rust-lightning/lightning/src/util/scid_utils.rs

305 lines
13 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Utilities for creating and parsing short channel ids.
/// Maximum block height that can be used in a `short_channel_id`. This
/// value is based on the 3-bytes available for block height.
pub const MAX_SCID_BLOCK: u64 = 0x00ffffff;
/// Maximum transaction index that can be used in a `short_channel_id`.
/// This value is based on the 3-bytes available for tx index.
pub const MAX_SCID_TX_INDEX: u64 = 0x00ffffff;
/// Maximum vout index that can be used in a `short_channel_id`. This
/// value is based on the 2-bytes available for the vout index.
pub const MAX_SCID_VOUT_INDEX: u64 = 0xffff;
/// A `short_channel_id` construction error
#[derive(Debug, PartialEq, Eq)]
pub enum ShortChannelIdError {
/// Block height too high
BlockOverflow,
/// Tx index too high
TxIndexOverflow,
/// Vout index too high
VoutIndexOverflow,
}
/// Extracts the block height (most significant 3-bytes) from the `short_channel_id`
pub fn block_from_scid(short_channel_id: u64) -> u32 {
return (short_channel_id >> 40) as u32;
}
/// Extracts the tx index (bytes [2..4]) from the `short_channel_id`
pub fn tx_index_from_scid(short_channel_id: u64) -> u32 {
return ((short_channel_id >> 16) & MAX_SCID_TX_INDEX) as u32;
}
/// Extracts the vout (bytes [0..2]) from the `short_channel_id`
pub fn vout_from_scid(short_channel_id: u64) -> u16 {
return ((short_channel_id) & MAX_SCID_VOUT_INDEX) as u16;
}
/// Constructs a `short_channel_id` using the components pieces. Results in an error
/// if the block height, tx index, or vout index overflow the maximum sizes.
pub fn scid_from_parts(block: u64, tx_index: u64, vout_index: u64) -> Result<u64, ShortChannelIdError> {
if block > MAX_SCID_BLOCK {
return Err(ShortChannelIdError::BlockOverflow);
}
if tx_index > MAX_SCID_TX_INDEX {
return Err(ShortChannelIdError::TxIndexOverflow);
}
if vout_index > MAX_SCID_VOUT_INDEX {
return Err(ShortChannelIdError::VoutIndexOverflow);
}
Ok((block << 40) | (tx_index << 16) | vout_index)
}
/// LDK has multiple reasons to generate fake short channel ids:
/// 1) outbound SCID aliases we use for private channels
/// 2) phantom node payments, to get an scid for the phantom node's phantom channel
/// 3) payments intended to be intercepted will route using a fake scid (this is typically used so
/// the forwarding node can open a JIT channel to the next hop)
pub(crate) mod fake_scid {
use bitcoin::blockdata::constants::ChainHash;
use bitcoin::network::constants::Network;
use crate::sign::EntropySource;
use crate::crypto::chacha20::ChaCha20;
use crate::util::scid_utils;
use core::convert::TryInto;
use core::ops::Deref;
const TEST_SEGWIT_ACTIVATION_HEIGHT: u32 = 1;
const MAINNET_SEGWIT_ACTIVATION_HEIGHT: u32 = 481_824;
const MAX_TX_INDEX: u32 = 2_500;
const MAX_NAMESPACES: u8 = 8; // We allocate 3 bits for the namespace identifier.
const NAMESPACE_ID_BITMASK: u8 = 0b111;
const BLOCKS_PER_MONTH: u32 = 144 /* blocks per day */ * 30 /* days per month */;
pub(crate) const MAX_SCID_BLOCKS_FROM_NOW: u32 = BLOCKS_PER_MONTH;
/// Fake scids are divided into namespaces, with each namespace having its own identifier between
/// [0..7]. This allows us to identify what namespace a fake scid corresponds to upon HTLC
/// receipt, and handle the HTLC accordingly. The namespace identifier is encrypted when encoded
/// into the fake scid.
#[derive(Copy, Clone)]
pub(crate) enum Namespace {
/// Phantom nodes namespace
Phantom,
/// SCID aliases for outbound private channels
OutboundAlias,
/// Payment interception namespace
Intercept
}
impl Namespace {
/// We generate "realistic-looking" random scids here, meaning the scid's block height is
/// between segwit activation and the current best known height, and the tx index and output
/// index are also selected from a "reasonable" range. We add this logic because it makes it
/// non-obvious at a glance that the scid is fake, e.g. if it appears in invoice route hints.
pub(crate) fn get_fake_scid<ES: Deref>(&self, highest_seen_blockheight: u32, chain_hash: &ChainHash, fake_scid_rand_bytes: &[u8; 32], entropy_source: &ES) -> u64
where ES::Target: EntropySource,
{
// Ensure we haven't created a namespace that doesn't fit into the 3 bits we've allocated for
// namespaces.
assert!((*self as u8) < MAX_NAMESPACES);
let rand_bytes = entropy_source.get_secure_random_bytes();
let segwit_activation_height = segwit_activation_height(chain_hash);
let mut blocks_since_segwit_activation = highest_seen_blockheight.saturating_sub(segwit_activation_height);
// We want to ensure that this fake channel won't conflict with any transactions we haven't
// seen yet, in case `highest_seen_blockheight` is updated before we get full information
// about transactions confirmed in the given block.
blocks_since_segwit_activation = blocks_since_segwit_activation.saturating_sub(MAX_SCID_BLOCKS_FROM_NOW);
let rand_for_height = u32::from_be_bytes(rand_bytes[..4].try_into().unwrap());
let fake_scid_height = segwit_activation_height + rand_for_height % (blocks_since_segwit_activation + 1);
let rand_for_tx_index = u32::from_be_bytes(rand_bytes[4..8].try_into().unwrap());
let fake_scid_tx_index = rand_for_tx_index % MAX_TX_INDEX;
// Put the scid in the given namespace.
let fake_scid_vout = self.get_encrypted_vout(fake_scid_height, fake_scid_tx_index, fake_scid_rand_bytes);
scid_utils::scid_from_parts(fake_scid_height as u64, fake_scid_tx_index as u64, fake_scid_vout as u64).unwrap()
}
/// We want to ensure that a 3rd party can't identify a payment as belong to a given
/// `Namespace`. Therefore, we encrypt it using a random bytes provided by `ChannelManager`.
fn get_encrypted_vout(&self, block_height: u32, tx_index: u32, fake_scid_rand_bytes: &[u8; 32]) -> u8 {
let mut salt = [0 as u8; 8];
let block_height_bytes = block_height.to_be_bytes();
salt[0..4].copy_from_slice(&block_height_bytes);
let tx_index_bytes = tx_index.to_be_bytes();
salt[4..8].copy_from_slice(&tx_index_bytes);
let mut chacha = ChaCha20::new(fake_scid_rand_bytes, &salt);
let mut vout_byte = [*self as u8];
chacha.process_in_place(&mut vout_byte);
vout_byte[0] & NAMESPACE_ID_BITMASK
}
}
fn segwit_activation_height(chain_hash: &ChainHash) -> u32 {
if *chain_hash == ChainHash::using_genesis_block(Network::Bitcoin) {
MAINNET_SEGWIT_ACTIVATION_HEIGHT
} else {
TEST_SEGWIT_ACTIVATION_HEIGHT
}
}
/// Returns whether the given fake scid falls into the phantom namespace.
pub fn is_valid_phantom(fake_scid_rand_bytes: &[u8; 32], scid: u64, chain_hash: &ChainHash) -> bool {
let block_height = scid_utils::block_from_scid(scid);
let tx_index = scid_utils::tx_index_from_scid(scid);
let namespace = Namespace::Phantom;
let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
block_height >= segwit_activation_height(chain_hash)
&& valid_vout == scid_utils::vout_from_scid(scid) as u8
}
/// Returns whether the given fake scid falls into the intercept namespace.
pub fn is_valid_intercept(fake_scid_rand_bytes: &[u8; 32], scid: u64, chain_hash: &ChainHash) -> bool {
let block_height = scid_utils::block_from_scid(scid);
let tx_index = scid_utils::tx_index_from_scid(scid);
let namespace = Namespace::Intercept;
let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
block_height >= segwit_activation_height(chain_hash)
&& valid_vout == scid_utils::vout_from_scid(scid) as u8
}
#[cfg(test)]
mod tests {
use bitcoin::blockdata::constants::ChainHash;
use bitcoin::network::constants::Network;
use crate::util::scid_utils::fake_scid::{is_valid_intercept, is_valid_phantom, MAINNET_SEGWIT_ACTIVATION_HEIGHT, MAX_TX_INDEX, MAX_NAMESPACES, Namespace, NAMESPACE_ID_BITMASK, segwit_activation_height, TEST_SEGWIT_ACTIVATION_HEIGHT};
use crate::util::scid_utils;
use crate::util::test_utils;
use crate::sync::Arc;
#[test]
fn namespace_identifier_is_within_range() {
let phantom_namespace = Namespace::Phantom;
assert!((phantom_namespace as u8) < MAX_NAMESPACES);
assert!((phantom_namespace as u8) <= NAMESPACE_ID_BITMASK);
let intercept_namespace = Namespace::Intercept;
assert!((intercept_namespace as u8) < MAX_NAMESPACES);
assert!((intercept_namespace as u8) <= NAMESPACE_ID_BITMASK);
}
#[test]
fn test_segwit_activation_height() {
let mainnet_genesis = ChainHash::using_genesis_block(Network::Bitcoin);
assert_eq!(segwit_activation_height(&mainnet_genesis), MAINNET_SEGWIT_ACTIVATION_HEIGHT);
let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
assert_eq!(segwit_activation_height(&testnet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
let signet_genesis = ChainHash::using_genesis_block(Network::Signet);
assert_eq!(segwit_activation_height(&signet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
let regtest_genesis = ChainHash::using_genesis_block(Network::Regtest);
assert_eq!(segwit_activation_height(&regtest_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
}
#[test]
fn test_is_valid_phantom() {
let namespace = Namespace::Phantom;
let fake_scid_rand_bytes = [0; 32];
let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
assert!(is_valid_phantom(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
assert!(!is_valid_phantom(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
}
#[test]
fn test_is_valid_intercept() {
let namespace = Namespace::Intercept;
let fake_scid_rand_bytes = [0; 32];
let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
assert!(is_valid_intercept(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
assert!(!is_valid_intercept(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
}
#[test]
fn test_get_fake_scid() {
let mainnet_genesis = ChainHash::using_genesis_block(Network::Bitcoin);
let seed = [0; 32];
let fake_scid_rand_bytes = [1; 32];
let keys_manager = Arc::new(test_utils::TestKeysInterface::new(&seed, Network::Testnet));
let namespace = Namespace::Phantom;
let fake_scid = namespace.get_fake_scid(500_000, &mainnet_genesis, &fake_scid_rand_bytes, &keys_manager);
let fake_height = scid_utils::block_from_scid(fake_scid);
assert!(fake_height >= MAINNET_SEGWIT_ACTIVATION_HEIGHT);
assert!(fake_height <= 500_000);
let fake_tx_index = scid_utils::tx_index_from_scid(fake_scid);
assert!(fake_tx_index <= MAX_TX_INDEX);
let fake_vout = scid_utils::vout_from_scid(fake_scid);
assert!(fake_vout < MAX_NAMESPACES as u16);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_block_from_scid() {
assert_eq!(block_from_scid(0x000000_000000_0000), 0);
assert_eq!(block_from_scid(0x000001_000000_0000), 1);
assert_eq!(block_from_scid(0x000001_ffffff_ffff), 1);
assert_eq!(block_from_scid(0x800000_ffffff_ffff), 0x800000);
assert_eq!(block_from_scid(0xffffff_ffffff_ffff), 0xffffff);
}
#[test]
fn test_tx_index_from_scid() {
assert_eq!(tx_index_from_scid(0x000000_000000_0000), 0);
assert_eq!(tx_index_from_scid(0x000000_000001_0000), 1);
assert_eq!(tx_index_from_scid(0xffffff_000001_ffff), 1);
assert_eq!(tx_index_from_scid(0xffffff_800000_ffff), 0x800000);
assert_eq!(tx_index_from_scid(0xffffff_ffffff_ffff), 0xffffff);
}
#[test]
fn test_vout_from_scid() {
assert_eq!(vout_from_scid(0x000000_000000_0000), 0);
assert_eq!(vout_from_scid(0x000000_000000_0001), 1);
assert_eq!(vout_from_scid(0xffffff_ffffff_0001), 1);
assert_eq!(vout_from_scid(0xffffff_ffffff_8000), 0x8000);
assert_eq!(vout_from_scid(0xffffff_ffffff_ffff), 0xffff);
}
#[test]
fn test_scid_from_parts() {
assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x0000).unwrap(), 0x000000_000000_0000);
assert_eq!(scid_from_parts(0x00000001, 0x00000002, 0x0003).unwrap(), 0x000001_000002_0003);
assert_eq!(scid_from_parts(0x00111111, 0x00222222, 0x3333).unwrap(), 0x111111_222222_3333);
assert_eq!(scid_from_parts(0x00ffffff, 0x00ffffff, 0xffff).unwrap(), 0xffffff_ffffff_ffff);
assert_eq!(scid_from_parts(0x01ffffff, 0x00000000, 0x0000).err().unwrap(), ShortChannelIdError::BlockOverflow);
assert_eq!(scid_from_parts(0x00000000, 0x01ffffff, 0x0000).err().unwrap(), ShortChannelIdError::TxIndexOverflow);
assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x010000).err().unwrap(), ShortChannelIdError::VoutIndexOverflow);
}
}