rust-lightning/lightning/src/chain/onchaintx.rs

806 lines
34 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The logic to build claims and bump in-flight transactions until confirmations.
//!
//! OnchainTxHandler objects are fully-part of ChannelMonitor and encapsulates all
//! building, tracking, bumping and notifications functions.
use bitcoin::blockdata::transaction::Transaction;
use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
use bitcoin::blockdata::script::Script;
use bitcoin::hash_types::Txid;
use bitcoin::secp256k1::{Secp256k1, Signature};
use bitcoin::secp256k1;
use ln::msgs::DecodeError;
use ln::PaymentPreimage;
use ln::chan_utils::{ChannelTransactionParameters, HolderCommitmentTransaction};
use chain::chaininterface::{FeeEstimator, BroadcasterInterface};
use chain::channelmonitor::{ANTI_REORG_DELAY, CLTV_SHARED_CLAIM_BUFFER};
use chain::keysinterface::{Sign, KeysInterface};
use chain::package::PackageTemplate;
use util::logger::Logger;
use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, VecWriter};
use util::byte_utils;
use io;
use prelude::*;
use alloc::collections::BTreeMap;
use core::cmp;
use core::ops::Deref;
use core::mem::replace;
const MAX_ALLOC_SIZE: usize = 64*1024;
/// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
/// transaction causing it.
///
/// Used to determine when the on-chain event can be considered safe from a chain reorganization.
#[derive(PartialEq)]
struct OnchainEventEntry {
txid: Txid,
height: u32,
event: OnchainEvent,
}
impl OnchainEventEntry {
fn confirmation_threshold(&self) -> u32 {
self.height + ANTI_REORG_DELAY - 1
}
fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
height >= self.confirmation_threshold()
}
}
/// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
/// once they mature to enough confirmations (ANTI_REORG_DELAY)
#[derive(PartialEq)]
enum OnchainEvent {
/// Outpoint under claim process by our own tx, once this one get enough confirmations, we remove it from
/// bump-txn candidate buffer.
Claim {
claim_request: Txid,
},
/// Claim tx aggregate multiple claimable outpoints. One of the outpoint may be claimed by a counterparty party tx.
/// In this case, we need to drop the outpoint and regenerate a new claim tx. By safety, we keep tracking
/// the outpoint to be sure to resurect it back to the claim tx if reorgs happen.
ContentiousOutpoint {
package: PackageTemplate,
}
}
impl Writeable for OnchainEventEntry {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(writer, {
(0, self.txid, required),
(2, self.height, required),
(4, self.event, required),
});
Ok(())
}
}
impl MaybeReadable for OnchainEventEntry {
fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
let mut txid = Default::default();
let mut height = 0;
let mut event = None;
read_tlv_fields!(reader, {
(0, txid, required),
(2, height, required),
(4, event, ignorable),
});
if let Some(ev) = event {
Ok(Some(Self { txid, height, event: ev }))
} else {
Ok(None)
}
}
}
impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
(0, Claim) => {
(0, claim_request, required),
},
(1, ContentiousOutpoint) => {
(0, package, required),
},
);
impl Readable for Option<Vec<Option<(usize, Signature)>>> {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
match Readable::read(reader)? {
0u8 => Ok(None),
1u8 => {
let vlen: u64 = Readable::read(reader)?;
let mut ret = Vec::with_capacity(cmp::min(vlen as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<Option<(usize, Signature)>>()));
for _ in 0..vlen {
ret.push(match Readable::read(reader)? {
0u8 => None,
1u8 => Some((<u64 as Readable>::read(reader)? as usize, Readable::read(reader)?)),
_ => return Err(DecodeError::InvalidValue)
});
}
Ok(Some(ret))
},
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for Option<Vec<Option<(usize, Signature)>>> {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
match self {
&Some(ref vec) => {
1u8.write(writer)?;
(vec.len() as u64).write(writer)?;
for opt in vec.iter() {
match opt {
&Some((ref idx, ref sig)) => {
1u8.write(writer)?;
(*idx as u64).write(writer)?;
sig.write(writer)?;
},
&None => 0u8.write(writer)?,
}
}
},
&None => 0u8.write(writer)?,
}
Ok(())
}
}
/// OnchainTxHandler receives claiming requests, aggregates them if it's sound, broadcast and
/// do RBF bumping if possible.
pub struct OnchainTxHandler<ChannelSigner: Sign> {
destination_script: Script,
holder_commitment: HolderCommitmentTransaction,
// holder_htlc_sigs and prev_holder_htlc_sigs are in the order as they appear in the commitment
// transaction outputs (hence the Option<>s inside the Vec). The first usize is the index in
// the set of HTLCs in the HolderCommitmentTransaction.
holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>>,
prev_holder_commitment: Option<HolderCommitmentTransaction>,
prev_holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>>,
pub(super) signer: ChannelSigner,
pub(crate) channel_transaction_parameters: ChannelTransactionParameters,
// Used to track claiming requests. If claim tx doesn't confirm before height timer expiration we need to bump
// it (RBF or CPFP). If an input has been part of an aggregate tx at first claim try, we need to keep it within
// another bumped aggregate tx to comply with RBF rules. We may have multiple claiming txn in the flight for the
// same set of outpoints. One of the outpoints may be spent by a transaction not issued by us. That's why at
// block connection we scan all inputs and if any of them is among a set of a claiming request we test for set
// equality between spending transaction and claim request. If true, it means transaction was one our claiming one
// after a security delay of 6 blocks we remove pending claim request. If false, it means transaction wasn't and
// we need to regenerate new claim request with reduced set of still-claimable outpoints.
// Key is identifier of the pending claim request, i.e the txid of the initial claiming transaction generated by
// us and is immutable until all outpoint of the claimable set are post-anti-reorg-delay solved.
// Entry is cache of elements need to generate a bumped claiming transaction (see ClaimTxBumpMaterial)
#[cfg(test)] // Used in functional_test to verify sanitization
pub(crate) pending_claim_requests: HashMap<Txid, PackageTemplate>,
#[cfg(not(test))]
pending_claim_requests: HashMap<Txid, PackageTemplate>,
// Used to link outpoints claimed in a connected block to a pending claim request.
// Key is outpoint than monitor parsing has detected we have keys/scripts to claim
// Value is (pending claim request identifier, confirmation_block), identifier
// is txid of the initial claiming transaction and is immutable until outpoint is
// post-anti-reorg-delay solved, confirmaiton_block is used to erase entry if
// block with output gets disconnected.
#[cfg(test)] // Used in functional_test to verify sanitization
pub claimable_outpoints: HashMap<BitcoinOutPoint, (Txid, u32)>,
#[cfg(not(test))]
claimable_outpoints: HashMap<BitcoinOutPoint, (Txid, u32)>,
locktimed_packages: BTreeMap<u32, Vec<PackageTemplate>>,
onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
pub(super) secp_ctx: Secp256k1<secp256k1::All>,
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl<ChannelSigner: Sign> OnchainTxHandler<ChannelSigner> {
pub(crate) fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
self.destination_script.write(writer)?;
self.holder_commitment.write(writer)?;
self.holder_htlc_sigs.write(writer)?;
self.prev_holder_commitment.write(writer)?;
self.prev_holder_htlc_sigs.write(writer)?;
self.channel_transaction_parameters.write(writer)?;
let mut key_data = VecWriter(Vec::new());
self.signer.write(&mut key_data)?;
assert!(key_data.0.len() < core::usize::MAX);
assert!(key_data.0.len() < core::u32::MAX as usize);
(key_data.0.len() as u32).write(writer)?;
writer.write_all(&key_data.0[..])?;
writer.write_all(&byte_utils::be64_to_array(self.pending_claim_requests.len() as u64))?;
for (ref ancestor_claim_txid, request) in self.pending_claim_requests.iter() {
ancestor_claim_txid.write(writer)?;
request.write(writer)?;
}
writer.write_all(&byte_utils::be64_to_array(self.claimable_outpoints.len() as u64))?;
for (ref outp, ref claim_and_height) in self.claimable_outpoints.iter() {
outp.write(writer)?;
claim_and_height.0.write(writer)?;
claim_and_height.1.write(writer)?;
}
writer.write_all(&byte_utils::be64_to_array(self.locktimed_packages.len() as u64))?;
for (ref locktime, ref packages) in self.locktimed_packages.iter() {
locktime.write(writer)?;
writer.write_all(&byte_utils::be64_to_array(packages.len() as u64))?;
for ref package in packages.iter() {
package.write(writer)?;
}
}
writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
entry.write(writer)?;
}
write_tlv_fields!(writer, {});
Ok(())
}
}
impl<'a, K: KeysInterface> ReadableArgs<&'a K> for OnchainTxHandler<K::Signer> {
fn read<R: io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
let destination_script = Readable::read(reader)?;
let holder_commitment = Readable::read(reader)?;
let holder_htlc_sigs = Readable::read(reader)?;
let prev_holder_commitment = Readable::read(reader)?;
let prev_holder_htlc_sigs = Readable::read(reader)?;
let channel_parameters = Readable::read(reader)?;
let keys_len: u32 = Readable::read(reader)?;
let mut keys_data = Vec::with_capacity(cmp::min(keys_len as usize, MAX_ALLOC_SIZE));
while keys_data.len() != keys_len as usize {
// Read 1KB at a time to avoid accidentally allocating 4GB on corrupted channel keys
let mut data = [0; 1024];
let read_slice = &mut data[0..cmp::min(1024, keys_len as usize - keys_data.len())];
reader.read_exact(read_slice)?;
keys_data.extend_from_slice(read_slice);
}
let signer = keys_manager.read_chan_signer(&keys_data)?;
let pending_claim_requests_len: u64 = Readable::read(reader)?;
let mut pending_claim_requests = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..pending_claim_requests_len {
pending_claim_requests.insert(Readable::read(reader)?, Readable::read(reader)?);
}
let claimable_outpoints_len: u64 = Readable::read(reader)?;
let mut claimable_outpoints = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..claimable_outpoints_len {
let outpoint = Readable::read(reader)?;
let ancestor_claim_txid = Readable::read(reader)?;
let height = Readable::read(reader)?;
claimable_outpoints.insert(outpoint, (ancestor_claim_txid, height));
}
let locktimed_packages_len: u64 = Readable::read(reader)?;
let mut locktimed_packages = BTreeMap::new();
for _ in 0..locktimed_packages_len {
let locktime = Readable::read(reader)?;
let packages_len: u64 = Readable::read(reader)?;
let mut packages = Vec::with_capacity(cmp::min(packages_len as usize, MAX_ALLOC_SIZE / core::mem::size_of::<PackageTemplate>()));
for _ in 0..packages_len {
packages.push(Readable::read(reader)?);
}
locktimed_packages.insert(locktime, packages);
}
let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..waiting_threshold_conf_len {
if let Some(val) = MaybeReadable::read(reader)? {
onchain_events_awaiting_threshold_conf.push(val);
}
}
read_tlv_fields!(reader, {});
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
Ok(OnchainTxHandler {
destination_script,
holder_commitment,
holder_htlc_sigs,
prev_holder_commitment,
prev_holder_htlc_sigs,
signer,
channel_transaction_parameters: channel_parameters,
claimable_outpoints,
locktimed_packages,
pending_claim_requests,
onchain_events_awaiting_threshold_conf,
secp_ctx,
})
}
}
impl<ChannelSigner: Sign> OnchainTxHandler<ChannelSigner> {
pub(crate) fn new(destination_script: Script, signer: ChannelSigner, channel_parameters: ChannelTransactionParameters, holder_commitment: HolderCommitmentTransaction, secp_ctx: Secp256k1<secp256k1::All>) -> Self {
OnchainTxHandler {
destination_script,
holder_commitment,
holder_htlc_sigs: None,
prev_holder_commitment: None,
prev_holder_htlc_sigs: None,
signer,
channel_transaction_parameters: channel_parameters,
pending_claim_requests: HashMap::new(),
claimable_outpoints: HashMap::new(),
locktimed_packages: BTreeMap::new(),
onchain_events_awaiting_threshold_conf: Vec::new(),
secp_ctx,
}
}
pub(crate) fn get_prev_holder_commitment_to_self_value(&self) -> Option<u64> {
self.prev_holder_commitment.as_ref().map(|commitment| commitment.to_broadcaster_value_sat())
}
pub(crate) fn get_cur_holder_commitment_to_self_value(&self) -> u64 {
self.holder_commitment.to_broadcaster_value_sat()
}
/// Lightning security model (i.e being able to redeem/timeout HTLC or penalize coutnerparty onchain) lays on the assumption of claim transactions getting confirmed before timelock expiration
/// (CSV or CLTV following cases). In case of high-fee spikes, claim tx may stuck in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or Child-Pay-For-Parent.
/// Panics if there are signing errors, because signing operations in reaction to on-chain events
/// are not expected to fail, and if they do, we may lose funds.
fn generate_claim_tx<F: Deref, L: Deref>(&mut self, cur_height: u32, cached_request: &PackageTemplate, fee_estimator: &F, logger: &L) -> Option<(Option<u32>, u64, Transaction)>
where F::Target: FeeEstimator,
L::Target: Logger,
{
if cached_request.outpoints().len() == 0 { return None } // But don't prune pending claiming request yet, we may have to resurrect HTLCs
// Compute new height timer to decide when we need to regenerate a new bumped version of the claim tx (if we
// didn't receive confirmation of it before, or not enough reorg-safe depth on top of it).
let new_timer = Some(cached_request.get_height_timer(cur_height));
if cached_request.is_malleable() {
let predicted_weight = cached_request.package_weight(&self.destination_script, self.channel_transaction_parameters.opt_anchors.is_some());
if let Some((output_value, new_feerate)) =
cached_request.compute_package_output(predicted_weight, self.destination_script.dust_value().as_sat(), fee_estimator, logger) {
assert!(new_feerate != 0);
let transaction = cached_request.finalize_package(self, output_value, self.destination_script.clone(), logger).unwrap();
log_trace!(logger, "...with timer {} and feerate {}", new_timer.unwrap(), new_feerate);
assert!(predicted_weight >= transaction.get_weight());
return Some((new_timer, new_feerate, transaction))
}
} else {
// Note: Currently, amounts of holder outputs spending witnesses aren't used
// as we can't malleate spending package to increase their feerate. This
// should change with the remaining anchor output patchset.
if let Some(transaction) = cached_request.finalize_package(self, 0, self.destination_script.clone(), logger) {
return Some((None, 0, transaction));
}
}
None
}
/// Upon channelmonitor.block_connected(..) or upon provision of a preimage on the forward link
/// for this channel, provide new relevant on-chain transactions and/or new claim requests.
/// Formerly this was named `block_connected`, but it is now also used for claiming an HTLC output
/// if we receive a preimage after force-close.
/// `conf_height` represents the height at which the transactions in `txn_matched` were
/// confirmed. This does not need to equal the current blockchain tip height, which should be
/// provided via `cur_height`, however it must never be higher than `cur_height`.
pub(crate) fn update_claims_view<B: Deref, F: Deref, L: Deref>(&mut self, txn_matched: &[&Transaction], requests: Vec<PackageTemplate>, conf_height: u32, cur_height: u32, broadcaster: &B, fee_estimator: &F, logger: &L)
where B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
log_debug!(logger, "Updating claims view at height {} with {} matched transactions in block {} and {} claim requests", cur_height, txn_matched.len(), conf_height, requests.len());
let mut preprocessed_requests = Vec::with_capacity(requests.len());
let mut aggregated_request = None;
// Try to aggregate outputs if their timelock expiration isn't imminent (package timelock
// <= CLTV_SHARED_CLAIM_BUFFER) and they don't require an immediate nLockTime (aggregable).
for req in requests {
// Don't claim a outpoint twice that would be bad for privacy and may uselessly lock a CPFP input for a while
if let Some(_) = self.claimable_outpoints.get(req.outpoints()[0]) {
log_info!(logger, "Ignoring second claim for outpoint {}:{}, already registered its claiming request", req.outpoints()[0].txid, req.outpoints()[0].vout);
} else {
let timelocked_equivalent_package = self.locktimed_packages.iter().map(|v| v.1.iter()).flatten()
.find(|locked_package| locked_package.outpoints() == req.outpoints());
if let Some(package) = timelocked_equivalent_package {
log_info!(logger, "Ignoring second claim for outpoint {}:{}, we already have one which we're waiting on a timelock at {} for.",
req.outpoints()[0].txid, req.outpoints()[0].vout, package.package_timelock());
continue;
}
if req.package_timelock() > cur_height + 1 {
log_info!(logger, "Delaying claim of package until its timelock at {} (current height {}), the following outpoints are spent:", req.package_timelock(), cur_height);
for outpoint in req.outpoints() {
log_info!(logger, " Outpoint {}", outpoint);
}
self.locktimed_packages.entry(req.package_timelock()).or_insert(Vec::new()).push(req);
continue;
}
log_trace!(logger, "Test if outpoint can be aggregated with expiration {} against {}", req.timelock(), cur_height + CLTV_SHARED_CLAIM_BUFFER);
if req.timelock() <= cur_height + CLTV_SHARED_CLAIM_BUFFER || !req.aggregable() {
// Don't aggregate if outpoint package timelock is soon or marked as non-aggregable
preprocessed_requests.push(req);
} else if aggregated_request.is_none() {
aggregated_request = Some(req);
} else {
aggregated_request.as_mut().unwrap().merge_package(req);
}
}
}
if let Some(req) = aggregated_request {
preprocessed_requests.push(req);
}
// Claim everything up to and including cur_height + 1
let remaining_locked_packages = self.locktimed_packages.split_off(&(cur_height + 2));
for (pop_height, mut entry) in self.locktimed_packages.iter_mut() {
log_trace!(logger, "Restoring delayed claim of package(s) at their timelock at {}.", pop_height);
preprocessed_requests.append(&mut entry);
}
self.locktimed_packages = remaining_locked_packages;
// Generate claim transactions and track them to bump if necessary at
// height timer expiration (i.e in how many blocks we're going to take action).
for mut req in preprocessed_requests {
if let Some((new_timer, new_feerate, tx)) = self.generate_claim_tx(cur_height, &req, &*fee_estimator, &*logger) {
req.set_timer(new_timer);
req.set_feerate(new_feerate);
let txid = tx.txid();
for k in req.outpoints() {
log_info!(logger, "Registering claiming request for {}:{}", k.txid, k.vout);
self.claimable_outpoints.insert(k.clone(), (txid, conf_height));
}
self.pending_claim_requests.insert(txid, req);
log_info!(logger, "Broadcasting onchain {}", log_tx!(tx));
broadcaster.broadcast_transaction(&tx);
}
}
let mut bump_candidates = HashMap::new();
for tx in txn_matched {
// Scan all input to verify is one of the outpoint spent is of interest for us
let mut claimed_outputs_material = Vec::new();
for inp in &tx.input {
if let Some(first_claim_txid_height) = self.claimable_outpoints.get(&inp.previous_output) {
// If outpoint has claim request pending on it...
if let Some(request) = self.pending_claim_requests.get_mut(&first_claim_txid_height.0) {
//... we need to verify equality between transaction outpoints and claim request
// outpoints to know if transaction is the original claim or a bumped one issued
// by us.
let mut set_equality = true;
if request.outpoints().len() != tx.input.len() {
set_equality = false;
} else {
for (claim_inp, tx_inp) in request.outpoints().iter().zip(tx.input.iter()) {
if **claim_inp != tx_inp.previous_output {
set_equality = false;
}
}
}
macro_rules! clean_claim_request_after_safety_delay {
() => {
let entry = OnchainEventEntry {
txid: tx.txid(),
height: conf_height,
event: OnchainEvent::Claim { claim_request: first_claim_txid_height.0.clone() }
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// If this is our transaction (or our counterparty spent all the outputs
// before we could anyway with same inputs order than us), wait for
// ANTI_REORG_DELAY and clean the RBF tracking map.
if set_equality {
clean_claim_request_after_safety_delay!();
} else { // If false, generate new claim request with update outpoint set
let mut at_least_one_drop = false;
for input in tx.input.iter() {
if let Some(package) = request.split_package(&input.previous_output) {
claimed_outputs_material.push(package);
at_least_one_drop = true;
}
// If there are no outpoints left to claim in this request, drop it entirely after ANTI_REORG_DELAY.
if request.outpoints().is_empty() {
clean_claim_request_after_safety_delay!();
}
}
//TODO: recompute soonest_timelock to avoid wasting a bit on fees
if at_least_one_drop {
bump_candidates.insert(first_claim_txid_height.0.clone(), request.clone());
}
}
break; //No need to iterate further, either tx is our or their
} else {
panic!("Inconsistencies between pending_claim_requests map and claimable_outpoints map");
}
}
}
for package in claimed_outputs_material.drain(..) {
let entry = OnchainEventEntry {
txid: tx.txid(),
height: conf_height,
event: OnchainEvent::ContentiousOutpoint { package },
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// After security delay, either our claim tx got enough confs or outpoint is definetely out of reach
let onchain_events_awaiting_threshold_conf =
self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
for entry in onchain_events_awaiting_threshold_conf {
if entry.has_reached_confirmation_threshold(cur_height) {
match entry.event {
OnchainEvent::Claim { claim_request } => {
// We may remove a whole set of claim outpoints here, as these one may have
// been aggregated in a single tx and claimed so atomically
if let Some(request) = self.pending_claim_requests.remove(&claim_request) {
for outpoint in request.outpoints() {
log_debug!(logger, "Removing claim tracking for {} due to maturation of claim tx {}.", outpoint, claim_request);
self.claimable_outpoints.remove(&outpoint);
}
}
},
OnchainEvent::ContentiousOutpoint { package } => {
log_debug!(logger, "Removing claim tracking due to maturation of claim tx for outpoints:");
log_debug!(logger, " {:?}", package.outpoints());
self.claimable_outpoints.remove(&package.outpoints()[0]);
}
}
} else {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
// Check if any pending claim request must be rescheduled
for (first_claim_txid, ref request) in self.pending_claim_requests.iter() {
if let Some(h) = request.timer() {
if cur_height >= h {
bump_candidates.insert(*first_claim_txid, (*request).clone());
}
}
}
// Build, bump and rebroadcast tx accordingly
log_trace!(logger, "Bumping {} candidates", bump_candidates.len());
for (first_claim_txid, request) in bump_candidates.iter() {
if let Some((new_timer, new_feerate, bump_tx)) = self.generate_claim_tx(cur_height, &request, &*fee_estimator, &*logger) {
log_info!(logger, "Broadcasting RBF-bumped onchain {}", log_tx!(bump_tx));
broadcaster.broadcast_transaction(&bump_tx);
if let Some(request) = self.pending_claim_requests.get_mut(first_claim_txid) {
request.set_timer(new_timer);
request.set_feerate(new_feerate);
}
}
}
}
pub(crate) fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
&mut self,
txid: &Txid,
broadcaster: B,
fee_estimator: F,
logger: L,
) where
B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
let mut height = None;
for entry in self.onchain_events_awaiting_threshold_conf.iter() {
if entry.txid == *txid {
height = Some(entry.height);
break;
}
}
if let Some(height) = height {
self.block_disconnected(height, broadcaster, fee_estimator, logger);
}
}
pub(crate) fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, height: u32, broadcaster: B, fee_estimator: F, logger: L)
where B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
L::Target: Logger,
{
let mut bump_candidates = HashMap::new();
let onchain_events_awaiting_threshold_conf =
self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
for entry in onchain_events_awaiting_threshold_conf {
if entry.height >= height {
//- our claim tx on a commitment tx output
//- resurect outpoint back in its claimable set and regenerate tx
match entry.event {
OnchainEvent::ContentiousOutpoint { package } => {
if let Some(ancestor_claimable_txid) = self.claimable_outpoints.get(&package.outpoints()[0]) {
if let Some(request) = self.pending_claim_requests.get_mut(&ancestor_claimable_txid.0) {
request.merge_package(package);
// Using a HashMap guarantee us than if we have multiple outpoints getting
// resurrected only one bump claim tx is going to be broadcast
bump_candidates.insert(ancestor_claimable_txid.clone(), request.clone());
}
}
},
_ => {},
}
} else {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
for (_, request) in bump_candidates.iter_mut() {
if let Some((new_timer, new_feerate, bump_tx)) = self.generate_claim_tx(height, &request, &&*fee_estimator, &&*logger) {
request.set_timer(new_timer);
request.set_feerate(new_feerate);
log_info!(logger, "Broadcasting onchain {}", log_tx!(bump_tx));
broadcaster.broadcast_transaction(&bump_tx);
}
}
for (ancestor_claim_txid, request) in bump_candidates.drain() {
self.pending_claim_requests.insert(ancestor_claim_txid.0, request);
}
//TODO: if we implement cross-block aggregated claim transaction we need to refresh set of outpoints and regenerate tx but
// right now if one of the outpoint get disconnected, just erase whole pending claim request.
let mut remove_request = Vec::new();
self.claimable_outpoints.retain(|_, ref v|
if v.1 >= height {
remove_request.push(v.0.clone());
false
} else { true });
for req in remove_request {
self.pending_claim_requests.remove(&req);
}
}
pub(crate) fn get_relevant_txids(&self) -> Vec<Txid> {
let mut txids: Vec<Txid> = self.onchain_events_awaiting_threshold_conf
.iter()
.map(|entry| entry.txid)
.collect();
txids.sort_unstable();
txids.dedup();
txids
}
pub(crate) fn provide_latest_holder_tx(&mut self, tx: HolderCommitmentTransaction) {
self.prev_holder_commitment = Some(replace(&mut self.holder_commitment, tx));
self.holder_htlc_sigs = None;
}
// Normally holder HTLCs are signed at the same time as the holder commitment tx. However,
// in some configurations, the holder commitment tx has been signed and broadcast by a
// ChannelMonitor replica, so we handle that case here.
fn sign_latest_holder_htlcs(&mut self) {
if self.holder_htlc_sigs.is_none() {
let (_sig, sigs) = self.signer.sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("sign holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, sigs));
}
}
// Normally only the latest commitment tx and HTLCs need to be signed. However, in some
// configurations we may have updated our holder commitment but a replica of the ChannelMonitor
// broadcast the previous one before we sync with it. We handle that case here.
fn sign_prev_holder_htlcs(&mut self) {
if self.prev_holder_htlc_sigs.is_none() {
if let Some(ref holder_commitment) = self.prev_holder_commitment {
let (_sig, sigs) = self.signer.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx).expect("sign previous holder commitment");
self.prev_holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, sigs));
}
}
}
fn extract_holder_sigs(holder_commitment: &HolderCommitmentTransaction, sigs: Vec<Signature>) -> Vec<Option<(usize, Signature)>> {
let mut ret = Vec::new();
for (htlc_idx, (holder_sig, htlc)) in sigs.iter().zip(holder_commitment.htlcs().iter()).enumerate() {
let tx_idx = htlc.transaction_output_index.unwrap();
if ret.len() <= tx_idx as usize { ret.resize(tx_idx as usize + 1, None); }
ret[tx_idx as usize] = Some((htlc_idx, holder_sig.clone()));
}
ret
}
//TODO: getting lastest holder transactions should be infallible and result in us "force-closing the channel", but we may
// have empty holder commitment transaction if a ChannelMonitor is asked to force-close just after Channel::get_outbound_funding_created,
// before providing a initial commitment transaction. For outbound channel, init ChannelMonitor at Channel::funding_signed, there is nothing
// to monitor before.
pub(crate) fn get_fully_signed_holder_tx(&mut self, funding_redeemscript: &Script) -> Transaction {
let (sig, htlc_sigs) = self.signer.sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("signing holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, htlc_sigs));
self.holder_commitment.add_holder_sig(funding_redeemscript, sig)
}
#[cfg(any(test, feature="unsafe_revoked_tx_signing"))]
pub(crate) fn get_fully_signed_copy_holder_tx(&mut self, funding_redeemscript: &Script) -> Transaction {
let (sig, htlc_sigs) = self.signer.unsafe_sign_holder_commitment_and_htlcs(&self.holder_commitment, &self.secp_ctx).expect("sign holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(&self.holder_commitment, htlc_sigs));
self.holder_commitment.add_holder_sig(funding_redeemscript, sig)
}
pub(crate) fn get_fully_signed_htlc_tx(&mut self, outp: &::bitcoin::OutPoint, preimage: &Option<PaymentPreimage>) -> Option<Transaction> {
let mut htlc_tx = None;
let commitment_txid = self.holder_commitment.trust().txid();
// Check if the HTLC spends from the current holder commitment
if commitment_txid == outp.txid {
self.sign_latest_holder_htlcs();
if let &Some(ref htlc_sigs) = &self.holder_htlc_sigs {
let &(ref htlc_idx, ref htlc_sig) = htlc_sigs[outp.vout as usize].as_ref().unwrap();
let trusted_tx = self.holder_commitment.trust();
let counterparty_htlc_sig = self.holder_commitment.counterparty_htlc_sigs[*htlc_idx];
htlc_tx = Some(trusted_tx
.get_signed_htlc_tx(&self.channel_transaction_parameters.as_holder_broadcastable(), *htlc_idx, &counterparty_htlc_sig, htlc_sig, preimage));
}
}
// If the HTLC doesn't spend the current holder commitment, check if it spends the previous one
if htlc_tx.is_none() && self.prev_holder_commitment.is_some() {
let commitment_txid = self.prev_holder_commitment.as_ref().unwrap().trust().txid();
if commitment_txid == outp.txid {
self.sign_prev_holder_htlcs();
if let &Some(ref htlc_sigs) = &self.prev_holder_htlc_sigs {
let &(ref htlc_idx, ref htlc_sig) = htlc_sigs[outp.vout as usize].as_ref().unwrap();
let holder_commitment = self.prev_holder_commitment.as_ref().unwrap();
let trusted_tx = holder_commitment.trust();
let counterparty_htlc_sig = holder_commitment.counterparty_htlc_sigs[*htlc_idx];
htlc_tx = Some(trusted_tx
.get_signed_htlc_tx(&self.channel_transaction_parameters.as_holder_broadcastable(), *htlc_idx, &counterparty_htlc_sig, htlc_sig, preimage));
}
}
}
htlc_tx
}
pub(crate) fn opt_anchors(&self) -> bool {
self.channel_transaction_parameters.opt_anchors.is_some()
}
#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
pub(crate) fn unsafe_get_fully_signed_htlc_tx(&mut self, outp: &::bitcoin::OutPoint, preimage: &Option<PaymentPreimage>) -> Option<Transaction> {
let latest_had_sigs = self.holder_htlc_sigs.is_some();
let prev_had_sigs = self.prev_holder_htlc_sigs.is_some();
let ret = self.get_fully_signed_htlc_tx(outp, preimage);
if !latest_had_sigs {
self.holder_htlc_sigs = None;
}
if !prev_had_sigs {
self.prev_holder_htlc_sigs = None;
}
ret
}
}