rust-lightning/lightning-net-tokio/src/lib.rs
Matt Corallo fd2464374b Drop tokio/macros dependency in lightning-net-tokio, fix MSRV
The `tokio` `macros` feature depends on `proc-macro2`, which
recently broke its MSRV in a patch version. Such crates aren't
reasonable for us to have as dependencies, so instead we replace
the one trivial use we have of `tokio::select!()` with our own
manual future.
2023-07-17 23:20:39 +00:00

789 lines
34 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! A socket handling library for those running in Tokio environments who wish to use
//! rust-lightning with native [`TcpStream`]s.
//!
//! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
//! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
//!
//! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
//! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
//! `SocketDescriptor` implementation.
//!
//! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
//! see their individual docs for details.
//!
//! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
// Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
#![deny(broken_intra_doc_links)]
#![deny(private_intra_doc_links)]
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
use bitcoin::secp256k1::PublicKey;
use tokio::net::TcpStream;
use tokio::{io, time};
use tokio::sync::mpsc;
use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
use lightning::ln::peer_handler;
use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
use lightning::ln::peer_handler::APeerManager;
use lightning::ln::msgs::NetAddress;
use std::ops::Deref;
use std::task::{self, Poll};
use std::future::Future;
use std::net::SocketAddr;
use std::net::TcpStream as StdTcpStream;
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use std::pin::Pin;
use std::hash::Hash;
static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
// We only need to select over multiple futures in one place, and taking on the full `tokio/macros`
// dependency tree in order to do so (which has broken our MSRV before) is excessive. Instead, we
// define a trivial two- and three- select macro with the specific types we need and just use that.
pub(crate) enum SelectorOutput {
A(Option<()>), B(Option<()>), C(tokio::io::Result<usize>),
}
pub(crate) struct TwoSelector<
A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
> {
pub a: A,
pub b: B,
}
impl<
A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
> Future for TwoSelector<A, B> {
type Output = SelectorOutput;
fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
match Pin::new(&mut self.a).poll(ctx) {
Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
Poll::Pending => {},
}
match Pin::new(&mut self.b).poll(ctx) {
Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
Poll::Pending => {},
}
Poll::Pending
}
}
pub(crate) struct ThreeSelector<
A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<usize>> + Unpin
> {
pub a: A,
pub b: B,
pub c: C,
}
impl<
A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<usize>> + Unpin
> Future for ThreeSelector<A, B, C> {
type Output = SelectorOutput;
fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
match Pin::new(&mut self.a).poll(ctx) {
Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
Poll::Pending => {},
}
match Pin::new(&mut self.b).poll(ctx) {
Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
Poll::Pending => {},
}
match Pin::new(&mut self.c).poll(ctx) {
Poll::Ready(res) => { return Poll::Ready(SelectorOutput::C(res)); },
Poll::Pending => {},
}
Poll::Pending
}
}
/// Connection contains all our internal state for a connection - we hold a reference to the
/// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
/// read future (which is returned by schedule_read).
struct Connection {
writer: Option<io::WriteHalf<TcpStream>>,
// Because our PeerManager is templated by user-provided types, and we can't (as far as I can
// tell) have a const RawWakerVTable built out of templated functions, we need some indirection
// between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
// This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
// the schedule_read stack.
//
// An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
// runtime with functions templated by the Arc<PeerManager> type, calling
// write_buffer_space_avail directly from tokio's write wake, however doing so would require
// more unsafe voodo than I really feel like writing.
write_avail: mpsc::Sender<()>,
// When we are told by rust-lightning to pause read (because we have writes backing up), we do
// so by setting read_paused. At that point, the read task will stop reading bytes from the
// socket. To wake it up (without otherwise changing its state, we can push a value into this
// Sender.
read_waker: mpsc::Sender<()>,
read_paused: bool,
rl_requested_disconnect: bool,
id: u64,
}
impl Connection {
async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
peer_manager: PM,
mut event_receiver: mpsc::Receiver<()>,
) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
loop {
if event_receiver.recv().await.is_none() {
return;
}
peer_manager.as_ref().process_events();
}
}
async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
peer_manager: PM,
us: Arc<Mutex<Self>>,
mut reader: io::ReadHalf<TcpStream>,
mut read_wake_receiver: mpsc::Receiver<()>,
mut write_avail_receiver: mpsc::Receiver<()>,
) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
// Create a waker to wake up poll_event_process, above
let (event_waker, event_receiver) = mpsc::channel(1);
tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
// 4KiB is nice and big without handling too many messages all at once, giving other peers
// a chance to do some work.
let mut buf = [0; 4096];
let mut our_descriptor = SocketDescriptor::new(us.clone());
// An enum describing why we did/are disconnecting:
enum Disconnect {
// Rust-Lightning told us to disconnect, either by returning an Err or by calling
// SocketDescriptor::disconnect_socket.
// In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
// already knows we're disconnected.
CloseConnection,
// The connection was disconnected for some other reason, ie because the socket was
// closed.
// In this case, we do need to call peer_manager.socket_disconnected() to inform
// Rust-Lightning that the socket is gone.
PeerDisconnected
}
let disconnect_type = loop {
let read_paused = {
let us_lock = us.lock().unwrap();
if us_lock.rl_requested_disconnect {
break Disconnect::CloseConnection;
}
us_lock.read_paused
};
// TODO: Drop the Box'ing of the futures once Rust has pin-on-stack support.
let select_result = if read_paused {
TwoSelector {
a: Box::pin(write_avail_receiver.recv()),
b: Box::pin(read_wake_receiver.recv()),
}.await
} else {
ThreeSelector {
a: Box::pin(write_avail_receiver.recv()),
b: Box::pin(read_wake_receiver.recv()),
c: Box::pin(reader.read(&mut buf)),
}.await
};
match select_result {
SelectorOutput::A(v) => {
assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
break Disconnect::CloseConnection;
}
},
SelectorOutput::B(_) => {},
SelectorOutput::C(read) => {
match read {
Ok(0) => break Disconnect::PeerDisconnected,
Ok(len) => {
let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
let mut us_lock = us.lock().unwrap();
match read_res {
Ok(pause_read) => {
if pause_read {
us_lock.read_paused = true;
}
},
Err(_) => break Disconnect::CloseConnection,
}
},
Err(_) => break Disconnect::PeerDisconnected,
}
},
}
let _ = event_waker.try_send(());
// At this point we've processed a message or two, and reset the ping timer for this
// peer, at least in the "are we still receiving messages" context, if we don't give up
// our timeslice to another task we may just spin on this peer, starving other peers
// and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
// here.
let _ = tokio::task::yield_now().await;
};
let writer_option = us.lock().unwrap().writer.take();
if let Some(mut writer) = writer_option {
// If the socket is already closed, shutdown() will fail, so just ignore it.
let _ = writer.shutdown().await;
}
if let Disconnect::PeerDisconnected = disconnect_type {
peer_manager.as_ref().socket_disconnected(&our_descriptor);
peer_manager.as_ref().process_events();
}
}
fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
// We only ever need a channel of depth 1 here: if we returned a non-full write to the
// PeerManager, we will eventually get notified that there is room in the socket to write
// new bytes, which will generate an event. That event will be popped off the queue before
// we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
// the write_buffer_space_avail() call, send_data() returns a non-full write.
let (write_avail, write_receiver) = mpsc::channel(1);
// Similarly here - our only goal is to make sure the reader wakes up at some point after
// we shove a value into the channel which comes after we've reset the read_paused bool to
// false.
let (read_waker, read_receiver) = mpsc::channel(1);
stream.set_nonblocking(true).unwrap();
let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
(reader, write_receiver, read_receiver,
Arc::new(Mutex::new(Self {
writer: Some(writer), write_avail, read_waker, read_paused: false,
rl_requested_disconnect: false,
id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
})))
}
}
fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
match stream.peer_addr() {
Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
addr: sockaddr.ip().octets(),
port: sockaddr.port(),
}),
Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
addr: sockaddr.ip().octets(),
port: sockaddr.port(),
}),
Err(_) => None,
}
}
/// Process incoming messages and feed outgoing messages on the provided socket generated by
/// accepting an incoming connection.
///
/// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress.
pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
peer_manager: PM,
stream: StdTcpStream,
) -> impl std::future::Future<Output=()>
where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
let remote_addr = get_addr_from_stream(&stream);
let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(test)]
let last_us = Arc::clone(&us);
let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
} else {
// Note that we will skip socket_disconnected here, in accordance with the PeerManager
// requirements.
None
};
async move {
if let Some(handle) = handle_opt {
if let Err(e) = handle.await {
assert!(e.is_cancelled());
} else {
// This is certainly not guaranteed to always be true - the read loop may exit
// while there are still pending write wakers that need to be woken up after the
// socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
// keep too many wakers around, this makes sense. The race should be rare (we do
// some work after shutdown()) and an error would be a major memory leak.
#[cfg(test)]
debug_assert!(Arc::try_unwrap(last_us).is_ok());
}
}
}
}
/// Process incoming messages and feed outgoing messages on the provided socket generated by
/// making an outbound connection which is expected to be accepted by a peer with the given
/// public key. The relevant processing is set to run free (via tokio::spawn).
///
/// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress.
pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
peer_manager: PM,
their_node_id: PublicKey,
stream: StdTcpStream,
) -> impl std::future::Future<Output=()>
where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
let remote_addr = get_addr_from_stream(&stream);
let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(test)]
let last_us = Arc::clone(&us);
let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
Some(tokio::spawn(async move {
// We should essentially always have enough room in a TCP socket buffer to send the
// initial 10s of bytes. However, tokio running in single-threaded mode will always
// fail writes and wake us back up later to write. Thus, we handle a single
// std::task::Poll::Pending but still expect to write the full set of bytes at once
// and use a relatively tight timeout.
if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
loop {
match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
v if v == initial_send.len() => break Ok(()),
0 => {
write_receiver.recv().await;
// In theory we could check for if we've been instructed to disconnect
// the peer here, but its OK to just skip it - we'll check for it in
// schedule_read prior to any relevant calls into RL.
},
_ => {
eprintln!("Failed to write first full message to socket!");
peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
break Err(());
}
}
}
}).await {
Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
}
}))
} else {
// Note that we will skip socket_disconnected here, in accordance with the PeerManager
// requirements.
None
};
async move {
if let Some(handle) = handle_opt {
if let Err(e) = handle.await {
assert!(e.is_cancelled());
} else {
// This is certainly not guaranteed to always be true - the read loop may exit
// while there are still pending write wakers that need to be woken up after the
// socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
// keep too many wakers around, this makes sense. The race should be rare (we do
// some work after shutdown()) and an error would be a major memory leak.
#[cfg(test)]
debug_assert!(Arc::try_unwrap(last_us).is_ok());
}
}
}
}
/// Process incoming messages and feed outgoing messages on a new connection made to the given
/// socket address which is expected to be accepted by a peer with the given public key (by
/// scheduling futures with tokio::spawn).
///
/// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
///
/// Returns a future (as the fn is async) which needs to be polled to complete the connection and
/// connection setup. That future then returns a future which will complete when the peer is
/// disconnected and associated handling futures are freed, though, because all processing in said
/// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
/// make progress.
pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
peer_manager: PM,
their_node_id: PublicKey,
addr: SocketAddr,
) -> Option<impl std::future::Future<Output=()>>
where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
Some(setup_outbound(peer_manager, their_node_id, stream))
} else { None }
}
const SOCK_WAKER_VTABLE: task::RawWakerVTable =
task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
}
// When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
// failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
// sending thread may have already gone away due to a socket close, in which case there's nothing
// to wake up anyway.
fn wake_socket_waker(orig_ptr: *const ()) {
let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
let _ = sender.try_send(());
drop_socket_waker(orig_ptr);
}
fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
let sender = unsafe { (*sender_ptr).clone() };
let _ = sender.try_send(());
}
fn drop_socket_waker(orig_ptr: *const ()) {
let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
// _orig_box is now dropped
}
fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
let new_ptr = new_box as *const mpsc::Sender<()>;
task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
}
/// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
/// type in the template of PeerHandler.
pub struct SocketDescriptor {
conn: Arc<Mutex<Connection>>,
id: u64,
}
impl SocketDescriptor {
fn new(conn: Arc<Mutex<Connection>>) -> Self {
let id = conn.lock().unwrap().id;
Self { conn, id }
}
}
impl peer_handler::SocketDescriptor for SocketDescriptor {
fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
// To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
// writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
// a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
// processing future which will call write_buffer_space_avail and we'll end up back here.
let mut us = self.conn.lock().unwrap();
if us.writer.is_none() {
// The writer gets take()n when it is time to shut down, so just fast-return 0 here.
return 0;
}
if resume_read && us.read_paused {
// The schedule_read future may go to lock up but end up getting woken up by there
// being more room in the write buffer, dropping the other end of this Sender
// before we get here, so we ignore any failures to wake it up.
us.read_paused = false;
let _ = us.read_waker.try_send(());
}
if data.is_empty() { return 0; }
let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
let mut ctx = task::Context::from_waker(&waker);
let mut written_len = 0;
loop {
match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
task::Poll::Ready(Ok(res)) => {
// The tokio docs *seem* to indicate this can't happen, and I certainly don't
// know how to handle it if it does (cause it should be a Poll::Pending
// instead):
assert_ne!(res, 0);
written_len += res;
if written_len == data.len() { return written_len; }
},
task::Poll::Ready(Err(e)) => {
// The tokio docs *seem* to indicate this can't happen, and I certainly don't
// know how to handle it if it does (cause it should be a Poll::Pending
// instead):
assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
// Probably we've already been closed, just return what we have and let the
// read thread handle closing logic.
return written_len;
},
task::Poll::Pending => {
// We're queued up for a write event now, but we need to make sure we also
// pause read given we're now waiting on the remote end to ACK (and in
// accordance with the send_data() docs).
us.read_paused = true;
// Further, to avoid any current pending read causing a `read_event` call, wake
// up the read_waker and restart its loop.
let _ = us.read_waker.try_send(());
return written_len;
},
}
}
}
fn disconnect_socket(&mut self) {
let mut us = self.conn.lock().unwrap();
us.rl_requested_disconnect = true;
// Wake up the sending thread, assuming it is still alive
let _ = us.write_avail.try_send(());
}
}
impl Clone for SocketDescriptor {
fn clone(&self) -> Self {
Self {
conn: Arc::clone(&self.conn),
id: self.id,
}
}
}
impl Eq for SocketDescriptor {}
impl PartialEq for SocketDescriptor {
fn eq(&self, o: &Self) -> bool {
self.id == o.id
}
}
impl Hash for SocketDescriptor {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.id.hash(state);
}
}
#[cfg(test)]
mod tests {
use lightning::ln::features::*;
use lightning::ln::msgs::*;
use lightning::ln::peer_handler::{MessageHandler, PeerManager};
use lightning::ln::features::NodeFeatures;
use lightning::routing::gossip::NodeId;
use lightning::events::*;
use lightning::util::test_utils::TestNodeSigner;
use bitcoin::Network;
use bitcoin::blockdata::constants::ChainHash;
use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
use tokio::sync::mpsc;
use std::mem;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex};
use std::time::Duration;
pub struct TestLogger();
impl lightning::util::logger::Logger for TestLogger {
fn log(&self, record: &lightning::util::logger::Record) {
println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
}
}
struct MsgHandler{
expected_pubkey: PublicKey,
pubkey_connected: mpsc::Sender<()>,
pubkey_disconnected: mpsc::Sender<()>,
disconnected_flag: AtomicBool,
msg_events: Mutex<Vec<MessageSendEvent>>,
}
impl RoutingMessageHandler for MsgHandler {
fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
fn processing_queue_high(&self) -> bool { false }
}
impl ChannelMessageHandler for MsgHandler {
fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
fn peer_disconnected(&self, their_node_id: &PublicKey) {
if *their_node_id == self.expected_pubkey {
self.disconnected_flag.store(true, Ordering::SeqCst);
self.pubkey_disconnected.clone().try_send(()).unwrap();
}
}
fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
if *their_node_id == self.expected_pubkey {
self.pubkey_connected.clone().try_send(()).unwrap();
}
Ok(())
}
fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
Some(vec![ChainHash::using_genesis_block(Network::Testnet)])
}
}
impl MessageSendEventsProvider for MsgHandler {
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
let mut ret = Vec::new();
mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
ret
}
}
fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
(std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
} else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
(std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
} else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
(std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
} else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
(std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
} else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
(std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
} else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
(std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
} else { panic!("Failed to bind to v4 localhost on common ports"); }
}
async fn do_basic_connection_test() {
let secp_ctx = Secp256k1::new();
let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
let (a_connected_sender, mut a_connected) = mpsc::channel(1);
let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
let a_handler = Arc::new(MsgHandler {
expected_pubkey: b_pub,
pubkey_connected: a_connected_sender,
pubkey_disconnected: a_disconnected_sender,
disconnected_flag: AtomicBool::new(false),
msg_events: Mutex::new(Vec::new()),
});
let a_manager = Arc::new(PeerManager::new(MessageHandler {
chan_handler: Arc::clone(&a_handler),
route_handler: Arc::clone(&a_handler),
onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
}, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
let (b_connected_sender, mut b_connected) = mpsc::channel(1);
let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
let b_handler = Arc::new(MsgHandler {
expected_pubkey: a_pub,
pubkey_connected: b_connected_sender,
pubkey_disconnected: b_disconnected_sender,
disconnected_flag: AtomicBool::new(false),
msg_events: Mutex::new(Vec::new()),
});
let b_manager = Arc::new(PeerManager::new(MessageHandler {
chan_handler: Arc::clone(&b_handler),
route_handler: Arc::clone(&b_handler),
onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
}, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
// We bind on localhost, hoping the environment is properly configured with a local
// address. This may not always be the case in containers and the like, so if this test is
// failing for you check that you have a loopback interface and it is configured with
// 127.0.0.1.
let (conn_a, conn_b) = make_tcp_connection();
let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
let fut_b = super::setup_inbound(b_manager, conn_b);
tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
});
assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
a_manager.process_events();
tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
fut_a.await;
fut_b.await;
}
#[tokio::test(flavor = "multi_thread")]
async fn basic_threaded_connection_test() {
do_basic_connection_test().await;
}
#[tokio::test]
async fn basic_unthreaded_connection_test() {
do_basic_connection_test().await;
}
async fn race_disconnect_accept() {
// Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
// This attempts to find other similar races by opening connections and shutting them down
// while connecting. Sadly in testing this did *not* reproduce the previous issue.
let secp_ctx = Secp256k1::new();
let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
let a_manager = Arc::new(PeerManager::new(MessageHandler {
chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
}, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
// Make two connections, one for an inbound and one for an outbound connection
let conn_a = {
let (conn_a, _) = make_tcp_connection();
conn_a
};
let conn_b = {
let (_, conn_b) = make_tcp_connection();
conn_b
};
// Call connection setup inside new tokio tasks.
let manager_reference = Arc::clone(&a_manager);
tokio::spawn(async move {
super::setup_inbound(manager_reference, conn_a).await
});
tokio::spawn(async move {
super::setup_outbound(a_manager, b_pub, conn_b).await
});
}
#[tokio::test(flavor = "multi_thread")]
async fn threaded_race_disconnect_accept() {
race_disconnect_accept().await;
}
#[tokio::test]
async fn unthreaded_race_disconnect_accept() {
race_disconnect_accept().await;
}
}