mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 08:28:49 +01:00
The only API change outside of additional derives is to change the inner field in `DecodeError::Io()` to an `std::io::ErrorKind` instead of an `std::io::Error`. While `std::io::Error` obviously makes more sense in context, it doesn't support Clone, and the inner error largely doesn't have a lot of value on its own.
1407 lines
62 KiB
Rust
1407 lines
62 KiB
Rust
// This file is Copyright its original authors, visible in version control
|
|
// history.
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! Top level peer message handling and socket handling logic lives here.
|
|
//!
|
|
//! Instead of actually servicing sockets ourselves we require that you implement the
|
|
//! SocketDescriptor interface and use that to receive actions which you should perform on the
|
|
//! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
|
|
//! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
|
|
//! they should handle, and encoding/sending response messages.
|
|
|
|
use bitcoin::secp256k1::key::{SecretKey,PublicKey};
|
|
|
|
use ln::features::InitFeatures;
|
|
use ln::msgs;
|
|
use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler};
|
|
use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
|
|
use util::ser::{VecWriter, Writeable};
|
|
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
|
|
use ln::wire;
|
|
use ln::wire::Encode;
|
|
use util::byte_utils;
|
|
use util::events::{MessageSendEvent, MessageSendEventsProvider};
|
|
use util::logger::Logger;
|
|
use routing::network_graph::NetGraphMsgHandler;
|
|
|
|
use std::collections::{HashMap,hash_map,HashSet,LinkedList};
|
|
use std::sync::{Arc, Mutex};
|
|
use std::sync::atomic::{AtomicUsize, Ordering};
|
|
use std::{cmp,error,hash,fmt};
|
|
use std::ops::Deref;
|
|
|
|
use bitcoin::hashes::sha256::Hash as Sha256;
|
|
use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
|
|
use bitcoin::hashes::{HashEngine, Hash};
|
|
|
|
/// Provides references to trait impls which handle different types of messages.
|
|
pub struct MessageHandler<CM: Deref, RM: Deref> where
|
|
CM::Target: ChannelMessageHandler,
|
|
RM::Target: RoutingMessageHandler {
|
|
/// A message handler which handles messages specific to channels. Usually this is just a
|
|
/// ChannelManager object.
|
|
pub chan_handler: CM,
|
|
/// A message handler which handles messages updating our knowledge of the network channel
|
|
/// graph. Usually this is just a NetGraphMsgHandlerMonitor object.
|
|
pub route_handler: RM,
|
|
}
|
|
|
|
/// Provides an object which can be used to send data to and which uniquely identifies a connection
|
|
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
|
|
/// implement Hash to meet the PeerManager API.
|
|
///
|
|
/// For efficiency, Clone should be relatively cheap for this type.
|
|
///
|
|
/// You probably want to just extend an int and put a file descriptor in a struct and implement
|
|
/// send_data. Note that if you are using a higher-level net library that may call close() itself,
|
|
/// be careful to ensure you don't have races whereby you might register a new connection with an
|
|
/// fd which is the same as a previous one which has yet to be removed via
|
|
/// PeerManager::socket_disconnected().
|
|
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
|
|
/// Attempts to send some data from the given slice to the peer.
|
|
///
|
|
/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
|
|
/// Note that in the disconnected case, socket_disconnected must still fire and further write
|
|
/// attempts may occur until that time.
|
|
///
|
|
/// If the returned size is smaller than data.len(), a write_available event must
|
|
/// trigger the next time more data can be written. Additionally, until the a send_data event
|
|
/// completes fully, no further read_events should trigger on the same peer!
|
|
///
|
|
/// If a read_event on this descriptor had previously returned true (indicating that read
|
|
/// events should be paused to prevent DoS in the send buffer), resume_read may be set
|
|
/// indicating that read events on this descriptor should resume. A resume_read of false does
|
|
/// *not* imply that further read events should be paused.
|
|
fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
|
|
/// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
|
|
/// more calls to write_buffer_space_avail, read_event or socket_disconnected may be made with
|
|
/// this descriptor. No socket_disconnected call should be generated as a result of this call,
|
|
/// though races may occur whereby disconnect_socket is called after a call to
|
|
/// socket_disconnected but prior to socket_disconnected returning.
|
|
fn disconnect_socket(&mut self);
|
|
}
|
|
|
|
/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
|
|
/// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
|
|
/// descriptor.
|
|
#[derive(Clone)]
|
|
pub struct PeerHandleError {
|
|
/// Used to indicate that we probably can't make any future connections to this peer, implying
|
|
/// we should go ahead and force-close any channels we have with it.
|
|
pub no_connection_possible: bool,
|
|
}
|
|
impl fmt::Debug for PeerHandleError {
|
|
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
|
formatter.write_str("Peer Sent Invalid Data")
|
|
}
|
|
}
|
|
impl fmt::Display for PeerHandleError {
|
|
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
|
formatter.write_str("Peer Sent Invalid Data")
|
|
}
|
|
}
|
|
impl error::Error for PeerHandleError {
|
|
fn description(&self) -> &str {
|
|
"Peer Sent Invalid Data"
|
|
}
|
|
}
|
|
|
|
enum InitSyncTracker{
|
|
NoSyncRequested,
|
|
ChannelsSyncing(u64),
|
|
NodesSyncing(PublicKey),
|
|
}
|
|
|
|
struct Peer {
|
|
channel_encryptor: PeerChannelEncryptor,
|
|
outbound: bool,
|
|
their_node_id: Option<PublicKey>,
|
|
their_features: Option<InitFeatures>,
|
|
|
|
pending_outbound_buffer: LinkedList<Vec<u8>>,
|
|
pending_outbound_buffer_first_msg_offset: usize,
|
|
awaiting_write_event: bool,
|
|
|
|
pending_read_buffer: Vec<u8>,
|
|
pending_read_buffer_pos: usize,
|
|
pending_read_is_header: bool,
|
|
|
|
sync_status: InitSyncTracker,
|
|
|
|
awaiting_pong: bool,
|
|
}
|
|
|
|
impl Peer {
|
|
/// Returns true if the channel announcements/updates for the given channel should be
|
|
/// forwarded to this peer.
|
|
/// If we are sending our routing table to this peer and we have not yet sent channel
|
|
/// announcements/updates for the given channel_id then we will send it when we get to that
|
|
/// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
|
|
/// sent the old versions, we should send the update, and so return true here.
|
|
fn should_forward_channel_announcement(&self, channel_id: u64)->bool{
|
|
match self.sync_status {
|
|
InitSyncTracker::NoSyncRequested => true,
|
|
InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
|
|
InitSyncTracker::NodesSyncing(_) => true,
|
|
}
|
|
}
|
|
|
|
/// Similar to the above, but for node announcements indexed by node_id.
|
|
fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
|
|
match self.sync_status {
|
|
InitSyncTracker::NoSyncRequested => true,
|
|
InitSyncTracker::ChannelsSyncing(_) => false,
|
|
InitSyncTracker::NodesSyncing(pk) => pk < node_id,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct PeerHolder<Descriptor: SocketDescriptor> {
|
|
peers: HashMap<Descriptor, Peer>,
|
|
/// Added to by do_read_event for cases where we pushed a message onto the send buffer but
|
|
/// didn't call do_attempt_write_data to avoid reentrancy. Cleared in process_events()
|
|
peers_needing_send: HashSet<Descriptor>,
|
|
/// Only add to this set when noise completes:
|
|
node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
|
|
}
|
|
|
|
#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
|
|
fn _check_usize_is_32_or_64() {
|
|
// See below, less than 32 bit pointers may be unsafe here!
|
|
unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
|
|
}
|
|
|
|
/// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
|
|
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
|
|
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
|
|
/// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
|
|
/// issues such as overly long function definitions.
|
|
pub type SimpleArcPeerManager<SD, M, T, F, C, L> = Arc<PeerManager<SD, SimpleArcChannelManager<M, T, F, L>, Arc<NetGraphMsgHandler<Arc<C>, Arc<L>>>, Arc<L>>>;
|
|
|
|
/// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
|
|
/// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
|
|
/// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
|
|
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
|
|
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
|
|
/// helps with issues such as long function definitions.
|
|
pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>;
|
|
|
|
/// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
|
|
/// events into messages which it passes on to its MessageHandlers.
|
|
///
|
|
/// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
|
|
/// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
|
|
/// essentially you should default to using a SimpleRefPeerManager, and use a
|
|
/// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
|
|
/// you're using lightning-net-tokio.
|
|
pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> where
|
|
CM::Target: ChannelMessageHandler,
|
|
RM::Target: RoutingMessageHandler,
|
|
L::Target: Logger {
|
|
message_handler: MessageHandler<CM, RM>,
|
|
peers: Mutex<PeerHolder<Descriptor>>,
|
|
our_node_secret: SecretKey,
|
|
ephemeral_key_midstate: Sha256Engine,
|
|
|
|
// Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
|
|
// bits we will never realistically count into high:
|
|
peer_counter_low: AtomicUsize,
|
|
peer_counter_high: AtomicUsize,
|
|
|
|
logger: L,
|
|
}
|
|
|
|
enum MessageHandlingError {
|
|
PeerHandleError(PeerHandleError),
|
|
LightningError(LightningError),
|
|
}
|
|
|
|
impl From<PeerHandleError> for MessageHandlingError {
|
|
fn from(error: PeerHandleError) -> Self {
|
|
MessageHandlingError::PeerHandleError(error)
|
|
}
|
|
}
|
|
|
|
impl From<LightningError> for MessageHandlingError {
|
|
fn from(error: LightningError) -> Self {
|
|
MessageHandlingError::LightningError(error)
|
|
}
|
|
}
|
|
|
|
macro_rules! encode_msg {
|
|
($msg: expr) => {{
|
|
let mut buffer = VecWriter(Vec::new());
|
|
wire::write($msg, &mut buffer).unwrap();
|
|
buffer.0
|
|
}}
|
|
}
|
|
|
|
/// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
|
|
/// PeerIds may repeat, but only after socket_disconnected() has been called.
|
|
impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref> PeerManager<Descriptor, CM, RM, L> where
|
|
CM::Target: ChannelMessageHandler,
|
|
RM::Target: RoutingMessageHandler,
|
|
L::Target: Logger {
|
|
/// Constructs a new PeerManager with the given message handlers and node_id secret key
|
|
/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
|
|
/// cryptographically secure random bytes.
|
|
pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
|
|
let mut ephemeral_key_midstate = Sha256::engine();
|
|
ephemeral_key_midstate.input(ephemeral_random_data);
|
|
|
|
PeerManager {
|
|
message_handler,
|
|
peers: Mutex::new(PeerHolder {
|
|
peers: HashMap::new(),
|
|
peers_needing_send: HashSet::new(),
|
|
node_id_to_descriptor: HashMap::new()
|
|
}),
|
|
our_node_secret,
|
|
ephemeral_key_midstate,
|
|
peer_counter_low: AtomicUsize::new(0),
|
|
peer_counter_high: AtomicUsize::new(0),
|
|
logger,
|
|
}
|
|
}
|
|
|
|
/// Get the list of node ids for peers which have completed the initial handshake.
|
|
///
|
|
/// For outbound connections, this will be the same as the their_node_id parameter passed in to
|
|
/// new_outbound_connection, however entries will only appear once the initial handshake has
|
|
/// completed and we are sure the remote peer has the private key for the given node_id.
|
|
pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
|
|
let peers = self.peers.lock().unwrap();
|
|
peers.peers.values().filter_map(|p| {
|
|
if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
|
|
return None;
|
|
}
|
|
p.their_node_id
|
|
}).collect()
|
|
}
|
|
|
|
fn get_ephemeral_key(&self) -> SecretKey {
|
|
let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
|
|
let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
|
|
let high = if low == 0 {
|
|
self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
|
|
} else {
|
|
self.peer_counter_high.load(Ordering::Acquire)
|
|
};
|
|
ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
|
|
ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
|
|
SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
|
|
}
|
|
|
|
/// Indicates a new outbound connection has been established to a node with the given node_id.
|
|
/// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
|
|
/// descriptor but must disconnect the connection immediately.
|
|
///
|
|
/// Returns a small number of bytes to send to the remote node (currently always 50).
|
|
///
|
|
/// Panics if descriptor is duplicative with some other descriptor which has not yet had a
|
|
/// socket_disconnected().
|
|
pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
|
|
let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
|
|
let res = peer_encryptor.get_act_one().to_vec();
|
|
let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
|
|
|
|
let mut peers = self.peers.lock().unwrap();
|
|
if peers.peers.insert(descriptor, Peer {
|
|
channel_encryptor: peer_encryptor,
|
|
outbound: true,
|
|
their_node_id: None,
|
|
their_features: None,
|
|
|
|
pending_outbound_buffer: LinkedList::new(),
|
|
pending_outbound_buffer_first_msg_offset: 0,
|
|
awaiting_write_event: false,
|
|
|
|
pending_read_buffer,
|
|
pending_read_buffer_pos: 0,
|
|
pending_read_is_header: false,
|
|
|
|
sync_status: InitSyncTracker::NoSyncRequested,
|
|
|
|
awaiting_pong: false,
|
|
}).is_some() {
|
|
panic!("PeerManager driver duplicated descriptors!");
|
|
};
|
|
Ok(res)
|
|
}
|
|
|
|
/// Indicates a new inbound connection has been established.
|
|
///
|
|
/// May refuse the connection by returning an Err, but will never write bytes to the remote end
|
|
/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
|
|
/// call socket_disconnected for the new descriptor but must disconnect the connection
|
|
/// immediately.
|
|
///
|
|
/// Panics if descriptor is duplicative with some other descriptor which has not yet had
|
|
/// socket_disconnected called.
|
|
pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
|
|
let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
|
|
let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
|
|
|
|
let mut peers = self.peers.lock().unwrap();
|
|
if peers.peers.insert(descriptor, Peer {
|
|
channel_encryptor: peer_encryptor,
|
|
outbound: false,
|
|
their_node_id: None,
|
|
their_features: None,
|
|
|
|
pending_outbound_buffer: LinkedList::new(),
|
|
pending_outbound_buffer_first_msg_offset: 0,
|
|
awaiting_write_event: false,
|
|
|
|
pending_read_buffer,
|
|
pending_read_buffer_pos: 0,
|
|
pending_read_is_header: false,
|
|
|
|
sync_status: InitSyncTracker::NoSyncRequested,
|
|
|
|
awaiting_pong: false,
|
|
}).is_some() {
|
|
panic!("PeerManager driver duplicated descriptors!");
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
|
|
macro_rules! encode_and_send_msg {
|
|
($msg: expr) => {
|
|
{
|
|
log_trace!(self.logger, "Encoding and sending sync update message of type {} to {}", $msg.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg)[..]));
|
|
}
|
|
}
|
|
}
|
|
const MSG_BUFF_SIZE: usize = 10;
|
|
while !peer.awaiting_write_event {
|
|
if peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE {
|
|
match peer.sync_status {
|
|
InitSyncTracker::NoSyncRequested => {},
|
|
InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
|
|
let steps = ((MSG_BUFF_SIZE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
|
|
let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
|
|
for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
|
|
encode_and_send_msg!(announce);
|
|
if let &Some(ref update_a) = update_a_option {
|
|
encode_and_send_msg!(update_a);
|
|
}
|
|
if let &Some(ref update_b) = update_b_option {
|
|
encode_and_send_msg!(update_b);
|
|
}
|
|
peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
|
|
}
|
|
if all_messages.is_empty() || all_messages.len() != steps as usize {
|
|
peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
|
|
}
|
|
},
|
|
InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
|
|
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
|
|
let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
|
|
for msg in all_messages.iter() {
|
|
encode_and_send_msg!(msg);
|
|
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
|
|
}
|
|
if all_messages.is_empty() || all_messages.len() != steps as usize {
|
|
peer.sync_status = InitSyncTracker::NoSyncRequested;
|
|
}
|
|
},
|
|
InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
|
|
InitSyncTracker::NodesSyncing(key) => {
|
|
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
|
|
let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
|
|
for msg in all_messages.iter() {
|
|
encode_and_send_msg!(msg);
|
|
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
|
|
}
|
|
if all_messages.is_empty() || all_messages.len() != steps as usize {
|
|
peer.sync_status = InitSyncTracker::NoSyncRequested;
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
if {
|
|
let next_buff = match peer.pending_outbound_buffer.front() {
|
|
None => return,
|
|
Some(buff) => buff,
|
|
};
|
|
|
|
let should_be_reading = peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE;
|
|
let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
|
|
let data_sent = descriptor.send_data(pending, should_be_reading);
|
|
peer.pending_outbound_buffer_first_msg_offset += data_sent;
|
|
if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
|
|
} {
|
|
peer.pending_outbound_buffer_first_msg_offset = 0;
|
|
peer.pending_outbound_buffer.pop_front();
|
|
} else {
|
|
peer.awaiting_write_event = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates that there is room to write data to the given socket descriptor.
|
|
///
|
|
/// May return an Err to indicate that the connection should be closed.
|
|
///
|
|
/// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
|
|
/// new_*\_connection) before returning. Thus, be very careful with reentrancy issues! The
|
|
/// invariants around calling write_buffer_space_avail in case a write did not fully complete
|
|
/// must still hold - be ready to call write_buffer_space_avail again if a write call generated
|
|
/// here isn't sufficient! Panics if the descriptor was not previously registered in a
|
|
/// new_\*_connection event.
|
|
pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
|
|
let mut peers = self.peers.lock().unwrap();
|
|
match peers.peers.get_mut(descriptor) {
|
|
None => panic!("Descriptor for write_event is not already known to PeerManager"),
|
|
Some(peer) => {
|
|
peer.awaiting_write_event = false;
|
|
self.do_attempt_write_data(descriptor, peer);
|
|
}
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
/// Indicates that data was read from the given socket descriptor.
|
|
///
|
|
/// May return an Err to indicate that the connection should be closed.
|
|
///
|
|
/// Will *not* call back into send_data on any descriptors to avoid reentrancy complexity.
|
|
/// Thus, however, you almost certainly want to call process_events() after any read_event to
|
|
/// generate send_data calls to handle responses.
|
|
///
|
|
/// If Ok(true) is returned, further read_events should not be triggered until a send_data call
|
|
/// on this file descriptor has resume_read set (preventing DoS issues in the send buffer).
|
|
///
|
|
/// Panics if the descriptor was not previously registered in a new_*_connection event.
|
|
pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
|
|
match self.do_read_event(peer_descriptor, data) {
|
|
Ok(res) => Ok(res),
|
|
Err(e) => {
|
|
self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
|
|
Err(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly.
|
|
fn enqueue_message<M: Encode + Writeable>(&self, peers_needing_send: &mut HashSet<Descriptor>, peer: &mut Peer, descriptor: Descriptor, message: &M) {
|
|
let mut buffer = VecWriter(Vec::new());
|
|
wire::write(message, &mut buffer).unwrap(); // crash if the write failed
|
|
let encoded_message = buffer.0;
|
|
|
|
log_trace!(self.logger, "Enqueueing message of type {} to {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
|
|
peers_needing_send.insert(descriptor);
|
|
}
|
|
|
|
fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
|
|
let pause_read = {
|
|
let mut peers_lock = self.peers.lock().unwrap();
|
|
let peers = &mut *peers_lock;
|
|
let pause_read = match peers.peers.get_mut(peer_descriptor) {
|
|
None => panic!("Descriptor for read_event is not already known to PeerManager"),
|
|
Some(peer) => {
|
|
assert!(peer.pending_read_buffer.len() > 0);
|
|
assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
|
|
|
|
let mut read_pos = 0;
|
|
while read_pos < data.len() {
|
|
{
|
|
let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
|
|
peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
|
|
read_pos += data_to_copy;
|
|
peer.pending_read_buffer_pos += data_to_copy;
|
|
}
|
|
|
|
if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
|
|
peer.pending_read_buffer_pos = 0;
|
|
|
|
macro_rules! try_potential_handleerror {
|
|
($thing: expr) => {
|
|
match $thing {
|
|
Ok(x) => x,
|
|
Err(e) => {
|
|
match e.action {
|
|
msgs::ErrorAction::DisconnectPeer { msg: _ } => {
|
|
//TODO: Try to push msg
|
|
log_trace!(self.logger, "Got Err handling message, disconnecting peer because {}", e.err);
|
|
return Err(PeerHandleError{ no_connection_possible: false });
|
|
},
|
|
msgs::ErrorAction::IgnoreError => {
|
|
log_trace!(self.logger, "Got Err handling message, ignoring because {}", e.err);
|
|
continue;
|
|
},
|
|
msgs::ErrorAction::SendErrorMessage { msg } => {
|
|
log_trace!(self.logger, "Got Err handling message, sending Error message because {}", e.err);
|
|
self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &msg);
|
|
continue;
|
|
},
|
|
}
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
macro_rules! insert_node_id {
|
|
() => {
|
|
match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
|
|
peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
|
|
return Err(PeerHandleError{ no_connection_possible: false })
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
log_trace!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
|
|
entry.insert(peer_descriptor.clone())
|
|
},
|
|
};
|
|
}
|
|
}
|
|
|
|
let next_step = peer.channel_encryptor.get_noise_step();
|
|
match next_step {
|
|
NextNoiseStep::ActOne => {
|
|
let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
|
|
peer.pending_outbound_buffer.push_back(act_two);
|
|
peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
|
|
},
|
|
NextNoiseStep::ActTwo => {
|
|
let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
|
|
peer.pending_outbound_buffer.push_back(act_three.to_vec());
|
|
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
|
|
peer.pending_read_is_header = true;
|
|
|
|
peer.their_node_id = Some(their_node_id);
|
|
insert_node_id!();
|
|
let features = InitFeatures::known();
|
|
let resp = msgs::Init { features };
|
|
self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &resp);
|
|
},
|
|
NextNoiseStep::ActThree => {
|
|
let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
|
|
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
|
|
peer.pending_read_is_header = true;
|
|
peer.their_node_id = Some(their_node_id);
|
|
insert_node_id!();
|
|
},
|
|
NextNoiseStep::NoiseComplete => {
|
|
if peer.pending_read_is_header {
|
|
let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
|
|
peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
|
|
peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
|
|
if msg_len < 2 { // Need at least the message type tag
|
|
return Err(PeerHandleError{ no_connection_possible: false });
|
|
}
|
|
peer.pending_read_is_header = false;
|
|
} else {
|
|
let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
|
|
assert!(msg_data.len() >= 2);
|
|
|
|
// Reset read buffer
|
|
peer.pending_read_buffer = [0; 18].to_vec();
|
|
peer.pending_read_is_header = true;
|
|
|
|
let mut reader = ::std::io::Cursor::new(&msg_data[..]);
|
|
let message_result = wire::read(&mut reader);
|
|
let message = match message_result {
|
|
Ok(x) => x,
|
|
Err(e) => {
|
|
match e {
|
|
msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
|
|
msgs::DecodeError::UnknownRequiredFeature => {
|
|
log_debug!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!");
|
|
continue;
|
|
}
|
|
msgs::DecodeError::InvalidValue => {
|
|
log_debug!(self.logger, "Got an invalid value while deserializing message");
|
|
return Err(PeerHandleError { no_connection_possible: false });
|
|
}
|
|
msgs::DecodeError::ShortRead => {
|
|
log_debug!(self.logger, "Deserialization failed due to shortness of message");
|
|
return Err(PeerHandleError { no_connection_possible: false });
|
|
}
|
|
msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
|
|
msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
|
|
}
|
|
}
|
|
};
|
|
|
|
if let Err(handling_error) = self.handle_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), message){
|
|
match handling_error {
|
|
MessageHandlingError::PeerHandleError(e) => { return Err(e) },
|
|
MessageHandlingError::LightningError(e) => {
|
|
try_potential_handleerror!(Err(e));
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
self.do_attempt_write_data(peer_descriptor, peer);
|
|
|
|
peer.pending_outbound_buffer.len() > 10 // pause_read
|
|
}
|
|
};
|
|
|
|
pause_read
|
|
};
|
|
|
|
Ok(pause_read)
|
|
}
|
|
|
|
/// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
|
|
fn handle_message(&self, peers_needing_send: &mut HashSet<Descriptor>, peer: &mut Peer, peer_descriptor: Descriptor, message: wire::Message) -> Result<(), MessageHandlingError> {
|
|
log_trace!(self.logger, "Received message of type {} from {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
|
|
|
|
// Need an Init as first message
|
|
if let wire::Message::Init(_) = message {
|
|
} else if peer.their_features.is_none() {
|
|
log_trace!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
|
|
return Err(PeerHandleError{ no_connection_possible: false }.into());
|
|
}
|
|
|
|
match message {
|
|
// Setup and Control messages:
|
|
wire::Message::Init(msg) => {
|
|
if msg.features.requires_unknown_bits() {
|
|
log_info!(self.logger, "Peer features required unknown version bits");
|
|
return Err(PeerHandleError{ no_connection_possible: true }.into());
|
|
}
|
|
if peer.their_features.is_some() {
|
|
return Err(PeerHandleError{ no_connection_possible: false }.into());
|
|
}
|
|
|
|
log_info!(
|
|
self.logger, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, gossip_queries: {}, static_remote_key: {}, unknown flags (local and global): {}",
|
|
if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"},
|
|
if msg.features.initial_routing_sync() { "requested" } else { "not requested" },
|
|
if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
|
|
if msg.features.supports_gossip_queries() { "supported" } else { "not supported" },
|
|
if msg.features.supports_static_remote_key() { "supported" } else { "not supported"},
|
|
if msg.features.supports_unknown_bits() { "present" } else { "none" }
|
|
);
|
|
|
|
if msg.features.initial_routing_sync() {
|
|
peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
|
|
peers_needing_send.insert(peer_descriptor.clone());
|
|
}
|
|
if !msg.features.supports_static_remote_key() {
|
|
log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap()));
|
|
return Err(PeerHandleError{ no_connection_possible: true }.into());
|
|
}
|
|
|
|
if !peer.outbound {
|
|
let features = InitFeatures::known();
|
|
let resp = msgs::Init { features };
|
|
self.enqueue_message(peers_needing_send, peer, peer_descriptor.clone(), &resp);
|
|
}
|
|
|
|
self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg);
|
|
|
|
self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
|
|
peer.their_features = Some(msg.features);
|
|
},
|
|
wire::Message::Error(msg) => {
|
|
let mut data_is_printable = true;
|
|
for b in msg.data.bytes() {
|
|
if b < 32 || b > 126 {
|
|
data_is_printable = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if data_is_printable {
|
|
log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
|
|
} else {
|
|
log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
|
|
}
|
|
self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
|
|
if msg.channel_id == [0; 32] {
|
|
return Err(PeerHandleError{ no_connection_possible: true }.into());
|
|
}
|
|
},
|
|
|
|
wire::Message::Ping(msg) => {
|
|
if msg.ponglen < 65532 {
|
|
let resp = msgs::Pong { byteslen: msg.ponglen };
|
|
self.enqueue_message(peers_needing_send, peer, peer_descriptor.clone(), &resp);
|
|
}
|
|
},
|
|
wire::Message::Pong(_msg) => {
|
|
peer.awaiting_pong = false;
|
|
},
|
|
|
|
// Channel messages:
|
|
wire::Message::OpenChannel(msg) => {
|
|
self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
|
|
},
|
|
wire::Message::AcceptChannel(msg) => {
|
|
self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
|
|
},
|
|
|
|
wire::Message::FundingCreated(msg) => {
|
|
self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::FundingSigned(msg) => {
|
|
self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::FundingLocked(msg) => {
|
|
self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
|
|
wire::Message::Shutdown(msg) => {
|
|
self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::ClosingSigned(msg) => {
|
|
self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
|
|
// Commitment messages:
|
|
wire::Message::UpdateAddHTLC(msg) => {
|
|
self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::UpdateFulfillHTLC(msg) => {
|
|
self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::UpdateFailHTLC(msg) => {
|
|
self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::UpdateFailMalformedHTLC(msg) => {
|
|
self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
|
|
wire::Message::CommitmentSigned(msg) => {
|
|
self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::RevokeAndACK(msg) => {
|
|
self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::UpdateFee(msg) => {
|
|
self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::ChannelReestablish(msg) => {
|
|
self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
|
|
// Routing messages:
|
|
wire::Message::AnnouncementSignatures(msg) => {
|
|
self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
|
|
},
|
|
wire::Message::ChannelAnnouncement(msg) => {
|
|
let should_forward = match self.message_handler.route_handler.handle_channel_announcement(&msg) {
|
|
Ok(v) => v,
|
|
Err(e) => { return Err(e.into()); },
|
|
};
|
|
|
|
if should_forward {
|
|
// TODO: forward msg along to all our other peers!
|
|
}
|
|
},
|
|
wire::Message::NodeAnnouncement(msg) => {
|
|
let should_forward = match self.message_handler.route_handler.handle_node_announcement(&msg) {
|
|
Ok(v) => v,
|
|
Err(e) => { return Err(e.into()); },
|
|
};
|
|
|
|
if should_forward {
|
|
// TODO: forward msg along to all our other peers!
|
|
}
|
|
},
|
|
wire::Message::ChannelUpdate(msg) => {
|
|
let should_forward = match self.message_handler.route_handler.handle_channel_update(&msg) {
|
|
Ok(v) => v,
|
|
Err(e) => { return Err(e.into()); },
|
|
};
|
|
|
|
if should_forward {
|
|
// TODO: forward msg along to all our other peers!
|
|
}
|
|
},
|
|
wire::Message::QueryShortChannelIds(msg) => {
|
|
self.message_handler.route_handler.handle_query_short_channel_ids(&peer.their_node_id.unwrap(), msg)?;
|
|
},
|
|
wire::Message::ReplyShortChannelIdsEnd(msg) => {
|
|
self.message_handler.route_handler.handle_reply_short_channel_ids_end(&peer.their_node_id.unwrap(), msg)?;
|
|
},
|
|
wire::Message::QueryChannelRange(msg) => {
|
|
self.message_handler.route_handler.handle_query_channel_range(&peer.their_node_id.unwrap(), msg)?;
|
|
},
|
|
wire::Message::ReplyChannelRange(msg) => {
|
|
self.message_handler.route_handler.handle_reply_channel_range(&peer.their_node_id.unwrap(), msg)?;
|
|
},
|
|
wire::Message::GossipTimestampFilter(_msg) => {
|
|
// TODO: handle message
|
|
},
|
|
|
|
// Unknown messages:
|
|
wire::Message::Unknown(msg_type) if msg_type.is_even() => {
|
|
log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type);
|
|
// Fail the channel if message is an even, unknown type as per BOLT #1.
|
|
return Err(PeerHandleError{ no_connection_possible: true }.into());
|
|
},
|
|
wire::Message::Unknown(msg_type) => {
|
|
log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type);
|
|
}
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
/// Checks for any events generated by our handlers and processes them. Includes sending most
|
|
/// response messages as well as messages generated by calls to handler functions directly (eg
|
|
/// functions like ChannelManager::process_pending_htlc_forward or send_payment).
|
|
pub fn process_events(&self) {
|
|
{
|
|
// TODO: There are some DoS attacks here where you can flood someone's outbound send
|
|
// buffer by doing things like announcing channels on another node. We should be willing to
|
|
// drop optional-ish messages when send buffers get full!
|
|
|
|
let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
|
|
events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
|
|
let mut peers_lock = self.peers.lock().unwrap();
|
|
let peers = &mut *peers_lock;
|
|
for event in events_generated.drain(..) {
|
|
macro_rules! get_peer_for_forwarding {
|
|
($node_id: expr, $handle_no_such_peer: block) => {
|
|
{
|
|
let descriptor = match peers.node_id_to_descriptor.get($node_id) {
|
|
Some(descriptor) => descriptor.clone(),
|
|
None => {
|
|
$handle_no_such_peer;
|
|
continue;
|
|
},
|
|
};
|
|
match peers.peers.get_mut(&descriptor) {
|
|
Some(peer) => {
|
|
if peer.their_features.is_none() {
|
|
$handle_no_such_peer;
|
|
continue;
|
|
}
|
|
(descriptor, peer)
|
|
},
|
|
None => panic!("Inconsistent peers set state!"),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
match event {
|
|
MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.temporary_channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.temporary_channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.temporary_channel_id),
|
|
log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: generate a DiscardFunding event indicating to the wallet that
|
|
//they should just throw away this funding transaction
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: generate a DiscardFunding event indicating to the wallet that
|
|
//they should just throw away this funding transaction
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: generate a DiscardFunding event indicating to the wallet that
|
|
//they should just throw away this funding transaction
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
|
|
log_trace!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
|
|
log_pubkey!(node_id),
|
|
update_add_htlcs.len(),
|
|
update_fulfill_htlcs.len(),
|
|
update_fail_htlcs.len(),
|
|
log_bytes!(commitment_signed.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
for msg in update_add_htlcs {
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
}
|
|
for msg in update_fulfill_htlcs {
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
}
|
|
for msg in update_fail_htlcs {
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
}
|
|
for msg in update_fail_malformed_htlcs {
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
}
|
|
if let &Some(ref msg) = update_fee {
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
}
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
|
|
log_trace!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
|
|
log_pubkey!(node_id),
|
|
log_bytes!(msg.channel_id));
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
|
|
log_trace!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
|
|
if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() {
|
|
let encoded_msg = encode_msg!(msg);
|
|
let encoded_update_msg = encode_msg!(update_msg);
|
|
|
|
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
|
|
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
|
|
!peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
|
|
continue
|
|
}
|
|
match peer.their_node_id {
|
|
None => continue,
|
|
Some(their_node_id) => {
|
|
if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..]));
|
|
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
|
|
}
|
|
}
|
|
},
|
|
MessageSendEvent::BroadcastNodeAnnouncement { ref msg } => {
|
|
log_trace!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
|
|
if self.message_handler.route_handler.handle_node_announcement(msg).is_ok() {
|
|
let encoded_msg = encode_msg!(msg);
|
|
|
|
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
|
|
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
|
|
!peer.should_forward_node_announcement(msg.contents.node_id) {
|
|
continue
|
|
}
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
|
|
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
|
|
}
|
|
}
|
|
},
|
|
MessageSendEvent::BroadcastChannelUpdate { ref msg } => {
|
|
log_trace!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
|
|
if self.message_handler.route_handler.handle_channel_update(msg).is_ok() {
|
|
let encoded_msg = encode_msg!(msg);
|
|
|
|
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
|
|
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
|
|
!peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
|
|
continue
|
|
}
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
|
|
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
|
|
}
|
|
}
|
|
},
|
|
MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
|
|
self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
|
|
},
|
|
MessageSendEvent::HandleError { ref node_id, ref action } => {
|
|
match *action {
|
|
msgs::ErrorAction::DisconnectPeer { ref msg } => {
|
|
if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
|
|
peers.peers_needing_send.remove(&descriptor);
|
|
if let Some(mut peer) = peers.peers.remove(&descriptor) {
|
|
if let Some(ref msg) = *msg {
|
|
log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
|
|
log_pubkey!(node_id),
|
|
msg.data);
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
// This isn't guaranteed to work, but if there is enough free
|
|
// room in the send buffer, put the error message there...
|
|
self.do_attempt_write_data(&mut descriptor, &mut peer);
|
|
} else {
|
|
log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
|
|
}
|
|
}
|
|
descriptor.disconnect_socket();
|
|
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
|
|
}
|
|
},
|
|
msgs::ErrorAction::IgnoreError => {},
|
|
msgs::ErrorAction::SendErrorMessage { ref msg } => {
|
|
log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
|
|
log_pubkey!(node_id),
|
|
msg.data);
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
|
|
//TODO: Do whatever we're gonna do for handling dropped messages
|
|
});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
}
|
|
},
|
|
MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
},
|
|
MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
|
|
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {});
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
|
|
self.do_attempt_write_data(&mut descriptor, peer);
|
|
}
|
|
}
|
|
}
|
|
|
|
for mut descriptor in peers.peers_needing_send.drain() {
|
|
match peers.peers.get_mut(&descriptor) {
|
|
Some(peer) => self.do_attempt_write_data(&mut descriptor, peer),
|
|
None => panic!("Inconsistent peers set state!"),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates that the given socket descriptor's connection is now closed.
|
|
///
|
|
/// This must only be called if the socket has been disconnected by the peer or your own
|
|
/// decision to disconnect it and must NOT be called in any case where other parts of this
|
|
/// library (eg PeerHandleError, explicit disconnect_socket calls) instruct you to disconnect
|
|
/// the peer.
|
|
///
|
|
/// Panics if the descriptor was not previously registered in a successful new_*_connection event.
|
|
pub fn socket_disconnected(&self, descriptor: &Descriptor) {
|
|
self.disconnect_event_internal(descriptor, false);
|
|
}
|
|
|
|
fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
|
|
let mut peers = self.peers.lock().unwrap();
|
|
peers.peers_needing_send.remove(descriptor);
|
|
let peer_option = peers.peers.remove(descriptor);
|
|
match peer_option {
|
|
None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
|
|
Some(peer) => {
|
|
match peer.their_node_id {
|
|
Some(node_id) => {
|
|
peers.node_id_to_descriptor.remove(&node_id);
|
|
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
|
|
},
|
|
None => {}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Disconnect a peer given its node id.
|
|
///
|
|
/// Set no_connection_possible to true to prevent any further connection with this peer,
|
|
/// force-closing any channels we have with it.
|
|
///
|
|
/// If a peer is connected, this will call `disconnect_socket` on the descriptor for the peer,
|
|
/// so be careful about reentrancy issues.
|
|
pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
|
|
let mut peers_lock = self.peers.lock().unwrap();
|
|
if let Some(mut descriptor) = peers_lock.node_id_to_descriptor.remove(&node_id) {
|
|
log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
|
|
peers_lock.peers.remove(&descriptor);
|
|
peers_lock.peers_needing_send.remove(&descriptor);
|
|
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
|
|
descriptor.disconnect_socket();
|
|
}
|
|
}
|
|
|
|
/// This function should be called roughly once every 30 seconds.
|
|
/// It will send pings to each peer and disconnect those which did not respond to the last round of pings.
|
|
|
|
/// Will most likely call send_data on all of the registered descriptors, thus, be very careful with reentrancy issues!
|
|
pub fn timer_tick_occured(&self) {
|
|
let mut peers_lock = self.peers.lock().unwrap();
|
|
{
|
|
let peers = &mut *peers_lock;
|
|
let peers_needing_send = &mut peers.peers_needing_send;
|
|
let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
|
|
let peers = &mut peers.peers;
|
|
let mut descriptors_needing_disconnect = Vec::new();
|
|
|
|
peers.retain(|descriptor, peer| {
|
|
if peer.awaiting_pong {
|
|
peers_needing_send.remove(descriptor);
|
|
descriptors_needing_disconnect.push(descriptor.clone());
|
|
match peer.their_node_id {
|
|
Some(node_id) => {
|
|
log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
|
|
node_id_to_descriptor.remove(&node_id);
|
|
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
|
|
}
|
|
None => {
|
|
// This can't actually happen as we should have hit
|
|
// is_ready_for_encryption() previously on this same peer.
|
|
unreachable!();
|
|
},
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if !peer.channel_encryptor.is_ready_for_encryption() {
|
|
// The peer needs to complete its handshake before we can exchange messages
|
|
return true;
|
|
}
|
|
|
|
let ping = msgs::Ping {
|
|
ponglen: 0,
|
|
byteslen: 64,
|
|
};
|
|
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(&ping)));
|
|
|
|
let mut descriptor_clone = descriptor.clone();
|
|
self.do_attempt_write_data(&mut descriptor_clone, peer);
|
|
|
|
peer.awaiting_pong = true;
|
|
true
|
|
});
|
|
|
|
for mut descriptor in descriptors_needing_disconnect.drain(..) {
|
|
descriptor.disconnect_socket();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
|
|
use ln::msgs;
|
|
use util::events;
|
|
use util::test_utils;
|
|
|
|
use bitcoin::secp256k1::Secp256k1;
|
|
use bitcoin::secp256k1::key::{SecretKey, PublicKey};
|
|
|
|
use std;
|
|
use std::sync::{Arc, Mutex};
|
|
use std::sync::atomic::Ordering;
|
|
|
|
#[derive(Clone)]
|
|
struct FileDescriptor {
|
|
fd: u16,
|
|
outbound_data: Arc<Mutex<Vec<u8>>>,
|
|
}
|
|
impl PartialEq for FileDescriptor {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.fd == other.fd
|
|
}
|
|
}
|
|
impl Eq for FileDescriptor { }
|
|
impl std::hash::Hash for FileDescriptor {
|
|
fn hash<H: std::hash::Hasher>(&self, hasher: &mut H) {
|
|
self.fd.hash(hasher)
|
|
}
|
|
}
|
|
|
|
impl SocketDescriptor for FileDescriptor {
|
|
fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
|
|
self.outbound_data.lock().unwrap().extend_from_slice(data);
|
|
data.len()
|
|
}
|
|
|
|
fn disconnect_socket(&mut self) {}
|
|
}
|
|
|
|
struct PeerManagerCfg {
|
|
chan_handler: test_utils::TestChannelMessageHandler,
|
|
routing_handler: test_utils::TestRoutingMessageHandler,
|
|
logger: test_utils::TestLogger,
|
|
}
|
|
|
|
fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
|
|
let mut cfgs = Vec::new();
|
|
for _ in 0..peer_count {
|
|
cfgs.push(
|
|
PeerManagerCfg{
|
|
chan_handler: test_utils::TestChannelMessageHandler::new(),
|
|
logger: test_utils::TestLogger::new(),
|
|
routing_handler: test_utils::TestRoutingMessageHandler::new(),
|
|
}
|
|
);
|
|
}
|
|
|
|
cfgs
|
|
}
|
|
|
|
fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>> {
|
|
let mut peers = Vec::new();
|
|
for i in 0..peer_count {
|
|
let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
|
|
let ephemeral_bytes = [i as u8; 32];
|
|
let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
|
|
let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger);
|
|
peers.push(peer);
|
|
}
|
|
|
|
peers
|
|
}
|
|
|
|
fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger>) -> (FileDescriptor, FileDescriptor) {
|
|
let secp_ctx = Secp256k1::new();
|
|
let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
|
|
let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
|
|
let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
|
|
let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
|
|
peer_a.new_inbound_connection(fd_a.clone()).unwrap();
|
|
assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
|
|
assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
|
|
assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
|
|
(fd_a.clone(), fd_b.clone())
|
|
}
|
|
|
|
#[test]
|
|
fn test_disconnect_peer() {
|
|
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
|
|
// push a DisconnectPeer event to remove the node flagged by id
|
|
let cfgs = create_peermgr_cfgs(2);
|
|
let chan_handler = test_utils::TestChannelMessageHandler::new();
|
|
let mut peers = create_network(2, &cfgs);
|
|
establish_connection(&peers[0], &peers[1]);
|
|
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
|
|
|
|
let secp_ctx = Secp256k1::new();
|
|
let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
|
|
|
|
chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
|
|
node_id: their_id,
|
|
action: msgs::ErrorAction::DisconnectPeer { msg: None },
|
|
});
|
|
assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
|
|
peers[0].message_handler.chan_handler = &chan_handler;
|
|
|
|
peers[0].process_events();
|
|
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_timer_tick_occurred() {
|
|
// Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
|
|
let cfgs = create_peermgr_cfgs(2);
|
|
let peers = create_network(2, &cfgs);
|
|
establish_connection(&peers[0], &peers[1]);
|
|
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
|
|
|
|
// peers[0] awaiting_pong is set to true, but the Peer is still connected
|
|
peers[0].timer_tick_occured();
|
|
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
|
|
|
|
// Since timer_tick_occured() is called again when awaiting_pong is true, all Peers are disconnected
|
|
peers[0].timer_tick_occured();
|
|
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_do_attempt_write_data() {
|
|
// Create 2 peers with custom TestRoutingMessageHandlers and connect them.
|
|
let cfgs = create_peermgr_cfgs(2);
|
|
cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
|
|
cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
|
|
let peers = create_network(2, &cfgs);
|
|
|
|
// By calling establish_connect, we trigger do_attempt_write_data between
|
|
// the peers. Previously this function would mistakenly enter an infinite loop
|
|
// when there were more channel messages available than could fit into a peer's
|
|
// buffer. This issue would now be detected by this test (because we use custom
|
|
// RoutingMessageHandlers that intentionally return more channel messages
|
|
// than can fit into a peer's buffer).
|
|
let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
|
|
|
|
// Make each peer to read the messages that the other peer just wrote to them.
|
|
peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap();
|
|
peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap();
|
|
|
|
// Check that each peer has received the expected number of channel updates and channel
|
|
// announcements.
|
|
assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
|
|
assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
|
|
assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
|
|
assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
|
|
}
|
|
}
|