rust-lightning/lightning/src/util/ser_macros.rs
Wilmer Paulino 3c24a137b1
Don't consume readers with FixedLengthReader
We can't always assume that we're done reading after using a
FixedLengthReader. In some cases, we may need to read a set of
length-prefixed objects one at a time, and we'd like to do so without
incurring an additional allocation by reading a number of bytes first to
then deserialize them.
2024-03-27 14:27:55 -07:00

1376 lines
53 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Some macros that implement [`Readable`]/[`Writeable`] traits for lightning messages.
//! They also handle serialization and deserialization of TLVs.
//!
//! [`Readable`]: crate::util::ser::Readable
//! [`Writeable`]: crate::util::ser::Writeable
// There are quite a few TLV serialization "types" which behave differently. We currently only
// publicly document the `optional` and `required` types, not supporting anything else publicly and
// changing them at will.
//
// Some of the other types include:
// * (default_value, $default) - reads optionally, reading $default if no TLV is present
// * (static_value, $value) - ignores any TLVs, always using $value
// * required_vec - reads into a Vec without a length prefix, failing if no TLV is present.
// * optional_vec - reads into an Option<Vec> without a length prefix, continuing if no TLV is
// present. Writes from a Vec directly, only if any elements are present. Note
// that the struct deserialization macros return a Vec, not an Option.
// * upgradable_option - reads via MaybeReadable.
// * upgradable_required - reads via MaybeReadable, requiring a TLV be present but may return None
// if MaybeReadable::read() returns None.
/// Implements serialization for a single TLV record.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _encode_tlv {
($stream: expr, $type: expr, $field: expr, (default_value, $default: expr)) => {
$crate::_encode_tlv!($stream, $type, $field, required)
};
($stream: expr, $type: expr, $field: expr, (static_value, $value: expr)) => {
let _ = &$field; // Ensure we "use" the $field
};
($stream: expr, $type: expr, $field: expr, required) => {
BigSize($type).write($stream)?;
BigSize($field.serialized_length() as u64).write($stream)?;
$field.write($stream)?;
};
($stream: expr, $type: expr, $field: expr, required_vec) => {
$crate::_encode_tlv!($stream, $type, $crate::util::ser::WithoutLength(&$field), required);
};
($stream: expr, $optional_type: expr, $optional_field: expr, option) => {
if let Some(ref field) = $optional_field {
BigSize($optional_type).write($stream)?;
BigSize(field.serialized_length() as u64).write($stream)?;
field.write($stream)?;
}
};
($stream: expr, $type: expr, $field: expr, optional_vec) => {
if !$field.is_empty() {
$crate::_encode_tlv!($stream, $type, $field, required_vec);
}
};
($stream: expr, $type: expr, $field: expr, upgradable_required) => {
$crate::_encode_tlv!($stream, $type, $field, required);
};
($stream: expr, $type: expr, $field: expr, upgradable_option) => {
$crate::_encode_tlv!($stream, $type, $field, option);
};
($stream: expr, $type: expr, $field: expr, (option, encoding: ($fieldty: ty, $encoding: ident))) => {
$crate::_encode_tlv!($stream, $type, $field.map(|f| $encoding(f)), option);
};
($stream: expr, $type: expr, $field: expr, (option, encoding: $fieldty: ty)) => {
$crate::_encode_tlv!($stream, $type, $field, option);
};
($stream: expr, $type: expr, $field: expr, (option: $trait: ident $(, $read_arg: expr)?)) => {
// Just a read-mapped type
$crate::_encode_tlv!($stream, $type, $field, option);
};
}
/// Panics if the last seen TLV type is not numerically less than the TLV type currently being checked.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _check_encoded_tlv_order {
($last_type: expr, $type: expr, (static_value, $value: expr)) => { };
($last_type: expr, $type: expr, $fieldty: tt) => {
if let Some(t) = $last_type {
#[allow(unused_comparisons)] // Note that $type may be 0 making the following comparison always false
(debug_assert!(t < $type))
}
$last_type = Some($type);
};
}
/// Implements the TLVs serialization part in a [`Writeable`] implementation of a struct.
///
/// This should be called inside a method which returns `Result<_, `[`io::Error`]`>`, such as
/// [`Writeable::write`]. It will only return an `Err` if the stream `Err`s or [`Writeable::write`]
/// on one of the fields `Err`s.
///
/// `$stream` must be a `&mut `[`Writer`] which will receive the bytes for each TLV in the stream.
///
/// Fields MUST be sorted in `$type`-order.
///
/// Note that the lightning TLV requirements require that a single type not appear more than once,
/// that TLVs are sorted in type-ascending order, and that any even types be understood by the
/// decoder.
///
/// Any `option` fields which have a value of `None` will not be serialized at all.
///
/// For example,
/// ```
/// # use lightning::encode_tlv_stream;
/// # fn write<W: lightning::util::ser::Writer> (stream: &mut W) -> Result<(), lightning::io::Error> {
/// let mut required_value = 0u64;
/// let mut optional_value: Option<u64> = None;
/// encode_tlv_stream!(stream, {
/// (0, required_value, required),
/// (1, Some(42u64), option),
/// (2, optional_value, option),
/// });
/// // At this point `required_value` has been written as a TLV of type 0, `42u64` has been written
/// // as a TLV of type 1 (indicating the reader may ignore it if it is not understood), and *no*
/// // TLV is written with type 2.
/// # Ok(())
/// # }
/// ```
///
/// [`Writeable`]: crate::util::ser::Writeable
/// [`io::Error`]: crate::io::Error
/// [`Writeable::write`]: crate::util::ser::Writeable::write
/// [`Writer`]: crate::util::ser::Writer
#[macro_export]
macro_rules! encode_tlv_stream {
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),* $(,)*}) => {
$crate::_encode_tlv_stream!($stream, {$(($type, $field, $fieldty)),*})
}
}
/// Implementation of [`encode_tlv_stream`].
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _encode_tlv_stream {
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),* $(,)*}) => { {
$crate::_encode_tlv_stream!($stream, { $(($type, $field, $fieldty)),* }, &[])
} };
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),* $(,)*}, $extra_tlvs: expr) => { {
#[allow(unused_imports)]
use $crate::{
ln::msgs::DecodeError,
util::ser,
util::ser::BigSize,
util::ser::Writeable,
};
$(
$crate::_encode_tlv!($stream, $type, $field, $fieldty);
)*
for tlv in $extra_tlvs {
let (typ, value): &(u64, Vec<u8>) = tlv;
$crate::_encode_tlv!($stream, *typ, *value, required_vec);
}
#[allow(unused_mut, unused_variables, unused_assignments)]
#[cfg(debug_assertions)]
{
let mut last_seen: Option<u64> = None;
$(
$crate::_check_encoded_tlv_order!(last_seen, $type, $fieldty);
)*
for tlv in $extra_tlvs {
let (typ, _): &(u64, Vec<u8>) = tlv;
$crate::_check_encoded_tlv_order!(last_seen, *typ, required_vec);
}
}
} };
}
/// Adds the length of the serialized field to a [`LengthCalculatingWriter`].
/// This is exported for use by other exported macros, do not use directly.
///
/// [`LengthCalculatingWriter`]: crate::util::ser::LengthCalculatingWriter
#[doc(hidden)]
#[macro_export]
macro_rules! _get_varint_length_prefixed_tlv_length {
($len: expr, $type: expr, $field: expr, (default_value, $default: expr)) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field, required)
};
($len: expr, $type: expr, $field: expr, (static_value, $value: expr)) => {
};
($len: expr, $type: expr, $field: expr, required) => {
BigSize($type).write(&mut $len).expect("No in-memory data may fail to serialize");
let field_len = $field.serialized_length();
BigSize(field_len as u64).write(&mut $len).expect("No in-memory data may fail to serialize");
$len.0 += field_len;
};
($len: expr, $type: expr, $field: expr, required_vec) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $crate::util::ser::WithoutLength(&$field), required);
};
($len: expr, $optional_type: expr, $optional_field: expr, option) => {
if let Some(ref field) = $optional_field {
BigSize($optional_type).write(&mut $len).expect("No in-memory data may fail to serialize");
let field_len = field.serialized_length();
BigSize(field_len as u64).write(&mut $len).expect("No in-memory data may fail to serialize");
$len.0 += field_len;
}
};
($len: expr, $type: expr, $field: expr, optional_vec) => {
if !$field.is_empty() {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field, required_vec);
}
};
($len: expr, $type: expr, $field: expr, (option: $trait: ident $(, $read_arg: expr)?)) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field, option);
};
($len: expr, $type: expr, $field: expr, (option, encoding: ($fieldty: ty, $encoding: ident))) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field.map(|f| $encoding(f)), option);
};
($len: expr, $type: expr, $field: expr, upgradable_required) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field, required);
};
($len: expr, $type: expr, $field: expr, upgradable_option) => {
$crate::_get_varint_length_prefixed_tlv_length!($len, $type, $field, option);
};
}
/// See the documentation of [`write_tlv_fields`].
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _encode_varint_length_prefixed_tlv {
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),*}) => { {
$crate::_encode_varint_length_prefixed_tlv!($stream, {$(($type, $field, $fieldty)),*}, &[])
} };
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),*}, $extra_tlvs: expr) => { {
extern crate alloc;
use $crate::util::ser::BigSize;
use alloc::vec::Vec;
let len = {
#[allow(unused_mut)]
let mut len = $crate::util::ser::LengthCalculatingWriter(0);
$(
$crate::_get_varint_length_prefixed_tlv_length!(len, $type, $field, $fieldty);
)*
for tlv in $extra_tlvs {
let (typ, value): &(u64, Vec<u8>) = tlv;
$crate::_get_varint_length_prefixed_tlv_length!(len, *typ, *value, required_vec);
}
len.0
};
BigSize(len as u64).write($stream)?;
$crate::_encode_tlv_stream!($stream, { $(($type, $field, $fieldty)),* }, $extra_tlvs);
} };
}
/// Errors if there are missing required TLV types between the last seen type and the type currently being processed.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _check_decoded_tlv_order {
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, (default_value, $default: expr)) => {{
#[allow(unused_comparisons)] // Note that $type may be 0 making the second comparison always false
let invalid_order = ($last_seen_type.is_none() || $last_seen_type.unwrap() < $type) && $typ.0 > $type;
if invalid_order {
$field = $default.into();
}
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, (static_value, $value: expr)) => {
};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, required) => {{
#[allow(unused_comparisons)] // Note that $type may be 0 making the second comparison always false
let invalid_order = ($last_seen_type.is_none() || $last_seen_type.unwrap() < $type) && $typ.0 > $type;
if invalid_order {
return Err(DecodeError::InvalidValue);
}
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, (required: $trait: ident $(, $read_arg: expr)?)) => {{
$crate::_check_decoded_tlv_order!($last_seen_type, $typ, $type, $field, required);
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, option) => {{
// no-op
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, required_vec) => {{
$crate::_check_decoded_tlv_order!($last_seen_type, $typ, $type, $field, required);
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, optional_vec) => {{
// no-op
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, upgradable_required) => {{
_check_decoded_tlv_order!($last_seen_type, $typ, $type, $field, required)
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, upgradable_option) => {{
// no-op
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, (option: $trait: ident $(, $read_arg: expr)?)) => {{
// no-op
}};
($last_seen_type: expr, $typ: expr, $type: expr, $field: ident, (option, encoding: $encoding: tt)) => {{
// no-op
}};
}
/// Errors if there are missing required TLV types after the last seen type.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _check_missing_tlv {
($last_seen_type: expr, $type: expr, $field: ident, (default_value, $default: expr)) => {{
#[allow(unused_comparisons)] // Note that $type may be 0 making the second comparison always false
let missing_req_type = $last_seen_type.is_none() || $last_seen_type.unwrap() < $type;
if missing_req_type {
$field = $default.into();
}
}};
($last_seen_type: expr, $type: expr, $field: expr, (static_value, $value: expr)) => {
$field = $value;
};
($last_seen_type: expr, $type: expr, $field: ident, required) => {{
#[allow(unused_comparisons)] // Note that $type may be 0 making the second comparison always false
let missing_req_type = $last_seen_type.is_none() || $last_seen_type.unwrap() < $type;
if missing_req_type {
return Err(DecodeError::InvalidValue);
}
}};
($last_seen_type: expr, $type: expr, $field: ident, (required: $trait: ident $(, $read_arg: expr)?)) => {{
$crate::_check_missing_tlv!($last_seen_type, $type, $field, required);
}};
($last_seen_type: expr, $type: expr, $field: ident, required_vec) => {{
$crate::_check_missing_tlv!($last_seen_type, $type, $field, required);
}};
($last_seen_type: expr, $type: expr, $field: ident, option) => {{
// no-op
}};
($last_seen_type: expr, $type: expr, $field: ident, optional_vec) => {{
// no-op
}};
($last_seen_type: expr, $type: expr, $field: ident, upgradable_required) => {{
_check_missing_tlv!($last_seen_type, $type, $field, required)
}};
($last_seen_type: expr, $type: expr, $field: ident, upgradable_option) => {{
// no-op
}};
($last_seen_type: expr, $type: expr, $field: ident, (option: $trait: ident $(, $read_arg: expr)?)) => {{
// no-op
}};
($last_seen_type: expr, $type: expr, $field: ident, (option, encoding: $encoding: tt)) => {{
// no-op
}};
}
/// Implements deserialization for a single TLV record.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _decode_tlv {
($reader: expr, $field: ident, (default_value, $default: expr)) => {{
$crate::_decode_tlv!($reader, $field, required)
}};
($reader: expr, $field: ident, (static_value, $value: expr)) => {{
}};
($reader: expr, $field: ident, required) => {{
$field = $crate::util::ser::Readable::read(&mut $reader)?;
}};
($reader: expr, $field: ident, (required: $trait: ident $(, $read_arg: expr)?)) => {{
$field = $trait::read(&mut $reader $(, $read_arg)*)?;
}};
($reader: expr, $field: ident, required_vec) => {{
let f: $crate::util::ser::WithoutLength<Vec<_>> = $crate::util::ser::Readable::read(&mut $reader)?;
$field = f.0;
}};
($reader: expr, $field: ident, option) => {{
$field = Some($crate::util::ser::Readable::read(&mut $reader)?);
}};
($reader: expr, $field: ident, optional_vec) => {{
let f: $crate::util::ser::WithoutLength<Vec<_>> = $crate::util::ser::Readable::read(&mut $reader)?;
$field = Some(f.0);
}};
// `upgradable_required` indicates we're reading a required TLV that may have been upgraded
// without backwards compat. We'll error if the field is missing, and return `Ok(None)` if the
// field is present but we can no longer understand it.
// Note that this variant can only be used within a `MaybeReadable` read.
($reader: expr, $field: ident, upgradable_required) => {{
$field = match $crate::util::ser::MaybeReadable::read(&mut $reader)? {
Some(res) => res,
_ => return Ok(None)
};
}};
// `upgradable_option` indicates we're reading an Option-al TLV that may have been upgraded
// without backwards compat. $field will be None if the TLV is missing or if the field is present
// but we can no longer understand it.
($reader: expr, $field: ident, upgradable_option) => {{
$field = $crate::util::ser::MaybeReadable::read(&mut $reader)?;
}};
($reader: expr, $field: ident, (option: $trait: ident $(, $read_arg: expr)?)) => {{
$field = Some($trait::read(&mut $reader $(, $read_arg)*)?);
}};
($reader: expr, $field: ident, (option, encoding: ($fieldty: ty, $encoding: ident, $encoder:ty))) => {{
$crate::_decode_tlv!($reader, $field, (option, encoding: ($fieldty, $encoding)));
}};
($reader: expr, $field: ident, (option, encoding: ($fieldty: ty, $encoding: ident))) => {{
$field = {
let field: $encoding<$fieldty> = ser::Readable::read(&mut $reader)?;
Some(field.0)
};
}};
($reader: expr, $field: ident, (option, encoding: $fieldty: ty)) => {{
$crate::_decode_tlv!($reader, $field, option);
}};
}
/// Checks if `$val` matches `$type`.
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _decode_tlv_stream_match_check {
($val: ident, $type: expr, (static_value, $value: expr)) => { false };
($val: ident, $type: expr, $fieldty: tt) => { $val == $type }
}
/// Implements the TLVs deserialization part in a [`Readable`] implementation of a struct.
///
/// This should be called inside a method which returns `Result<_, `[`DecodeError`]`>`, such as
/// [`Readable::read`]. It will either return an `Err` or ensure all `required` fields have been
/// read and optionally read `optional` fields.
///
/// `$stream` must be a [`Read`] and will be fully consumed, reading until no more bytes remain
/// (i.e. it returns [`DecodeError::ShortRead`]).
///
/// Fields MUST be sorted in `$type`-order.
///
/// Note that the lightning TLV requirements require that a single type not appear more than once,
/// that TLVs are sorted in type-ascending order, and that any even types be understood by the
/// decoder.
///
/// For example,
/// ```
/// # use lightning::decode_tlv_stream;
/// # fn read<R: lightning::io::Read> (stream: R) -> Result<(), lightning::ln::msgs::DecodeError> {
/// let mut required_value = 0u64;
/// let mut optional_value: Option<u64> = None;
/// decode_tlv_stream!(stream, {
/// (0, required_value, required),
/// (2, optional_value, option),
/// });
/// // At this point, `required_value` has been overwritten with the TLV with type 0.
/// // `optional_value` may have been overwritten, setting it to `Some` if a TLV with type 2 was
/// // present.
/// # Ok(())
/// # }
/// ```
///
/// [`Readable`]: crate::util::ser::Readable
/// [`DecodeError`]: crate::ln::msgs::DecodeError
/// [`Readable::read`]: crate::util::ser::Readable::read
/// [`Read`]: crate::io::Read
/// [`DecodeError::ShortRead`]: crate::ln::msgs::DecodeError::ShortRead
#[macro_export]
macro_rules! decode_tlv_stream {
($stream: expr, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}) => {
let rewind = |_, _| { unreachable!() };
$crate::_decode_tlv_stream_range!($stream, .., rewind, {$(($type, $field, $fieldty)),*});
}
}
/// Similar to [`decode_tlv_stream`] with a custom TLV decoding capabilities.
///
/// `$decode_custom_tlv` is a closure that may be optionally provided to handle custom message types.
/// If it is provided, it will be called with the custom type and the [`FixedLengthReader`] containing
/// the message contents. It should return `Ok(true)` if the custom message is successfully parsed,
/// `Ok(false)` if the message type is unknown, and `Err(`[`DecodeError`]`)` if parsing fails.
///
/// [`FixedLengthReader`]: crate::util::ser::FixedLengthReader
/// [`DecodeError`]: crate::ln::msgs::DecodeError
macro_rules! decode_tlv_stream_with_custom_tlv_decode {
($stream: expr, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}
$(, $decode_custom_tlv: expr)?) => { {
let rewind = |_, _| { unreachable!() };
_decode_tlv_stream_range!(
$stream, .., rewind, {$(($type, $field, $fieldty)),*} $(, $decode_custom_tlv)?
);
} }
}
#[doc(hidden)]
#[macro_export]
macro_rules! _decode_tlv_stream_range {
($stream: expr, $range: expr, $rewind: ident, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}
$(, $decode_custom_tlv: expr)?) => { {
use $crate::ln::msgs::DecodeError;
let mut last_seen_type: Option<u64> = None;
let mut stream_ref = $stream;
'tlv_read: loop {
use $crate::util::ser;
// First decode the type of this TLV:
let typ: ser::BigSize = {
// We track whether any bytes were read during the consensus_decode call to
// determine whether we should break or return ShortRead if we get an
// UnexpectedEof. This should in every case be largely cosmetic, but its nice to
// pass the TLV test vectors exactly, which require this distinction.
let mut tracking_reader = ser::ReadTrackingReader::new(&mut stream_ref);
match <$crate::util::ser::BigSize as $crate::util::ser::Readable>::read(&mut tracking_reader) {
Err(DecodeError::ShortRead) => {
if !tracking_reader.have_read {
break 'tlv_read;
} else {
return Err(DecodeError::ShortRead);
}
},
Err(e) => return Err(e),
Ok(t) => if core::ops::RangeBounds::contains(&$range, &t.0) { t } else {
drop(tracking_reader);
// Assumes the type id is minimally encoded, which is enforced on read.
use $crate::util::ser::Writeable;
let bytes_read = t.serialized_length();
$rewind(stream_ref, bytes_read);
break 'tlv_read;
},
}
};
// Types must be unique and monotonically increasing:
match last_seen_type {
Some(t) if typ.0 <= t => {
return Err(DecodeError::InvalidValue);
},
_ => {},
}
// As we read types, make sure we hit every required type between `last_seen_type` and `typ`:
$({
$crate::_check_decoded_tlv_order!(last_seen_type, typ, $type, $field, $fieldty);
})*
last_seen_type = Some(typ.0);
// Finally, read the length and value itself:
let length: ser::BigSize = $crate::util::ser::Readable::read(&mut stream_ref)?;
let mut s = ser::FixedLengthReader::new(&mut stream_ref, length.0);
match typ.0 {
$(_t if $crate::_decode_tlv_stream_match_check!(_t, $type, $fieldty) => {
$crate::_decode_tlv!(s, $field, $fieldty);
if s.bytes_remain() {
s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
return Err(DecodeError::InvalidValue);
}
},)*
t => {
$(
if $decode_custom_tlv(t, &mut s)? {
// If a custom TLV was successfully read (i.e. decode_custom_tlv returns true),
// continue to the next TLV read.
s.eat_remaining()?;
continue 'tlv_read;
}
)?
if t % 2 == 0 {
return Err(DecodeError::UnknownRequiredFeature);
}
}
}
s.eat_remaining()?;
}
// Make sure we got to each required type after we've read every TLV:
$({
$crate::_check_missing_tlv!(last_seen_type, $type, $field, $fieldty);
})*
} }
}
/// Implements [`Readable`]/[`Writeable`] for a message struct that may include non-TLV and
/// TLV-encoded parts.
///
/// This is useful to implement a [`CustomMessageReader`].
///
/// Currently `$fieldty` may only be `option`, i.e., `$tlvfield` is optional field.
///
/// For example,
/// ```
/// # use lightning::impl_writeable_msg;
/// struct MyCustomMessage {
/// pub field_1: u32,
/// pub field_2: bool,
/// pub field_3: String,
/// pub tlv_optional_integer: Option<u32>,
/// }
///
/// impl_writeable_msg!(MyCustomMessage, {
/// field_1,
/// field_2,
/// field_3
/// }, {
/// (1, tlv_optional_integer, option),
/// });
/// ```
///
/// [`Readable`]: crate::util::ser::Readable
/// [`Writeable`]: crate::util::ser::Writeable
/// [`CustomMessageReader`]: crate::ln::wire::CustomMessageReader
#[macro_export]
macro_rules! impl_writeable_msg {
($st:ident, {$($field:ident),* $(,)*}, {$(($type: expr, $tlvfield: ident, $fieldty: tt)),* $(,)*}) => {
impl $crate::util::ser::Writeable for $st {
fn write<W: $crate::util::ser::Writer>(&self, w: &mut W) -> Result<(), $crate::io::Error> {
$( self.$field.write(w)?; )*
$crate::encode_tlv_stream!(w, {$(($type, self.$tlvfield.as_ref(), $fieldty)),*});
Ok(())
}
}
impl $crate::util::ser::Readable for $st {
fn read<R: $crate::io::Read>(r: &mut R) -> Result<Self, $crate::ln::msgs::DecodeError> {
$(let $field = $crate::util::ser::Readable::read(r)?;)*
$($crate::_init_tlv_field_var!($tlvfield, $fieldty);)*
$crate::decode_tlv_stream!(r, {$(($type, $tlvfield, $fieldty)),*});
Ok(Self {
$($field),*,
$($tlvfield),*
})
}
}
}
}
macro_rules! impl_writeable {
($st:ident, {$($field:ident),*}) => {
impl $crate::util::ser::Writeable for $st {
fn write<W: $crate::util::ser::Writer>(&self, w: &mut W) -> Result<(), $crate::io::Error> {
$( self.$field.write(w)?; )*
Ok(())
}
#[inline]
fn serialized_length(&self) -> usize {
let mut len_calc = 0;
$( len_calc += self.$field.serialized_length(); )*
return len_calc;
}
}
impl $crate::util::ser::Readable for $st {
fn read<R: $crate::io::Read>(r: &mut R) -> Result<Self, $crate::ln::msgs::DecodeError> {
Ok(Self {
$($field: $crate::util::ser::Readable::read(r)?),*
})
}
}
}
}
/// Write out two bytes to indicate the version of an object.
///
/// $this_version represents a unique version of a type. Incremented whenever the type's
/// serialization format has changed or has a new interpretation. Used by a type's reader to
/// determine how to interpret fields or if it can understand a serialized object.
///
/// $min_version_that_can_read_this is the minimum reader version which can understand this
/// serialized object. Previous versions will simply err with a [`DecodeError::UnknownVersion`].
///
/// Updates to either `$this_version` or `$min_version_that_can_read_this` should be included in
/// release notes.
///
/// Both version fields can be specific to this type of object.
///
/// [`DecodeError::UnknownVersion`]: crate::ln::msgs::DecodeError::UnknownVersion
macro_rules! write_ver_prefix {
($stream: expr, $this_version: expr, $min_version_that_can_read_this: expr) => {
$stream.write_all(&[$this_version; 1])?;
$stream.write_all(&[$min_version_that_can_read_this; 1])?;
}
}
/// Writes out a suffix to an object as a length-prefixed TLV stream which contains potentially
/// backwards-compatible, optional fields which old nodes can happily ignore.
///
/// It is written out in TLV format and, as with all TLV fields, unknown even fields cause a
/// [`DecodeError::UnknownRequiredFeature`] error, with unknown odd fields ignored.
///
/// This is the preferred method of adding new fields that old nodes can ignore and still function
/// correctly.
///
/// [`DecodeError::UnknownRequiredFeature`]: crate::ln::msgs::DecodeError::UnknownRequiredFeature
#[macro_export]
macro_rules! write_tlv_fields {
($stream: expr, {$(($type: expr, $field: expr, $fieldty: tt)),* $(,)*}) => {
$crate::_encode_varint_length_prefixed_tlv!($stream, {$(($type, $field, $fieldty)),*})
}
}
/// Reads a prefix added by [`write_ver_prefix`], above. Takes the current version of the
/// serialization logic for this object. This is compared against the
/// `$min_version_that_can_read_this` added by [`write_ver_prefix`].
macro_rules! read_ver_prefix {
($stream: expr, $this_version: expr) => { {
let ver: u8 = Readable::read($stream)?;
let min_ver: u8 = Readable::read($stream)?;
if min_ver > $this_version {
return Err(DecodeError::UnknownVersion);
}
ver
} }
}
/// Reads a suffix added by [`write_tlv_fields`].
///
/// [`write_tlv_fields`]: crate::write_tlv_fields
#[macro_export]
macro_rules! read_tlv_fields {
($stream: expr, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}) => { {
let tlv_len: $crate::util::ser::BigSize = $crate::util::ser::Readable::read($stream)?;
let mut rd = $crate::util::ser::FixedLengthReader::new($stream, tlv_len.0);
$crate::decode_tlv_stream!(&mut rd, {$(($type, $field, $fieldty)),*});
rd.eat_remaining().map_err(|_| $crate::ln::msgs::DecodeError::ShortRead)?;
} }
}
/// Initializes the struct fields.
///
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _init_tlv_based_struct_field {
($field: ident, (default_value, $default: expr)) => {
$field.0.unwrap()
};
($field: ident, (static_value, $value: expr)) => {
$field
};
($field: ident, option) => {
$field
};
($field: ident, (option: $trait: ident $(, $read_arg: expr)?)) => {
$crate::_init_tlv_based_struct_field!($field, option)
};
($field: ident, upgradable_required) => {
$field.0.unwrap()
};
($field: ident, upgradable_option) => {
$field
};
($field: ident, required) => {
$field.0.unwrap()
};
($field: ident, required_vec) => {
$field
};
($field: ident, optional_vec) => {
$field.unwrap()
};
}
/// Initializes the variable we are going to read the TLV into.
///
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _init_tlv_field_var {
($field: ident, (default_value, $default: expr)) => {
let mut $field = $crate::util::ser::RequiredWrapper(None);
};
($field: ident, (static_value, $value: expr)) => {
let $field;
};
($field: ident, required) => {
let mut $field = $crate::util::ser::RequiredWrapper(None);
};
($field: ident, (required: $trait: ident $(, $read_arg: expr)?)) => {
$crate::_init_tlv_field_var!($field, required);
};
($field: ident, required_vec) => {
let mut $field = Vec::new();
};
($field: ident, option) => {
let mut $field = None;
};
($field: ident, optional_vec) => {
let mut $field = Some(Vec::new());
};
($field: ident, (option, encoding: ($fieldty: ty, $encoding: ident))) => {
$crate::_init_tlv_field_var!($field, option);
};
($field: ident, (option: $trait: ident $(, $read_arg: expr)?)) => {
$crate::_init_tlv_field_var!($field, option);
};
($field: ident, upgradable_required) => {
let mut $field = $crate::util::ser::UpgradableRequired(None);
};
($field: ident, upgradable_option) => {
let mut $field = None;
};
}
/// Equivalent to running [`_init_tlv_field_var`] then [`read_tlv_fields`].
///
/// If any unused values are read, their type MUST be specified or else `rustc` will read them as an
/// `i64`.
///
/// This is exported for use by other exported macros, do not use directly.
#[doc(hidden)]
#[macro_export]
macro_rules! _init_and_read_len_prefixed_tlv_fields {
($reader: ident, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}) => {
$(
$crate::_init_tlv_field_var!($field, $fieldty);
)*
$crate::read_tlv_fields!($reader, {
$(($type, $field, $fieldty)),*
});
}
}
/// Equivalent to running [`_init_tlv_field_var`] then [`decode_tlv_stream`].
///
/// If any unused values are read, their type MUST be specified or else `rustc` will read them as an
/// `i64`.
macro_rules! _init_and_read_tlv_stream {
($reader: ident, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}) => {
$(
$crate::_init_tlv_field_var!($field, $fieldty);
)*
$crate::decode_tlv_stream!($reader, {
$(($type, $field, $fieldty)),*
});
}
}
/// Implements [`Readable`]/[`Writeable`] for a struct storing it as a set of TLVs
/// If `$fieldty` is `required`, then `$field` is a required field that is not an [`Option`] nor a [`Vec`].
/// If `$fieldty` is `(default_value, $default)`, then `$field` will be set to `$default` if not present.
/// If `$fieldty` is `option`, then `$field` is optional field.
/// If `$fieldty` is `optional_vec`, then `$field` is a [`Vec`], which needs to have its individual elements serialized.
/// Note that for `optional_vec` no bytes are written if the vec is empty
///
/// For example,
/// ```
/// # use lightning::impl_writeable_tlv_based;
/// struct LightningMessage {
/// tlv_integer: u32,
/// tlv_default_integer: u32,
/// tlv_optional_integer: Option<u32>,
/// tlv_vec_type_integer: Vec<u32>,
/// }
///
/// impl_writeable_tlv_based!(LightningMessage, {
/// (0, tlv_integer, required),
/// (1, tlv_default_integer, (default_value, 7)),
/// (2, tlv_optional_integer, option),
/// (3, tlv_vec_type_integer, optional_vec),
/// });
/// ```
///
/// [`Readable`]: crate::util::ser::Readable
/// [`Writeable`]: crate::util::ser::Writeable
#[macro_export]
macro_rules! impl_writeable_tlv_based {
($st: ident, {$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}) => {
impl $crate::util::ser::Writeable for $st {
fn write<W: $crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), $crate::io::Error> {
$crate::write_tlv_fields!(writer, {
$(($type, self.$field, $fieldty)),*
});
Ok(())
}
#[inline]
fn serialized_length(&self) -> usize {
use $crate::util::ser::BigSize;
let len = {
#[allow(unused_mut)]
let mut len = $crate::util::ser::LengthCalculatingWriter(0);
$(
$crate::_get_varint_length_prefixed_tlv_length!(len, $type, self.$field, $fieldty);
)*
len.0
};
let mut len_calc = $crate::util::ser::LengthCalculatingWriter(0);
BigSize(len as u64).write(&mut len_calc).expect("No in-memory data may fail to serialize");
len + len_calc.0
}
}
impl $crate::util::ser::Readable for $st {
fn read<R: $crate::io::Read>(reader: &mut R) -> Result<Self, $crate::ln::msgs::DecodeError> {
$crate::_init_and_read_len_prefixed_tlv_fields!(reader, {
$(($type, $field, $fieldty)),*
});
Ok(Self {
$(
$field: $crate::_init_tlv_based_struct_field!($field, $fieldty)
),*
})
}
}
}
}
/// Defines a struct for a TLV stream and a similar struct using references for non-primitive types,
/// implementing [`Readable`] for the former and [`Writeable`] for the latter. Useful as an
/// intermediary format when reading or writing a type encoded as a TLV stream. Note that each field
/// representing a TLV record has its type wrapped with an [`Option`]. A tuple consisting of a type
/// and a serialization wrapper may be given in place of a type when custom serialization is
/// required.
///
/// [`Readable`]: crate::util::ser::Readable
/// [`Writeable`]: crate::util::ser::Writeable
macro_rules! tlv_stream {
($name:ident, $nameref:ident, $range:expr, {
$(($type:expr, $field:ident : $fieldty:tt)),* $(,)*
}) => {
#[derive(Debug)]
pub(super) struct $name {
$(
pub(super) $field: Option<tlv_record_type!($fieldty)>,
)*
}
#[cfg_attr(test, derive(PartialEq))]
#[derive(Debug)]
pub(crate) struct $nameref<'a> {
$(
pub(super) $field: Option<tlv_record_ref_type!($fieldty)>,
)*
}
impl<'a> $crate::util::ser::Writeable for $nameref<'a> {
fn write<W: $crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), $crate::io::Error> {
encode_tlv_stream!(writer, {
$(($type, self.$field, (option, encoding: $fieldty))),*
});
Ok(())
}
}
impl $crate::util::ser::SeekReadable for $name {
fn read<R: $crate::io::Read + $crate::io::Seek>(reader: &mut R) -> Result<Self, $crate::ln::msgs::DecodeError> {
$(
_init_tlv_field_var!($field, option);
)*
let rewind = |cursor: &mut R, offset: usize| {
cursor.seek($crate::io::SeekFrom::Current(-(offset as i64))).expect("");
};
_decode_tlv_stream_range!(reader, $range, rewind, {
$(($type, $field, (option, encoding: $fieldty))),*
});
Ok(Self {
$(
$field: $field
),*
})
}
}
}
}
macro_rules! tlv_record_type {
(($type:ty, $wrapper:ident)) => { $type };
(($type:ty, $wrapper:ident, $encoder:ty)) => { $type };
($type:ty) => { $type };
}
macro_rules! tlv_record_ref_type {
(char) => { char };
(u8) => { u8 };
((u16, $wrapper: ident)) => { u16 };
((u32, $wrapper: ident)) => { u32 };
((u64, $wrapper: ident)) => { u64 };
(($type:ty, $wrapper:ident)) => { &'a $type };
(($type:ty, $wrapper:ident, $encoder:ty)) => { $encoder };
($type:ty) => { &'a $type };
}
#[doc(hidden)]
#[macro_export]
macro_rules! _impl_writeable_tlv_based_enum_common {
($st: ident, $(($variant_id: expr, $variant_name: ident) =>
{$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}
),* $(,)*;
$(($tuple_variant_id: expr, $tuple_variant_name: ident)),* $(,)*) => {
impl $crate::util::ser::Writeable for $st {
fn write<W: $crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), $crate::io::Error> {
match self {
$($st::$variant_name { $(ref $field),* } => {
let id: u8 = $variant_id;
id.write(writer)?;
$crate::write_tlv_fields!(writer, {
$(($type, *$field, $fieldty)),*
});
}),*
$($st::$tuple_variant_name (ref field) => {
let id: u8 = $tuple_variant_id;
id.write(writer)?;
field.write(writer)?;
}),*
}
Ok(())
}
}
}
}
/// Implement [`Readable`] and [`Writeable`] for an enum, with struct variants stored as TLVs and tuple
/// variants stored directly.
/// The format is, for example
/// ```ignore
/// impl_writeable_tlv_based_enum!(EnumName,
/// (0, StructVariantA) => {(0, required_variant_field, required), (1, optional_variant_field, option)},
/// (1, StructVariantB) => {(0, variant_field_a, required), (1, variant_field_b, required), (2, variant_vec_field, optional_vec)};
/// (2, TupleVariantA), (3, TupleVariantB),
/// );
/// ```
/// The type is written as a single byte, followed by any variant data.
/// Attempts to read an unknown type byte result in [`DecodeError::UnknownRequiredFeature`].
///
/// [`Readable`]: crate::util::ser::Readable
/// [`Writeable`]: crate::util::ser::Writeable
/// [`DecodeError::UnknownRequiredFeature`]: crate::ln::msgs::DecodeError::UnknownRequiredFeature
#[macro_export]
macro_rules! impl_writeable_tlv_based_enum {
($st: ident, $(($variant_id: expr, $variant_name: ident) =>
{$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}
),* $(,)*;
$(($tuple_variant_id: expr, $tuple_variant_name: ident)),* $(,)*) => {
$crate::_impl_writeable_tlv_based_enum_common!($st,
$(($variant_id, $variant_name) => {$(($type, $field, $fieldty)),*}),*;
$(($tuple_variant_id, $tuple_variant_name)),*);
impl $crate::util::ser::Readable for $st {
fn read<R: $crate::io::Read>(reader: &mut R) -> Result<Self, $crate::ln::msgs::DecodeError> {
let id: u8 = $crate::util::ser::Readable::read(reader)?;
match id {
$($variant_id => {
// Because read_tlv_fields creates a labeled loop, we cannot call it twice
// in the same function body. Instead, we define a closure and call it.
let mut f = || {
$crate::_init_and_read_len_prefixed_tlv_fields!(reader, {
$(($type, $field, $fieldty)),*
});
Ok($st::$variant_name {
$(
$field: $crate::_init_tlv_based_struct_field!($field, $fieldty)
),*
})
};
f()
}),*
$($tuple_variant_id => {
Ok($st::$tuple_variant_name($crate::util::ser::Readable::read(reader)?))
}),*
_ => {
Err($crate::ln::msgs::DecodeError::UnknownRequiredFeature)
},
}
}
}
}
}
/// Implement [`MaybeReadable`] and [`Writeable`] for an enum, with struct variants stored as TLVs and
/// tuple variants stored directly.
///
/// This is largely identical to [`impl_writeable_tlv_based_enum`], except that odd variants will
/// return `Ok(None)` instead of `Err(`[`DecodeError::UnknownRequiredFeature`]`)`. It should generally be preferred
/// when [`MaybeReadable`] is practical instead of just [`Readable`] as it provides an upgrade path for
/// new variants to be added which are simply ignored by existing clients.
///
/// [`MaybeReadable`]: crate::util::ser::MaybeReadable
/// [`Writeable`]: crate::util::ser::Writeable
/// [`DecodeError::UnknownRequiredFeature`]: crate::ln::msgs::DecodeError::UnknownRequiredFeature
/// [`Readable`]: crate::util::ser::Readable
#[macro_export]
macro_rules! impl_writeable_tlv_based_enum_upgradable {
($st: ident, $(($variant_id: expr, $variant_name: ident) =>
{$(($type: expr, $field: ident, $fieldty: tt)),* $(,)*}
),* $(,)*
$(;
$(($tuple_variant_id: expr, $tuple_variant_name: ident)),* $(,)*)*) => {
$crate::_impl_writeable_tlv_based_enum_common!($st,
$(($variant_id, $variant_name) => {$(($type, $field, $fieldty)),*}),*;
$($(($tuple_variant_id, $tuple_variant_name)),*)*);
impl $crate::util::ser::MaybeReadable for $st {
fn read<R: $crate::io::Read>(reader: &mut R) -> Result<Option<Self>, $crate::ln::msgs::DecodeError> {
let id: u8 = $crate::util::ser::Readable::read(reader)?;
match id {
$($variant_id => {
// Because read_tlv_fields creates a labeled loop, we cannot call it twice
// in the same function body. Instead, we define a closure and call it.
let mut f = || {
$crate::_init_and_read_len_prefixed_tlv_fields!(reader, {
$(($type, $field, $fieldty)),*
});
Ok(Some($st::$variant_name {
$(
$field: $crate::_init_tlv_based_struct_field!($field, $fieldty)
),*
}))
};
f()
}),*
$($($tuple_variant_id => {
Ok(Some($st::$tuple_variant_name(Readable::read(reader)?)))
}),*)*
_ if id % 2 == 1 => Ok(None),
_ => Err($crate::ln::msgs::DecodeError::UnknownRequiredFeature),
}
}
}
}
}
#[cfg(test)]
mod tests {
use crate::io::{self, Cursor};
use crate::prelude::*;
use crate::ln::msgs::DecodeError;
use crate::util::ser::{Writeable, HighZeroBytesDroppedBigSize, VecWriter};
use bitcoin::hashes::hex::FromHex;
use bitcoin::secp256k1::PublicKey;
// The BOLT TLV test cases don't include any tests which use our "required-value" logic since
// the encoding layer in the BOLTs has no such concept, though it makes our macros easier to
// work with so they're baked into the decoder. Thus, we have a few additional tests below
fn tlv_reader(s: &[u8]) -> Result<(u64, u32, Option<u32>), DecodeError> {
let mut s = Cursor::new(s);
let mut a: u64 = 0;
let mut b: u32 = 0;
let mut c: Option<u32> = None;
decode_tlv_stream!(&mut s, {(2, a, required), (3, b, required), (4, c, option)});
Ok((a, b, c))
}
#[test]
fn tlv_v_short_read() {
// We only expect a u32 for type 3 (which we are given), but the L says its 8 bytes.
if let Err(DecodeError::ShortRead) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "0208deadbeef1badbeef", "0308deadbeef")
).unwrap()[..]) {
} else { panic!(); }
}
#[test]
fn tlv_types_out_of_order() {
if let Err(DecodeError::InvalidValue) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "0304deadbeef", "0208deadbeef1badbeef")
).unwrap()[..]) {
} else { panic!(); }
// ...even if its some field we don't understand
if let Err(DecodeError::InvalidValue) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0208deadbeef1badbeef", "0100", "0304deadbeef")
).unwrap()[..]) {
} else { panic!(); }
}
#[test]
fn tlv_req_type_missing_or_extra() {
// It's also bad if they included even fields we don't understand
if let Err(DecodeError::UnknownRequiredFeature) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "0208deadbeef1badbeef", "0304deadbeef", "0600")
).unwrap()[..]) {
} else { panic!(); }
// ... or if they're missing fields we need
if let Err(DecodeError::InvalidValue) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "0208deadbeef1badbeef")
).unwrap()[..]) {
} else { panic!(); }
// ... even if that field is even
if let Err(DecodeError::InvalidValue) = tlv_reader(&<Vec<u8>>::from_hex(
concat!("0304deadbeef", "0500")
).unwrap()[..]) {
} else { panic!(); }
}
#[test]
fn tlv_simple_good_cases() {
assert_eq!(tlv_reader(&<Vec<u8>>::from_hex(
concat!("0208deadbeef1badbeef", "03041bad1dea")
).unwrap()[..]).unwrap(),
(0xdeadbeef1badbeef, 0x1bad1dea, None));
assert_eq!(tlv_reader(&<Vec<u8>>::from_hex(
concat!("0208deadbeef1badbeef", "03041bad1dea", "040401020304")
).unwrap()[..]).unwrap(),
(0xdeadbeef1badbeef, 0x1bad1dea, Some(0x01020304)));
}
#[derive(Debug, PartialEq)]
struct TestUpgradable {
a: u32,
b: u32,
c: Option<u32>,
}
fn upgradable_tlv_reader(s: &[u8]) -> Result<Option<TestUpgradable>, DecodeError> {
let mut s = Cursor::new(s);
let mut a = 0;
let mut b = 0;
let mut c: Option<u32> = None;
decode_tlv_stream!(&mut s, {(2, a, upgradable_required), (3, b, upgradable_required), (4, c, upgradable_option)});
Ok(Some(TestUpgradable { a, b, c, }))
}
#[test]
fn upgradable_tlv_simple_good_cases() {
assert_eq!(upgradable_tlv_reader(&<Vec<u8>>::from_hex(
concat!("0204deadbeef", "03041bad1dea", "0404deadbeef")
).unwrap()[..]).unwrap(),
Some(TestUpgradable { a: 0xdeadbeef, b: 0x1bad1dea, c: Some(0xdeadbeef) }));
assert_eq!(upgradable_tlv_reader(&<Vec<u8>>::from_hex(
concat!("0204deadbeef", "03041bad1dea")
).unwrap()[..]).unwrap(),
Some(TestUpgradable { a: 0xdeadbeef, b: 0x1bad1dea, c: None}));
}
#[test]
fn missing_required_upgradable() {
if let Err(DecodeError::InvalidValue) = upgradable_tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "0204deadbeef")
).unwrap()[..]) {
} else { panic!(); }
if let Err(DecodeError::InvalidValue) = upgradable_tlv_reader(&<Vec<u8>>::from_hex(
concat!("0100", "03041bad1dea")
).unwrap()[..]) {
} else { panic!(); }
}
// BOLT TLV test cases
fn tlv_reader_n1(s: &[u8]) -> Result<(Option<HighZeroBytesDroppedBigSize<u64>>, Option<u64>, Option<(PublicKey, u64, u64)>, Option<u16>), DecodeError> {
let mut s = Cursor::new(s);
let mut tlv1: Option<HighZeroBytesDroppedBigSize<u64>> = None;
let mut tlv2: Option<u64> = None;
let mut tlv3: Option<(PublicKey, u64, u64)> = None;
let mut tlv4: Option<u16> = None;
decode_tlv_stream!(&mut s, {(1, tlv1, option), (2, tlv2, option), (3, tlv3, option), (254, tlv4, option)});
Ok((tlv1, tlv2, tlv3, tlv4))
}
#[test]
fn bolt_tlv_bogus_stream() {
macro_rules! do_test {
($stream: expr, $reason: ident) => {
if let Err(DecodeError::$reason) = tlv_reader_n1(&<Vec<u8>>::from_hex($stream).unwrap()[..]) {
} else { panic!(); }
}
}
// TLVs from the BOLT test cases which should not decode as either n1 or n2
do_test!(concat!("fd01"), ShortRead);
do_test!(concat!("fd0001", "00"), InvalidValue);
do_test!(concat!("fd0101"), ShortRead);
do_test!(concat!("0f", "fd"), ShortRead);
do_test!(concat!("0f", "fd26"), ShortRead);
do_test!(concat!("0f", "fd2602"), ShortRead);
do_test!(concat!("0f", "fd0001", "00"), InvalidValue);
do_test!(concat!("0f", "fd0201", "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"), ShortRead);
do_test!(concat!("12", "00"), UnknownRequiredFeature);
do_test!(concat!("fd0102", "00"), UnknownRequiredFeature);
do_test!(concat!("fe01000002", "00"), UnknownRequiredFeature);
do_test!(concat!("ff0100000000000002", "00"), UnknownRequiredFeature);
}
#[test]
fn bolt_tlv_bogus_n1_stream() {
macro_rules! do_test {
($stream: expr, $reason: ident) => {
if let Err(DecodeError::$reason) = tlv_reader_n1(&<Vec<u8>>::from_hex($stream).unwrap()[..]) {
} else { panic!(); }
}
}
// TLVs from the BOLT test cases which should not decode as n1
do_test!(concat!("01", "09", "ffffffffffffffffff"), InvalidValue);
do_test!(concat!("01", "01", "00"), InvalidValue);
do_test!(concat!("01", "02", "0001"), InvalidValue);
do_test!(concat!("01", "03", "000100"), InvalidValue);
do_test!(concat!("01", "04", "00010000"), InvalidValue);
do_test!(concat!("01", "05", "0001000000"), InvalidValue);
do_test!(concat!("01", "06", "000100000000"), InvalidValue);
do_test!(concat!("01", "07", "00010000000000"), InvalidValue);
do_test!(concat!("01", "08", "0001000000000000"), InvalidValue);
do_test!(concat!("02", "07", "01010101010101"), ShortRead);
do_test!(concat!("02", "09", "010101010101010101"), InvalidValue);
do_test!(concat!("03", "21", "023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb"), ShortRead);
do_test!(concat!("03", "29", "023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb0000000000000001"), ShortRead);
do_test!(concat!("03", "30", "023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb000000000000000100000000000001"), ShortRead);
do_test!(concat!("03", "31", "043da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb00000000000000010000000000000002"), InvalidValue);
do_test!(concat!("03", "32", "023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb0000000000000001000000000000000001"), InvalidValue);
do_test!(concat!("fd00fe", "00"), ShortRead);
do_test!(concat!("fd00fe", "01", "01"), ShortRead);
do_test!(concat!("fd00fe", "03", "010101"), InvalidValue);
do_test!(concat!("00", "00"), UnknownRequiredFeature);
do_test!(concat!("02", "08", "0000000000000226", "01", "01", "2a"), InvalidValue);
do_test!(concat!("02", "08", "0000000000000231", "02", "08", "0000000000000451"), InvalidValue);
do_test!(concat!("1f", "00", "0f", "01", "2a"), InvalidValue);
do_test!(concat!("1f", "00", "1f", "01", "2a"), InvalidValue);
// The last BOLT test modified to not require creating a new decoder for one trivial test.
do_test!(concat!("ffffffffffffffffff", "00", "01", "00"), InvalidValue);
}
#[test]
fn bolt_tlv_valid_n1_stream() {
macro_rules! do_test {
($stream: expr, $tlv1: expr, $tlv2: expr, $tlv3: expr, $tlv4: expr) => {
if let Ok((tlv1, tlv2, tlv3, tlv4)) = tlv_reader_n1(&<Vec<u8>>::from_hex($stream).unwrap()[..]) {
assert_eq!(tlv1.map(|v| v.0), $tlv1);
assert_eq!(tlv2, $tlv2);
assert_eq!(tlv3, $tlv3);
assert_eq!(tlv4, $tlv4);
} else { panic!(); }
}
}
do_test!(concat!(""), None, None, None, None);
do_test!(concat!("21", "00"), None, None, None, None);
do_test!(concat!("fd0201", "00"), None, None, None, None);
do_test!(concat!("fd00fd", "00"), None, None, None, None);
do_test!(concat!("fd00ff", "00"), None, None, None, None);
do_test!(concat!("fe02000001", "00"), None, None, None, None);
do_test!(concat!("ff0200000000000001", "00"), None, None, None, None);
do_test!(concat!("01", "00"), Some(0), None, None, None);
do_test!(concat!("01", "01", "01"), Some(1), None, None, None);
do_test!(concat!("01", "02", "0100"), Some(256), None, None, None);
do_test!(concat!("01", "03", "010000"), Some(65536), None, None, None);
do_test!(concat!("01", "04", "01000000"), Some(16777216), None, None, None);
do_test!(concat!("01", "05", "0100000000"), Some(4294967296), None, None, None);
do_test!(concat!("01", "06", "010000000000"), Some(1099511627776), None, None, None);
do_test!(concat!("01", "07", "01000000000000"), Some(281474976710656), None, None, None);
do_test!(concat!("01", "08", "0100000000000000"), Some(72057594037927936), None, None, None);
do_test!(concat!("02", "08", "0000000000000226"), None, Some((0 << 30) | (0 << 5) | (550 << 0)), None, None);
do_test!(concat!("03", "31", "023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb00000000000000010000000000000002"),
None, None, Some((
PublicKey::from_slice(&<Vec<u8>>::from_hex("023da092f6980e58d2c037173180e9a465476026ee50f96695963e8efe436f54eb").unwrap()[..]).unwrap(), 1, 2)),
None);
do_test!(concat!("fd00fe", "02", "0226"), None, None, None, Some(550));
}
fn do_simple_test_tlv_write() -> Result<(), io::Error> {
let mut stream = VecWriter(Vec::new());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(1, 1u8, required), (42, None::<u64>, option)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("03010101").unwrap());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(1, Some(1u8), option)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("03010101").unwrap());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(4, 0xabcdu16, required), (42, None::<u64>, option)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("040402abcd").unwrap());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(42, None::<u64>, option), (0xff, 0xabcdu16, required)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("06fd00ff02abcd").unwrap());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(0, 1u64, required), (42, None::<u64>, option), (0xff, HighZeroBytesDroppedBigSize(0u64), required)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("0e00080000000000000001fd00ff00").unwrap());
stream.0.clear();
_encode_varint_length_prefixed_tlv!(&mut stream, {(0, Some(1u64), option), (0xff, HighZeroBytesDroppedBigSize(0u64), required)});
assert_eq!(stream.0, <Vec<u8>>::from_hex("0e00080000000000000001fd00ff00").unwrap());
Ok(())
}
#[test]
fn simple_test_tlv_write() {
do_simple_test_tlv_write().unwrap();
}
}