rust-lightning/lightning/src/ln/payment_tests.rs

3169 lines
156 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
//! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
//! payments thereafter.
use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
use crate::chain::channelmonitor::{ANTI_REORG_DELAY, HTLC_FAIL_BACK_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS};
use crate::chain::keysinterface::EntropySource;
use crate::chain::transaction::OutPoint;
use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, PathFailure, PaymentFailureReason};
use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS;
use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS, RecentPaymentDetails, RecipientOnionFields};
use crate::ln::features::InvoiceFeatures;
use crate::ln::msgs;
use crate::ln::msgs::ChannelMessageHandler;
use crate::ln::outbound_payment::Retry;
use crate::routing::gossip::{EffectiveCapacity, RoutingFees};
use crate::routing::router::{get_route, Path, PaymentParameters, Route, Router, RouteHint, RouteHintHop, RouteHop, RouteParameters};
use crate::routing::scoring::ChannelUsage;
use crate::util::test_utils;
use crate::util::errors::APIError;
use crate::util::ser::Writeable;
use crate::util::string::UntrustedString;
use bitcoin::{Block, BlockHeader, TxMerkleNode};
use bitcoin::hashes::Hash;
use bitcoin::network::constants::Network;
use crate::prelude::*;
use crate::ln::functional_test_utils::*;
use crate::routing::gossip::NodeId;
#[cfg(feature = "std")]
use {
crate::util::time::tests::SinceEpoch,
std::time::{SystemTime, Instant, Duration}
};
#[test]
fn mpp_failure() {
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
let path = route.paths[0].clone();
route.paths.push(path);
route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
route.paths[0].hops[0].short_channel_id = chan_1_id;
route.paths[0].hops[1].short_channel_id = chan_3_id;
route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
route.paths[1].hops[0].short_channel_id = chan_2_id;
route.paths[1].hops[1].short_channel_id = chan_4_id;
send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
}
#[test]
fn mpp_retry() {
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2);
// Rebalance
send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
let amt_msat = 1_000_000;
let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], amt_msat);
let path = route.paths[0].clone();
route.paths.push(path);
route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
route.paths[0].hops[0].short_channel_id = chan_1_update.contents.short_channel_id;
route.paths[0].hops[1].short_channel_id = chan_3_update.contents.short_channel_id;
route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
route.paths[1].hops[0].short_channel_id = chan_2_update.contents.short_channel_id;
route.paths[1].hops[1].short_channel_id = chan_4_update.contents.short_channel_id;
// Initiate the MPP payment.
let payment_id = PaymentId(payment_hash.0);
let mut route_params = RouteParameters {
payment_params: route.payment_params.clone().unwrap(),
final_value_msat: amt_msat,
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
check_added_monitors!(nodes[0], 2); // one monitor per path
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 2);
// Pass half of the payment along the success path.
let success_path_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
// Add the HTLC along the first hop.
let fail_path_msgs_1 = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
let (update_add, commitment_signed) = match fail_path_msgs_1 {
MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
assert_eq!(update_add_htlcs.len(), 1);
assert!(update_fail_htlcs.is_empty());
assert!(update_fulfill_htlcs.is_empty());
assert!(update_fail_malformed_htlcs.is_empty());
assert!(update_fee.is_none());
(update_add_htlcs[0].clone(), commitment_signed.clone())
},
_ => panic!("Unexpected event"),
};
nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
// Attempt to forward the payment and complete the 2nd path's failure.
expect_pending_htlcs_forwardable!(&nodes[2]);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
assert!(htlc_updates.update_add_htlcs.is_empty());
assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
assert!(htlc_updates.update_fulfill_htlcs.is_empty());
assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
check_added_monitors!(nodes[2], 1);
nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
let mut events = nodes[0].node.get_and_clear_pending_events();
match events[1] {
Event::PendingHTLCsForwardable { .. } => {},
_ => panic!("Unexpected event")
}
events.remove(1);
expect_payment_failed_conditions_event(events, payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
// Rebalance the channel so the second half of the payment can succeed.
send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
// Retry the second half of the payment and make sure it succeeds.
route.paths.remove(0);
route_params.final_value_msat = 1_000_000;
route_params.payment_params.previously_failed_channels.push(chan_4_update.contents.short_channel_id);
nodes[0].router.expect_find_route(route_params, Ok(route));
nodes[0].node.process_pending_htlc_forwards();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
}
fn do_mpp_receive_timeout(send_partial_mpp: bool) {
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2);
let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3);
let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3);
let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
let path = route.paths[0].clone();
route.paths.push(path);
route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
route.paths[0].hops[0].short_channel_id = chan_1_update.contents.short_channel_id;
route.paths[0].hops[1].short_channel_id = chan_3_update.contents.short_channel_id;
route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
route.paths[1].hops[0].short_channel_id = chan_2_update.contents.short_channel_id;
route.paths[1].hops[1].short_channel_id = chan_4_update.contents.short_channel_id;
// Initiate the MPP payment.
nodes[0].node.send_payment_with_route(&route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 2); // one monitor per path
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 2);
// Pass half of the payment along the first path.
let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut events);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None);
if send_partial_mpp {
// Time out the partial MPP
for _ in 0..MPP_TIMEOUT_TICKS {
nodes[3].node.timer_tick_occurred();
}
// Failed HTLC from node 3 -> 1
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
check_added_monitors!(nodes[3], 1);
commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
// Failed HTLC from node 1 -> 0
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
check_added_monitors!(nodes[1], 1);
commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
} else {
// Pass half of the payment along the second path.
let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut events);
pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None);
// Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
for _ in 0..MPP_TIMEOUT_TICKS {
nodes[3].node.timer_tick_occurred();
}
claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
}
}
#[test]
fn mpp_receive_timeout() {
do_mpp_receive_timeout(true);
do_mpp_receive_timeout(false);
}
#[test]
fn no_pending_leak_on_initial_send_failure() {
// In an earlier version of our payment tracking, we'd have a retry entry even when the initial
// HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
// case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
// pending payment forever and never time it out.
// Here we test exactly that - retrying a payment when a peer was disconnected on the first
// try, and then check that no pending payment is being tracked.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
), true, APIError::ChannelUnavailable { ref err },
assert_eq!(err, "Peer for first hop currently disconnected"));
assert!(!nodes[0].node.has_pending_payments());
}
fn do_retry_with_no_persist(confirm_before_reload: bool) {
// If we send a pending payment and `send_payment` returns success, we should always either
// return a payment failure event or a payment success event, and on failure the payment should
// be retryable.
//
// In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
// always persisted asynchronously), the ChannelManager has to reload some payment data from
// ChannelMonitor(s) in some cases. This tests that reloading.
//
// `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
// to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
// which has separate codepaths for "commitment transaction already confirmed" and not.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
// Serialize the ChannelManager prior to sending payments
let nodes_0_serialized = nodes[0].node.encode();
// Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
// out and retry.
let amt_msat = 1_000_000;
let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
let route_params = RouteParameters {
payment_params: route.payment_params.clone().unwrap(),
final_value_msat: amt_msat,
};
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
// We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
// to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
// which would prevent retry.
nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id());
nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
// nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
if confirm_before_reload {
mine_transaction(&nodes[0], &as_commitment_tx);
nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
}
// The ChannelMonitor should always be the latest version, as we're required to persist it
// during the `commitment_signed_dance!()`.
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
// On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
// force-close the channel.
check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
assert!(nodes[0].node.list_channels().is_empty());
assert!(nodes[0].node.has_pending_payments());
nodes[0].node.timer_tick_occurred();
if !confirm_before_reload {
let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(as_broadcasted_txn.len(), 1);
assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
} else {
assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty());
}
check_added_monitors!(nodes[0], 1);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
// Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
// error, as the channel has hit the chain.
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
let as_err = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(as_err.len(), 1);
match as_err[0] {
MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
assert_eq!(node_id, nodes[1].node.get_our_node_id());
nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
check_added_monitors!(nodes[1], 1);
assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
},
_ => panic!("Unexpected event"),
}
check_closed_broadcast!(nodes[1], false);
// Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
// we close in a moment.
nodes[2].node.claim_funds(payment_preimage_1);
check_added_monitors!(nodes[2], 1);
expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
check_added_monitors!(nodes[1], 1);
commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
if confirm_before_reload {
let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
}
// Create a new channel on which to retry the payment before we fail the payment via the
// HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
// connecting several blocks while creating the channel (implying time has passed).
create_announced_chan_between_nodes(&nodes, 0, 1);
assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
mine_transaction(&nodes[1], &as_commitment_tx);
let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(bs_htlc_claim_txn.len(), 1);
check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
if !confirm_before_reload {
mine_transaction(&nodes[0], &as_commitment_tx);
}
mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
expect_payment_sent!(nodes[0], payment_preimage_1);
connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
let (first_htlc_timeout_tx, second_htlc_timeout_tx) = {
let mut txn = nodes[0].tx_broadcaster.unique_txn_broadcast();
assert_eq!(txn.len(), 2);
(txn.remove(0), txn.remove(0))
};
check_spends!(first_htlc_timeout_tx, as_commitment_tx);
check_spends!(second_htlc_timeout_tx, as_commitment_tx);
if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
} else {
confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
}
nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
// Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
// reloaded) via a route over the new channel, which work without issue and eventually be
// received and claimed at the recipient just like any other payment.
let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
// Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
// and not the original fee. We also update node[1]'s relevant config as
// do_claim_payment_along_route expects us to never overpay.
{
let per_peer_state = nodes[1].node.per_peer_state.read().unwrap();
let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id())
.unwrap().lock().unwrap();
let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap();
let mut new_config = channel.config();
new_config.forwarding_fee_base_msat += 100_000;
channel.update_config(&new_config);
new_route.paths[0].hops[0].fee_msat += 100_000;
}
// Force expiration of the channel's previous config.
for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
nodes[1].node.timer_tick_occurred();
}
assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash, // Shouldn't be allowed to retry a fulfilled payment
RecipientOnionFields::secret_only(payment_secret), payment_id_1).is_err());
nodes[0].node.send_payment_with_route(&new_route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0].hops[0].fee_msat));
}
#[test]
fn retry_with_no_persist() {
do_retry_with_no_persist(true);
do_retry_with_no_persist(false);
}
fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
// Test that an off-chain completed payment is not retryable on restart. This was previously
// broken for dust payments, but we test for both dust and non-dust payments.
//
// `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
// output at all.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let mut manually_accept_config = test_default_channel_config();
manually_accept_config.manually_accept_inbound_channels = true;
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
let first_persister: test_utils::TestPersister;
let first_new_chain_monitor: test_utils::TestChainMonitor;
let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let second_persister: test_utils::TestPersister;
let second_new_chain_monitor: test_utils::TestChainMonitor;
let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let third_persister: test_utils::TestPersister;
let third_new_chain_monitor: test_utils::TestChainMonitor;
let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
// Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
confirm_transaction(&nodes[0], &funding_tx);
confirm_transaction(&nodes[1], &funding_tx);
// Ignore the announcement_signatures messages
nodes[0].node.get_and_clear_pending_msg_events();
nodes[1].node.get_and_clear_pending_msg_events();
let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2;
// Serialize the ChannelManager prior to sending payments
let mut nodes_0_serialized = nodes[0].node.encode();
let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
// The ChannelMonitor should always be the latest version, as we're required to persist it
// during the `commitment_signed_dance!()`.
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
// On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
// force-close the channel.
check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
nodes[0].node.timer_tick_occurred();
assert!(nodes[0].node.list_channels().is_empty());
assert!(nodes[0].node.has_pending_payments());
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
check_added_monitors!(nodes[0], 1);
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap();
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
// Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
// error, as the channel has hit the chain.
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
let as_err = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(as_err.len(), 1);
let bs_commitment_tx;
match as_err[0] {
MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
assert_eq!(node_id, nodes[1].node.get_our_node_id());
nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) });
check_added_monitors!(nodes[1], 1);
bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
},
_ => panic!("Unexpected event"),
}
check_closed_broadcast!(nodes[1], false);
// Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
// previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
// incoming HTLCs with the same payment hash later.
nodes[2].node.fail_htlc_backwards(&payment_hash);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
check_added_monitors!(nodes[2], 1);
let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
[HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
// Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
// the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
// after the commitment transaction, so always connect the commitment transaction.
mine_transaction(&nodes[0], &bs_commitment_tx[0]);
mine_transaction(&nodes[1], &bs_commitment_tx[0]);
if !use_dust {
connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
assert_eq!(as_htlc_timeout.len(), 1);
mine_transaction(&nodes[0], &as_htlc_timeout[0]);
// nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
mine_transaction(&nodes[1], &as_htlc_timeout[0]);
}
// Create a new channel on which to retry the payment before we fail the payment via the
// HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
// connecting several blocks while creating the channel (implying time has passed).
// We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
// If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
// confirming, we will fail as it's considered still-pending...
let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected error")
}
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
// After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
// again. We serialize the node first as we'll then test retrying the HTLC after a restart
// (which should also still work).
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new());
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
nodes_0_serialized = nodes[0].node.encode();
// After the payment failed, we're free to send it again.
assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
// Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
// the payment is not (spuriously) listed as still pending.
assert!(nodes[0].node.send_payment_with_route(&new_route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), payment_id).is_ok());
check_added_monitors!(nodes[0], 1);
pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected error")
}
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode();
nodes_0_serialized = nodes[0].node.encode();
// Check that after reload we can send the payment again (though we shouldn't, since it was
// claimed previously).
reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
match nodes[0].node.send_payment_with_route(&new_route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id) {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected error")
}
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
}
#[test]
fn test_completed_payment_not_retryable_on_reload() {
do_test_completed_payment_not_retryable_on_reload(true);
do_test_completed_payment_not_retryable_on_reload(false);
}
fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// the ChannelMonitor tells it to.
//
// If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
// ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
// duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
// Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(node_txn.len(), 3);
assert_eq!(node_txn[0], node_txn[1]);
check_spends!(node_txn[1], funding_tx);
check_spends!(node_txn[2], node_txn[1]);
let timeout_txn = vec![node_txn[2].clone()];
nodes[1].node.claim_funds(payment_preimage);
check_added_monitors!(nodes[1], 1);
expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
check_closed_broadcast!(nodes[1], true);
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(claim_txn.len(), 1);
check_spends!(claim_txn[0], node_txn[1]);
header.prev_blockhash = nodes[0].best_block_hash();
connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
if confirm_commitment_tx {
connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
}
header.prev_blockhash = nodes[0].best_block_hash();
let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
if payment_timeout {
assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
connect_block(&nodes[0], &claim_block);
connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
}
// Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
// returning InProgress. This should cause the claim event to never make its way to the
// ChannelManager.
chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
if payment_timeout {
connect_blocks(&nodes[0], 1);
} else {
connect_block(&nodes[0], &claim_block);
}
let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
.get_mut(&funding_txo).unwrap().drain().collect();
// If we are using chain::Confirm instead of chain::Listen, we will get the same update twice.
// If we're testing connection idempotency we may get substantially more.
assert!(mon_updates.len() >= 1);
assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
// If we persist the ChannelManager here, we should get the PaymentSent event after
// deserialization.
let mut chan_manager_serialized = Vec::new();
if !persist_manager_post_event {
chan_manager_serialized = nodes[0].node.encode();
}
// Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
// payment sent event.
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
for update in mon_updates {
nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
}
if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, false);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
// twice.
if persist_manager_post_event {
chan_manager_serialized = nodes[0].node.encode();
}
// Now reload nodes[0]...
reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
if persist_manager_post_event {
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
} else if payment_timeout {
expect_payment_failed!(nodes[0], payment_hash, false);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
// Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
// which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
// payment events should kick in, leaving us with no pending events here.
let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}
#[test]
fn test_dup_htlc_onchain_fails_on_reload() {
do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
}
#[test]
fn test_fulfill_restart_failure() {
// When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
// fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
// again, or fail it, giving us free money.
//
// Of course probably they won't fail it and give us free money, but because we have code to
// handle it, we should test the logic for it anyway. We do that here.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
// The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
// pre-fulfill, which we do by serializing it here.
let chan_manager_serialized = nodes[1].node.encode();
let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode();
nodes[1].node.claim_funds(payment_preimage);
check_added_monitors!(nodes[1], 1);
expect_payment_claimed!(nodes[1], payment_hash, 100_000);
let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
expect_payment_sent_without_paths!(nodes[0], payment_preimage);
// Now reload nodes[1]...
reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
nodes[1].node.fail_htlc_backwards(&payment_hash);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
check_added_monitors!(nodes[1], 1);
let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
// nodes[0] shouldn't generate any events here, while it just got a payment failure completion
// it had already considered the payment fulfilled, and now they just got free money.
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
}
#[test]
fn get_ldk_payment_preimage() {
// Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
let amt_msat = 60_000;
let expiry_secs = 60 * 60;
let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs, None).unwrap();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_features(nodes[1].node.invoice_features());
let scorer = test_utils::TestScorer::new();
let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
let random_seed_bytes = keys_manager.get_secure_random_bytes();
let route = get_route(
&nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
nodes[0].node.send_payment_with_route(&route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
// Make sure to use `get_payment_preimage`
let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
}
#[test]
fn sent_probe_is_probe_of_sending_node() {
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
create_announced_chan_between_nodes(&nodes, 1, 2);
// First check we refuse to build a single-hop probe
let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
// Then build an actual two-hop probing path
let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
match nodes[0].node.send_probe(route.paths[0].clone()) {
Ok((payment_hash, payment_id)) => {
assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
},
_ => panic!(),
}
get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
check_added_monitors!(nodes[0], 1);
}
#[test]
fn successful_probe_yields_event() {
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
create_announced_chan_between_nodes(&nodes, 1, 2);
let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
// node[0] -- update_add_htlcs -> node[1]
check_added_monitors!(nodes[0], 1);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
// node[1] -- update_add_htlcs -> node[2]
check_added_monitors!(nodes[1], 1);
let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
check_added_monitors!(nodes[2], 0);
commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
// node[1] <- update_fail_htlcs -- node[2]
let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
// node[0] <- update_fail_htlcs -- node[1]
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
check_added_monitors!(nodes[0], 0);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events.drain(..).next().unwrap() {
crate::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
assert_eq!(payment_id, ev_pid);
assert_eq!(payment_hash, ev_ph);
},
_ => panic!(),
};
assert!(!nodes[0].node.has_pending_payments());
}
#[test]
fn failed_probe_yields_event() {
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000);
let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
// node[0] -- update_add_htlcs -> node[1]
check_added_monitors!(nodes[0], 1);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
// node[0] <- update_fail_htlcs -- node[1]
check_added_monitors!(nodes[1], 1);
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
// Skip the PendingHTLCsForwardable event
let _events = nodes[1].node.get_and_clear_pending_events();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
check_added_monitors!(nodes[0], 0);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events.drain(..).next().unwrap() {
crate::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
assert_eq!(payment_id, ev_pid);
assert_eq!(payment_hash, ev_ph);
},
_ => panic!(),
};
assert!(!nodes[0].node.has_pending_payments());
}
#[test]
fn onchain_failed_probe_yields_event() {
// Tests that an attempt to probe over a channel that is eventaully closed results in a failure
// event.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
create_announced_chan_between_nodes(&nodes, 1, 2);
let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), 42);
// Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
// node[0] -- update_add_htlcs -> node[1]
check_added_monitors!(nodes[0], 1);
let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
// Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
// Node A, which after 6 confirmations should result in a probe failure event.
let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
confirm_transaction(&nodes[0], &bs_txn[0]);
check_closed_broadcast!(&nodes[0], true);
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
let mut found_probe_failed = false;
for event in events.drain(..) {
match event {
Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
assert_eq!(payment_id, ev_pid);
assert_eq!(payment_hash, ev_ph);
found_probe_failed = true;
},
Event::ChannelClosed { .. } => {},
_ => panic!(),
}
}
assert!(found_probe_failed);
assert!(!nodes[0].node.has_pending_payments());
}
#[test]
fn claimed_send_payment_idempotent() {
// Tests that `send_payment` (and friends) are (reasonably) idempotent.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1).2;
let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
macro_rules! check_send_rejected {
() => {
// If we try to resend a new payment with a different payment_hash but with the same
// payment_id, it should be rejected.
let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
RecipientOnionFields::secret_only(second_payment_secret), payment_id);
match send_result {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected send result: {:?}", send_result),
}
// Further, if we try to send a spontaneous payment with the same payment_id it should
// also be rejected.
let send_result = nodes[0].node.send_spontaneous_payment(
&route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
match send_result {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected send result: {:?}", send_result),
}
}
}
check_send_rejected!();
// Claim the payment backwards, but note that the PaymentSent event is still pending and has
// not been seen by the user. At this point, from the user perspective nothing has changed, so
// we must remain just as idempotent as we were before.
do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage);
for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
nodes[0].node.timer_tick_occurred();
}
check_send_rejected!();
// Once the user sees and handles the `PaymentSent` event, we expect them to no longer call
// `send_payment`, and our idempotency guarantees are off - they should have atomically marked
// the payment complete. However, they could have called `send_payment` while the event was
// being processed, leading to a race in our idempotency guarantees. Thus, even immediately
// after the event is handled a duplicate payment should sitll be rejected.
expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0));
check_send_rejected!();
// If relatively little time has passed, a duplicate payment should still fail.
nodes[0].node.timer_tick_occurred();
check_send_rejected!();
// However, after some time has passed (at least more than the one timer tick above), a
// duplicate payment should go through, as ChannelManager should no longer have any remaining
// references to the old payment data.
for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS {
nodes[0].node.timer_tick_occurred();
}
nodes[0].node.send_payment_with_route(&route, second_payment_hash,
RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
check_added_monitors!(nodes[0], 1);
pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
}
#[test]
fn abandoned_send_payment_idempotent() {
// Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after
// abandon_payment.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1).2;
let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000);
macro_rules! check_send_rejected {
() => {
// If we try to resend a new payment with a different payment_hash but with the same
// payment_id, it should be rejected.
let send_result = nodes[0].node.send_payment_with_route(&route, second_payment_hash,
RecipientOnionFields::secret_only(second_payment_secret), payment_id);
match send_result {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected send result: {:?}", send_result),
}
// Further, if we try to send a spontaneous payment with the same payment_id it should
// also be rejected.
let send_result = nodes[0].node.send_spontaneous_payment(
&route, None, RecipientOnionFields::spontaneous_empty(), payment_id);
match send_result {
Err(PaymentSendFailure::DuplicatePayment) => {},
_ => panic!("Unexpected send result: {:?}", send_result),
}
}
}
check_send_rejected!();
nodes[1].node.fail_htlc_backwards(&first_payment_hash);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]);
// Until we abandon the payment upon path failure, no matter how many timer ticks pass, we still cannot reuse the
// PaymentId.
for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
nodes[0].node.timer_tick_occurred();
}
check_send_rejected!();
pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash, PaymentFailureReason::RecipientRejected);
// However, we can reuse the PaymentId immediately after we `abandon_payment` upon passing the
// failed payment back.
nodes[0].node.send_payment_with_route(&route, second_payment_hash,
RecipientOnionFields::secret_only(second_payment_secret), payment_id).unwrap();
check_added_monitors!(nodes[0], 1);
pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret);
claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage);
}
#[derive(PartialEq)]
enum InterceptTest {
Forward,
Fail,
Timeout,
}
#[test]
fn test_trivial_inflight_htlc_tracking(){
// In this test, we test three scenarios:
// (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs
// (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs
// (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1);
let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2);
// Send and claim the payment. Inflight HTLCs should be empty.
let payment_hash = send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000).1;
let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
{
let mut node_0_per_peer_lock;
let mut node_0_peer_state_lock;
let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
channel_1.get_short_channel_id().unwrap()
);
assert_eq!(chan_1_used_liquidity, None);
}
{
let mut node_1_per_peer_lock;
let mut node_1_peer_state_lock;
let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
channel_2.get_short_channel_id().unwrap()
);
assert_eq!(chan_2_used_liquidity, None);
}
let pending_payments = nodes[0].node.list_recent_payments();
assert_eq!(pending_payments.len(), 1);
assert_eq!(pending_payments[0], RecentPaymentDetails::Fulfilled { payment_hash: Some(payment_hash) });
// Remove fulfilled payment
for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
nodes[0].node.timer_tick_occurred();
}
// Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment.
let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 500000);
let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
{
let mut node_0_per_peer_lock;
let mut node_0_peer_state_lock;
let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
channel_1.get_short_channel_id().unwrap()
);
// First hop accounts for expected 1000 msat fee
assert_eq!(chan_1_used_liquidity, Some(501000));
}
{
let mut node_1_per_peer_lock;
let mut node_1_peer_state_lock;
let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
channel_2.get_short_channel_id().unwrap()
);
assert_eq!(chan_2_used_liquidity, Some(500000));
}
let pending_payments = nodes[0].node.list_recent_payments();
assert_eq!(pending_payments.len(), 1);
assert_eq!(pending_payments[0], RecentPaymentDetails::Pending { payment_hash, total_msat: 500000 });
// Now, let's claim the payment. This should result in the used liquidity to return `None`.
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
// Remove fulfilled payment
for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS {
nodes[0].node.timer_tick_occurred();
}
let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
{
let mut node_0_per_peer_lock;
let mut node_0_peer_state_lock;
let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id);
let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
channel_1.get_short_channel_id().unwrap()
);
assert_eq!(chan_1_used_liquidity, None);
}
{
let mut node_1_per_peer_lock;
let mut node_1_peer_state_lock;
let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id);
let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[2].node.get_our_node_id()),
channel_2.get_short_channel_id().unwrap()
);
assert_eq!(chan_2_used_liquidity, None);
}
let pending_payments = nodes[0].node.list_recent_payments();
assert_eq!(pending_payments.len(), 0);
}
#[test]
fn test_holding_cell_inflight_htlcs() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]);
// Queue up two payments - one will be delivered right away, one immediately goes into the
// holding cell as nodes[0] is AwaitingRAA.
{
nodes[0].node.send_payment_with_route(&route, payment_hash_1,
RecipientOnionFields::secret_only(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap();
check_added_monitors!(nodes[0], 1);
nodes[0].node.send_payment_with_route(&route, payment_hash_2,
RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
check_added_monitors!(nodes[0], 0);
}
let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs();
{
let mut node_0_per_peer_lock;
let mut node_0_peer_state_lock;
let channel = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id);
let used_liquidity = inflight_htlcs.used_liquidity_msat(
&NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) ,
&NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
channel.get_short_channel_id().unwrap()
);
assert_eq!(used_liquidity, Some(2000000));
}
// Clear pending events so test doesn't throw a "Had excess message on node..." error
nodes[0].node.get_and_clear_pending_msg_events();
}
#[test]
fn intercepted_payment() {
// Test that detecting an intercept scid on payment forward will signal LDK to generate an
// intercept event, which the LSP can then use to either (a) open a JIT channel to forward the
// payment or (b) fail the payment.
do_test_intercepted_payment(InterceptTest::Forward);
do_test_intercepted_payment(InterceptTest::Fail);
// Make sure that intercepted payments will be automatically failed back if too many blocks pass.
do_test_intercepted_payment(InterceptTest::Timeout);
}
fn do_test_intercepted_payment(test: InterceptTest) {
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let mut zero_conf_chan_config = test_default_channel_config();
zero_conf_chan_config.manually_accept_inbound_channels = true;
let mut intercept_forwards_config = test_default_channel_config();
intercept_forwards_config.accept_intercept_htlcs = true;
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let scorer = test_utils::TestScorer::new();
let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes();
let _ = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let amt_msat = 100_000;
let intercept_scid = nodes[1].node.get_intercept_scid();
let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_route_hints(vec![
RouteHint(vec![RouteHintHop {
src_node_id: nodes[1].node.get_our_node_id(),
short_channel_id: intercept_scid,
fees: RoutingFees {
base_msat: 1000,
proportional_millionths: 0,
},
cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA,
htlc_minimum_msat: None,
htlc_maximum_msat: None,
}])
])
.with_features(nodes[2].node.invoice_features());
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let route = get_route(
&nodes[0].node.get_our_node_id(), &route_params.payment_params,
&nodes[0].network_graph.read_only(), None, route_params.final_value_msat,
route_params.payment_params.final_cltv_expiry_delta, nodes[0].logger, &scorer,
&random_seed_bytes,
).unwrap();
let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60, None).unwrap();
nodes[0].node.send_payment_with_route(&route, payment_hash,
RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
let payment_event = {
{
let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
added_monitors.clear();
}
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
SendEvent::from_event(events.remove(0))
};
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true);
// Check that we generate the PaymentIntercepted event when an intercept forward is detected.
let events = nodes[1].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
let (intercept_id, expected_outbound_amount_msat) = match events[0] {
crate::events::Event::HTLCIntercepted {
intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id
} => {
assert_eq!(pmt_hash, payment_hash);
assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees());
assert_eq!(short_channel_id, intercept_scid);
(intercept_id, expected_outbound_amount_msat)
},
_ => panic!()
};
// Check for unknown channel id error.
let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) });
if test == InterceptTest::Fail {
// Ensure we can fail the intercepted payment back.
nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]);
nodes[1].node.process_pending_htlc_forwards();
let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_fail.update_fail_htlcs.len() == 1);
let fail_msg = update_fail.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false);
// Ensure the payment fails with the expected error.
let fail_conditions = PaymentFailedConditions::new()
.blamed_scid(intercept_scid)
.blamed_chan_closed(true)
.expected_htlc_error_data(0x4000 | 10, &[]);
expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions);
} else if test == InterceptTest::Forward {
// Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet.
let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) });
assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1);
// Open the just-in-time channel so the payment can then be forwarded.
let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
// Finally, forward the intercepted payment through and claim it.
nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap();
expect_pending_htlcs_forwardable!(nodes[1]);
let payment_event = {
{
let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
added_monitors.clear();
}
let mut events = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
SendEvent::from_event(events.remove(0))
};
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true);
expect_pending_htlcs_forwardable!(nodes[2]);
let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id());
do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage);
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
match events[0] {
Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => {
assert_eq!(payment_preimage, *ev_preimage);
assert_eq!(payment_hash, *ev_hash);
assert_eq!(fee_paid_msat, &Some(1000));
},
_ => panic!("Unexpected event")
}
match events[1] {
Event::PaymentPathSuccessful { payment_hash: hash, .. } => {
assert_eq!(hash, Some(payment_hash));
},
_ => panic!("Unexpected event")
}
} else if test == InterceptTest::Timeout {
let mut block = Block {
header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
txdata: vec![],
};
connect_block(&nodes[0], &block);
connect_block(&nodes[1], &block);
for _ in 0..TEST_FINAL_CLTV {
block.header.prev_blockhash = block.block_hash();
connect_block(&nodes[0], &block);
connect_block(&nodes[1], &block);
}
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]);
check_added_monitors!(nodes[1], 1);
let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert!(htlc_timeout_updates.update_add_htlcs.is_empty());
assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1);
assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty());
assert!(htlc_timeout_updates.update_fee.is_none());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false);
expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []);
// Check for unknown intercept id error.
let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None);
let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err();
assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err();
assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) });
}
}
#[derive(PartialEq)]
enum AutoRetry {
Success,
Spontaneous,
FailAttempts,
FailTimeout,
FailOnRestart,
FailOnRetry,
}
#[test]
fn automatic_retries() {
do_automatic_retries(AutoRetry::Success);
do_automatic_retries(AutoRetry::Spontaneous);
do_automatic_retries(AutoRetry::FailAttempts);
do_automatic_retries(AutoRetry::FailTimeout);
do_automatic_retries(AutoRetry::FailOnRestart);
do_automatic_retries(AutoRetry::FailOnRetry);
}
fn do_automatic_retries(test: AutoRetry) {
// Test basic automatic payment retries in ChannelManager. See individual `test` variant comments
// below.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let persister;
let new_chain_monitor;
let node_0_deserialized;
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let channel_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let channel_id_2 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
// Marshall data to send the payment
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let amt_msat = 1000;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat);
macro_rules! pass_failed_attempt_with_retry_along_path {
($failing_channel_id: expr, $expect_pending_htlcs_forwardable: expr) => {
// Send a payment attempt that fails due to lack of liquidity on the second hop
check_added_monitors!(nodes[0], 1);
let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
let mut update_add = update_0.update_add_htlcs[0].clone();
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1],
vec![HTLCDestination::NextHopChannel {
node_id: Some(nodes[2].node.get_our_node_id()),
channel_id: $failing_channel_id,
}]);
nodes[1].node.process_pending_htlc_forwards();
let update_1 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
check_added_monitors!(&nodes[1], 1);
assert!(update_1.update_fail_htlcs.len() == 1);
let fail_msg = update_1.update_fail_htlcs[0].clone();
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg);
commitment_signed_dance!(nodes[0], nodes[1], update_1.commitment_signed, false);
// Ensure the attempt fails and a new PendingHTLCsForwardable event is generated for the retry
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(payment_failed_permanently, false);
},
_ => panic!("Unexpected event"),
}
if $expect_pending_htlcs_forwardable {
match events[1] {
Event::PendingHTLCsForwardable { .. } => {},
_ => panic!("Unexpected event"),
}
} else {
match events[1] {
Event::PaymentFailed { payment_hash: ev_payment_hash, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
},
_ => panic!("Unexpected event"),
}
}
}
}
if test == AutoRetry::Success {
// Test that we can succeed on the first retry.
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// Open a new channel with liquidity on the second hop so we can find a route for the retry
// attempt, since the initial second hop channel will be excluded from pathfinding
create_announced_chan_between_nodes(&nodes, 1, 2);
// We retry payments in `process_pending_htlc_forwards`
nodes[0].node.process_pending_htlc_forwards();
check_added_monitors!(nodes[0], 1);
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, Some(payment_secret), msg_events.pop().unwrap(), true, None);
claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
} else if test == AutoRetry::Spontaneous {
nodes[0].node.send_spontaneous_payment_with_retry(Some(payment_preimage),
RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0), route_params,
Retry::Attempts(1)).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// Open a new channel with liquidity on the second hop so we can find a route for the retry
// attempt, since the initial second hop channel will be excluded from pathfinding
create_announced_chan_between_nodes(&nodes, 1, 2);
// We retry payments in `process_pending_htlc_forwards`
nodes[0].node.process_pending_htlc_forwards();
check_added_monitors!(nodes[0], 1);
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 1);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], amt_msat, payment_hash, None, msg_events.pop().unwrap(), true, Some(payment_preimage));
claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
} else if test == AutoRetry::FailAttempts {
// Ensure ChannelManager will not retry a payment if it has run out of payment attempts.
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// Open a new channel with no liquidity on the second hop so we can find a (bad) route for
// the retry attempt, since the initial second hop channel will be excluded from pathfinding
let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
// We retry payments in `process_pending_htlc_forwards`
nodes[0].node.process_pending_htlc_forwards();
pass_failed_attempt_with_retry_along_path!(channel_id_3, false);
// Ensure we won't retry a second time.
nodes[0].node.process_pending_htlc_forwards();
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 0);
} else if test == AutoRetry::FailTimeout {
#[cfg(not(feature = "no-std"))] {
// Ensure ChannelManager will not retry a payment if it times out due to Retry::Timeout.
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Timeout(Duration::from_secs(60))).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// Advance the time so the second attempt fails due to timeout.
SinceEpoch::advance(Duration::from_secs(61));
// Make sure we don't retry again.
nodes[0].node.process_pending_htlc_forwards();
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 0);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
assert_eq!(payment_hash, *ev_payment_hash);
assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
},
_ => panic!("Unexpected event"),
}
}
} else if test == AutoRetry::FailOnRestart {
// Ensure ChannelManager will not retry a payment after restart, even if there were retry
// attempts remaining prior to restart.
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(2)).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// Open a new channel with no liquidity on the second hop so we can find a (bad) route for
// the retry attempt, since the initial second hop channel will be excluded from pathfinding
let channel_id_3 = create_announced_chan_between_nodes(&nodes, 2, 1).2;
// Ensure the first retry attempt fails, with 1 retry attempt remaining
nodes[0].node.process_pending_htlc_forwards();
pass_failed_attempt_with_retry_along_path!(channel_id_3, true);
// Restart the node and ensure that ChannelManager does not use its remaining retry attempt
let node_encoded = nodes[0].node.encode();
let chan_1_monitor_serialized = get_monitor!(nodes[0], channel_id_1).encode();
reload_node!(nodes[0], node_encoded, &[&chan_1_monitor_serialized], persister, new_chain_monitor, node_0_deserialized);
let mut events = nodes[0].node.get_and_clear_pending_events();
expect_pending_htlcs_forwardable_from_events!(nodes[0], events, true);
// Make sure we don't retry again.
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 0);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
assert_eq!(payment_hash, *ev_payment_hash);
assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
},
_ => panic!("Unexpected event"),
}
} else if test == AutoRetry::FailOnRetry {
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
pass_failed_attempt_with_retry_along_path!(channel_id_2, true);
// We retry payments in `process_pending_htlc_forwards`. Since our channel closed, we should
// fail to find a route.
nodes[0].node.process_pending_htlc_forwards();
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(msg_events.len(), 0);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
assert_eq!(payment_hash, *ev_payment_hash);
assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
assert_eq!(PaymentFailureReason::RouteNotFound, ev_reason.unwrap());
},
_ => panic!("Unexpected event"),
}
}
}
#[test]
fn auto_retry_partial_failure() {
// Test that we'll retry appropriately on send partial failure and retry partial failure.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
let chan_3_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
// Marshall data to send the payment
let amt_msat = 20_000;
let (_, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
// Ensure the first monitor update (for the initial send path1 over chan_1) succeeds, but the
// second (for the initial send path2 over chan_2) fails.
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
// Ensure third monitor update (for the retry1's path1 over chan_1) succeeds, but the fourth (for
// the retry1's path2 over chan_3) fails, and monitor updates succeed after that.
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
// Configure the initial send, retry1 and retry2's paths.
let send_route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_id,
channel_features: nodes[1].node.channel_features(),
fee_msat: amt_msat / 2,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_2_id,
channel_features: nodes[1].node.channel_features(),
fee_msat: amt_msat / 2,
cltv_expiry_delta: 100,
}], blinded_tail: None },
],
payment_params: Some(route_params.payment_params.clone()),
};
let retry_1_route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_id,
channel_features: nodes[1].node.channel_features(),
fee_msat: amt_msat / 4,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_3_id,
channel_features: nodes[1].node.channel_features(),
fee_msat: amt_msat / 4,
cltv_expiry_delta: 100,
}], blinded_tail: None },
],
payment_params: Some(route_params.payment_params.clone()),
};
let retry_2_route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_id,
channel_features: nodes[1].node.channel_features(),
fee_msat: amt_msat / 4,
cltv_expiry_delta: 100,
}], blinded_tail: None },
],
payment_params: Some(route_params.payment_params.clone()),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(send_route));
let mut payment_params = route_params.payment_params.clone();
payment_params.previously_failed_channels.push(chan_2_id);
nodes[0].router.expect_find_route(RouteParameters {
payment_params, final_value_msat: amt_msat / 2,
}, Ok(retry_1_route));
let mut payment_params = route_params.payment_params.clone();
payment_params.previously_failed_channels.push(chan_3_id);
nodes[0].router.expect_find_route(RouteParameters {
payment_params, final_value_msat: amt_msat / 4,
}, Ok(retry_2_route));
// Send a payment that will partially fail on send, then partially fail on retry, then succeed.
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(3)).unwrap();
let closed_chan_events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(closed_chan_events.len(), 4);
match closed_chan_events[0] {
Event::ChannelClosed { .. } => {},
_ => panic!("Unexpected event"),
}
match closed_chan_events[1] {
Event::PaymentPathFailed { .. } => {},
_ => panic!("Unexpected event"),
}
match closed_chan_events[2] {
Event::ChannelClosed { .. } => {},
_ => panic!("Unexpected event"),
}
match closed_chan_events[3] {
Event::PaymentPathFailed { .. } => {},
_ => panic!("Unexpected event"),
}
// Pass the first part of the payment along the path.
check_added_monitors!(nodes[0], 5); // three outbound channel updates succeeded, two permanently failed
let mut msg_events = nodes[0].node.get_and_clear_pending_msg_events();
// First message is the first update_add, remaining messages are broadcasting channel updates and
// errors for the permfailed channels
assert_eq!(msg_events.len(), 5);
let mut payment_event = SendEvent::from_event(msg_events.remove(0));
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg);
check_added_monitors!(nodes[1], 1);
let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
check_added_monitors!(nodes[0], 1);
let as_second_htlc_updates = SendEvent::from_node(&nodes[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
check_added_monitors!(nodes[0], 1);
let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[0]);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.msgs[1]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_htlc_updates.commitment_msg);
check_added_monitors!(nodes[1], 1);
let (bs_second_raa, bs_second_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
check_added_monitors!(nodes[0], 1);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_cs);
check_added_monitors!(nodes[0], 1);
let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
check_added_monitors!(nodes[1], 1);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
nodes[1].node.process_pending_htlc_forwards();
expect_payment_claimable!(nodes[1], payment_hash, payment_secret, amt_msat);
nodes[1].node.claim_funds(payment_preimage);
expect_payment_claimed!(nodes[1], payment_hash, amt_msat);
let bs_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
assert_eq!(bs_claim_update.update_fulfill_htlcs.len(), 1);
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_claim_update.update_fulfill_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_claim_update.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_third_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
check_added_monitors!(nodes[1], 4);
let bs_second_claim_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
check_added_monitors!(nodes[1], 1);
let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
check_added_monitors!(nodes[0], 1);
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[0]);
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.update_fulfill_htlcs[1]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_claim_update.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_fourth_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_fourth_raa);
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
check_added_monitors!(nodes[1], 1);
let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
check_added_monitors!(nodes[0], 1);
expect_payment_sent!(nodes[0], payment_preimage);
}
#[test]
fn auto_retry_zero_attempts_send_error() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
// Marshall data to send the payment
let amt_msat = 20_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(0)).unwrap();
assert_eq!(nodes[0].node.get_and_clear_pending_msg_events().len(), 2); // channel close messages
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 3);
if let Event::ChannelClosed { .. } = events[0] { } else { panic!(); }
if let Event::PaymentPathFailed { .. } = events[1] { } else { panic!(); }
if let Event::PaymentFailed { .. } = events[2] { } else { panic!(); }
check_added_monitors!(nodes[0], 2);
}
#[test]
fn fails_paying_after_rejected_by_payee() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
// Marshall data to send the payment
let amt_msat = 20_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let mut payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
check_added_monitors!(nodes[1], 0);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[1]);
expect_payment_claimable!(&nodes[1], payment_hash, payment_secret, amt_msat);
nodes[1].node.fail_htlc_backwards(&payment_hash);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash }]);
pass_failed_payment_back(&nodes[0], &[&[&nodes[1]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
}
#[test]
fn retry_multi_path_single_failed_payment() {
// Tests that we can/will retry after a single path of an MPP payment failed immediately
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
let amt_msat = 100_010_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params: payment_params.clone(),
final_value_msat: amt_msat,
};
let chans = nodes[0].node.list_usable_channels();
let mut route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chans[0].short_channel_id.unwrap(),
channel_features: nodes[1].node.channel_features(),
fee_msat: 10_000,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chans[1].short_channel_id.unwrap(),
channel_features: nodes[1].node.channel_features(),
fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
cltv_expiry_delta: 100,
}], blinded_tail: None },
],
payment_params: Some(payment_params),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
// On retry, split the payment across both channels.
route.paths[0].hops[0].fee_msat = 50_000_001;
route.paths[1].hops[0].fee_msat = 50_000_000;
let mut pay_params = route.payment_params.clone().unwrap();
pay_params.previously_failed_channels.push(chans[1].short_channel_id.unwrap());
nodes[0].router.expect_find_route(RouteParameters {
payment_params: pay_params,
// Note that the second request here requests the amount we originally failed to send,
// not the amount remaining on the full payment, which should be changed.
final_value_msat: 100_000_001,
}, Ok(route.clone()));
{
let scorer = chanmon_cfgs[0].scorer.lock().unwrap();
// The initial send attempt, 2 paths
scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 10_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 100_000_001, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
// The retry, 2 paths. Ensure that the in-flight HTLC amount is factored in.
scorer.expect_usage(chans[0].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_001, inflight_htlc_msat: 10_000, effective_capacity: EffectiveCapacity::Unknown });
scorer.expect_usage(chans[1].short_channel_id.unwrap(), ChannelUsage { amount_msat: 50_000_000, inflight_htlc_msat: 0, effective_capacity: EffectiveCapacity::Unknown });
}
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
short_channel_id: Some(expected_scid), .. } =>
{
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(expected_scid, route.paths[1].hops[0].short_channel_id);
assert!(err_msg.contains("max HTLC"));
},
_ => panic!("Unexpected event"),
}
let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(htlc_msgs.len(), 2);
check_added_monitors!(nodes[0], 2);
}
#[test]
fn immediate_retry_on_failure() {
// Tests that we can/will retry immediately after a failure
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]);
let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
let amt_msat = 100_000_001;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let chans = nodes[0].node.list_usable_channels();
let mut route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chans[0].short_channel_id.unwrap(),
channel_features: nodes[1].node.channel_features(),
fee_msat: 100_000_001, // Our default max-HTLC-value is 10% of the channel value, which this is one more than
cltv_expiry_delta: 100,
}], blinded_tail: None },
],
payment_params: Some(PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
// On retry, split the payment across both channels.
route.paths.push(route.paths[0].clone());
route.paths[0].hops[0].short_channel_id = chans[1].short_channel_id.unwrap();
route.paths[0].hops[0].fee_msat = 50_000_000;
route.paths[1].hops[0].fee_msat = 50_000_001;
let mut pay_params = route_params.payment_params.clone();
pay_params.previously_failed_channels.push(chans[0].short_channel_id.unwrap());
nodes[0].router.expect_find_route(RouteParameters {
payment_params: pay_params, final_value_msat: amt_msat,
}, Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently: false,
failure: PathFailure::InitialSend { err: APIError::ChannelUnavailable { err: ref err_msg }},
short_channel_id: Some(expected_scid), .. } =>
{
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(expected_scid, route.paths[1].hops[0].short_channel_id);
assert!(err_msg.contains("max HTLC"));
},
_ => panic!("Unexpected event"),
}
let htlc_msgs = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(htlc_msgs.len(), 2);
check_added_monitors!(nodes[0], 2);
}
#[test]
fn no_extra_retries_on_back_to_back_fail() {
// In a previous release, we had a race where we may exceed the payment retry count if we
// get two failures in a row with the second indicating that all paths had failed (this field,
// `all_paths_failed`, has since been removed).
// Generally, when we give up trying to retry a payment, we don't know for sure what the
// current state of the ChannelManager event queue is. Specifically, we cannot be sure that
// there are not multiple additional `PaymentPathFailed` or even `PaymentSent` events
// pending which we will see later. Thus, when we previously removed the retry tracking map
// entry after a `all_paths_failed` `PaymentPathFailed` event, we may have dropped the
// retry entry even though more events for the same payment were still pending. This led to
// us retrying a payment again even though we'd already given up on it.
//
// We now have a separate event - `PaymentFailed` which indicates no HTLCs remain and which
// is used to remove the payment retry counter entries instead. This tests for the specific
// excess-retry case while also testing `PaymentFailed` generation.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
let amt_msat = 200_000_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let mut route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_scid,
channel_features: nodes[1].node.channel_features(),
fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[2].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: chan_2_scid,
channel_features: nodes[2].node.channel_features(),
fee_msat: 100_000_000,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_scid,
channel_features: nodes[1].node.channel_features(),
fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[2].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: chan_2_scid,
channel_features: nodes[2].node.channel_features(),
fee_msat: 100_000_000,
cltv_expiry_delta: 100,
}], blinded_tail: None }
],
payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
let mut second_payment_params = route_params.payment_params.clone();
second_payment_params.previously_failed_channels = vec![chan_2_scid, chan_2_scid];
// On retry, we'll only return one path
route.paths.remove(1);
route.paths[0].hops[1].fee_msat = amt_msat;
nodes[0].router.expect_find_route(RouteParameters {
payment_params: second_payment_params,
final_value_msat: amt_msat,
}, Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
let htlc_updates = SendEvent::from_node(&nodes[0]);
check_added_monitors!(nodes[0], 1);
assert_eq!(htlc_updates.msgs.len(), 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
check_added_monitors!(nodes[1], 1);
let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
check_added_monitors!(nodes[0], 1);
let second_htlc_updates = SendEvent::from_node(&nodes[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
check_added_monitors!(nodes[0], 1);
let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
check_added_monitors!(nodes[1], 1);
let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
check_added_monitors!(nodes[1], 1);
let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
check_added_monitors!(nodes[0], 1);
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
check_added_monitors!(nodes[1], 1);
let bs_second_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
check_added_monitors!(nodes[1], 1);
let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.update_fail_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_fail_update.commitment_signed);
check_added_monitors!(nodes[0], 1);
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
check_added_monitors!(nodes[0], 1);
let (as_third_raa, as_fourth_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_third_raa);
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_fourth_cs);
check_added_monitors!(nodes[1], 1);
let bs_fourth_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_fourth_raa);
check_added_monitors!(nodes[0], 1);
// At this point A has sent two HTLCs which both failed due to lack of fee. It now has two
// pending `PaymentPathFailed` events, one with `all_paths_failed` unset, and the second
// with it set.
//
// Previously, we retried payments in an event consumer, which would retry each
// `PaymentPathFailed` individually. In that setup, we had retried the payment in response to
// the first `PaymentPathFailed`, then seen the second `PaymentPathFailed` with
// `all_paths_failed` set and assumed the payment was completely failed. We ultimately fixed it
// by adding the `PaymentFailed` event.
//
// Because we now retry payments as a batch, we simply return a single-path route in the
// second, batched, request, have that fail, ensure the payment was abandoned.
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 3);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(payment_failed_permanently, false);
},
_ => panic!("Unexpected event"),
}
match events[1] {
Event::PendingHTLCsForwardable { .. } => {},
_ => panic!("Unexpected event"),
}
match events[2] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(payment_failed_permanently, false);
},
_ => panic!("Unexpected event"),
}
nodes[0].node.process_pending_htlc_forwards();
let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
check_added_monitors!(nodes[0], 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], &bs_fail_update.commitment_signed, false, true);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(payment_failed_permanently, false);
},
_ => panic!("Unexpected event"),
}
match events[1] {
Event::PaymentFailed { payment_hash: ref ev_payment_hash, payment_id: ref ev_payment_id, reason: ref ev_reason } => {
assert_eq!(payment_hash, *ev_payment_hash);
assert_eq!(PaymentId(payment_hash.0), *ev_payment_id);
assert_eq!(PaymentFailureReason::RetriesExhausted, ev_reason.unwrap());
},
_ => panic!("Unexpected event"),
}
}
#[test]
fn test_simple_partial_retry() {
// In the first version of the in-`ChannelManager` payment retries, retries were sent for the
// full amount of the payment, rather than only the missing amount. Here we simply test for
// this by sending a payment with two parts, failing one, and retrying the second. Note that
// `TestRouter` will check that the `RouteParameters` (which contain the amount) matches the
// request.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
let chan_2_scid = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 10_000_000, 0).0.contents.short_channel_id;
let amt_msat = 200_000_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let mut route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_scid,
channel_features: nodes[1].node.channel_features(),
fee_msat: 0, // nodes[1] will fail the payment as we don't pay its fee
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[2].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: chan_2_scid,
channel_features: nodes[2].node.channel_features(),
fee_msat: 100_000_000,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_scid,
channel_features: nodes[1].node.channel_features(),
fee_msat: 100_000,
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[2].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: chan_2_scid,
channel_features: nodes[2].node.channel_features(),
fee_msat: 100_000_000,
cltv_expiry_delta: 100,
}], blinded_tail: None }
],
payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
let mut second_payment_params = route_params.payment_params.clone();
second_payment_params.previously_failed_channels = vec![chan_2_scid];
// On retry, we'll only be asked for one path (or 100k sats)
route.paths.remove(0);
nodes[0].router.expect_find_route(RouteParameters {
payment_params: second_payment_params,
final_value_msat: amt_msat / 2,
}, Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params, Retry::Attempts(1)).unwrap();
let htlc_updates = SendEvent::from_node(&nodes[0]);
check_added_monitors!(nodes[0], 1);
assert_eq!(htlc_updates.msgs.len(), 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &htlc_updates.msgs[0]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &htlc_updates.commitment_msg);
check_added_monitors!(nodes[1], 1);
let (bs_first_raa, bs_first_cs) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
check_added_monitors!(nodes[0], 1);
let second_htlc_updates = SendEvent::from_node(&nodes[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_cs);
check_added_monitors!(nodes[0], 1);
let as_first_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &second_htlc_updates.msgs[0]);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &second_htlc_updates.commitment_msg);
check_added_monitors!(nodes[1], 1);
let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
check_added_monitors!(nodes[1], 1);
let bs_fail_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
check_added_monitors!(nodes[0], 1);
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_update.update_fail_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_fail_update.commitment_signed);
check_added_monitors!(nodes[0], 1);
let (as_second_raa, as_third_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
check_added_monitors!(nodes[1], 1);
nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_third_cs);
check_added_monitors!(nodes[1], 1);
let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
match events[0] {
Event::PaymentPathFailed { payment_hash: ev_payment_hash, payment_failed_permanently, .. } => {
assert_eq!(payment_hash, ev_payment_hash);
assert_eq!(payment_failed_permanently, false);
},
_ => panic!("Unexpected event"),
}
match events[1] {
Event::PendingHTLCsForwardable { .. } => {},
_ => panic!("Unexpected event"),
}
nodes[0].node.process_pending_htlc_forwards();
let retry_htlc_updates = SendEvent::from_node(&nodes[0]);
check_added_monitors!(nodes[0], 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &retry_htlc_updates.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], &retry_htlc_updates.commitment_msg, false, true);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors!(nodes[1], 1);
let bs_forward_update = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[0]);
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &bs_forward_update.update_add_htlcs[1]);
commitment_signed_dance!(nodes[2], nodes[1], &bs_forward_update.commitment_signed, false);
expect_pending_htlcs_forwardable!(nodes[2]);
expect_payment_claimable!(nodes[2], payment_hash, payment_secret, amt_msat);
}
#[test]
#[cfg(feature = "std")]
fn test_threaded_payment_retries() {
// In the first version of the in-`ChannelManager` payment retries, retries weren't limited to
// a single thread and would happily let multiple threads run retries at the same time. Because
// retries are done by first calculating the amount we need to retry, then dropping the
// relevant lock, then actually sending, we would happily let multiple threads retry the same
// amount at the same time, overpaying our original HTLC!
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
// There is one mitigating guardrail when retrying payments - we can never over-pay by more
// than 10% of the original value. Thus, we want all our retries to be below that. In order to
// keep things simple, we route one HTLC for 0.1% of the payment over channel 1 and the rest
// out over channel 3+4. This will let us ignore 99% of the payment value and deal with only
// our channel.
let chan_1_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 10_000_000, 0).0.contents.short_channel_id;
create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 10_000_000, 0);
let chan_3_scid = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 10_000_000, 0).0.contents.short_channel_id;
let chan_4_scid = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 10_000_000, 0).0.contents.short_channel_id;
let amt_msat = 100_000_000;
let (_, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[2], amt_msat);
#[cfg(feature = "std")]
let payment_expiry_secs = SystemTime::UNIX_EPOCH.elapsed().unwrap().as_secs() + 60 * 60;
#[cfg(not(feature = "std"))]
let payment_expiry_secs = 60 * 60;
let mut invoice_features = InvoiceFeatures::empty();
invoice_features.set_variable_length_onion_required();
invoice_features.set_payment_secret_required();
invoice_features.set_basic_mpp_optional();
let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_expiry_time(payment_expiry_secs as u64)
.with_features(invoice_features);
let mut route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
let mut route = Route {
paths: vec![
Path { hops: vec![RouteHop {
pubkey: nodes[1].node.get_our_node_id(),
node_features: nodes[1].node.node_features(),
short_channel_id: chan_1_scid,
channel_features: nodes[1].node.channel_features(),
fee_msat: 0,
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[3].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: 42, // Set a random SCID which nodes[1] will fail as unknown
channel_features: nodes[2].node.channel_features(),
fee_msat: amt_msat / 1000,
cltv_expiry_delta: 100,
}], blinded_tail: None },
Path { hops: vec![RouteHop {
pubkey: nodes[2].node.get_our_node_id(),
node_features: nodes[2].node.node_features(),
short_channel_id: chan_3_scid,
channel_features: nodes[2].node.channel_features(),
fee_msat: 100_000,
cltv_expiry_delta: 100,
}, RouteHop {
pubkey: nodes[3].node.get_our_node_id(),
node_features: nodes[3].node.node_features(),
short_channel_id: chan_4_scid,
channel_features: nodes[3].node.channel_features(),
fee_msat: amt_msat - amt_msat / 1000,
cltv_expiry_delta: 100,
}], blinded_tail: None }
],
payment_params: Some(PaymentParameters::from_node_id(nodes[2].node.get_our_node_id(), TEST_FINAL_CLTV)),
};
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(0xdeadbeef)).unwrap();
check_added_monitors!(nodes[0], 2);
let mut send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(send_msg_events.len(), 2);
send_msg_events.retain(|msg|
if let MessageSendEvent::UpdateHTLCs { node_id, .. } = msg {
// Drop the commitment update for nodes[2], we can just let that one sit pending
// forever.
*node_id == nodes[1].node.get_our_node_id()
} else { panic!(); }
);
// from here on out, the retry `RouteParameters` amount will be amt/1000
route_params.final_value_msat /= 1000;
route.paths.pop();
let end_time = Instant::now() + Duration::from_secs(1);
macro_rules! thread_body { () => { {
// We really want std::thread::scope, but its not stable until 1.63. Until then, we get unsafe.
let node_ref = NodePtr::from_node(&nodes[0]);
move || {
let node_a = unsafe { &*node_ref.0 };
while Instant::now() < end_time {
node_a.node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
// Ignore if we have any pending events, just always pretend we just got a
// PendingHTLCsForwardable
node_a.node.process_pending_htlc_forwards();
}
}
} } }
let mut threads = Vec::new();
for _ in 0..16 { threads.push(std::thread::spawn(thread_body!())); }
// Back in the main thread, poll pending messages and make sure that we never have more than
// one HTLC pending at a time. Note that the commitment_signed_dance will fail horribly if
// there are HTLC messages shoved in while its running. This allows us to test that we never
// generate an additional update_add_htlc until we've fully failed the first.
let mut previously_failed_channels = Vec::new();
loop {
assert_eq!(send_msg_events.len(), 1);
let send_event = SendEvent::from_event(send_msg_events.pop().unwrap());
assert_eq!(send_event.msgs.len(), 1);
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], send_event.commitment_msg, false, true);
// Note that we only push one route into `expect_find_route` at a time, because that's all
// the retries (should) need. If the bug is reintroduced "real" routes may be selected, but
// we should still ultimately fail for the same reason - because we're trying to send too
// many HTLCs at once.
let mut new_route_params = route_params.clone();
previously_failed_channels.push(route.paths[0].hops[1].short_channel_id);
new_route_params.payment_params.previously_failed_channels = previously_failed_channels.clone();
route.paths[0].hops[1].short_channel_id += 1;
nodes[0].router.expect_find_route(new_route_params, Ok(route.clone()));
let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]);
// The "normal" commitment_signed_dance delivers the final RAA and then calls
// `check_added_monitors` to ensure only the one RAA-generated monitor update was created.
// This races with our other threads which may generate an add-HTLCs commitment update via
// `process_pending_htlc_forwards`. Instead, we defer the monitor update check until after
// *we've* called `process_pending_htlc_forwards` when its guaranteed to have two updates.
let last_raa = commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true, false, true);
nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &last_raa);
let cur_time = Instant::now();
if cur_time > end_time {
for thread in threads.drain(..) { thread.join().unwrap(); }
}
// Make sure we have some events to handle when we go around...
nodes[0].node.get_and_clear_pending_events(); // wipe the PendingHTLCsForwardable
nodes[0].node.process_pending_htlc_forwards();
send_msg_events = nodes[0].node.get_and_clear_pending_msg_events();
check_added_monitors!(nodes[0], 2);
if cur_time > end_time {
break;
}
}
}
fn do_no_missing_sent_on_midpoint_reload(persist_manager_with_payment: bool) {
// Test that if we reload in the middle of an HTLC claim commitment signed dance we'll still
// receive the PaymentSent event even if the ChannelManager had no idea about the payment when
// it was last persisted.
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let (persister_a, persister_b, persister_c);
let (chain_monitor_a, chain_monitor_b, chain_monitor_c);
let (nodes_0_deserialized, nodes_0_deserialized_b, nodes_0_deserialized_c);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2;
let mut nodes_0_serialized = Vec::new();
if !persist_manager_with_payment {
nodes_0_serialized = nodes[0].node.encode();
}
let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
if persist_manager_with_payment {
nodes_0_serialized = nodes[0].node.encode();
}
nodes[1].node.claim_funds(our_payment_preimage);
check_added_monitors!(nodes[1], 1);
expect_payment_claimed!(nodes[1], our_payment_hash, 1_000_000);
let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
check_added_monitors!(nodes[0], 1);
// The ChannelMonitor should always be the latest version, as we're required to persist it
// during the commitment signed handling.
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister_a, chain_monitor_a, nodes_0_deserialized);
let events = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events.len(), 2);
if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[0] {} else { panic!(); }
if let Event::PaymentSent { payment_preimage, .. } = events[1] { assert_eq!(payment_preimage, our_payment_preimage); } else { panic!(); }
// Note that we don't get a PaymentPathSuccessful here as we leave the HTLC pending to avoid
// the double-claim that would otherwise appear at the end of this test.
nodes[0].node.timer_tick_occurred();
let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(as_broadcasted_txn.len(), 1);
// Ensure that, even after some time, if we restart we still include *something* in the current
// `ChannelManager` which prevents a `PaymentFailed` when we restart even if pending resolved
// payments have since been timed out thanks to `IDEMPOTENCY_TIMEOUT_TICKS`.
// A naive implementation of the fix here would wipe the pending payments set, causing a
// failure event when we restart.
for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_b, chain_monitor_b, nodes_0_deserialized_b);
let events = nodes[0].node.get_and_clear_pending_events();
assert!(events.is_empty());
// Ensure that we don't generate any further events even after the channel-closing commitment
// transaction is confirmed on-chain.
confirm_transaction(&nodes[0], &as_broadcasted_txn[0]);
for _ in 0..(IDEMPOTENCY_TIMEOUT_TICKS * 2) { nodes[0].node.timer_tick_occurred(); }
let events = nodes[0].node.get_and_clear_pending_events();
assert!(events.is_empty());
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], test_default_channel_config(), &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister_c, chain_monitor_c, nodes_0_deserialized_c);
let events = nodes[0].node.get_and_clear_pending_events();
assert!(events.is_empty());
}
#[test]
fn no_missing_sent_on_midpoint_reload() {
do_no_missing_sent_on_midpoint_reload(false);
do_no_missing_sent_on_midpoint_reload(true);
}
fn do_claim_from_closed_chan(fail_payment: bool) {
// Previously, LDK would refuse to claim a payment if a channel on which the payment was
// received had been closed between when the HTLC was received and when we went to claim it.
// This makes sense in the payment case - why pay an on-chain fee to claim the HTLC when
// presumably the sender may retry later. Long ago it also reduced total code in the claim
// pipeline.
//
// However, this doesn't make sense if you're trying to do an atomic swap or some other
// protocol that requires atomicity with some other action - if your money got claimed
// elsewhere you need to be able to claim the HTLC in lightning no matter what. Further, this
// is an over-optimization - there should be a very, very low likelihood that a channel closes
// between when we receive the last HTLC for a payment and the user goes to claim the payment.
// Since we now have code to handle this anyway we should allow it.
// Build 4 nodes and send an MPP payment across two paths. By building a route manually set the
// CLTVs on the paths to different value resulting in a different claim deadline.
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes(&nodes, 0, 1);
create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
let chan_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
create_announced_chan_between_nodes(&nodes, 2, 3);
let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3]);
let mut route_params = RouteParameters {
payment_params: PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_features(nodes[1].node.invoice_features()),
final_value_msat: 10_000_000,
};
let mut route = nodes[0].router.find_route(&nodes[0].node.get_our_node_id(), &route_params,
None, &nodes[0].node.compute_inflight_htlcs()).unwrap();
// Make sure the route is ordered as the B->D path before C->D
route.paths.sort_by(|a, _| if a.hops[0].pubkey == nodes[1].node.get_our_node_id() {
std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater });
// Note that we add an extra 1 in the send pipeline to compensate for any blocks found while
// the HTLC is being relayed.
route.paths[0].hops[1].cltv_expiry_delta = TEST_FINAL_CLTV + 8;
route.paths[1].hops[1].cltv_expiry_delta = TEST_FINAL_CLTV + 12;
let final_cltv = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 8 + 1;
nodes[0].router.expect_find_route(route_params.clone(), Ok(route.clone()));
nodes[0].node.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
PaymentId(payment_hash.0), route_params.clone(), Retry::Attempts(1)).unwrap();
check_added_monitors(&nodes[0], 2);
let mut send_msgs = nodes[0].node.get_and_clear_pending_msg_events();
send_msgs.sort_by(|a, _| {
let a_node_id =
if let MessageSendEvent::UpdateHTLCs { node_id, .. } = a { node_id } else { panic!() };
let node_b_id = nodes[1].node.get_our_node_id();
if *a_node_id == node_b_id { std::cmp::Ordering::Less } else { std::cmp::Ordering::Greater }
});
assert_eq!(send_msgs.len(), 2);
pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 10_000_000,
payment_hash, Some(payment_secret), send_msgs.remove(0), false, None);
let receive_event = pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 10_000_000,
payment_hash, Some(payment_secret), send_msgs.remove(0), true, None);
match receive_event.unwrap() {
Event::PaymentClaimable { claim_deadline, .. } => {
assert_eq!(claim_deadline.unwrap(), final_cltv - HTLC_FAIL_BACK_BUFFER);
},
_ => panic!(),
}
// Ensure that the claim_deadline is correct, with the payment failing at exactly the given
// height.
connect_blocks(&nodes[3], final_cltv - HTLC_FAIL_BACK_BUFFER - nodes[3].best_block_info().1
- if fail_payment { 0 } else { 2 });
if fail_payment {
// We fail the HTLC on the A->B->D path first as it expires 4 blocks earlier. We go ahead
// and expire both immediately, though, by connecting another 4 blocks.
let reason = HTLCDestination::FailedPayment { payment_hash };
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason.clone()]);
connect_blocks(&nodes[3], 4);
expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[3], [reason]);
pass_failed_payment_back(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash, PaymentFailureReason::RecipientRejected);
} else {
nodes[1].node.force_close_broadcasting_latest_txn(&chan_bd, &nodes[3].node.get_our_node_id()).unwrap();
check_closed_event(&nodes[1], 1, ClosureReason::HolderForceClosed, false);
check_closed_broadcast(&nodes[1], 1, true);
let bs_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(bs_tx.len(), 1);
mine_transaction(&nodes[3], &bs_tx[0]);
check_added_monitors(&nodes[3], 1);
check_closed_broadcast(&nodes[3], 1, true);
check_closed_event(&nodes[3], 1, ClosureReason::CommitmentTxConfirmed, false);
nodes[3].node.claim_funds(payment_preimage);
check_added_monitors(&nodes[3], 2);
expect_payment_claimed!(nodes[3], payment_hash, 10_000_000);
let ds_tx = nodes[3].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
assert_eq!(ds_tx.len(), 1);
check_spends!(&ds_tx[0], &bs_tx[0]);
mine_transactions(&nodes[1], &[&bs_tx[0], &ds_tx[0]]);
check_added_monitors(&nodes[1], 1);
expect_payment_forwarded!(nodes[1], nodes[0], nodes[3], Some(1000), false, true);
let bs_claims = nodes[1].node.get_and_clear_pending_msg_events();
check_added_monitors(&nodes[1], 1);
assert_eq!(bs_claims.len(), 1);
if let MessageSendEvent::UpdateHTLCs { updates, .. } = &bs_claims[0] {
nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false, true);
} else { panic!(); }
expect_payment_sent!(nodes[0], payment_preimage);
let ds_claim_msgs = nodes[3].node.get_and_clear_pending_msg_events();
assert_eq!(ds_claim_msgs.len(), 1);
let cs_claim_msgs = if let MessageSendEvent::UpdateHTLCs { updates, .. } = &ds_claim_msgs[0] {
nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
let cs_claim_msgs = nodes[2].node.get_and_clear_pending_msg_events();
check_added_monitors(&nodes[2], 1);
commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
cs_claim_msgs
} else { panic!(); };
assert_eq!(cs_claim_msgs.len(), 1);
if let MessageSendEvent::UpdateHTLCs { updates, .. } = &cs_claim_msgs[0] {
nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[2], updates.commitment_signed, false, true);
} else { panic!(); }
expect_payment_path_successful!(nodes[0]);
}
}
#[test]
fn claim_from_closed_chan() {
do_claim_from_closed_chan(true);
do_claim_from_closed_chan(false);
}
fn do_test_payment_metadata_consistency(do_reload: bool, do_modify: bool) {
// Check that a payment metadata received on one HTLC that doesn't match the one received on
// another results in the HTLC being rejected.
//
// We first set up a diamond shaped network, allowing us to split a payment into two HTLCs, the
// first of which we'll deliver and the second of which we'll fail and then re-send with
// modified payment metadata, which will in turn result in it being failed by the recipient.
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let mut config = test_default_channel_config();
config.channel_handshake_config.max_inbound_htlc_value_in_flight_percent_of_channel = 50;
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, Some(config), Some(config), Some(config)]);
let persister;
let new_chain_monitor;
let nodes_0_deserialized;
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0);
let chan_id_bd = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 1_000_000, 0).2;
create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 1_000_000, 0);
let chan_id_cd = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
// Pay more than half of each channel's max, requiring MPP
let amt_msat = 750_000_000;
let (payment_preimage, payment_hash, payment_secret) = get_payment_preimage_hash!(nodes[3], Some(amt_msat));
let payment_id = PaymentId(payment_hash.0);
let payment_metadata = vec![44, 49, 52, 142];
let payment_params = PaymentParameters::from_node_id(nodes[3].node.get_our_node_id(), TEST_FINAL_CLTV)
.with_features(nodes[1].node.invoice_features());
let mut route_params = RouteParameters {
payment_params,
final_value_msat: amt_msat,
};
// Send the MPP payment, delivering the updated commitment state to nodes[1].
nodes[0].node.send_payment(payment_hash, RecipientOnionFields {
payment_secret: Some(payment_secret), payment_metadata: Some(payment_metadata),
}, payment_id, route_params.clone(), Retry::Attempts(1)).unwrap();
check_added_monitors!(nodes[0], 2);
let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(send_events.len(), 2);
let first_send = SendEvent::from_event(send_events.pop().unwrap());
let second_send = SendEvent::from_event(send_events.pop().unwrap());
let (b_recv_ev, c_recv_ev) = if first_send.node_id == nodes[1].node.get_our_node_id() {
(&first_send, &second_send)
} else {
(&second_send, &first_send)
};
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &b_recv_ev.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], b_recv_ev.commitment_msg, false, true);
expect_pending_htlcs_forwardable!(nodes[1]);
check_added_monitors(&nodes[1], 1);
let b_forward_ev = SendEvent::from_node(&nodes[1]);
nodes[3].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &b_forward_ev.msgs[0]);
commitment_signed_dance!(nodes[3], nodes[1], b_forward_ev.commitment_msg, false, true);
expect_pending_htlcs_forwardable!(nodes[3]);
// Before delivering the second MPP HTLC to nodes[2], disconnect nodes[2] and nodes[3], which
// will result in nodes[2] failing the HTLC back.
nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id());
nodes[3].node.peer_disconnected(&nodes[2].node.get_our_node_id());
nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &c_recv_ev.msgs[0]);
commitment_signed_dance!(nodes[2], nodes[0], c_recv_ev.commitment_msg, false, true);
let cs_fail = get_htlc_update_msgs(&nodes[2], &nodes[0].node.get_our_node_id());
nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &cs_fail.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[2], cs_fail.commitment_signed, false, true);
let payment_fail_retryable_evs = nodes[0].node.get_and_clear_pending_events();
assert_eq!(payment_fail_retryable_evs.len(), 2);
if let Event::PaymentPathFailed { .. } = payment_fail_retryable_evs[0] {} else { panic!(); }
if let Event::PendingHTLCsForwardable { .. } = payment_fail_retryable_evs[1] {} else { panic!(); }
// Before we allow the HTLC to be retried, optionally change the payment_metadata we have
// stored for our payment.
if do_modify {
nodes[0].node.test_set_payment_metadata(payment_id, Some(Vec::new()));
}
// Optionally reload nodes[3] to check that the payment_metadata is properly serialized with
// the payment state.
if do_reload {
let mon_bd = get_monitor!(nodes[3], chan_id_bd).encode();
let mon_cd = get_monitor!(nodes[3], chan_id_cd).encode();
reload_node!(nodes[3], config, &nodes[3].node.encode(), &[&mon_bd, &mon_cd],
persister, new_chain_monitor, nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id());
reconnect_nodes(&nodes[1], &nodes[3], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
}
reconnect_nodes(&nodes[2], &nodes[3], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
// Create a new channel between C and D as A will refuse to retry on the existing one because
// it just failed.
let chan_id_cd_2 = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 1_000_000, 0).2;
// Now retry the failed HTLC.
nodes[0].node.process_pending_htlc_forwards();
check_added_monitors(&nodes[0], 1);
let as_resend = SendEvent::from_node(&nodes[0]);
nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resend.msgs[0]);
commitment_signed_dance!(nodes[2], nodes[0], as_resend.commitment_msg, false, true);
expect_pending_htlcs_forwardable!(nodes[2]);
check_added_monitors(&nodes[2], 1);
let cs_forward = SendEvent::from_node(&nodes[2]);
nodes[3].node.handle_update_add_htlc(&nodes[2].node.get_our_node_id(), &cs_forward.msgs[0]);
commitment_signed_dance!(nodes[3], nodes[2], cs_forward.commitment_msg, false, true);
// Finally, check that nodes[3] does the correct thing - either accepting the payment or, if
// the payment metadata was modified, failing only the one modified HTLC and retaining the
// other.
if do_modify {
expect_pending_htlcs_forwardable_ignore!(nodes[3]);
nodes[3].node.process_pending_htlc_forwards();
expect_pending_htlcs_forwardable_conditions(nodes[3].node.get_and_clear_pending_events(),
&[HTLCDestination::FailedPayment {payment_hash}]);
nodes[3].node.process_pending_htlc_forwards();
check_added_monitors(&nodes[3], 1);
let ds_fail = get_htlc_update_msgs(&nodes[3], &nodes[2].node.get_our_node_id());
nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &ds_fail.update_fail_htlcs[0]);
commitment_signed_dance!(nodes[2], nodes[3], ds_fail.commitment_signed, false, true);
expect_pending_htlcs_forwardable_conditions(nodes[2].node.get_and_clear_pending_events(),
&[HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_id_cd_2 }]);
} else {
expect_pending_htlcs_forwardable!(nodes[3]);
expect_payment_claimable!(nodes[3], payment_hash, payment_secret, amt_msat);
claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
}
}
#[test]
fn test_payment_metadata_consistency() {
do_test_payment_metadata_consistency(true, true);
do_test_payment_metadata_consistency(true, false);
do_test_payment_metadata_consistency(false, true);
do_test_payment_metadata_consistency(false, false);
}