mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 08:28:49 +01:00
507 lines
21 KiB
Rust
507 lines
21 KiB
Rust
//! Various utilities for building scripts and deriving keys related to channels. These are
|
|
//! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing
|
|
//! by hand.
|
|
|
|
use bitcoin::blockdata::script::{Script,Builder};
|
|
use bitcoin::blockdata::opcodes;
|
|
use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType};
|
|
use bitcoin::consensus::encode::{self, Decodable, Encodable};
|
|
use bitcoin::util::bip143;
|
|
|
|
use bitcoin_hashes::{Hash, HashEngine};
|
|
use bitcoin_hashes::sha256::Hash as Sha256;
|
|
use bitcoin_hashes::ripemd160::Hash as Ripemd160;
|
|
use bitcoin_hashes::hash160::Hash as Hash160;
|
|
use bitcoin_hashes::sha256d::Hash as Sha256dHash;
|
|
|
|
use ln::channelmanager::{PaymentHash, PaymentPreimage};
|
|
use ln::msgs::DecodeError;
|
|
use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor};
|
|
|
|
use secp256k1::key::{SecretKey, PublicKey};
|
|
use secp256k1::{Secp256k1, Signature};
|
|
use secp256k1;
|
|
|
|
pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703;
|
|
pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663;
|
|
|
|
#[derive(PartialEq)]
|
|
pub(crate) enum HTLCType {
|
|
AcceptedHTLC,
|
|
OfferedHTLC
|
|
}
|
|
|
|
impl HTLCType {
|
|
/// Check if a given tx witnessScript len matchs one of a pre-signed HTLC
|
|
pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) -> Option<HTLCType> {
|
|
if witness_script_len == 133 {
|
|
Some(HTLCType::OfferedHTLC)
|
|
} else if witness_script_len >= 136 && witness_script_len <= 139 {
|
|
Some(HTLCType::AcceptedHTLC)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
// Various functions for key derivation and transaction creation for use within channels. Primarily
|
|
// used in Channel and ChannelMonitor.
|
|
|
|
pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] {
|
|
let mut res: [u8; 32] = commitment_seed.clone();
|
|
for i in 0..48 {
|
|
let bitpos = 47 - i;
|
|
if idx & (1 << bitpos) == (1 << bitpos) {
|
|
res[bitpos / 8] ^= 1 << (bitpos & 7);
|
|
res = Sha256::hash(&res).into_inner();
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base
|
|
/// private key for that type of key and the per_commitment_point (available in TxCreationKeys)
|
|
pub fn derive_private_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize());
|
|
let res = Sha256::from_engine(sha).into_inner();
|
|
|
|
let mut key = base_secret.clone();
|
|
key.add_assign(&res)?;
|
|
Ok(key)
|
|
}
|
|
|
|
pub(super) fn derive_public_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&base_point.serialize());
|
|
let res = Sha256::from_engine(sha).into_inner();
|
|
|
|
let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
|
|
base_point.combine(&hashkey)
|
|
}
|
|
|
|
/// Derives a revocation key from its constituent parts.
|
|
/// Note that this is infallible iff we trust that at least one of the two input keys are randomly
|
|
/// generated (ie our own).
|
|
pub(super) fn derive_private_revocation_key<T: secp256k1::Signing>(secp_ctx: &Secp256k1<T>, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result<SecretKey, secp256k1::Error> {
|
|
let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret);
|
|
let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret);
|
|
|
|
let rev_append_commit_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&revocation_base_point.serialize());
|
|
sha.input(&per_commitment_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
let commit_append_rev_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&revocation_base_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let mut part_a = revocation_base_secret.clone();
|
|
part_a.mul_assign(&rev_append_commit_hash_key)?;
|
|
let mut part_b = per_commitment_secret.clone();
|
|
part_b.mul_assign(&commit_append_rev_hash_key)?;
|
|
part_a.add_assign(&part_b[..])?;
|
|
Ok(part_a)
|
|
}
|
|
|
|
pub(super) fn derive_public_revocation_key<T: secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result<PublicKey, secp256k1::Error> {
|
|
let rev_append_commit_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&revocation_base_point.serialize());
|
|
sha.input(&per_commitment_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
let commit_append_rev_hash_key = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&per_commitment_point.serialize());
|
|
sha.input(&revocation_base_point.serialize());
|
|
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let mut part_a = revocation_base_point.clone();
|
|
part_a.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?;
|
|
let mut part_b = per_commitment_point.clone();
|
|
part_b.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?;
|
|
part_a.combine(&part_b)
|
|
}
|
|
|
|
/// The set of public keys which are used in the creation of one commitment transaction.
|
|
/// These are derived from the channel base keys and per-commitment data.
|
|
#[derive(PartialEq)]
|
|
pub struct TxCreationKeys {
|
|
/// The per-commitment public key which was used to derive the other keys.
|
|
pub per_commitment_point: PublicKey,
|
|
/// The revocation key which is used to allow the owner of the commitment transaction to
|
|
/// provide their counterparty the ability to punish them if they broadcast an old state.
|
|
pub(crate) revocation_key: PublicKey,
|
|
/// A's HTLC Key
|
|
pub(crate) a_htlc_key: PublicKey,
|
|
/// B's HTLC Key
|
|
pub(crate) b_htlc_key: PublicKey,
|
|
/// A's Payment Key (which isn't allowed to be spent from for some delay)
|
|
pub(crate) a_delayed_payment_key: PublicKey,
|
|
/// B's Payment Key
|
|
pub(crate) b_payment_key: PublicKey,
|
|
}
|
|
|
|
/// One counterparty's public keys which do not change over the life of a channel.
|
|
#[derive(Clone)]
|
|
pub struct ChannelPublicKeys {
|
|
/// The public key which is used to sign all commitment transactions, as it appears in the
|
|
/// on-chain channel lock-in 2-of-2 multisig output.
|
|
pub funding_pubkey: PublicKey,
|
|
/// The base point which is used (with derive_public_revocation_key) to derive per-commitment
|
|
/// revocation keys. The per-commitment revocation private key is then revealed by the owner of
|
|
/// a commitment transaction so that their counterparty can claim all available funds if they
|
|
/// broadcast an old state.
|
|
pub revocation_basepoint: PublicKey,
|
|
/// The base point which is used (with derive_public_key) to derive a per-commitment payment
|
|
/// public key which receives immediately-spendable non-HTLC-encumbered funds.
|
|
pub payment_basepoint: PublicKey,
|
|
/// The base point which is used (with derive_public_key) to derive a per-commitment payment
|
|
/// public key which receives non-HTLC-encumbered funds which are only available for spending
|
|
/// after some delay (or can be claimed via the revocation path).
|
|
pub delayed_payment_basepoint: PublicKey,
|
|
/// The base point which is used (with derive_public_key) to derive a per-commitment public key
|
|
/// which is used to encumber HTLC-in-flight outputs.
|
|
pub htlc_basepoint: PublicKey,
|
|
}
|
|
|
|
impl_writeable!(ChannelPublicKeys, 33*5, {
|
|
funding_pubkey,
|
|
revocation_basepoint,
|
|
payment_basepoint,
|
|
delayed_payment_basepoint,
|
|
htlc_basepoint
|
|
});
|
|
|
|
|
|
impl TxCreationKeys {
|
|
pub(crate) fn new<T: secp256k1::Signing + secp256k1::Verification>(secp_ctx: &Secp256k1<T>, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result<TxCreationKeys, secp256k1::Error> {
|
|
Ok(TxCreationKeys {
|
|
per_commitment_point: per_commitment_point.clone(),
|
|
revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?,
|
|
a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?,
|
|
b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?,
|
|
a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?,
|
|
b_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_payment_base)?,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by
|
|
/// the revocation key
|
|
pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script {
|
|
Builder::new().push_opcode(opcodes::all::OP_IF)
|
|
.push_slice(&revocation_key.serialize())
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_int(to_self_delay as i64)
|
|
.push_opcode(opcodes::all::OP_CSV)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_slice(&delayed_payment_key.serialize())
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.into_script()
|
|
}
|
|
|
|
#[derive(Clone, PartialEq)]
|
|
/// Information about an HTLC as it appears in a commitment transaction
|
|
pub struct HTLCOutputInCommitment {
|
|
/// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction).
|
|
/// Note that this is not the same as whether it is ountbound *from us*. To determine that you
|
|
/// need to compare this value to whether the commitment transaction in question is that of
|
|
/// the remote party or our own.
|
|
pub offered: bool,
|
|
/// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is
|
|
/// this divided by 1000.
|
|
pub amount_msat: u64,
|
|
/// The CLTV lock-time at which this HTLC expires.
|
|
pub cltv_expiry: u32,
|
|
/// The hash of the preimage which unlocks this HTLC.
|
|
pub payment_hash: PaymentHash,
|
|
/// The position within the commitment transactions' outputs. This may be None if the value is
|
|
/// below the dust limit (in which case no output appears in the commitment transaction and the
|
|
/// value is spent to additional transaction fees).
|
|
pub transaction_output_index: Option<u32>,
|
|
}
|
|
|
|
#[inline]
|
|
pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script {
|
|
let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner();
|
|
if htlc.offered {
|
|
Builder::new().push_opcode(opcodes::all::OP_DUP)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&Hash160::hash(&revocation_key.serialize())[..])
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_slice(&b_htlc_key.serialize()[..])
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_opcode(opcodes::all::OP_SIZE)
|
|
.push_int(32)
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_NOTIF)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_slice(&a_htlc_key.serialize()[..])
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&payment_hash160)
|
|
.push_opcode(opcodes::all::OP_EQUALVERIFY)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.into_script()
|
|
} else {
|
|
Builder::new().push_opcode(opcodes::all::OP_DUP)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&Hash160::hash(&revocation_key.serialize())[..])
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_slice(&b_htlc_key.serialize()[..])
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_opcode(opcodes::all::OP_SIZE)
|
|
.push_int(32)
|
|
.push_opcode(opcodes::all::OP_EQUAL)
|
|
.push_opcode(opcodes::all::OP_IF)
|
|
.push_opcode(opcodes::all::OP_HASH160)
|
|
.push_slice(&payment_hash160)
|
|
.push_opcode(opcodes::all::OP_EQUALVERIFY)
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_SWAP)
|
|
.push_slice(&a_htlc_key.serialize()[..])
|
|
.push_int(2)
|
|
.push_opcode(opcodes::all::OP_CHECKMULTISIG)
|
|
.push_opcode(opcodes::all::OP_ELSE)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_int(htlc.cltv_expiry as i64)
|
|
.push_opcode(opcodes::all::OP_CLTV)
|
|
.push_opcode(opcodes::all::OP_DROP)
|
|
.push_opcode(opcodes::all::OP_CHECKSIG)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.push_opcode(opcodes::all::OP_ENDIF)
|
|
.into_script()
|
|
}
|
|
}
|
|
|
|
/// note here that 'a_revocation_key' is generated using b_revocation_basepoint and a's
|
|
/// commitment secret. 'htlc' does *not* need to have its previous_output_index filled.
|
|
#[inline]
|
|
pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script {
|
|
get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key)
|
|
}
|
|
|
|
/// Gets the redeemscript for a funding output from the two funding public keys.
|
|
/// Note that the order of funding public keys does not matter.
|
|
pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script {
|
|
let our_funding_key = a.serialize();
|
|
let their_funding_key = b.serialize();
|
|
|
|
let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2);
|
|
if our_funding_key[..] < their_funding_key[..] {
|
|
builder.push_slice(&our_funding_key)
|
|
.push_slice(&their_funding_key)
|
|
} else {
|
|
builder.push_slice(&their_funding_key)
|
|
.push_slice(&our_funding_key)
|
|
}.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
|
|
}
|
|
|
|
/// panics if htlc.transaction_output_index.is_none()!
|
|
pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction {
|
|
let mut txins: Vec<TxIn> = Vec::new();
|
|
txins.push(TxIn {
|
|
previous_output: OutPoint {
|
|
txid: prev_hash.clone(),
|
|
vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"),
|
|
},
|
|
script_sig: Script::new(),
|
|
sequence: 0,
|
|
witness: Vec::new(),
|
|
});
|
|
|
|
let total_fee = if htlc.offered {
|
|
feerate_per_kw * HTLC_TIMEOUT_TX_WEIGHT / 1000
|
|
} else {
|
|
feerate_per_kw * HTLC_SUCCESS_TX_WEIGHT / 1000
|
|
};
|
|
|
|
let mut txouts: Vec<TxOut> = Vec::new();
|
|
txouts.push(TxOut {
|
|
script_pubkey: get_revokeable_redeemscript(revocation_key, to_self_delay, a_delayed_payment_key).to_v0_p2wsh(),
|
|
value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here)
|
|
});
|
|
|
|
Transaction {
|
|
version: 2,
|
|
lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 },
|
|
input: txins,
|
|
output: txouts,
|
|
}
|
|
}
|
|
|
|
/// Signs a transaction created by build_htlc_transaction. If the transaction is an
|
|
/// HTLC-Success transaction (ie htlc.offered is false), preimage must be set!
|
|
pub(crate) fn sign_htlc_transaction<T: secp256k1::Signing>(tx: &mut Transaction, their_sig: &Signature, preimage: &Option<PaymentPreimage>, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Script), ()> {
|
|
if tx.input.len() != 1 { return Err(()); }
|
|
if tx.input[0].witness.len() != 0 { return Err(()); }
|
|
|
|
let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key);
|
|
|
|
let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?;
|
|
let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
|
|
let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key;
|
|
let our_sig = secp_ctx.sign(&sighash, &our_htlc_key);
|
|
|
|
tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
|
|
|
|
if local_tx { // b, then a
|
|
tx.input[0].witness.push(their_sig.serialize_der().to_vec());
|
|
tx.input[0].witness.push(our_sig.serialize_der().to_vec());
|
|
} else {
|
|
tx.input[0].witness.push(our_sig.serialize_der().to_vec());
|
|
tx.input[0].witness.push(their_sig.serialize_der().to_vec());
|
|
}
|
|
tx.input[0].witness[1].push(SigHashType::All as u8);
|
|
tx.input[0].witness[2].push(SigHashType::All as u8);
|
|
|
|
if htlc.offered {
|
|
tx.input[0].witness.push(Vec::new());
|
|
assert!(preimage.is_none());
|
|
} else {
|
|
tx.input[0].witness.push(preimage.unwrap().0.to_vec());
|
|
}
|
|
|
|
tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec());
|
|
|
|
Ok((our_sig, htlc_redeemscript))
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
/// We use this to track local commitment transactions and put off signing them until we are ready
|
|
/// to broadcast. Eventually this will require a signer which is possibly external, but for now we
|
|
/// just pass in the SecretKeys required.
|
|
pub(crate) struct LocalCommitmentTransaction {
|
|
tx: Transaction
|
|
}
|
|
impl LocalCommitmentTransaction {
|
|
#[cfg(test)]
|
|
pub fn dummy() -> Self {
|
|
Self { tx: Transaction {
|
|
version: 2,
|
|
input: Vec::new(),
|
|
output: Vec::new(),
|
|
lock_time: 0,
|
|
} }
|
|
}
|
|
|
|
pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction {
|
|
if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); }
|
|
if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); }
|
|
|
|
tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
|
|
|
|
if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] {
|
|
tx.input[0].witness.push(Vec::new());
|
|
tx.input[0].witness.push(their_sig.serialize_der().to_vec());
|
|
tx.input[0].witness[2].push(SigHashType::All as u8);
|
|
} else {
|
|
tx.input[0].witness.push(their_sig.serialize_der().to_vec());
|
|
tx.input[0].witness[1].push(SigHashType::All as u8);
|
|
tx.input[0].witness.push(Vec::new());
|
|
}
|
|
|
|
Self { tx }
|
|
}
|
|
|
|
pub fn txid(&self) -> Sha256dHash {
|
|
self.tx.txid()
|
|
}
|
|
|
|
pub fn has_local_sig(&self) -> bool {
|
|
if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); }
|
|
if self.tx.input[0].witness.len() == 4 {
|
|
assert!(!self.tx.input[0].witness[1].is_empty());
|
|
assert!(!self.tx.input[0].witness[2].is_empty());
|
|
true
|
|
} else {
|
|
assert_eq!(self.tx.input[0].witness.len(), 3);
|
|
assert!(self.tx.input[0].witness[0].is_empty());
|
|
assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty());
|
|
false
|
|
}
|
|
}
|
|
|
|
pub fn add_local_sig<T: secp256k1::Signing>(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1<T>) {
|
|
if self.has_local_sig() { return; }
|
|
let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx)
|
|
.sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]);
|
|
let our_sig = secp_ctx.sign(&sighash, funding_key);
|
|
|
|
if self.tx.input[0].witness[1].is_empty() {
|
|
self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec();
|
|
self.tx.input[0].witness[1].push(SigHashType::All as u8);
|
|
} else {
|
|
self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec();
|
|
self.tx.input[0].witness[2].push(SigHashType::All as u8);
|
|
}
|
|
|
|
self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec());
|
|
}
|
|
|
|
pub fn without_valid_witness(&self) -> &Transaction { &self.tx }
|
|
pub fn with_valid_witness(&self) -> &Transaction {
|
|
assert!(self.has_local_sig());
|
|
&self.tx
|
|
}
|
|
}
|
|
impl PartialEq for LocalCommitmentTransaction {
|
|
// We dont care whether we are signed in equality comparison
|
|
fn eq(&self, o: &Self) -> bool {
|
|
self.txid() == o.txid()
|
|
}
|
|
}
|
|
impl Writeable for LocalCommitmentTransaction {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
|
|
match e {
|
|
encode::Error::Io(e) => return Err(e),
|
|
_ => panic!("local tx must have been well-formed!"),
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
impl<R: ::std::io::Read> Readable<R> for LocalCommitmentTransaction {
|
|
fn read(reader: &mut R) -> Result<Self, DecodeError> {
|
|
let tx = match Transaction::consensus_decode(reader.by_ref()) {
|
|
Ok(tx) => tx,
|
|
Err(e) => match e {
|
|
encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
|
|
_ => return Err(DecodeError::InvalidValue),
|
|
},
|
|
};
|
|
|
|
if tx.input.len() != 1 {
|
|
// Ensure tx didn't hit the 0-input ambiguity case.
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
Ok(Self { tx })
|
|
}
|
|
}
|