptr);
|
|
|
|
/**
|
|
* The HTLC ID
|
|
*/
|
|
void UpdateFailMalformedHTLC_set_htlc_id(LDKUpdateFailMalformedHTLC *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The failure code
|
|
*/
|
|
uint16_t UpdateFailMalformedHTLC_get_failure_code(const LDKUpdateFailMalformedHTLC *this_ptr);
|
|
|
|
/**
|
|
* The failure code
|
|
*/
|
|
void UpdateFailMalformedHTLC_set_failure_code(LDKUpdateFailMalformedHTLC *this_ptr, uint16_t val);
|
|
|
|
void CommitmentSigned_free(LDKCommitmentSigned this_ptr);
|
|
|
|
LDKCommitmentSigned CommitmentSigned_clone(const LDKCommitmentSigned *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*CommitmentSigned_get_channel_id(const LDKCommitmentSigned *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void CommitmentSigned_set_channel_id(LDKCommitmentSigned *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* A signature on the commitment transaction
|
|
*/
|
|
LDKSignature CommitmentSigned_get_signature(const LDKCommitmentSigned *this_ptr);
|
|
|
|
/**
|
|
* A signature on the commitment transaction
|
|
*/
|
|
void CommitmentSigned_set_signature(LDKCommitmentSigned *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* Signatures on the HTLC transactions
|
|
*/
|
|
void CommitmentSigned_set_htlc_signatures(LDKCommitmentSigned *this_ptr, LDKCVec_SignatureZ val);
|
|
|
|
MUST_USE_RES LDKCommitmentSigned CommitmentSigned_new(LDKThirtyTwoBytes channel_id_arg, LDKSignature signature_arg, LDKCVec_SignatureZ htlc_signatures_arg);
|
|
|
|
void RevokeAndACK_free(LDKRevokeAndACK this_ptr);
|
|
|
|
LDKRevokeAndACK RevokeAndACK_clone(const LDKRevokeAndACK *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*RevokeAndACK_get_channel_id(const LDKRevokeAndACK *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void RevokeAndACK_set_channel_id(LDKRevokeAndACK *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The secret corresponding to the per-commitment point
|
|
*/
|
|
const uint8_t (*RevokeAndACK_get_per_commitment_secret(const LDKRevokeAndACK *this_ptr))[32];
|
|
|
|
/**
|
|
* The secret corresponding to the per-commitment point
|
|
*/
|
|
void RevokeAndACK_set_per_commitment_secret(LDKRevokeAndACK *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The next sender-broadcast commitment transaction's per-commitment point
|
|
*/
|
|
LDKPublicKey RevokeAndACK_get_next_per_commitment_point(const LDKRevokeAndACK *this_ptr);
|
|
|
|
/**
|
|
* The next sender-broadcast commitment transaction's per-commitment point
|
|
*/
|
|
void RevokeAndACK_set_next_per_commitment_point(LDKRevokeAndACK *this_ptr, LDKPublicKey val);
|
|
|
|
MUST_USE_RES LDKRevokeAndACK RevokeAndACK_new(LDKThirtyTwoBytes channel_id_arg, LDKThirtyTwoBytes per_commitment_secret_arg, LDKPublicKey next_per_commitment_point_arg);
|
|
|
|
void UpdateFee_free(LDKUpdateFee this_ptr);
|
|
|
|
LDKUpdateFee UpdateFee_clone(const LDKUpdateFee *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*UpdateFee_get_channel_id(const LDKUpdateFee *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void UpdateFee_set_channel_id(LDKUpdateFee *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* Fee rate per 1000-weight of the transaction
|
|
*/
|
|
uint32_t UpdateFee_get_feerate_per_kw(const LDKUpdateFee *this_ptr);
|
|
|
|
/**
|
|
* Fee rate per 1000-weight of the transaction
|
|
*/
|
|
void UpdateFee_set_feerate_per_kw(LDKUpdateFee *this_ptr, uint32_t val);
|
|
|
|
MUST_USE_RES LDKUpdateFee UpdateFee_new(LDKThirtyTwoBytes channel_id_arg, uint32_t feerate_per_kw_arg);
|
|
|
|
void DataLossProtect_free(LDKDataLossProtect this_ptr);
|
|
|
|
LDKDataLossProtect DataLossProtect_clone(const LDKDataLossProtect *orig);
|
|
|
|
/**
|
|
* Proof that the sender knows the per-commitment secret of a specific commitment transaction
|
|
* belonging to the recipient
|
|
*/
|
|
const uint8_t (*DataLossProtect_get_your_last_per_commitment_secret(const LDKDataLossProtect *this_ptr))[32];
|
|
|
|
/**
|
|
* Proof that the sender knows the per-commitment secret of a specific commitment transaction
|
|
* belonging to the recipient
|
|
*/
|
|
void DataLossProtect_set_your_last_per_commitment_secret(LDKDataLossProtect *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The sender's per-commitment point for their current commitment transaction
|
|
*/
|
|
LDKPublicKey DataLossProtect_get_my_current_per_commitment_point(const LDKDataLossProtect *this_ptr);
|
|
|
|
/**
|
|
* The sender's per-commitment point for their current commitment transaction
|
|
*/
|
|
void DataLossProtect_set_my_current_per_commitment_point(LDKDataLossProtect *this_ptr, LDKPublicKey val);
|
|
|
|
MUST_USE_RES LDKDataLossProtect DataLossProtect_new(LDKThirtyTwoBytes your_last_per_commitment_secret_arg, LDKPublicKey my_current_per_commitment_point_arg);
|
|
|
|
void ChannelReestablish_free(LDKChannelReestablish this_ptr);
|
|
|
|
LDKChannelReestablish ChannelReestablish_clone(const LDKChannelReestablish *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*ChannelReestablish_get_channel_id(const LDKChannelReestablish *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void ChannelReestablish_set_channel_id(LDKChannelReestablish *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The next commitment number for the sender
|
|
*/
|
|
uint64_t ChannelReestablish_get_next_local_commitment_number(const LDKChannelReestablish *this_ptr);
|
|
|
|
/**
|
|
* The next commitment number for the sender
|
|
*/
|
|
void ChannelReestablish_set_next_local_commitment_number(LDKChannelReestablish *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The next commitment number for the recipient
|
|
*/
|
|
uint64_t ChannelReestablish_get_next_remote_commitment_number(const LDKChannelReestablish *this_ptr);
|
|
|
|
/**
|
|
* The next commitment number for the recipient
|
|
*/
|
|
void ChannelReestablish_set_next_remote_commitment_number(LDKChannelReestablish *this_ptr, uint64_t val);
|
|
|
|
void AnnouncementSignatures_free(LDKAnnouncementSignatures this_ptr);
|
|
|
|
LDKAnnouncementSignatures AnnouncementSignatures_clone(const LDKAnnouncementSignatures *orig);
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
const uint8_t (*AnnouncementSignatures_get_channel_id(const LDKAnnouncementSignatures *this_ptr))[32];
|
|
|
|
/**
|
|
* The channel ID
|
|
*/
|
|
void AnnouncementSignatures_set_channel_id(LDKAnnouncementSignatures *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
uint64_t AnnouncementSignatures_get_short_channel_id(const LDKAnnouncementSignatures *this_ptr);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
void AnnouncementSignatures_set_short_channel_id(LDKAnnouncementSignatures *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* A signature by the node key
|
|
*/
|
|
LDKSignature AnnouncementSignatures_get_node_signature(const LDKAnnouncementSignatures *this_ptr);
|
|
|
|
/**
|
|
* A signature by the node key
|
|
*/
|
|
void AnnouncementSignatures_set_node_signature(LDKAnnouncementSignatures *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* A signature by the funding key
|
|
*/
|
|
LDKSignature AnnouncementSignatures_get_bitcoin_signature(const LDKAnnouncementSignatures *this_ptr);
|
|
|
|
/**
|
|
* A signature by the funding key
|
|
*/
|
|
void AnnouncementSignatures_set_bitcoin_signature(LDKAnnouncementSignatures *this_ptr, LDKSignature val);
|
|
|
|
MUST_USE_RES LDKAnnouncementSignatures AnnouncementSignatures_new(LDKThirtyTwoBytes channel_id_arg, uint64_t short_channel_id_arg, LDKSignature node_signature_arg, LDKSignature bitcoin_signature_arg);
|
|
|
|
void NetAddress_free(LDKNetAddress this_ptr);
|
|
|
|
LDKNetAddress NetAddress_clone(const LDKNetAddress *orig);
|
|
|
|
void UnsignedNodeAnnouncement_free(LDKUnsignedNodeAnnouncement this_ptr);
|
|
|
|
LDKUnsignedNodeAnnouncement UnsignedNodeAnnouncement_clone(const LDKUnsignedNodeAnnouncement *orig);
|
|
|
|
/**
|
|
* The advertised features
|
|
*/
|
|
LDKNodeFeatures UnsignedNodeAnnouncement_get_features(const LDKUnsignedNodeAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The advertised features
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_features(LDKUnsignedNodeAnnouncement *this_ptr, LDKNodeFeatures val);
|
|
|
|
/**
|
|
* A strictly monotonic announcement counter, with gaps allowed
|
|
*/
|
|
uint32_t UnsignedNodeAnnouncement_get_timestamp(const LDKUnsignedNodeAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* A strictly monotonic announcement counter, with gaps allowed
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_timestamp(LDKUnsignedNodeAnnouncement *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The node_id this announcement originated from (don't rebroadcast the node_announcement back
|
|
* to this node).
|
|
*/
|
|
LDKPublicKey UnsignedNodeAnnouncement_get_node_id(const LDKUnsignedNodeAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The node_id this announcement originated from (don't rebroadcast the node_announcement back
|
|
* to this node).
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_node_id(LDKUnsignedNodeAnnouncement *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* An RGB color for UI purposes
|
|
*/
|
|
const uint8_t (*UnsignedNodeAnnouncement_get_rgb(const LDKUnsignedNodeAnnouncement *this_ptr))[3];
|
|
|
|
/**
|
|
* An RGB color for UI purposes
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_rgb(LDKUnsignedNodeAnnouncement *this_ptr, LDKThreeBytes val);
|
|
|
|
/**
|
|
* An alias, for UI purposes. This should be sanitized before use. There is no guarantee
|
|
* of uniqueness.
|
|
*/
|
|
const uint8_t (*UnsignedNodeAnnouncement_get_alias(const LDKUnsignedNodeAnnouncement *this_ptr))[32];
|
|
|
|
/**
|
|
* An alias, for UI purposes. This should be sanitized before use. There is no guarantee
|
|
* of uniqueness.
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_alias(LDKUnsignedNodeAnnouncement *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* List of addresses on which this node is reachable
|
|
*/
|
|
void UnsignedNodeAnnouncement_set_addresses(LDKUnsignedNodeAnnouncement *this_ptr, LDKCVec_NetAddressZ val);
|
|
|
|
void NodeAnnouncement_free(LDKNodeAnnouncement this_ptr);
|
|
|
|
LDKNodeAnnouncement NodeAnnouncement_clone(const LDKNodeAnnouncement *orig);
|
|
|
|
/**
|
|
* The signature by the node key
|
|
*/
|
|
LDKSignature NodeAnnouncement_get_signature(const LDKNodeAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The signature by the node key
|
|
*/
|
|
void NodeAnnouncement_set_signature(LDKNodeAnnouncement *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* The actual content of the announcement
|
|
*/
|
|
LDKUnsignedNodeAnnouncement NodeAnnouncement_get_contents(const LDKNodeAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The actual content of the announcement
|
|
*/
|
|
void NodeAnnouncement_set_contents(LDKNodeAnnouncement *this_ptr, LDKUnsignedNodeAnnouncement val);
|
|
|
|
MUST_USE_RES LDKNodeAnnouncement NodeAnnouncement_new(LDKSignature signature_arg, LDKUnsignedNodeAnnouncement contents_arg);
|
|
|
|
void UnsignedChannelAnnouncement_free(LDKUnsignedChannelAnnouncement this_ptr);
|
|
|
|
LDKUnsignedChannelAnnouncement UnsignedChannelAnnouncement_clone(const LDKUnsignedChannelAnnouncement *orig);
|
|
|
|
/**
|
|
* The advertised channel features
|
|
*/
|
|
LDKChannelFeatures UnsignedChannelAnnouncement_get_features(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The advertised channel features
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_features(LDKUnsignedChannelAnnouncement *this_ptr, LDKChannelFeatures val);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
const uint8_t (*UnsignedChannelAnnouncement_get_chain_hash(const LDKUnsignedChannelAnnouncement *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_chain_hash(LDKUnsignedChannelAnnouncement *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
uint64_t UnsignedChannelAnnouncement_get_short_channel_id(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_short_channel_id(LDKUnsignedChannelAnnouncement *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* One of the two node_ids which are endpoints of this channel
|
|
*/
|
|
LDKPublicKey UnsignedChannelAnnouncement_get_node_id_1(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* One of the two node_ids which are endpoints of this channel
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_node_id_1(LDKUnsignedChannelAnnouncement *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The other of the two node_ids which are endpoints of this channel
|
|
*/
|
|
LDKPublicKey UnsignedChannelAnnouncement_get_node_id_2(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The other of the two node_ids which are endpoints of this channel
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_node_id_2(LDKUnsignedChannelAnnouncement *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The funding key for the first node
|
|
*/
|
|
LDKPublicKey UnsignedChannelAnnouncement_get_bitcoin_key_1(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The funding key for the first node
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_bitcoin_key_1(LDKUnsignedChannelAnnouncement *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The funding key for the second node
|
|
*/
|
|
LDKPublicKey UnsignedChannelAnnouncement_get_bitcoin_key_2(const LDKUnsignedChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The funding key for the second node
|
|
*/
|
|
void UnsignedChannelAnnouncement_set_bitcoin_key_2(LDKUnsignedChannelAnnouncement *this_ptr, LDKPublicKey val);
|
|
|
|
void ChannelAnnouncement_free(LDKChannelAnnouncement this_ptr);
|
|
|
|
LDKChannelAnnouncement ChannelAnnouncement_clone(const LDKChannelAnnouncement *orig);
|
|
|
|
/**
|
|
* Authentication of the announcement by the first public node
|
|
*/
|
|
LDKSignature ChannelAnnouncement_get_node_signature_1(const LDKChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* Authentication of the announcement by the first public node
|
|
*/
|
|
void ChannelAnnouncement_set_node_signature_1(LDKChannelAnnouncement *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* Authentication of the announcement by the second public node
|
|
*/
|
|
LDKSignature ChannelAnnouncement_get_node_signature_2(const LDKChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* Authentication of the announcement by the second public node
|
|
*/
|
|
void ChannelAnnouncement_set_node_signature_2(LDKChannelAnnouncement *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* Proof of funding UTXO ownership by the first public node
|
|
*/
|
|
LDKSignature ChannelAnnouncement_get_bitcoin_signature_1(const LDKChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* Proof of funding UTXO ownership by the first public node
|
|
*/
|
|
void ChannelAnnouncement_set_bitcoin_signature_1(LDKChannelAnnouncement *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* Proof of funding UTXO ownership by the second public node
|
|
*/
|
|
LDKSignature ChannelAnnouncement_get_bitcoin_signature_2(const LDKChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* Proof of funding UTXO ownership by the second public node
|
|
*/
|
|
void ChannelAnnouncement_set_bitcoin_signature_2(LDKChannelAnnouncement *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* The actual announcement
|
|
*/
|
|
LDKUnsignedChannelAnnouncement ChannelAnnouncement_get_contents(const LDKChannelAnnouncement *this_ptr);
|
|
|
|
/**
|
|
* The actual announcement
|
|
*/
|
|
void ChannelAnnouncement_set_contents(LDKChannelAnnouncement *this_ptr, LDKUnsignedChannelAnnouncement val);
|
|
|
|
MUST_USE_RES LDKChannelAnnouncement ChannelAnnouncement_new(LDKSignature node_signature_1_arg, LDKSignature node_signature_2_arg, LDKSignature bitcoin_signature_1_arg, LDKSignature bitcoin_signature_2_arg, LDKUnsignedChannelAnnouncement contents_arg);
|
|
|
|
void UnsignedChannelUpdate_free(LDKUnsignedChannelUpdate this_ptr);
|
|
|
|
LDKUnsignedChannelUpdate UnsignedChannelUpdate_clone(const LDKUnsignedChannelUpdate *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
const uint8_t (*UnsignedChannelUpdate_get_chain_hash(const LDKUnsignedChannelUpdate *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain where the channel is to be opened
|
|
*/
|
|
void UnsignedChannelUpdate_set_chain_hash(LDKUnsignedChannelUpdate *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
uint64_t UnsignedChannelUpdate_get_short_channel_id(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The short channel ID
|
|
*/
|
|
void UnsignedChannelUpdate_set_short_channel_id(LDKUnsignedChannelUpdate *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* A strictly monotonic announcement counter, with gaps allowed, specific to this channel
|
|
*/
|
|
uint32_t UnsignedChannelUpdate_get_timestamp(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* A strictly monotonic announcement counter, with gaps allowed, specific to this channel
|
|
*/
|
|
void UnsignedChannelUpdate_set_timestamp(LDKUnsignedChannelUpdate *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Channel flags
|
|
*/
|
|
uint8_t UnsignedChannelUpdate_get_flags(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* Channel flags
|
|
*/
|
|
void UnsignedChannelUpdate_set_flags(LDKUnsignedChannelUpdate *this_ptr, uint8_t val);
|
|
|
|
/**
|
|
* The number of blocks to subtract from incoming HTLC cltv_expiry values
|
|
*/
|
|
uint16_t UnsignedChannelUpdate_get_cltv_expiry_delta(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The number of blocks to subtract from incoming HTLC cltv_expiry values
|
|
*/
|
|
void UnsignedChannelUpdate_set_cltv_expiry_delta(LDKUnsignedChannelUpdate *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
uint64_t UnsignedChannelUpdate_get_htlc_minimum_msat(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The minimum HTLC size incoming to sender, in milli-satoshi
|
|
*/
|
|
void UnsignedChannelUpdate_set_htlc_minimum_msat(LDKUnsignedChannelUpdate *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The base HTLC fee charged by sender, in milli-satoshi
|
|
*/
|
|
uint32_t UnsignedChannelUpdate_get_fee_base_msat(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The base HTLC fee charged by sender, in milli-satoshi
|
|
*/
|
|
void UnsignedChannelUpdate_set_fee_base_msat(LDKUnsignedChannelUpdate *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The amount to fee multiplier, in micro-satoshi
|
|
*/
|
|
uint32_t UnsignedChannelUpdate_get_fee_proportional_millionths(const LDKUnsignedChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The amount to fee multiplier, in micro-satoshi
|
|
*/
|
|
void UnsignedChannelUpdate_set_fee_proportional_millionths(LDKUnsignedChannelUpdate *this_ptr, uint32_t val);
|
|
|
|
void ChannelUpdate_free(LDKChannelUpdate this_ptr);
|
|
|
|
LDKChannelUpdate ChannelUpdate_clone(const LDKChannelUpdate *orig);
|
|
|
|
/**
|
|
* A signature of the channel update
|
|
*/
|
|
LDKSignature ChannelUpdate_get_signature(const LDKChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* A signature of the channel update
|
|
*/
|
|
void ChannelUpdate_set_signature(LDKChannelUpdate *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* The actual channel update
|
|
*/
|
|
LDKUnsignedChannelUpdate ChannelUpdate_get_contents(const LDKChannelUpdate *this_ptr);
|
|
|
|
/**
|
|
* The actual channel update
|
|
*/
|
|
void ChannelUpdate_set_contents(LDKChannelUpdate *this_ptr, LDKUnsignedChannelUpdate val);
|
|
|
|
MUST_USE_RES LDKChannelUpdate ChannelUpdate_new(LDKSignature signature_arg, LDKUnsignedChannelUpdate contents_arg);
|
|
|
|
void QueryChannelRange_free(LDKQueryChannelRange this_ptr);
|
|
|
|
LDKQueryChannelRange QueryChannelRange_clone(const LDKQueryChannelRange *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
const uint8_t (*QueryChannelRange_get_chain_hash(const LDKQueryChannelRange *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
void QueryChannelRange_set_chain_hash(LDKQueryChannelRange *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The height of the first block for the channel UTXOs being queried
|
|
*/
|
|
uint32_t QueryChannelRange_get_first_blocknum(const LDKQueryChannelRange *this_ptr);
|
|
|
|
/**
|
|
* The height of the first block for the channel UTXOs being queried
|
|
*/
|
|
void QueryChannelRange_set_first_blocknum(LDKQueryChannelRange *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The number of blocks to include in the query results
|
|
*/
|
|
uint32_t QueryChannelRange_get_number_of_blocks(const LDKQueryChannelRange *this_ptr);
|
|
|
|
/**
|
|
* The number of blocks to include in the query results
|
|
*/
|
|
void QueryChannelRange_set_number_of_blocks(LDKQueryChannelRange *this_ptr, uint32_t val);
|
|
|
|
MUST_USE_RES LDKQueryChannelRange QueryChannelRange_new(LDKThirtyTwoBytes chain_hash_arg, uint32_t first_blocknum_arg, uint32_t number_of_blocks_arg);
|
|
|
|
void ReplyChannelRange_free(LDKReplyChannelRange this_ptr);
|
|
|
|
LDKReplyChannelRange ReplyChannelRange_clone(const LDKReplyChannelRange *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
const uint8_t (*ReplyChannelRange_get_chain_hash(const LDKReplyChannelRange *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
void ReplyChannelRange_set_chain_hash(LDKReplyChannelRange *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The height of the first block in the range of the reply
|
|
*/
|
|
uint32_t ReplyChannelRange_get_first_blocknum(const LDKReplyChannelRange *this_ptr);
|
|
|
|
/**
|
|
* The height of the first block in the range of the reply
|
|
*/
|
|
void ReplyChannelRange_set_first_blocknum(LDKReplyChannelRange *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The number of blocks included in the range of the reply
|
|
*/
|
|
uint32_t ReplyChannelRange_get_number_of_blocks(const LDKReplyChannelRange *this_ptr);
|
|
|
|
/**
|
|
* The number of blocks included in the range of the reply
|
|
*/
|
|
void ReplyChannelRange_set_number_of_blocks(LDKReplyChannelRange *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Indicates if the query recipient maintains up-to-date channel
|
|
* information for the chain_hash
|
|
*/
|
|
bool ReplyChannelRange_get_full_information(const LDKReplyChannelRange *this_ptr);
|
|
|
|
/**
|
|
* Indicates if the query recipient maintains up-to-date channel
|
|
* information for the chain_hash
|
|
*/
|
|
void ReplyChannelRange_set_full_information(LDKReplyChannelRange *this_ptr, bool val);
|
|
|
|
/**
|
|
* The short_channel_ids in the channel range
|
|
*/
|
|
void ReplyChannelRange_set_short_channel_ids(LDKReplyChannelRange *this_ptr, LDKCVec_u64Z val);
|
|
|
|
MUST_USE_RES LDKReplyChannelRange ReplyChannelRange_new(LDKThirtyTwoBytes chain_hash_arg, uint32_t first_blocknum_arg, uint32_t number_of_blocks_arg, bool full_information_arg, LDKCVec_u64Z short_channel_ids_arg);
|
|
|
|
void QueryShortChannelIds_free(LDKQueryShortChannelIds this_ptr);
|
|
|
|
LDKQueryShortChannelIds QueryShortChannelIds_clone(const LDKQueryShortChannelIds *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
const uint8_t (*QueryShortChannelIds_get_chain_hash(const LDKQueryShortChannelIds *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain being queried
|
|
*/
|
|
void QueryShortChannelIds_set_chain_hash(LDKQueryShortChannelIds *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The short_channel_ids that are being queried
|
|
*/
|
|
void QueryShortChannelIds_set_short_channel_ids(LDKQueryShortChannelIds *this_ptr, LDKCVec_u64Z val);
|
|
|
|
MUST_USE_RES LDKQueryShortChannelIds QueryShortChannelIds_new(LDKThirtyTwoBytes chain_hash_arg, LDKCVec_u64Z short_channel_ids_arg);
|
|
|
|
void ReplyShortChannelIdsEnd_free(LDKReplyShortChannelIdsEnd this_ptr);
|
|
|
|
LDKReplyShortChannelIdsEnd ReplyShortChannelIdsEnd_clone(const LDKReplyShortChannelIdsEnd *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain that was queried
|
|
*/
|
|
const uint8_t (*ReplyShortChannelIdsEnd_get_chain_hash(const LDKReplyShortChannelIdsEnd *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain that was queried
|
|
*/
|
|
void ReplyShortChannelIdsEnd_set_chain_hash(LDKReplyShortChannelIdsEnd *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* Indicates if the query recipient maintains up-to-date channel
|
|
* information for the chain_hash
|
|
*/
|
|
bool ReplyShortChannelIdsEnd_get_full_information(const LDKReplyShortChannelIdsEnd *this_ptr);
|
|
|
|
/**
|
|
* Indicates if the query recipient maintains up-to-date channel
|
|
* information for the chain_hash
|
|
*/
|
|
void ReplyShortChannelIdsEnd_set_full_information(LDKReplyShortChannelIdsEnd *this_ptr, bool val);
|
|
|
|
MUST_USE_RES LDKReplyShortChannelIdsEnd ReplyShortChannelIdsEnd_new(LDKThirtyTwoBytes chain_hash_arg, bool full_information_arg);
|
|
|
|
void GossipTimestampFilter_free(LDKGossipTimestampFilter this_ptr);
|
|
|
|
LDKGossipTimestampFilter GossipTimestampFilter_clone(const LDKGossipTimestampFilter *orig);
|
|
|
|
/**
|
|
* The genesis hash of the blockchain for channel and node information
|
|
*/
|
|
const uint8_t (*GossipTimestampFilter_get_chain_hash(const LDKGossipTimestampFilter *this_ptr))[32];
|
|
|
|
/**
|
|
* The genesis hash of the blockchain for channel and node information
|
|
*/
|
|
void GossipTimestampFilter_set_chain_hash(LDKGossipTimestampFilter *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* The starting unix timestamp
|
|
*/
|
|
uint32_t GossipTimestampFilter_get_first_timestamp(const LDKGossipTimestampFilter *this_ptr);
|
|
|
|
/**
|
|
* The starting unix timestamp
|
|
*/
|
|
void GossipTimestampFilter_set_first_timestamp(LDKGossipTimestampFilter *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The range of information in seconds
|
|
*/
|
|
uint32_t GossipTimestampFilter_get_timestamp_range(const LDKGossipTimestampFilter *this_ptr);
|
|
|
|
/**
|
|
* The range of information in seconds
|
|
*/
|
|
void GossipTimestampFilter_set_timestamp_range(LDKGossipTimestampFilter *this_ptr, uint32_t val);
|
|
|
|
MUST_USE_RES LDKGossipTimestampFilter GossipTimestampFilter_new(LDKThirtyTwoBytes chain_hash_arg, uint32_t first_timestamp_arg, uint32_t timestamp_range_arg);
|
|
|
|
void ErrorAction_free(LDKErrorAction this_ptr);
|
|
|
|
LDKErrorAction ErrorAction_clone(const LDKErrorAction *orig);
|
|
|
|
void LightningError_free(LDKLightningError this_ptr);
|
|
|
|
/**
|
|
* A human-readable message describing the error
|
|
*/
|
|
LDKStr LightningError_get_err(const LDKLightningError *this_ptr);
|
|
|
|
/**
|
|
* A human-readable message describing the error
|
|
*/
|
|
void LightningError_set_err(LDKLightningError *this_ptr, LDKCVec_u8Z val);
|
|
|
|
/**
|
|
* The action which should be taken against the offending peer.
|
|
*/
|
|
LDKErrorAction LightningError_get_action(const LDKLightningError *this_ptr);
|
|
|
|
/**
|
|
* The action which should be taken against the offending peer.
|
|
*/
|
|
void LightningError_set_action(LDKLightningError *this_ptr, LDKErrorAction val);
|
|
|
|
MUST_USE_RES LDKLightningError LightningError_new(LDKCVec_u8Z err_arg, LDKErrorAction action_arg);
|
|
|
|
void CommitmentUpdate_free(LDKCommitmentUpdate this_ptr);
|
|
|
|
LDKCommitmentUpdate CommitmentUpdate_clone(const LDKCommitmentUpdate *orig);
|
|
|
|
/**
|
|
* update_add_htlc messages which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_update_add_htlcs(LDKCommitmentUpdate *this_ptr, LDKCVec_UpdateAddHTLCZ val);
|
|
|
|
/**
|
|
* update_fulfill_htlc messages which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_update_fulfill_htlcs(LDKCommitmentUpdate *this_ptr, LDKCVec_UpdateFulfillHTLCZ val);
|
|
|
|
/**
|
|
* update_fail_htlc messages which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_update_fail_htlcs(LDKCommitmentUpdate *this_ptr, LDKCVec_UpdateFailHTLCZ val);
|
|
|
|
/**
|
|
* update_fail_malformed_htlc messages which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_update_fail_malformed_htlcs(LDKCommitmentUpdate *this_ptr, LDKCVec_UpdateFailMalformedHTLCZ val);
|
|
|
|
/**
|
|
* An update_fee message which should be sent
|
|
*/
|
|
LDKUpdateFee CommitmentUpdate_get_update_fee(const LDKCommitmentUpdate *this_ptr);
|
|
|
|
/**
|
|
* An update_fee message which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_update_fee(LDKCommitmentUpdate *this_ptr, LDKUpdateFee val);
|
|
|
|
/**
|
|
* Finally, the commitment_signed message which should be sent
|
|
*/
|
|
LDKCommitmentSigned CommitmentUpdate_get_commitment_signed(const LDKCommitmentUpdate *this_ptr);
|
|
|
|
/**
|
|
* Finally, the commitment_signed message which should be sent
|
|
*/
|
|
void CommitmentUpdate_set_commitment_signed(LDKCommitmentUpdate *this_ptr, LDKCommitmentSigned val);
|
|
|
|
MUST_USE_RES LDKCommitmentUpdate CommitmentUpdate_new(LDKCVec_UpdateAddHTLCZ update_add_htlcs_arg, LDKCVec_UpdateFulfillHTLCZ update_fulfill_htlcs_arg, LDKCVec_UpdateFailHTLCZ update_fail_htlcs_arg, LDKCVec_UpdateFailMalformedHTLCZ update_fail_malformed_htlcs_arg, LDKUpdateFee update_fee_arg, LDKCommitmentSigned commitment_signed_arg);
|
|
|
|
void HTLCFailChannelUpdate_free(LDKHTLCFailChannelUpdate this_ptr);
|
|
|
|
LDKHTLCFailChannelUpdate HTLCFailChannelUpdate_clone(const LDKHTLCFailChannelUpdate *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void ChannelMessageHandler_free(LDKChannelMessageHandler this_ptr);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void RoutingMessageHandler_free(LDKRoutingMessageHandler this_ptr);
|
|
|
|
LDKCVec_u8Z AcceptChannel_write(const LDKAcceptChannel *obj);
|
|
|
|
LDKAcceptChannel AcceptChannel_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z AnnouncementSignatures_write(const LDKAnnouncementSignatures *obj);
|
|
|
|
LDKAnnouncementSignatures AnnouncementSignatures_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ChannelReestablish_write(const LDKChannelReestablish *obj);
|
|
|
|
LDKChannelReestablish ChannelReestablish_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ClosingSigned_write(const LDKClosingSigned *obj);
|
|
|
|
LDKClosingSigned ClosingSigned_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z CommitmentSigned_write(const LDKCommitmentSigned *obj);
|
|
|
|
LDKCommitmentSigned CommitmentSigned_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z FundingCreated_write(const LDKFundingCreated *obj);
|
|
|
|
LDKFundingCreated FundingCreated_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z FundingSigned_write(const LDKFundingSigned *obj);
|
|
|
|
LDKFundingSigned FundingSigned_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z FundingLocked_write(const LDKFundingLocked *obj);
|
|
|
|
LDKFundingLocked FundingLocked_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z Init_write(const LDKInit *obj);
|
|
|
|
LDKInit Init_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z OpenChannel_write(const LDKOpenChannel *obj);
|
|
|
|
LDKOpenChannel OpenChannel_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z RevokeAndACK_write(const LDKRevokeAndACK *obj);
|
|
|
|
LDKRevokeAndACK RevokeAndACK_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z Shutdown_write(const LDKShutdown *obj);
|
|
|
|
LDKShutdown Shutdown_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UpdateFailHTLC_write(const LDKUpdateFailHTLC *obj);
|
|
|
|
LDKUpdateFailHTLC UpdateFailHTLC_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UpdateFailMalformedHTLC_write(const LDKUpdateFailMalformedHTLC *obj);
|
|
|
|
LDKUpdateFailMalformedHTLC UpdateFailMalformedHTLC_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UpdateFee_write(const LDKUpdateFee *obj);
|
|
|
|
LDKUpdateFee UpdateFee_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UpdateFulfillHTLC_write(const LDKUpdateFulfillHTLC *obj);
|
|
|
|
LDKUpdateFulfillHTLC UpdateFulfillHTLC_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UpdateAddHTLC_write(const LDKUpdateAddHTLC *obj);
|
|
|
|
LDKUpdateAddHTLC UpdateAddHTLC_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z Ping_write(const LDKPing *obj);
|
|
|
|
LDKPing Ping_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z Pong_write(const LDKPong *obj);
|
|
|
|
LDKPong Pong_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UnsignedChannelAnnouncement_write(const LDKUnsignedChannelAnnouncement *obj);
|
|
|
|
LDKUnsignedChannelAnnouncement UnsignedChannelAnnouncement_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ChannelAnnouncement_write(const LDKChannelAnnouncement *obj);
|
|
|
|
LDKChannelAnnouncement ChannelAnnouncement_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UnsignedChannelUpdate_write(const LDKUnsignedChannelUpdate *obj);
|
|
|
|
LDKUnsignedChannelUpdate UnsignedChannelUpdate_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ChannelUpdate_write(const LDKChannelUpdate *obj);
|
|
|
|
LDKChannelUpdate ChannelUpdate_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ErrorMessage_write(const LDKErrorMessage *obj);
|
|
|
|
LDKErrorMessage ErrorMessage_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z UnsignedNodeAnnouncement_write(const LDKUnsignedNodeAnnouncement *obj);
|
|
|
|
LDKUnsignedNodeAnnouncement UnsignedNodeAnnouncement_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z NodeAnnouncement_write(const LDKNodeAnnouncement *obj);
|
|
|
|
LDKNodeAnnouncement NodeAnnouncement_read(LDKu8slice ser);
|
|
|
|
LDKQueryShortChannelIds QueryShortChannelIds_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z QueryShortChannelIds_write(const LDKQueryShortChannelIds *obj);
|
|
|
|
LDKReplyShortChannelIdsEnd ReplyShortChannelIdsEnd_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ReplyShortChannelIdsEnd_write(const LDKReplyShortChannelIdsEnd *obj);
|
|
|
|
LDKQueryChannelRange QueryChannelRange_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z QueryChannelRange_write(const LDKQueryChannelRange *obj);
|
|
|
|
LDKReplyChannelRange ReplyChannelRange_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z ReplyChannelRange_write(const LDKReplyChannelRange *obj);
|
|
|
|
LDKGossipTimestampFilter GossipTimestampFilter_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z GossipTimestampFilter_write(const LDKGossipTimestampFilter *obj);
|
|
|
|
void MessageHandler_free(LDKMessageHandler this_ptr);
|
|
|
|
/**
|
|
* A message handler which handles messages specific to channels. Usually this is just a
|
|
* ChannelManager object.
|
|
*/
|
|
const LDKChannelMessageHandler *MessageHandler_get_chan_handler(const LDKMessageHandler *this_ptr);
|
|
|
|
/**
|
|
* A message handler which handles messages specific to channels. Usually this is just a
|
|
* ChannelManager object.
|
|
*/
|
|
void MessageHandler_set_chan_handler(LDKMessageHandler *this_ptr, LDKChannelMessageHandler val);
|
|
|
|
/**
|
|
* A message handler which handles messages updating our knowledge of the network channel
|
|
* graph. Usually this is just a NetGraphMsgHandlerMonitor object.
|
|
*/
|
|
const LDKRoutingMessageHandler *MessageHandler_get_route_handler(const LDKMessageHandler *this_ptr);
|
|
|
|
/**
|
|
* A message handler which handles messages updating our knowledge of the network channel
|
|
* graph. Usually this is just a NetGraphMsgHandlerMonitor object.
|
|
*/
|
|
void MessageHandler_set_route_handler(LDKMessageHandler *this_ptr, LDKRoutingMessageHandler val);
|
|
|
|
MUST_USE_RES LDKMessageHandler MessageHandler_new(LDKChannelMessageHandler chan_handler_arg, LDKRoutingMessageHandler route_handler_arg);
|
|
|
|
LDKSocketDescriptor SocketDescriptor_clone(const LDKSocketDescriptor *orig);
|
|
|
|
/**
|
|
* Calls the free function if one is set
|
|
*/
|
|
void SocketDescriptor_free(LDKSocketDescriptor this_ptr);
|
|
|
|
void PeerHandleError_free(LDKPeerHandleError this_ptr);
|
|
|
|
/**
|
|
* Used to indicate that we probably can't make any future connections to this peer, implying
|
|
* we should go ahead and force-close any channels we have with it.
|
|
*/
|
|
bool PeerHandleError_get_no_connection_possible(const LDKPeerHandleError *this_ptr);
|
|
|
|
/**
|
|
* Used to indicate that we probably can't make any future connections to this peer, implying
|
|
* we should go ahead and force-close any channels we have with it.
|
|
*/
|
|
void PeerHandleError_set_no_connection_possible(LDKPeerHandleError *this_ptr, bool val);
|
|
|
|
MUST_USE_RES LDKPeerHandleError PeerHandleError_new(bool no_connection_possible_arg);
|
|
|
|
void PeerManager_free(LDKPeerManager this_ptr);
|
|
|
|
/**
|
|
* Constructs a new PeerManager with the given message handlers and node_id secret key
|
|
* ephemeral_random_data is used to derive per-connection ephemeral keys and must be
|
|
* cryptographically secure random bytes.
|
|
*/
|
|
MUST_USE_RES LDKPeerManager PeerManager_new(LDKMessageHandler message_handler, LDKSecretKey our_node_secret, const uint8_t (*ephemeral_random_data)[32], LDKLogger logger);
|
|
|
|
/**
|
|
* Get the list of node ids for peers which have completed the initial handshake.
|
|
*
|
|
* For outbound connections, this will be the same as the their_node_id parameter passed in to
|
|
* new_outbound_connection, however entries will only appear once the initial handshake has
|
|
* completed and we are sure the remote peer has the private key for the given node_id.
|
|
*/
|
|
MUST_USE_RES LDKCVec_PublicKeyZ PeerManager_get_peer_node_ids(const LDKPeerManager *this_arg);
|
|
|
|
/**
|
|
* Indicates a new outbound connection has been established to a node with the given node_id.
|
|
* Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
|
|
* descriptor but must disconnect the connection immediately.
|
|
*
|
|
* Returns a small number of bytes to send to the remote node (currently always 50).
|
|
*
|
|
* Panics if descriptor is duplicative with some other descriptor which has not yet had a
|
|
* socket_disconnected().
|
|
*/
|
|
MUST_USE_RES LDKCResult_CVec_u8ZPeerHandleErrorZ PeerManager_new_outbound_connection(const LDKPeerManager *this_arg, LDKPublicKey their_node_id, LDKSocketDescriptor descriptor);
|
|
|
|
/**
|
|
* Indicates a new inbound connection has been established.
|
|
*
|
|
* May refuse the connection by returning an Err, but will never write bytes to the remote end
|
|
* (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
|
|
* call socket_disconnected for the new descriptor but must disconnect the connection
|
|
* immediately.
|
|
*
|
|
* Panics if descriptor is duplicative with some other descriptor which has not yet had
|
|
* socket_disconnected called.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NonePeerHandleErrorZ PeerManager_new_inbound_connection(const LDKPeerManager *this_arg, LDKSocketDescriptor descriptor);
|
|
|
|
/**
|
|
* Indicates that there is room to write data to the given socket descriptor.
|
|
*
|
|
* May return an Err to indicate that the connection should be closed.
|
|
*
|
|
* Will most likely call send_data on the descriptor passed in (or the descriptor handed into
|
|
* new_*\\_connection) before returning. Thus, be very careful with reentrancy issues! The
|
|
* invariants around calling write_buffer_space_avail in case a write did not fully complete
|
|
* must still hold - be ready to call write_buffer_space_avail again if a write call generated
|
|
* here isn't sufficient! Panics if the descriptor was not previously registered in a
|
|
* new_\\*_connection event.
|
|
*/
|
|
MUST_USE_RES LDKCResult_NonePeerHandleErrorZ PeerManager_write_buffer_space_avail(const LDKPeerManager *this_arg, LDKSocketDescriptor *descriptor);
|
|
|
|
/**
|
|
* Indicates that data was read from the given socket descriptor.
|
|
*
|
|
* May return an Err to indicate that the connection should be closed.
|
|
*
|
|
* Will *not* call back into send_data on any descriptors to avoid reentrancy complexity.
|
|
* Thus, however, you almost certainly want to call process_events() after any read_event to
|
|
* generate send_data calls to handle responses.
|
|
*
|
|
* If Ok(true) is returned, further read_events should not be triggered until a send_data call
|
|
* on this file descriptor has resume_read set (preventing DoS issues in the send buffer).
|
|
*
|
|
* Panics if the descriptor was not previously registered in a new_*_connection event.
|
|
*/
|
|
MUST_USE_RES LDKCResult_boolPeerHandleErrorZ PeerManager_read_event(const LDKPeerManager *this_arg, LDKSocketDescriptor *peer_descriptor, LDKu8slice data);
|
|
|
|
/**
|
|
* Checks for any events generated by our handlers and processes them. Includes sending most
|
|
* response messages as well as messages generated by calls to handler functions directly (eg
|
|
* functions like ChannelManager::process_pending_htlc_forward or send_payment).
|
|
*/
|
|
void PeerManager_process_events(const LDKPeerManager *this_arg);
|
|
|
|
/**
|
|
* Indicates that the given socket descriptor's connection is now closed.
|
|
*
|
|
* This must only be called if the socket has been disconnected by the peer or your own
|
|
* decision to disconnect it and must NOT be called in any case where other parts of this
|
|
* library (eg PeerHandleError, explicit disconnect_socket calls) instruct you to disconnect
|
|
* the peer.
|
|
*
|
|
* Panics if the descriptor was not previously registered in a successful new_*_connection event.
|
|
*/
|
|
void PeerManager_socket_disconnected(const LDKPeerManager *this_arg, const LDKSocketDescriptor *descriptor);
|
|
|
|
/**
|
|
* This function should be called roughly once every 30 seconds.
|
|
* It will send pings to each peer and disconnect those which did not respond to the last round of pings.
|
|
* Will most likely call send_data on all of the registered descriptors, thus, be very careful with reentrancy issues!
|
|
*/
|
|
void PeerManager_timer_tick_occured(const LDKPeerManager *this_arg);
|
|
|
|
/**
|
|
* Build the commitment secret from the seed and the commitment number
|
|
*/
|
|
LDKThirtyTwoBytes build_commitment_secret(const uint8_t (*commitment_seed)[32], uint64_t idx);
|
|
|
|
/**
|
|
* Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key)
|
|
* from the base secret and the per_commitment_point.
|
|
*
|
|
* Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
* generated (ie our own).
|
|
*/
|
|
LDKCResult_SecretKeySecpErrorZ derive_private_key(LDKPublicKey per_commitment_point, const uint8_t (*base_secret)[32]);
|
|
|
|
/**
|
|
* Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key)
|
|
* from the base point and the per_commitment_key. This is the public equivalent of
|
|
* derive_private_key - using only public keys to derive a public key instead of private keys.
|
|
*
|
|
* Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
* generated (ie our own).
|
|
*/
|
|
LDKCResult_PublicKeySecpErrorZ derive_public_key(LDKPublicKey per_commitment_point, LDKPublicKey base_point);
|
|
|
|
/**
|
|
* Derives a per-commitment-transaction revocation key from its constituent parts.
|
|
*
|
|
* Only the cheating participant owns a valid witness to propagate a revoked
|
|
* commitment transaction, thus per_commitment_secret always come from cheater
|
|
* and revocation_base_secret always come from punisher, which is the broadcaster
|
|
* of the transaction spending with this key knowledge.
|
|
*
|
|
* Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
* generated (ie our own).
|
|
*/
|
|
LDKCResult_SecretKeySecpErrorZ derive_private_revocation_key(const uint8_t (*per_commitment_secret)[32], const uint8_t (*countersignatory_revocation_base_secret)[32]);
|
|
|
|
/**
|
|
* Derives a per-commitment-transaction revocation public key from its constituent parts. This is
|
|
* the public equivalend of derive_private_revocation_key - using only public keys to derive a
|
|
* public key instead of private keys.
|
|
*
|
|
* Only the cheating participant owns a valid witness to propagate a revoked
|
|
* commitment transaction, thus per_commitment_point always come from cheater
|
|
* and revocation_base_point always come from punisher, which is the broadcaster
|
|
* of the transaction spending with this key knowledge.
|
|
*
|
|
* Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
* generated (ie our own).
|
|
*/
|
|
LDKCResult_PublicKeySecpErrorZ derive_public_revocation_key(LDKPublicKey per_commitment_point, LDKPublicKey countersignatory_revocation_base_point);
|
|
|
|
void TxCreationKeys_free(LDKTxCreationKeys this_ptr);
|
|
|
|
LDKTxCreationKeys TxCreationKeys_clone(const LDKTxCreationKeys *orig);
|
|
|
|
/**
|
|
* The broadcaster's per-commitment public key which was used to derive the other keys.
|
|
*/
|
|
LDKPublicKey TxCreationKeys_get_per_commitment_point(const LDKTxCreationKeys *this_ptr);
|
|
|
|
/**
|
|
* The broadcaster's per-commitment public key which was used to derive the other keys.
|
|
*/
|
|
void TxCreationKeys_set_per_commitment_point(LDKTxCreationKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The revocation key which is used to allow the broadcaster of the commitment
|
|
* transaction to provide their counterparty the ability to punish them if they broadcast
|
|
* an old state.
|
|
*/
|
|
LDKPublicKey TxCreationKeys_get_revocation_key(const LDKTxCreationKeys *this_ptr);
|
|
|
|
/**
|
|
* The revocation key which is used to allow the broadcaster of the commitment
|
|
* transaction to provide their counterparty the ability to punish them if they broadcast
|
|
* an old state.
|
|
*/
|
|
void TxCreationKeys_set_revocation_key(LDKTxCreationKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Broadcaster's HTLC Key
|
|
*/
|
|
LDKPublicKey TxCreationKeys_get_broadcaster_htlc_key(const LDKTxCreationKeys *this_ptr);
|
|
|
|
/**
|
|
* Broadcaster's HTLC Key
|
|
*/
|
|
void TxCreationKeys_set_broadcaster_htlc_key(LDKTxCreationKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Countersignatory's HTLC Key
|
|
*/
|
|
LDKPublicKey TxCreationKeys_get_countersignatory_htlc_key(const LDKTxCreationKeys *this_ptr);
|
|
|
|
/**
|
|
* Countersignatory's HTLC Key
|
|
*/
|
|
void TxCreationKeys_set_countersignatory_htlc_key(LDKTxCreationKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
|
|
*/
|
|
LDKPublicKey TxCreationKeys_get_broadcaster_delayed_payment_key(const LDKTxCreationKeys *this_ptr);
|
|
|
|
/**
|
|
* Broadcaster's Payment Key (which isn't allowed to be spent from for some delay)
|
|
*/
|
|
void TxCreationKeys_set_broadcaster_delayed_payment_key(LDKTxCreationKeys *this_ptr, LDKPublicKey val);
|
|
|
|
MUST_USE_RES LDKTxCreationKeys TxCreationKeys_new(LDKPublicKey per_commitment_point_arg, LDKPublicKey revocation_key_arg, LDKPublicKey broadcaster_htlc_key_arg, LDKPublicKey countersignatory_htlc_key_arg, LDKPublicKey broadcaster_delayed_payment_key_arg);
|
|
|
|
LDKCVec_u8Z TxCreationKeys_write(const LDKTxCreationKeys *obj);
|
|
|
|
LDKTxCreationKeys TxCreationKeys_read(LDKu8slice ser);
|
|
|
|
void PreCalculatedTxCreationKeys_free(LDKPreCalculatedTxCreationKeys this_ptr);
|
|
|
|
LDKPreCalculatedTxCreationKeys PreCalculatedTxCreationKeys_clone(const LDKPreCalculatedTxCreationKeys *orig);
|
|
|
|
/**
|
|
* Create a new PreCalculatedTxCreationKeys from TxCreationKeys
|
|
*/
|
|
MUST_USE_RES LDKPreCalculatedTxCreationKeys PreCalculatedTxCreationKeys_new(LDKTxCreationKeys keys);
|
|
|
|
/**
|
|
* The pre-calculated transaction creation public keys.
|
|
* An external validating signer should not trust these keys.
|
|
*/
|
|
MUST_USE_RES LDKTxCreationKeys PreCalculatedTxCreationKeys_trust_key_derivation(const LDKPreCalculatedTxCreationKeys *this_arg);
|
|
|
|
/**
|
|
* The transaction per-commitment point
|
|
*/
|
|
MUST_USE_RES LDKPublicKey PreCalculatedTxCreationKeys_per_commitment_point(const LDKPreCalculatedTxCreationKeys *this_arg);
|
|
|
|
void ChannelPublicKeys_free(LDKChannelPublicKeys this_ptr);
|
|
|
|
LDKChannelPublicKeys ChannelPublicKeys_clone(const LDKChannelPublicKeys *orig);
|
|
|
|
/**
|
|
* The public key which is used to sign all commitment transactions, as it appears in the
|
|
* on-chain channel lock-in 2-of-2 multisig output.
|
|
*/
|
|
LDKPublicKey ChannelPublicKeys_get_funding_pubkey(const LDKChannelPublicKeys *this_ptr);
|
|
|
|
/**
|
|
* The public key which is used to sign all commitment transactions, as it appears in the
|
|
* on-chain channel lock-in 2-of-2 multisig output.
|
|
*/
|
|
void ChannelPublicKeys_set_funding_pubkey(LDKChannelPublicKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_revocation_key) to derive per-commitment
|
|
* revocation keys. This is combined with the per-commitment-secret generated by the
|
|
* counterparty to create a secret which the counterparty can reveal to revoke previous
|
|
* states.
|
|
*/
|
|
LDKPublicKey ChannelPublicKeys_get_revocation_basepoint(const LDKChannelPublicKeys *this_ptr);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_revocation_key) to derive per-commitment
|
|
* revocation keys. This is combined with the per-commitment-secret generated by the
|
|
* counterparty to create a secret which the counterparty can reveal to revoke previous
|
|
* states.
|
|
*/
|
|
void ChannelPublicKeys_set_revocation_basepoint(LDKChannelPublicKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
|
|
* spendable primary channel balance on the broadcaster's commitment transaction. This key is
|
|
* static across every commitment transaction.
|
|
*/
|
|
LDKPublicKey ChannelPublicKeys_get_payment_point(const LDKChannelPublicKeys *this_ptr);
|
|
|
|
/**
|
|
* The public key on which the non-broadcaster (ie the countersignatory) receives an immediately
|
|
* spendable primary channel balance on the broadcaster's commitment transaction. This key is
|
|
* static across every commitment transaction.
|
|
*/
|
|
void ChannelPublicKeys_set_payment_point(LDKChannelPublicKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_key) to derive a per-commitment payment
|
|
* public key which receives non-HTLC-encumbered funds which are only available for spending
|
|
* after some delay (or can be claimed via the revocation path).
|
|
*/
|
|
LDKPublicKey ChannelPublicKeys_get_delayed_payment_basepoint(const LDKChannelPublicKeys *this_ptr);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_key) to derive a per-commitment payment
|
|
* public key which receives non-HTLC-encumbered funds which are only available for spending
|
|
* after some delay (or can be claimed via the revocation path).
|
|
*/
|
|
void ChannelPublicKeys_set_delayed_payment_basepoint(LDKChannelPublicKeys *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_key) to derive a per-commitment public key
|
|
* which is used to encumber HTLC-in-flight outputs.
|
|
*/
|
|
LDKPublicKey ChannelPublicKeys_get_htlc_basepoint(const LDKChannelPublicKeys *this_ptr);
|
|
|
|
/**
|
|
* The base point which is used (with derive_public_key) to derive a per-commitment public key
|
|
* which is used to encumber HTLC-in-flight outputs.
|
|
*/
|
|
void ChannelPublicKeys_set_htlc_basepoint(LDKChannelPublicKeys *this_ptr, LDKPublicKey val);
|
|
|
|
MUST_USE_RES LDKChannelPublicKeys ChannelPublicKeys_new(LDKPublicKey funding_pubkey_arg, LDKPublicKey revocation_basepoint_arg, LDKPublicKey payment_point_arg, LDKPublicKey delayed_payment_basepoint_arg, LDKPublicKey htlc_basepoint_arg);
|
|
|
|
LDKCVec_u8Z ChannelPublicKeys_write(const LDKChannelPublicKeys *obj);
|
|
|
|
LDKChannelPublicKeys ChannelPublicKeys_read(LDKu8slice ser);
|
|
|
|
/**
|
|
* Create a new TxCreationKeys from channel base points and the per-commitment point
|
|
*/
|
|
MUST_USE_RES LDKCResult_TxCreationKeysSecpErrorZ TxCreationKeys_derive_new(LDKPublicKey per_commitment_point, LDKPublicKey broadcaster_delayed_payment_base, LDKPublicKey broadcaster_htlc_base, LDKPublicKey countersignatory_revocation_base, LDKPublicKey countersignatory_htlc_base);
|
|
|
|
/**
|
|
* A script either spendable by the revocation
|
|
* key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain.
|
|
* Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions.
|
|
*/
|
|
LDKCVec_u8Z get_revokeable_redeemscript(LDKPublicKey revocation_key, uint16_t contest_delay, LDKPublicKey broadcaster_delayed_payment_key);
|
|
|
|
void HTLCOutputInCommitment_free(LDKHTLCOutputInCommitment this_ptr);
|
|
|
|
LDKHTLCOutputInCommitment HTLCOutputInCommitment_clone(const LDKHTLCOutputInCommitment *orig);
|
|
|
|
/**
|
|
* Whether the HTLC was \"offered\" (ie outbound in relation to this commitment transaction).
|
|
* Note that this is not the same as whether it is ountbound *from us*. To determine that you
|
|
* need to compare this value to whether the commitment transaction in question is that of
|
|
* the counterparty or our own.
|
|
*/
|
|
bool HTLCOutputInCommitment_get_offered(const LDKHTLCOutputInCommitment *this_ptr);
|
|
|
|
/**
|
|
* Whether the HTLC was \"offered\" (ie outbound in relation to this commitment transaction).
|
|
* Note that this is not the same as whether it is ountbound *from us*. To determine that you
|
|
* need to compare this value to whether the commitment transaction in question is that of
|
|
* the counterparty or our own.
|
|
*/
|
|
void HTLCOutputInCommitment_set_offered(LDKHTLCOutputInCommitment *this_ptr, bool val);
|
|
|
|
/**
|
|
* The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
|
|
* this divided by 1000.
|
|
*/
|
|
uint64_t HTLCOutputInCommitment_get_amount_msat(const LDKHTLCOutputInCommitment *this_ptr);
|
|
|
|
/**
|
|
* The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
|
|
* this divided by 1000.
|
|
*/
|
|
void HTLCOutputInCommitment_set_amount_msat(LDKHTLCOutputInCommitment *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The CLTV lock-time at which this HTLC expires.
|
|
*/
|
|
uint32_t HTLCOutputInCommitment_get_cltv_expiry(const LDKHTLCOutputInCommitment *this_ptr);
|
|
|
|
/**
|
|
* The CLTV lock-time at which this HTLC expires.
|
|
*/
|
|
void HTLCOutputInCommitment_set_cltv_expiry(LDKHTLCOutputInCommitment *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The hash of the preimage which unlocks this HTLC.
|
|
*/
|
|
const uint8_t (*HTLCOutputInCommitment_get_payment_hash(const LDKHTLCOutputInCommitment *this_ptr))[32];
|
|
|
|
/**
|
|
* The hash of the preimage which unlocks this HTLC.
|
|
*/
|
|
void HTLCOutputInCommitment_set_payment_hash(LDKHTLCOutputInCommitment *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
LDKCVec_u8Z HTLCOutputInCommitment_write(const LDKHTLCOutputInCommitment *obj);
|
|
|
|
LDKHTLCOutputInCommitment HTLCOutputInCommitment_read(LDKu8slice ser);
|
|
|
|
/**
|
|
* Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc
|
|
* does not need to have its previous_output_index filled.
|
|
*/
|
|
LDKCVec_u8Z get_htlc_redeemscript(const LDKHTLCOutputInCommitment *htlc, const LDKTxCreationKeys *keys);
|
|
|
|
/**
|
|
* Gets the redeemscript for a funding output from the two funding public keys.
|
|
* Note that the order of funding public keys does not matter.
|
|
*/
|
|
LDKCVec_u8Z make_funding_redeemscript(LDKPublicKey broadcaster, LDKPublicKey countersignatory);
|
|
|
|
/**
|
|
* panics if htlc.transaction_output_index.is_none()!
|
|
*/
|
|
LDKTransaction build_htlc_transaction(const uint8_t (*prev_hash)[32], uint32_t feerate_per_kw, uint16_t contest_delay, const LDKHTLCOutputInCommitment *htlc, LDKPublicKey broadcaster_delayed_payment_key, LDKPublicKey revocation_key);
|
|
|
|
void HolderCommitmentTransaction_free(LDKHolderCommitmentTransaction this_ptr);
|
|
|
|
LDKHolderCommitmentTransaction HolderCommitmentTransaction_clone(const LDKHolderCommitmentTransaction *orig);
|
|
|
|
/**
|
|
* The commitment transaction itself, in unsigned form.
|
|
*/
|
|
LDKTransaction HolderCommitmentTransaction_get_unsigned_tx(const LDKHolderCommitmentTransaction *this_ptr);
|
|
|
|
/**
|
|
* The commitment transaction itself, in unsigned form.
|
|
*/
|
|
void HolderCommitmentTransaction_set_unsigned_tx(LDKHolderCommitmentTransaction *this_ptr, LDKTransaction val);
|
|
|
|
/**
|
|
* Our counterparty's signature for the transaction, above.
|
|
*/
|
|
LDKSignature HolderCommitmentTransaction_get_counterparty_sig(const LDKHolderCommitmentTransaction *this_ptr);
|
|
|
|
/**
|
|
* Our counterparty's signature for the transaction, above.
|
|
*/
|
|
void HolderCommitmentTransaction_set_counterparty_sig(LDKHolderCommitmentTransaction *this_ptr, LDKSignature val);
|
|
|
|
/**
|
|
* The feerate paid per 1000-weight-unit in this commitment transaction. This value is
|
|
* controlled by the channel initiator.
|
|
*/
|
|
uint32_t HolderCommitmentTransaction_get_feerate_per_kw(const LDKHolderCommitmentTransaction *this_ptr);
|
|
|
|
/**
|
|
* The feerate paid per 1000-weight-unit in this commitment transaction. This value is
|
|
* controlled by the channel initiator.
|
|
*/
|
|
void HolderCommitmentTransaction_set_feerate_per_kw(LDKHolderCommitmentTransaction *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* The HTLCs and counterparty htlc signatures which were included in this commitment transaction.
|
|
*
|
|
* Note that this includes all HTLCs, including ones which were considered dust and not
|
|
* actually included in the transaction as it appears on-chain, but who's value is burned as
|
|
* fees and not included in the to_holder or to_counterparty outputs.
|
|
*
|
|
* The counterparty HTLC signatures in the second element will always be set for non-dust HTLCs, ie
|
|
* those for which transaction_output_index.is_some().
|
|
*/
|
|
void HolderCommitmentTransaction_set_per_htlc(LDKHolderCommitmentTransaction *this_ptr, LDKCVec_C2Tuple_HTLCOutputInCommitmentSignatureZZ val);
|
|
|
|
/**
|
|
* Generate a new HolderCommitmentTransaction based on a raw commitment transaction,
|
|
* counterparty signature and both parties keys.
|
|
*
|
|
* The unsigned transaction outputs must be consistent with htlc_data. This function
|
|
* only checks that the shape and amounts are consistent, but does not check the scriptPubkey.
|
|
*/
|
|
MUST_USE_RES LDKHolderCommitmentTransaction HolderCommitmentTransaction_new_missing_holder_sig(LDKTransaction unsigned_tx, LDKSignature counterparty_sig, LDKPublicKey holder_funding_key, LDKPublicKey counterparty_funding_key, LDKTxCreationKeys keys, uint32_t feerate_per_kw, LDKCVec_C2Tuple_HTLCOutputInCommitmentSignatureZZ htlc_data);
|
|
|
|
/**
|
|
* The pre-calculated transaction creation public keys.
|
|
* An external validating signer should not trust these keys.
|
|
*/
|
|
MUST_USE_RES LDKTxCreationKeys HolderCommitmentTransaction_trust_key_derivation(const LDKHolderCommitmentTransaction *this_arg);
|
|
|
|
/**
|
|
* Get the txid of the holder commitment transaction contained in this
|
|
* HolderCommitmentTransaction
|
|
*/
|
|
MUST_USE_RES LDKThirtyTwoBytes HolderCommitmentTransaction_txid(const LDKHolderCommitmentTransaction *this_arg);
|
|
|
|
/**
|
|
* Gets holder signature for the contained commitment transaction given holder funding private key.
|
|
*
|
|
* Funding key is your key included in the 2-2 funding_outpoint lock. Should be provided
|
|
* by your ChannelKeys.
|
|
* Funding redeemscript is script locking funding_outpoint. This is the mutlsig script
|
|
* between your own funding key and your counterparty's. Currently, this is provided in
|
|
* ChannelKeys::sign_holder_commitment() calls directly.
|
|
* Channel value is amount locked in funding_outpoint.
|
|
*/
|
|
MUST_USE_RES LDKSignature HolderCommitmentTransaction_get_holder_sig(const LDKHolderCommitmentTransaction *this_arg, const uint8_t (*funding_key)[32], LDKu8slice funding_redeemscript, uint64_t channel_value_satoshis);
|
|
|
|
/**
|
|
* Get a signature for each HTLC which was included in the commitment transaction (ie for
|
|
* which HTLCOutputInCommitment::transaction_output_index.is_some()).
|
|
*
|
|
* The returned Vec has one entry for each HTLC, and in the same order. For HTLCs which were
|
|
* considered dust and not included, a None entry exists, for all others a signature is
|
|
* included.
|
|
*/
|
|
MUST_USE_RES LDKCResult_CVec_SignatureZNoneZ HolderCommitmentTransaction_get_htlc_sigs(const LDKHolderCommitmentTransaction *this_arg, const uint8_t (*htlc_base_key)[32], uint16_t counterparty_selected_contest_delay);
|
|
|
|
LDKCVec_u8Z HolderCommitmentTransaction_write(const LDKHolderCommitmentTransaction *obj);
|
|
|
|
LDKHolderCommitmentTransaction HolderCommitmentTransaction_read(LDKu8slice ser);
|
|
|
|
void InitFeatures_free(LDKInitFeatures this_ptr);
|
|
|
|
void NodeFeatures_free(LDKNodeFeatures this_ptr);
|
|
|
|
void ChannelFeatures_free(LDKChannelFeatures this_ptr);
|
|
|
|
void RouteHop_free(LDKRouteHop this_ptr);
|
|
|
|
LDKRouteHop RouteHop_clone(const LDKRouteHop *orig);
|
|
|
|
/**
|
|
* The node_id of the node at this hop.
|
|
*/
|
|
LDKPublicKey RouteHop_get_pubkey(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The node_id of the node at this hop.
|
|
*/
|
|
void RouteHop_set_pubkey(LDKRouteHop *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The node_announcement features of the node at this hop. For the last hop, these may be
|
|
* amended to match the features present in the invoice this node generated.
|
|
*/
|
|
LDKNodeFeatures RouteHop_get_node_features(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The node_announcement features of the node at this hop. For the last hop, these may be
|
|
* amended to match the features present in the invoice this node generated.
|
|
*/
|
|
void RouteHop_set_node_features(LDKRouteHop *this_ptr, LDKNodeFeatures val);
|
|
|
|
/**
|
|
* The channel that should be used from the previous hop to reach this node.
|
|
*/
|
|
uint64_t RouteHop_get_short_channel_id(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The channel that should be used from the previous hop to reach this node.
|
|
*/
|
|
void RouteHop_set_short_channel_id(LDKRouteHop *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The channel_announcement features of the channel that should be used from the previous hop
|
|
* to reach this node.
|
|
*/
|
|
LDKChannelFeatures RouteHop_get_channel_features(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The channel_announcement features of the channel that should be used from the previous hop
|
|
* to reach this node.
|
|
*/
|
|
void RouteHop_set_channel_features(LDKRouteHop *this_ptr, LDKChannelFeatures val);
|
|
|
|
/**
|
|
* The fee taken on this hop. For the last hop, this should be the full value of the payment.
|
|
*/
|
|
uint64_t RouteHop_get_fee_msat(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The fee taken on this hop. For the last hop, this should be the full value of the payment.
|
|
*/
|
|
void RouteHop_set_fee_msat(LDKRouteHop *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The CLTV delta added for this hop. For the last hop, this should be the full CLTV value
|
|
* expected at the destination, in excess of the current block height.
|
|
*/
|
|
uint32_t RouteHop_get_cltv_expiry_delta(const LDKRouteHop *this_ptr);
|
|
|
|
/**
|
|
* The CLTV delta added for this hop. For the last hop, this should be the full CLTV value
|
|
* expected at the destination, in excess of the current block height.
|
|
*/
|
|
void RouteHop_set_cltv_expiry_delta(LDKRouteHop *this_ptr, uint32_t val);
|
|
|
|
MUST_USE_RES LDKRouteHop RouteHop_new(LDKPublicKey pubkey_arg, LDKNodeFeatures node_features_arg, uint64_t short_channel_id_arg, LDKChannelFeatures channel_features_arg, uint64_t fee_msat_arg, uint32_t cltv_expiry_delta_arg);
|
|
|
|
void Route_free(LDKRoute this_ptr);
|
|
|
|
LDKRoute Route_clone(const LDKRoute *orig);
|
|
|
|
/**
|
|
* The list of routes taken for a single (potentially-)multi-part payment. The pubkey of the
|
|
* last RouteHop in each path must be the same.
|
|
* Each entry represents a list of hops, NOT INCLUDING our own, where the last hop is the
|
|
* destination. Thus, this must always be at least length one. While the maximum length of any
|
|
* given path is variable, keeping the length of any path to less than 20 should currently
|
|
* ensure it is viable.
|
|
*/
|
|
void Route_set_paths(LDKRoute *this_ptr, LDKCVec_CVec_RouteHopZZ val);
|
|
|
|
MUST_USE_RES LDKRoute Route_new(LDKCVec_CVec_RouteHopZZ paths_arg);
|
|
|
|
LDKCVec_u8Z Route_write(const LDKRoute *obj);
|
|
|
|
LDKRoute Route_read(LDKu8slice ser);
|
|
|
|
void RouteHint_free(LDKRouteHint this_ptr);
|
|
|
|
LDKRouteHint RouteHint_clone(const LDKRouteHint *orig);
|
|
|
|
/**
|
|
* The node_id of the non-target end of the route
|
|
*/
|
|
LDKPublicKey RouteHint_get_src_node_id(const LDKRouteHint *this_ptr);
|
|
|
|
/**
|
|
* The node_id of the non-target end of the route
|
|
*/
|
|
void RouteHint_set_src_node_id(LDKRouteHint *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* The short_channel_id of this channel
|
|
*/
|
|
uint64_t RouteHint_get_short_channel_id(const LDKRouteHint *this_ptr);
|
|
|
|
/**
|
|
* The short_channel_id of this channel
|
|
*/
|
|
void RouteHint_set_short_channel_id(LDKRouteHint *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* The fees which must be paid to use this channel
|
|
*/
|
|
LDKRoutingFees RouteHint_get_fees(const LDKRouteHint *this_ptr);
|
|
|
|
/**
|
|
* The fees which must be paid to use this channel
|
|
*/
|
|
void RouteHint_set_fees(LDKRouteHint *this_ptr, LDKRoutingFees val);
|
|
|
|
/**
|
|
* The difference in CLTV values between this node and the next node.
|
|
*/
|
|
uint16_t RouteHint_get_cltv_expiry_delta(const LDKRouteHint *this_ptr);
|
|
|
|
/**
|
|
* The difference in CLTV values between this node and the next node.
|
|
*/
|
|
void RouteHint_set_cltv_expiry_delta(LDKRouteHint *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The minimum value, in msat, which must be relayed to the next hop.
|
|
*/
|
|
uint64_t RouteHint_get_htlc_minimum_msat(const LDKRouteHint *this_ptr);
|
|
|
|
/**
|
|
* The minimum value, in msat, which must be relayed to the next hop.
|
|
*/
|
|
void RouteHint_set_htlc_minimum_msat(LDKRouteHint *this_ptr, uint64_t val);
|
|
|
|
MUST_USE_RES LDKRouteHint RouteHint_new(LDKPublicKey src_node_id_arg, uint64_t short_channel_id_arg, LDKRoutingFees fees_arg, uint16_t cltv_expiry_delta_arg, uint64_t htlc_minimum_msat_arg);
|
|
|
|
/**
|
|
* Gets a route from us to the given target node.
|
|
*
|
|
* Extra routing hops between known nodes and the target will be used if they are included in
|
|
* last_hops.
|
|
*
|
|
* If some channels aren't announced, it may be useful to fill in a first_hops with the
|
|
* results from a local ChannelManager::list_usable_channels() call. If it is filled in, our
|
|
* view of our local channels (from net_graph_msg_handler) will be ignored, and only those in first_hops
|
|
* will be used.
|
|
*
|
|
* Panics if first_hops contains channels without short_channel_ids
|
|
* (ChannelManager::list_usable_channels will never include such channels).
|
|
*
|
|
* The fees on channels from us to next-hops are ignored (as they are assumed to all be
|
|
* equal), however the enabled/disabled bit on such channels as well as the htlc_minimum_msat
|
|
* *is* checked as they may change based on the receiving node.
|
|
*/
|
|
LDKCResult_RouteLightningErrorZ get_route(LDKPublicKey our_node_id, const LDKNetworkGraph *network, LDKPublicKey target, LDKCVec_ChannelDetailsZ *first_hops, LDKCVec_RouteHintZ last_hops, uint64_t final_value_msat, uint32_t final_cltv, LDKLogger logger);
|
|
|
|
void NetworkGraph_free(LDKNetworkGraph this_ptr);
|
|
|
|
void LockedNetworkGraph_free(LDKLockedNetworkGraph this_ptr);
|
|
|
|
void NetGraphMsgHandler_free(LDKNetGraphMsgHandler this_ptr);
|
|
|
|
/**
|
|
* Creates a new tracker of the actual state of the network of channels and nodes,
|
|
* assuming a fresh network graph.
|
|
* Chain monitor is used to make sure announced channels exist on-chain,
|
|
* channel data is correct, and that the announcement is signed with
|
|
* channel owners' keys.
|
|
*/
|
|
MUST_USE_RES LDKNetGraphMsgHandler NetGraphMsgHandler_new(LDKAccess *chain_access, LDKLogger logger);
|
|
|
|
/**
|
|
* Creates a new tracker of the actual state of the network of channels and nodes,
|
|
* assuming an existing Network Graph.
|
|
*/
|
|
MUST_USE_RES LDKNetGraphMsgHandler NetGraphMsgHandler_from_net_graph(LDKAccess *chain_access, LDKLogger logger, LDKNetworkGraph network_graph);
|
|
|
|
/**
|
|
* Take a read lock on the network_graph and return it in the C-bindings
|
|
* newtype helper. This is likely only useful when called via the C
|
|
* bindings as you can call `self.network_graph.read().unwrap()` in Rust
|
|
* yourself.
|
|
*/
|
|
MUST_USE_RES LDKLockedNetworkGraph NetGraphMsgHandler_read_locked_graph(const LDKNetGraphMsgHandler *this_arg);
|
|
|
|
/**
|
|
* Get a reference to the NetworkGraph which this read-lock contains.
|
|
*/
|
|
MUST_USE_RES LDKNetworkGraph LockedNetworkGraph_graph(const LDKLockedNetworkGraph *this_arg);
|
|
|
|
LDKRoutingMessageHandler NetGraphMsgHandler_as_RoutingMessageHandler(const LDKNetGraphMsgHandler *this_arg);
|
|
|
|
void DirectionalChannelInfo_free(LDKDirectionalChannelInfo this_ptr);
|
|
|
|
/**
|
|
* When the last update to the channel direction was issued.
|
|
* Value is opaque, as set in the announcement.
|
|
*/
|
|
uint32_t DirectionalChannelInfo_get_last_update(const LDKDirectionalChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* When the last update to the channel direction was issued.
|
|
* Value is opaque, as set in the announcement.
|
|
*/
|
|
void DirectionalChannelInfo_set_last_update(LDKDirectionalChannelInfo *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Whether the channel can be currently used for payments (in this one direction).
|
|
*/
|
|
bool DirectionalChannelInfo_get_enabled(const LDKDirectionalChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Whether the channel can be currently used for payments (in this one direction).
|
|
*/
|
|
void DirectionalChannelInfo_set_enabled(LDKDirectionalChannelInfo *this_ptr, bool val);
|
|
|
|
/**
|
|
* The difference in CLTV values that you must have when routing through this channel.
|
|
*/
|
|
uint16_t DirectionalChannelInfo_get_cltv_expiry_delta(const LDKDirectionalChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* The difference in CLTV values that you must have when routing through this channel.
|
|
*/
|
|
void DirectionalChannelInfo_set_cltv_expiry_delta(LDKDirectionalChannelInfo *this_ptr, uint16_t val);
|
|
|
|
/**
|
|
* The minimum value, which must be relayed to the next hop via the channel
|
|
*/
|
|
uint64_t DirectionalChannelInfo_get_htlc_minimum_msat(const LDKDirectionalChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* The minimum value, which must be relayed to the next hop via the channel
|
|
*/
|
|
void DirectionalChannelInfo_set_htlc_minimum_msat(LDKDirectionalChannelInfo *this_ptr, uint64_t val);
|
|
|
|
/**
|
|
* Most recent update for the channel received from the network
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
LDKChannelUpdate DirectionalChannelInfo_get_last_update_message(const LDKDirectionalChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Most recent update for the channel received from the network
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
void DirectionalChannelInfo_set_last_update_message(LDKDirectionalChannelInfo *this_ptr, LDKChannelUpdate val);
|
|
|
|
LDKCVec_u8Z DirectionalChannelInfo_write(const LDKDirectionalChannelInfo *obj);
|
|
|
|
LDKDirectionalChannelInfo DirectionalChannelInfo_read(LDKu8slice ser);
|
|
|
|
void ChannelInfo_free(LDKChannelInfo this_ptr);
|
|
|
|
/**
|
|
* Protocol features of a channel communicated during its announcement
|
|
*/
|
|
LDKChannelFeatures ChannelInfo_get_features(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Protocol features of a channel communicated during its announcement
|
|
*/
|
|
void ChannelInfo_set_features(LDKChannelInfo *this_ptr, LDKChannelFeatures val);
|
|
|
|
/**
|
|
* Source node of the first direction of a channel
|
|
*/
|
|
LDKPublicKey ChannelInfo_get_node_one(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Source node of the first direction of a channel
|
|
*/
|
|
void ChannelInfo_set_node_one(LDKChannelInfo *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Details about the first direction of a channel
|
|
*/
|
|
LDKDirectionalChannelInfo ChannelInfo_get_one_to_two(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Details about the first direction of a channel
|
|
*/
|
|
void ChannelInfo_set_one_to_two(LDKChannelInfo *this_ptr, LDKDirectionalChannelInfo val);
|
|
|
|
/**
|
|
* Source node of the second direction of a channel
|
|
*/
|
|
LDKPublicKey ChannelInfo_get_node_two(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Source node of the second direction of a channel
|
|
*/
|
|
void ChannelInfo_set_node_two(LDKChannelInfo *this_ptr, LDKPublicKey val);
|
|
|
|
/**
|
|
* Details about the second direction of a channel
|
|
*/
|
|
LDKDirectionalChannelInfo ChannelInfo_get_two_to_one(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* Details about the second direction of a channel
|
|
*/
|
|
void ChannelInfo_set_two_to_one(LDKChannelInfo *this_ptr, LDKDirectionalChannelInfo val);
|
|
|
|
/**
|
|
* An initial announcement of the channel
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
LDKChannelAnnouncement ChannelInfo_get_announcement_message(const LDKChannelInfo *this_ptr);
|
|
|
|
/**
|
|
* An initial announcement of the channel
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
void ChannelInfo_set_announcement_message(LDKChannelInfo *this_ptr, LDKChannelAnnouncement val);
|
|
|
|
LDKCVec_u8Z ChannelInfo_write(const LDKChannelInfo *obj);
|
|
|
|
LDKChannelInfo ChannelInfo_read(LDKu8slice ser);
|
|
|
|
void RoutingFees_free(LDKRoutingFees this_ptr);
|
|
|
|
LDKRoutingFees RoutingFees_clone(const LDKRoutingFees *orig);
|
|
|
|
/**
|
|
* Flat routing fee in satoshis
|
|
*/
|
|
uint32_t RoutingFees_get_base_msat(const LDKRoutingFees *this_ptr);
|
|
|
|
/**
|
|
* Flat routing fee in satoshis
|
|
*/
|
|
void RoutingFees_set_base_msat(LDKRoutingFees *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Liquidity-based routing fee in millionths of a routed amount.
|
|
* In other words, 10000 is 1%.
|
|
*/
|
|
uint32_t RoutingFees_get_proportional_millionths(const LDKRoutingFees *this_ptr);
|
|
|
|
/**
|
|
* Liquidity-based routing fee in millionths of a routed amount.
|
|
* In other words, 10000 is 1%.
|
|
*/
|
|
void RoutingFees_set_proportional_millionths(LDKRoutingFees *this_ptr, uint32_t val);
|
|
|
|
MUST_USE_RES LDKRoutingFees RoutingFees_new(uint32_t base_msat_arg, uint32_t proportional_millionths_arg);
|
|
|
|
LDKRoutingFees RoutingFees_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z RoutingFees_write(const LDKRoutingFees *obj);
|
|
|
|
void NodeAnnouncementInfo_free(LDKNodeAnnouncementInfo this_ptr);
|
|
|
|
/**
|
|
* Protocol features the node announced support for
|
|
*/
|
|
LDKNodeFeatures NodeAnnouncementInfo_get_features(const LDKNodeAnnouncementInfo *this_ptr);
|
|
|
|
/**
|
|
* Protocol features the node announced support for
|
|
*/
|
|
void NodeAnnouncementInfo_set_features(LDKNodeAnnouncementInfo *this_ptr, LDKNodeFeatures val);
|
|
|
|
/**
|
|
* When the last known update to the node state was issued.
|
|
* Value is opaque, as set in the announcement.
|
|
*/
|
|
uint32_t NodeAnnouncementInfo_get_last_update(const LDKNodeAnnouncementInfo *this_ptr);
|
|
|
|
/**
|
|
* When the last known update to the node state was issued.
|
|
* Value is opaque, as set in the announcement.
|
|
*/
|
|
void NodeAnnouncementInfo_set_last_update(LDKNodeAnnouncementInfo *this_ptr, uint32_t val);
|
|
|
|
/**
|
|
* Color assigned to the node
|
|
*/
|
|
const uint8_t (*NodeAnnouncementInfo_get_rgb(const LDKNodeAnnouncementInfo *this_ptr))[3];
|
|
|
|
/**
|
|
* Color assigned to the node
|
|
*/
|
|
void NodeAnnouncementInfo_set_rgb(LDKNodeAnnouncementInfo *this_ptr, LDKThreeBytes val);
|
|
|
|
/**
|
|
* Moniker assigned to the node.
|
|
* May be invalid or malicious (eg control chars),
|
|
* should not be exposed to the user.
|
|
*/
|
|
const uint8_t (*NodeAnnouncementInfo_get_alias(const LDKNodeAnnouncementInfo *this_ptr))[32];
|
|
|
|
/**
|
|
* Moniker assigned to the node.
|
|
* May be invalid or malicious (eg control chars),
|
|
* should not be exposed to the user.
|
|
*/
|
|
void NodeAnnouncementInfo_set_alias(LDKNodeAnnouncementInfo *this_ptr, LDKThirtyTwoBytes val);
|
|
|
|
/**
|
|
* Internet-level addresses via which one can connect to the node
|
|
*/
|
|
void NodeAnnouncementInfo_set_addresses(LDKNodeAnnouncementInfo *this_ptr, LDKCVec_NetAddressZ val);
|
|
|
|
/**
|
|
* An initial announcement of the node
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
LDKNodeAnnouncement NodeAnnouncementInfo_get_announcement_message(const LDKNodeAnnouncementInfo *this_ptr);
|
|
|
|
/**
|
|
* An initial announcement of the node
|
|
* Mostly redundant with the data we store in fields explicitly.
|
|
* Everything else is useful only for sending out for initial routing sync.
|
|
* Not stored if contains excess data to prevent DoS.
|
|
*/
|
|
void NodeAnnouncementInfo_set_announcement_message(LDKNodeAnnouncementInfo *this_ptr, LDKNodeAnnouncement val);
|
|
|
|
MUST_USE_RES LDKNodeAnnouncementInfo NodeAnnouncementInfo_new(LDKNodeFeatures features_arg, uint32_t last_update_arg, LDKThreeBytes rgb_arg, LDKThirtyTwoBytes alias_arg, LDKCVec_NetAddressZ addresses_arg, LDKNodeAnnouncement announcement_message_arg);
|
|
|
|
LDKCVec_u8Z NodeAnnouncementInfo_write(const LDKNodeAnnouncementInfo *obj);
|
|
|
|
LDKNodeAnnouncementInfo NodeAnnouncementInfo_read(LDKu8slice ser);
|
|
|
|
void NodeInfo_free(LDKNodeInfo this_ptr);
|
|
|
|
/**
|
|
* All valid channels a node has announced
|
|
*/
|
|
void NodeInfo_set_channels(LDKNodeInfo *this_ptr, LDKCVec_u64Z val);
|
|
|
|
/**
|
|
* Lowest fees enabling routing via any of the enabled, known channels to a node.
|
|
* The two fields (flat and proportional fee) are independent,
|
|
* meaning they don't have to refer to the same channel.
|
|
*/
|
|
LDKRoutingFees NodeInfo_get_lowest_inbound_channel_fees(const LDKNodeInfo *this_ptr);
|
|
|
|
/**
|
|
* Lowest fees enabling routing via any of the enabled, known channels to a node.
|
|
* The two fields (flat and proportional fee) are independent,
|
|
* meaning they don't have to refer to the same channel.
|
|
*/
|
|
void NodeInfo_set_lowest_inbound_channel_fees(LDKNodeInfo *this_ptr, LDKRoutingFees val);
|
|
|
|
/**
|
|
* More information about a node from node_announcement.
|
|
* Optional because we store a Node entry after learning about it from
|
|
* a channel announcement, but before receiving a node announcement.
|
|
*/
|
|
LDKNodeAnnouncementInfo NodeInfo_get_announcement_info(const LDKNodeInfo *this_ptr);
|
|
|
|
/**
|
|
* More information about a node from node_announcement.
|
|
* Optional because we store a Node entry after learning about it from
|
|
* a channel announcement, but before receiving a node announcement.
|
|
*/
|
|
void NodeInfo_set_announcement_info(LDKNodeInfo *this_ptr, LDKNodeAnnouncementInfo val);
|
|
|
|
MUST_USE_RES LDKNodeInfo NodeInfo_new(LDKCVec_u64Z channels_arg, LDKRoutingFees lowest_inbound_channel_fees_arg, LDKNodeAnnouncementInfo announcement_info_arg);
|
|
|
|
LDKCVec_u8Z NodeInfo_write(const LDKNodeInfo *obj);
|
|
|
|
LDKNodeInfo NodeInfo_read(LDKu8slice ser);
|
|
|
|
LDKCVec_u8Z NetworkGraph_write(const LDKNetworkGraph *obj);
|
|
|
|
LDKNetworkGraph NetworkGraph_read(LDKu8slice ser);
|
|
|
|
/**
|
|
* Creates a new, empty, network graph.
|
|
*/
|
|
MUST_USE_RES LDKNetworkGraph NetworkGraph_new(void);
|
|
|
|
/**
|
|
* Close a channel if a corresponding HTLC fail was sent.
|
|
* If permanent, removes a channel from the local storage.
|
|
* May cause the removal of nodes too, if this was their last channel.
|
|
* If not permanent, makes channels unavailable for routing.
|
|
*/
|
|
void NetworkGraph_close_channel_from_update(LDKNetworkGraph *this_arg, uint64_t short_channel_id, bool is_permanent);
|
|
|
|
/* Text to put at the end of the generated file */
|