rust-lightning/lightning/src/ln/peer_handler.rs

2180 lines
98 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Top level peer message handling and socket handling logic lives here.
//!
//! Instead of actually servicing sockets ourselves we require that you implement the
//! SocketDescriptor interface and use that to receive actions which you should perform on the
//! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
//! call into the provided message handlers (probably a ChannelManager and NetGraphmsgHandler) with messages
//! they should handle, and encoding/sending response messages.
use bitcoin::secp256k1::{SecretKey,PublicKey};
use ln::features::InitFeatures;
use ln::msgs;
use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
use util::ser::{VecWriter, Writeable, Writer};
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
use ln::wire;
use ln::wire::Encode;
use util::atomic_counter::AtomicCounter;
use util::events::{MessageSendEvent, MessageSendEventsProvider};
use util::logger::Logger;
use routing::network_graph::{NetworkGraph, NetGraphMsgHandler};
use prelude::*;
use io;
use alloc::collections::LinkedList;
use sync::{Arc, Mutex, MutexGuard, FairRwLock};
use core::sync::atomic::{AtomicBool, Ordering};
use core::{cmp, hash, fmt, mem};
use core::ops::Deref;
use core::convert::Infallible;
#[cfg(feature = "std")] use std::error;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
use bitcoin::hashes::{HashEngine, Hash};
/// Handler for BOLT1-compliant messages.
pub trait CustomMessageHandler: wire::CustomMessageReader {
/// Called with the message type that was received and the buffer to be read.
/// Can return a `MessageHandlingError` if the message could not be handled.
fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
/// Gets the list of pending messages which were generated by the custom message
/// handler, clearing the list in the process. The first tuple element must
/// correspond to the intended recipients node ids. If no connection to one of the
/// specified node does not exist, the message is simply not sent to it.
fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
}
/// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
/// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
pub struct IgnoringMessageHandler{}
impl MessageSendEventsProvider for IgnoringMessageHandler {
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
}
impl RoutingMessageHandler for IgnoringMessageHandler {
fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) ->
Vec<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { Vec::new() }
fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<msgs::NodeAnnouncement> { Vec::new() }
fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
}
impl Deref for IgnoringMessageHandler {
type Target = IgnoringMessageHandler;
fn deref(&self) -> &Self { self }
}
// Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
// method that takes self for it.
impl wire::Type for Infallible {
fn type_id(&self) -> u16 {
unreachable!();
}
}
impl Writeable for Infallible {
fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
unreachable!();
}
}
impl wire::CustomMessageReader for IgnoringMessageHandler {
type CustomMessage = Infallible;
fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
Ok(None)
}
}
impl CustomMessageHandler for IgnoringMessageHandler {
fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
// Since we always return `None` in the read the handle method should never be called.
unreachable!();
}
fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
}
/// A dummy struct which implements `ChannelMessageHandler` without having any channels.
/// You can provide one of these as the route_handler in a MessageHandler.
pub struct ErroringMessageHandler {
message_queue: Mutex<Vec<MessageSendEvent>>
}
impl ErroringMessageHandler {
/// Constructs a new ErroringMessageHandler
pub fn new() -> Self {
Self { message_queue: Mutex::new(Vec::new()) }
}
fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
action: msgs::ErrorAction::SendErrorMessage {
msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
},
node_id: node_id.clone(),
});
}
}
impl MessageSendEventsProvider for ErroringMessageHandler {
fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
let mut res = Vec::new();
mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
res
}
}
impl ChannelMessageHandler for ErroringMessageHandler {
// Any messages which are related to a specific channel generate an error message to let the
// peer know we don't care about channels.
fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
}
fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
}
fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
}
fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
}
// msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
}
impl Deref for ErroringMessageHandler {
type Target = ErroringMessageHandler;
fn deref(&self) -> &Self { self }
}
/// Provides references to trait impls which handle different types of messages.
pub struct MessageHandler<CM: Deref, RM: Deref> where
CM::Target: ChannelMessageHandler,
RM::Target: RoutingMessageHandler {
/// A message handler which handles messages specific to channels. Usually this is just a
/// [`ChannelManager`] object or an [`ErroringMessageHandler`].
///
/// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
pub chan_handler: CM,
/// A message handler which handles messages updating our knowledge of the network channel
/// graph. Usually this is just a [`NetGraphMsgHandler`] object or an
/// [`IgnoringMessageHandler`].
///
/// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler
pub route_handler: RM,
}
/// Provides an object which can be used to send data to and which uniquely identifies a connection
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
/// implement Hash to meet the PeerManager API.
///
/// For efficiency, Clone should be relatively cheap for this type.
///
/// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
/// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
/// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
/// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
/// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
/// to simply use another value which is guaranteed to be globally unique instead.
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
/// Attempts to send some data from the given slice to the peer.
///
/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
/// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
/// called and further write attempts may occur until that time.
///
/// If the returned size is smaller than `data.len()`, a
/// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
/// written. Additionally, until a `send_data` event completes fully, no further
/// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
/// prevent denial-of-service issues, you should not read or buffer any data from the socket
/// until then.
///
/// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
/// (indicating that read events should be paused to prevent DoS in the send buffer),
/// `resume_read` may be set indicating that read events on this descriptor should resume. A
/// `resume_read` of false carries no meaning, and should not cause any action.
fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
/// Disconnect the socket pointed to by this SocketDescriptor.
///
/// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
/// call (doing so is a noop).
fn disconnect_socket(&mut self);
}
/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
/// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
/// descriptor.
#[derive(Clone)]
pub struct PeerHandleError {
/// Used to indicate that we probably can't make any future connections to this peer, implying
/// we should go ahead and force-close any channels we have with it.
pub no_connection_possible: bool,
}
impl fmt::Debug for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
}
}
impl fmt::Display for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
}
}
#[cfg(feature = "std")]
impl error::Error for PeerHandleError {
fn description(&self) -> &str {
"Peer Sent Invalid Data"
}
}
enum InitSyncTracker{
NoSyncRequested,
ChannelsSyncing(u64),
NodesSyncing(PublicKey),
}
/// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
/// forwarding gossip messages to peers altogether.
const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
/// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
/// we have fewer than this many messages in the outbound buffer again.
/// We also use this as the target number of outbound gossip messages to keep in the write buffer,
/// refilled as we send bytes.
const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
/// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
/// the peer.
const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
/// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
/// the socket receive buffer before receiving the ping.
///
/// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
/// including any network delays, outbound traffic, or the same for messages from other peers.
///
/// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
/// per connected peer to respond to a ping, as long as they send us at least one message during
/// each tick, ensuring we aren't actually just disconnected.
/// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
/// peer.
///
/// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
/// two connected peers, assuming most LDK-running systems have at least two cores.
const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
/// This is the minimum number of messages we expect a peer to be able to handle within one timer
/// tick. Once we have sent this many messages since the last ping, we send a ping right away to
/// ensures we don't just fill up our send buffer and leave the peer with too many messages to
/// process before the next ping.
const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
struct Peer {
channel_encryptor: PeerChannelEncryptor,
their_node_id: Option<PublicKey>,
their_features: Option<InitFeatures>,
their_net_address: Option<NetAddress>,
pending_outbound_buffer: LinkedList<Vec<u8>>,
pending_outbound_buffer_first_msg_offset: usize,
awaiting_write_event: bool,
pending_read_buffer: Vec<u8>,
pending_read_buffer_pos: usize,
pending_read_is_header: bool,
sync_status: InitSyncTracker,
msgs_sent_since_pong: usize,
awaiting_pong_timer_tick_intervals: i8,
received_message_since_timer_tick: bool,
sent_gossip_timestamp_filter: bool,
}
impl Peer {
/// Returns true if the channel announcements/updates for the given channel should be
/// forwarded to this peer.
/// If we are sending our routing table to this peer and we have not yet sent channel
/// announcements/updates for the given channel_id then we will send it when we get to that
/// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
/// sent the old versions, we should send the update, and so return true here.
fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
!self.sent_gossip_timestamp_filter {
return false;
}
match self.sync_status {
InitSyncTracker::NoSyncRequested => true,
InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
InitSyncTracker::NodesSyncing(_) => true,
}
}
/// Similar to the above, but for node announcements indexed by node_id.
fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
!self.sent_gossip_timestamp_filter {
return false;
}
match self.sync_status {
InitSyncTracker::NoSyncRequested => true,
InitSyncTracker::ChannelsSyncing(_) => false,
InitSyncTracker::NodesSyncing(pk) => pk < node_id,
}
}
}
/// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions.
///
/// (C-not exported) as Arcs don't make sense in bindings
pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<NetGraphMsgHandler<Arc<NetworkGraph>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
/// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
/// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
/// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions.
///
/// (C-not exported) as Arcs don't make sense in bindings
pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
/// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
/// socket events into messages which it passes on to its [`MessageHandler`].
///
/// Locks are taken internally, so you must never assume that reentrancy from a
/// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
///
/// Calls to [`read_event`] will decode relevant messages and pass them to the
/// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
/// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
/// [`PeerManager`] functions related to the same connection must occur only in serial, making new
/// calls only after previous ones have returned.
///
/// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
/// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefPeerManager, and use a
/// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
///
/// [`read_event`]: PeerManager::read_event
pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
CM::Target: ChannelMessageHandler,
RM::Target: RoutingMessageHandler,
L::Target: Logger,
CMH::Target: CustomMessageHandler {
message_handler: MessageHandler<CM, RM>,
/// Connection state for each connected peer - we have an outer read-write lock which is taken
/// as read while we're doing processing for a peer and taken write when a peer is being added
/// or removed.
///
/// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
/// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
/// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
/// the `MessageHandler`s for a given peer is already guaranteed.
peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
/// Only add to this set when noise completes.
/// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
/// lock held. Entries may be added with only the `peers` read lock held (though the
/// `Descriptor` value must already exist in `peers`).
node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
/// We can only have one thread processing events at once, but we don't usually need the full
/// `peers` write lock to do so, so instead we block on this empty mutex when entering
/// `process_events`.
event_processing_lock: Mutex<()>,
/// Because event processing is global and always does all available work before returning,
/// there is no reason for us to have many event processors waiting on the lock at once.
/// Instead, we limit the total blocked event processors to always exactly one by setting this
/// when an event process call is waiting.
blocked_event_processors: AtomicBool,
our_node_secret: SecretKey,
ephemeral_key_midstate: Sha256Engine,
custom_message_handler: CMH,
peer_counter: AtomicCounter,
logger: L,
}
enum MessageHandlingError {
PeerHandleError(PeerHandleError),
LightningError(LightningError),
}
impl From<PeerHandleError> for MessageHandlingError {
fn from(error: PeerHandleError) -> Self {
MessageHandlingError::PeerHandleError(error)
}
}
impl From<LightningError> for MessageHandlingError {
fn from(error: LightningError) -> Self {
MessageHandlingError::LightningError(error)
}
}
macro_rules! encode_msg {
($msg: expr) => {{
let mut buffer = VecWriter(Vec::new());
wire::write($msg, &mut buffer).unwrap();
buffer.0
}}
}
impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
CM::Target: ChannelMessageHandler,
L::Target: Logger {
/// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
/// handler is used and network graph messages are ignored.
///
/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
/// cryptographically secure random bytes.
///
/// (C-not exported) as we can't export a PeerManager with a dummy route handler
pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
Self::new(MessageHandler {
chan_handler: channel_message_handler,
route_handler: IgnoringMessageHandler{},
}, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
}
}
impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
RM::Target: RoutingMessageHandler,
L::Target: Logger {
/// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
/// handler is used and messages related to channels will be ignored (or generate error
/// messages). Note that some other lightning implementations time-out connections after some
/// time if no channel is built with the peer.
///
/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
/// cryptographically secure random bytes.
///
/// (C-not exported) as we can't export a PeerManager with a dummy channel handler
pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
Self::new(MessageHandler {
chan_handler: ErroringMessageHandler::new(),
route_handler: routing_message_handler,
}, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
}
}
/// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
/// This works around `format!()` taking a reference to each argument, preventing
/// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
/// due to lifetime errors.
struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
impl core::fmt::Display for OptionalFromDebugger<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
}
}
/// A function used to filter out local or private addresses
/// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
/// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
match ip_address{
// For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
// For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
// For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
// For IPv4 range 127.0.0.0 - 127.255.255.255 (127/8)
Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
// For IPv4 range 169.254.0.0 - 169.254.255.255 (169.254/16)
Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
// For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
// For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
// For IPv4 range 192.88.99.0 - 192.88.99.255 (192.88.99/24)
Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
// For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
// For remaining addresses
Some(NetAddress::IPv6{addr: _, port: _}) => None,
Some(..) => ip_address,
None => None,
}
}
impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
CM::Target: ChannelMessageHandler,
RM::Target: RoutingMessageHandler,
L::Target: Logger,
CMH::Target: CustomMessageHandler {
/// Constructs a new PeerManager with the given message handlers and node_id secret key
/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
/// cryptographically secure random bytes.
pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
let mut ephemeral_key_midstate = Sha256::engine();
ephemeral_key_midstate.input(ephemeral_random_data);
PeerManager {
message_handler,
peers: FairRwLock::new(HashMap::new()),
node_id_to_descriptor: Mutex::new(HashMap::new()),
event_processing_lock: Mutex::new(()),
blocked_event_processors: AtomicBool::new(false),
our_node_secret,
ephemeral_key_midstate,
peer_counter: AtomicCounter::new(),
logger,
custom_message_handler,
}
}
/// Get the list of node ids for peers which have completed the initial handshake.
///
/// For outbound connections, this will be the same as the their_node_id parameter passed in to
/// new_outbound_connection, however entries will only appear once the initial handshake has
/// completed and we are sure the remote peer has the private key for the given node_id.
pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
let peers = self.peers.read().unwrap();
peers.values().filter_map(|peer_mutex| {
let p = peer_mutex.lock().unwrap();
if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
return None;
}
p.their_node_id
}).collect()
}
fn get_ephemeral_key(&self) -> SecretKey {
let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
let counter = self.peer_counter.get_increment();
ephemeral_hash.input(&counter.to_le_bytes());
SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
}
/// Indicates a new outbound connection has been established to a node with the given node_id
/// and an optional remote network address.
///
/// The remote network address adds the option to report a remote IP address back to a connecting
/// peer using the init message.
/// The user should pass the remote network address of the host they are connected to.
///
/// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
/// descriptor but must disconnect the connection immediately.
///
/// Returns a small number of bytes to send to the remote node (currently always 50).
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet been
/// [`socket_disconnected()`].
///
/// [`socket_disconnected()`]: PeerManager::socket_disconnected
pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
let res = peer_encryptor.get_act_one().to_vec();
let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
let mut peers = self.peers.write().unwrap();
if peers.insert(descriptor, Mutex::new(Peer {
channel_encryptor: peer_encryptor,
their_node_id: None,
their_features: None,
their_net_address: remote_network_address,
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
msgs_sent_since_pong: 0,
awaiting_pong_timer_tick_intervals: 0,
received_message_since_timer_tick: false,
sent_gossip_timestamp_filter: false,
})).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(res)
}
/// Indicates a new inbound connection has been established to a node with an optional remote
/// network address.
///
/// The remote network address adds the option to report a remote IP address back to a connecting
/// peer using the init message.
/// The user should pass the remote network address of the host they are connected to.
///
/// May refuse the connection by returning an Err, but will never write bytes to the remote end
/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
/// call socket_disconnected for the new descriptor but must disconnect the connection
/// immediately.
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet been
/// [`socket_disconnected()`].
///
/// [`socket_disconnected()`]: PeerManager::socket_disconnected
pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
let mut peers = self.peers.write().unwrap();
if peers.insert(descriptor, Mutex::new(Peer {
channel_encryptor: peer_encryptor,
their_node_id: None,
their_features: None,
their_net_address: remote_network_address,
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
msgs_sent_since_pong: 0,
awaiting_pong_timer_tick_intervals: 0,
received_message_since_timer_tick: false,
sent_gossip_timestamp_filter: false,
})).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(())
}
fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
while !peer.awaiting_write_event {
if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK {
match peer.sync_status {
InitSyncTracker::NoSyncRequested => {},
InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps);
for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() {
self.enqueue_message(peer, announce);
if let &Some(ref update_a) = update_a_option {
self.enqueue_message(peer, update_a);
}
if let &Some(ref update_b) = update_b_option {
self.enqueue_message(peer, update_b);
}
peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
}
},
InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
for msg in all_messages.iter() {
self.enqueue_message(peer, msg);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
InitSyncTracker::NodesSyncing(key) => {
let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
for msg in all_messages.iter() {
self.enqueue_message(peer, msg);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
}
}
if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
self.maybe_send_extra_ping(peer);
}
if {
let next_buff = match peer.pending_outbound_buffer.front() {
None => return,
Some(buff) => buff,
};
let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
let data_sent = descriptor.send_data(pending, should_be_reading);
peer.pending_outbound_buffer_first_msg_offset += data_sent;
if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
} {
peer.pending_outbound_buffer_first_msg_offset = 0;
peer.pending_outbound_buffer.pop_front();
} else {
peer.awaiting_write_event = true;
}
}
}
/// Indicates that there is room to write data to the given socket descriptor.
///
/// May return an Err to indicate that the connection should be closed.
///
/// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
/// returning. Thus, be very careful with reentrancy issues! The invariants around calling
/// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
/// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
/// sufficient!
///
/// [`send_data`]: SocketDescriptor::send_data
/// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
let peers = self.peers.read().unwrap();
match peers.get(descriptor) {
None => {
// This is most likely a simple race condition where the user found that the socket
// was writeable, then we told the user to `disconnect_socket()`, then they called
// this method. Return an error to make sure we get disconnected.
return Err(PeerHandleError { no_connection_possible: false });
},
Some(peer_mutex) => {
let mut peer = peer_mutex.lock().unwrap();
peer.awaiting_write_event = false;
self.do_attempt_write_data(descriptor, &mut peer);
}
};
Ok(())
}
/// Indicates that data was read from the given socket descriptor.
///
/// May return an Err to indicate that the connection should be closed.
///
/// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
/// Thus, however, you should call [`process_events`] after any `read_event` to generate
/// [`send_data`] calls to handle responses.
///
/// If `Ok(true)` is returned, further read_events should not be triggered until a
/// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
/// send buffer).
///
/// [`send_data`]: SocketDescriptor::send_data
/// [`process_events`]: PeerManager::process_events
pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
match self.do_read_event(peer_descriptor, data) {
Ok(res) => Ok(res),
Err(e) => {
log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
Err(e)
}
}
}
/// Append a message to a peer's pending outbound/write buffer
fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
peer.msgs_sent_since_pong += 1;
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
}
/// Append a message to a peer's pending outbound/write buffer
fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
let mut buffer = VecWriter(Vec::with_capacity(2048));
wire::write(message, &mut buffer).unwrap(); // crash if the write failed
if is_gossip_msg(message.type_id()) {
log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
} else {
log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
}
self.enqueue_encoded_message(peer, &buffer.0);
}
fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
let mut pause_read = false;
let peers = self.peers.read().unwrap();
let mut msgs_to_forward = Vec::new();
let mut peer_node_id = None;
match peers.get(peer_descriptor) {
None => {
// This is most likely a simple race condition where the user read some bytes
// from the socket, then we told the user to `disconnect_socket()`, then they
// called this method. Return an error to make sure we get disconnected.
return Err(PeerHandleError { no_connection_possible: false });
},
Some(peer_mutex) => {
let mut read_pos = 0;
while read_pos < data.len() {
macro_rules! try_potential_handleerror {
($peer: expr, $thing: expr) => {
match $thing {
Ok(x) => x,
Err(e) => {
match e.action {
msgs::ErrorAction::DisconnectPeer { msg: _ } => {
//TODO: Try to push msg
log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
return Err(PeerHandleError{ no_connection_possible: false });
},
msgs::ErrorAction::IgnoreAndLog(level) => {
log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
continue
},
msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
msgs::ErrorAction::IgnoreError => {
log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
continue;
},
msgs::ErrorAction::SendErrorMessage { msg } => {
log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
self.enqueue_message($peer, &msg);
continue;
},
msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
self.enqueue_message($peer, &msg);
continue;
},
}
}
}
}
}
let mut peer_lock = peer_mutex.lock().unwrap();
let peer = &mut *peer_lock;
let mut msg_to_handle = None;
if peer_node_id.is_none() {
peer_node_id = peer.their_node_id.clone();
}
assert!(peer.pending_read_buffer.len() > 0);
assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
{
let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
read_pos += data_to_copy;
peer.pending_read_buffer_pos += data_to_copy;
}
if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
peer.pending_read_buffer_pos = 0;
macro_rules! insert_node_id {
() => {
match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
hash_map::Entry::Occupied(_) => {
log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
return Err(PeerHandleError{ no_connection_possible: false })
},
hash_map::Entry::Vacant(entry) => {
log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
entry.insert(peer_descriptor.clone())
},
};
}
}
let next_step = peer.channel_encryptor.get_noise_step();
match next_step {
NextNoiseStep::ActOne => {
let act_two = try_potential_handleerror!(peer,
peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
peer.pending_outbound_buffer.push_back(act_two);
peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
},
NextNoiseStep::ActTwo => {
let (act_three, their_node_id) = try_potential_handleerror!(peer,
peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
peer.pending_outbound_buffer.push_back(act_three.to_vec());
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id!();
let features = InitFeatures::known();
let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
self.enqueue_message(peer, &resp);
peer.awaiting_pong_timer_tick_intervals = 0;
},
NextNoiseStep::ActThree => {
let their_node_id = try_potential_handleerror!(peer,
peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id!();
let features = InitFeatures::known();
let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
self.enqueue_message(peer, &resp);
peer.awaiting_pong_timer_tick_intervals = 0;
},
NextNoiseStep::NoiseComplete => {
if peer.pending_read_is_header {
let msg_len = try_potential_handleerror!(peer,
peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
if msg_len < 2 { // Need at least the message type tag
return Err(PeerHandleError{ no_connection_possible: false });
}
peer.pending_read_is_header = false;
} else {
let msg_data = try_potential_handleerror!(peer,
peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
assert!(msg_data.len() >= 2);
// Reset read buffer
if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
peer.pending_read_buffer.resize(18, 0);
peer.pending_read_is_header = true;
let mut reader = io::Cursor::new(&msg_data[..]);
let message_result = wire::read(&mut reader, &*self.custom_message_handler);
let message = match message_result {
Ok(x) => x,
Err(e) => {
match e {
// Note that to avoid recursion we never call
// `do_attempt_write_data` from here, causing
// the messages enqueued here to not actually
// be sent before the peer is disconnected.
(msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
continue;
}
(msgs::DecodeError::UnsupportedCompression, _) => {
log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
continue;
}
(_, Some(ty)) if is_gossip_msg(ty) => {
log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
continue;
}
(msgs::DecodeError::UnknownRequiredFeature, ty) => {
log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
return Err(PeerHandleError { no_connection_possible: false });
}
(msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
(msgs::DecodeError::InvalidValue, _) => {
log_debug!(self.logger, "Got an invalid value while deserializing message");
return Err(PeerHandleError { no_connection_possible: false });
}
(msgs::DecodeError::ShortRead, _) => {
log_debug!(self.logger, "Deserialization failed due to shortness of message");
return Err(PeerHandleError { no_connection_possible: false });
}
(msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
(msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
}
}
};
msg_to_handle = Some(message);
}
}
}
}
pause_read = peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE;
if let Some(message) = msg_to_handle {
match self.handle_message(&peer_mutex, peer_lock, message) {
Err(handling_error) => match handling_error {
MessageHandlingError::PeerHandleError(e) => { return Err(e) },
MessageHandlingError::LightningError(e) => {
try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
},
},
Ok(Some(msg)) => {
msgs_to_forward.push(msg);
},
Ok(None) => {},
}
}
}
}
}
for msg in msgs_to_forward.drain(..) {
self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
}
Ok(pause_read)
}
/// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
/// Returns the message back if it needs to be broadcasted to all other peers.
fn handle_message(
&self,
peer_mutex: &Mutex<Peer>,
mut peer_lock: MutexGuard<Peer>,
message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
peer_lock.received_message_since_timer_tick = true;
// Need an Init as first message
if let wire::Message::Init(msg) = message {
if msg.features.requires_unknown_bits() {
log_debug!(self.logger, "Peer features required unknown version bits");
return Err(PeerHandleError{ no_connection_possible: true }.into());
}
if peer_lock.their_features.is_some() {
return Err(PeerHandleError{ no_connection_possible: false }.into());
}
log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
// For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
}
if !msg.features.supports_static_remote_key() {
log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
return Err(PeerHandleError{ no_connection_possible: true }.into());
}
self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
peer_lock.their_features = Some(msg.features);
return Ok(None);
} else if peer_lock.their_features.is_none() {
log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
return Err(PeerHandleError{ no_connection_possible: false }.into());
}
if let wire::Message::GossipTimestampFilter(_msg) = message {
// When supporting gossip messages, start inital gossip sync only after we receive
// a GossipTimestampFilter
if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
!peer_lock.sent_gossip_timestamp_filter {
peer_lock.sent_gossip_timestamp_filter = true;
peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
}
return Ok(None);
}
let their_features = peer_lock.their_features.clone();
mem::drop(peer_lock);
if is_gossip_msg(message.type_id()) {
log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
} else {
log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
}
let mut should_forward = None;
match message {
// Setup and Control messages:
wire::Message::Init(_) => {
// Handled above
},
wire::Message::GossipTimestampFilter(_) => {
// Handled above
},
wire::Message::Error(msg) => {
let mut data_is_printable = true;
for b in msg.data.bytes() {
if b < 32 || b > 126 {
data_is_printable = false;
break;
}
}
if data_is_printable {
log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
} else {
log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
}
self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
if msg.channel_id == [0; 32] {
return Err(PeerHandleError{ no_connection_possible: true }.into());
}
},
wire::Message::Warning(msg) => {
let mut data_is_printable = true;
for b in msg.data.bytes() {
if b < 32 || b > 126 {
data_is_printable = false;
break;
}
}
if data_is_printable {
log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
} else {
log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
}
},
wire::Message::Ping(msg) => {
if msg.ponglen < 65532 {
let resp = msgs::Pong { byteslen: msg.ponglen };
self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
}
},
wire::Message::Pong(_msg) => {
let mut peer_lock = peer_mutex.lock().unwrap();
peer_lock.awaiting_pong_timer_tick_intervals = 0;
peer_lock.msgs_sent_since_pong = 0;
},
// Channel messages:
wire::Message::OpenChannel(msg) => {
self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
},
wire::Message::AcceptChannel(msg) => {
self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
},
wire::Message::FundingCreated(msg) => {
self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
},
wire::Message::FundingSigned(msg) => {
self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
},
wire::Message::FundingLocked(msg) => {
self.message_handler.chan_handler.handle_funding_locked(&their_node_id, &msg);
},
wire::Message::Shutdown(msg) => {
self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
},
wire::Message::ClosingSigned(msg) => {
self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
},
// Commitment messages:
wire::Message::UpdateAddHTLC(msg) => {
self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
},
wire::Message::UpdateFulfillHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
},
wire::Message::UpdateFailHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
},
wire::Message::UpdateFailMalformedHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
},
wire::Message::CommitmentSigned(msg) => {
self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
},
wire::Message::RevokeAndACK(msg) => {
self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
},
wire::Message::UpdateFee(msg) => {
self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
},
wire::Message::ChannelReestablish(msg) => {
self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
},
// Routing messages:
wire::Message::AnnouncementSignatures(msg) => {
self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
},
wire::Message::ChannelAnnouncement(msg) => {
if self.message_handler.route_handler.handle_channel_announcement(&msg)
.map_err(|e| -> MessageHandlingError { e.into() })? {
should_forward = Some(wire::Message::ChannelAnnouncement(msg));
}
},
wire::Message::NodeAnnouncement(msg) => {
if self.message_handler.route_handler.handle_node_announcement(&msg)
.map_err(|e| -> MessageHandlingError { e.into() })? {
should_forward = Some(wire::Message::NodeAnnouncement(msg));
}
},
wire::Message::ChannelUpdate(msg) => {
self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
if self.message_handler.route_handler.handle_channel_update(&msg)
.map_err(|e| -> MessageHandlingError { e.into() })? {
should_forward = Some(wire::Message::ChannelUpdate(msg));
}
},
wire::Message::QueryShortChannelIds(msg) => {
self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
},
wire::Message::ReplyShortChannelIdsEnd(msg) => {
self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
},
wire::Message::QueryChannelRange(msg) => {
self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
},
wire::Message::ReplyChannelRange(msg) => {
self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
},
// Unknown messages:
wire::Message::Unknown(type_id) if message.is_even() => {
log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
// Fail the channel if message is an even, unknown type as per BOLT #1.
return Err(PeerHandleError{ no_connection_possible: true }.into());
},
wire::Message::Unknown(type_id) => {
log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
},
wire::Message::Custom(custom) => {
self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
},
};
Ok(should_forward)
}
fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
match msg {
wire::Message::ChannelAnnouncement(ref msg) => {
log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
let encoded_msg = encode_msg!(msg);
for (_, peer_mutex) in peers.iter() {
let mut peer = peer_mutex.lock().unwrap();
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
!peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
continue
}
if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
{
log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
continue;
}
if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
continue;
}
if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
continue;
}
self.enqueue_encoded_message(&mut *peer, &encoded_msg);
}
},
wire::Message::NodeAnnouncement(ref msg) => {
log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
let encoded_msg = encode_msg!(msg);
for (_, peer_mutex) in peers.iter() {
let mut peer = peer_mutex.lock().unwrap();
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
!peer.should_forward_node_announcement(msg.contents.node_id) {
continue
}
if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
{
log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
continue;
}
if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
continue;
}
if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
continue;
}
self.enqueue_encoded_message(&mut *peer, &encoded_msg);
}
},
wire::Message::ChannelUpdate(ref msg) => {
log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
let encoded_msg = encode_msg!(msg);
for (_, peer_mutex) in peers.iter() {
let mut peer = peer_mutex.lock().unwrap();
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
!peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
continue
}
if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP
|| peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
{
log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
continue;
}
if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
continue;
}
self.enqueue_encoded_message(&mut *peer, &encoded_msg);
}
},
_ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
}
}
/// Checks for any events generated by our handlers and processes them. Includes sending most
/// response messages as well as messages generated by calls to handler functions directly (eg
/// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
///
/// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
/// issues!
///
/// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
/// or one of the other clients provided in our language bindings.
///
/// Note that if there are any other calls to this function waiting on lock(s) this may return
/// without doing any work. All available events that need handling will be handled before the
/// other calls return.
///
/// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
/// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
/// [`send_data`]: SocketDescriptor::send_data
pub fn process_events(&self) {
let mut _single_processor_lock = self.event_processing_lock.try_lock();
if _single_processor_lock.is_err() {
// While we could wake the older sleeper here with a CV and make more even waiting
// times, that would be a lot of overengineering for a simple "reduce total waiter
// count" goal.
match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
Err(val) => {
debug_assert!(val, "compare_exchange failed spuriously?");
return;
},
Ok(val) => {
debug_assert!(!val, "compare_exchange succeeded spuriously?");
// We're the only waiter, as the running process_events may have emptied the
// pending events "long" ago and there are new events for us to process, wait until
// its done and process any leftover events before returning.
_single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
self.blocked_event_processors.store(false, Ordering::Release);
}
}
}
let mut peers_to_disconnect = HashMap::new();
let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
{
// TODO: There are some DoS attacks here where you can flood someone's outbound send
// buffer by doing things like announcing channels on another node. We should be willing to
// drop optional-ish messages when send buffers get full!
let peers_lock = self.peers.read().unwrap();
let peers = &*peers_lock;
macro_rules! get_peer_for_forwarding {
($node_id: expr) => {
{
if peers_to_disconnect.get($node_id).is_some() {
// If we've "disconnected" this peer, do not send to it.
continue;
}
let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
match descriptor_opt {
Some(descriptor) => match peers.get(&descriptor) {
Some(peer_mutex) => {
let peer_lock = peer_mutex.lock().unwrap();
if peer_lock.their_features.is_none() {
continue;
}
peer_lock
},
None => {
debug_assert!(false, "Inconsistent peers set state!");
continue;
}
},
None => {
continue;
},
}
}
}
}
for event in events_generated.drain(..) {
match event {
MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id),
log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
// TODO: If the peer is gone we should generate a DiscardFunding event
// indicating to the wallet that they should just throw away this funding transaction
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
log_pubkey!(node_id),
update_add_htlcs.len(),
update_fulfill_htlcs.len(),
update_fail_htlcs.len(),
log_bytes!(commitment_signed.channel_id));
let mut peer = get_peer_for_forwarding!(node_id);
for msg in update_add_htlcs {
self.enqueue_message(&mut *peer, msg);
}
for msg in update_fulfill_htlcs {
self.enqueue_message(&mut *peer, msg);
}
for msg in update_fail_htlcs {
self.enqueue_message(&mut *peer, msg);
}
for msg in update_fail_malformed_htlcs {
self.enqueue_message(&mut *peer, msg);
}
if let &Some(ref msg) = update_fee {
self.enqueue_message(&mut *peer, msg);
}
self.enqueue_message(&mut *peer, commitment_signed);
},
MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
match self.message_handler.route_handler.handle_channel_announcement(&msg) {
Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
_ => {},
}
match self.message_handler.route_handler.handle_channel_update(&update_msg) {
Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
_ => {},
}
},
MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
match self.message_handler.route_handler.handle_node_announcement(&msg) {
Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
_ => {},
}
},
MessageSendEvent::BroadcastChannelUpdate { msg } => {
log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
match self.message_handler.route_handler.handle_channel_update(&msg) {
Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
_ => {},
}
},
MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
log_pubkey!(node_id), msg.contents.short_channel_id);
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::HandleError { ref node_id, ref action } => {
match *action {
msgs::ErrorAction::DisconnectPeer { ref msg } => {
// We do not have the peers write lock, so we just store that we're
// about to disconenct the peer and do it after we finish
// processing most messages.
peers_to_disconnect.insert(*node_id, msg.clone());
},
msgs::ErrorAction::IgnoreAndLog(level) => {
log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
},
msgs::ErrorAction::IgnoreDuplicateGossip => {},
msgs::ErrorAction::IgnoreError => {
log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
},
msgs::ErrorAction::SendErrorMessage { ref msg } => {
log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
}
},
MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
},
MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
}
MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
log_pubkey!(node_id),
msg.short_channel_ids.len(),
msg.first_blocknum,
msg.number_of_blocks,
msg.sync_complete);
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
}
MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
}
}
}
for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
if peers_to_disconnect.get(&node_id).is_some() { continue; }
self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
}
for (descriptor, peer_mutex) in peers.iter() {
self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
}
}
if !peers_to_disconnect.is_empty() {
let mut peers_lock = self.peers.write().unwrap();
let peers = &mut *peers_lock;
for (node_id, msg) in peers_to_disconnect.drain() {
// Note that since we are holding the peers *write* lock we can
// remove from node_id_to_descriptor immediately (as no other
// thread can be holding the peer lock if we have the global write
// lock).
if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
if let Some(peer_mutex) = peers.remove(&descriptor) {
if let Some(msg) = msg {
log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
let mut peer = peer_mutex.lock().unwrap();
self.enqueue_message(&mut *peer, &msg);
// This isn't guaranteed to work, but if there is enough free
// room in the send buffer, put the error message there...
self.do_attempt_write_data(&mut descriptor, &mut *peer);
} else {
log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
}
}
descriptor.disconnect_socket();
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
}
}
}
}
/// Indicates that the given socket descriptor's connection is now closed.
pub fn socket_disconnected(&self, descriptor: &Descriptor) {
self.disconnect_event_internal(descriptor, false);
}
fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
let mut peers = self.peers.write().unwrap();
let peer_option = peers.remove(descriptor);
match peer_option {
None => {
// This is most likely a simple race condition where the user found that the socket
// was disconnected, then we told the user to `disconnect_socket()`, then they
// called this method. Either way we're disconnected, return.
},
Some(peer_lock) => {
let peer = peer_lock.lock().unwrap();
if let Some(node_id) = peer.their_node_id {
log_trace!(self.logger,
"Handling disconnection of peer {}, with {}future connection to the peer possible.",
log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
}
}
};
}
/// Disconnect a peer given its node id.
///
/// Set `no_connection_possible` to true to prevent any further connection with this peer,
/// force-closing any channels we have with it.
///
/// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
/// peer. Thus, be very careful about reentrancy issues.
///
/// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
let mut peers_lock = self.peers.write().unwrap();
if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
peers_lock.remove(&descriptor);
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
descriptor.disconnect_socket();
}
}
/// Disconnects all currently-connected peers. This is useful on platforms where there may be
/// an indication that TCP sockets have stalled even if we weren't around to time them out
/// using regular ping/pongs.
pub fn disconnect_all_peers(&self) {
let mut peers_lock = self.peers.write().unwrap();
self.node_id_to_descriptor.lock().unwrap().clear();
let peers = &mut *peers_lock;
for (mut descriptor, peer) in peers.drain() {
if let Some(node_id) = peer.lock().unwrap().their_node_id {
log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
}
descriptor.disconnect_socket();
}
}
/// This is called when we're blocked on sending additional gossip messages until we receive a
/// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
/// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
fn maybe_send_extra_ping(&self, peer: &mut Peer) {
if peer.awaiting_pong_timer_tick_intervals == 0 {
peer.awaiting_pong_timer_tick_intervals = -1;
let ping = msgs::Ping {
ponglen: 0,
byteslen: 64,
};
self.enqueue_message(peer, &ping);
}
}
/// Send pings to each peer and disconnect those which did not respond to the last round of
/// pings.
///
/// This may be called on any timescale you want, however, roughly once every ten seconds is
/// preferred. The call rate determines both how often we send a ping to our peers and how much
/// time they have to respond before we disconnect them.
///
/// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
/// issues!
///
/// [`send_data`]: SocketDescriptor::send_data
pub fn timer_tick_occurred(&self) {
let mut descriptors_needing_disconnect = Vec::new();
{
let peers_lock = self.peers.read().unwrap();
for (descriptor, peer_mutex) in peers_lock.iter() {
let mut peer = peer_mutex.lock().unwrap();
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
// The peer needs to complete its handshake before we can exchange messages. We
// give peers one timer tick to complete handshake, reusing
// `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
// for handshake completion.
if peer.awaiting_pong_timer_tick_intervals != 0 {
descriptors_needing_disconnect.push(descriptor.clone());
} else {
peer.awaiting_pong_timer_tick_intervals = 1;
}
continue;
}
if peer.awaiting_pong_timer_tick_intervals == -1 {
// Magic value set in `maybe_send_extra_ping`.
peer.awaiting_pong_timer_tick_intervals = 1;
peer.received_message_since_timer_tick = false;
continue;
}
if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
|| peer.awaiting_pong_timer_tick_intervals as u64 >
MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
{
descriptors_needing_disconnect.push(descriptor.clone());
continue;
}
peer.received_message_since_timer_tick = false;
if peer.awaiting_pong_timer_tick_intervals > 0 {
peer.awaiting_pong_timer_tick_intervals += 1;
continue;
}
peer.awaiting_pong_timer_tick_intervals = 1;
let ping = msgs::Ping {
ponglen: 0,
byteslen: 64,
};
self.enqueue_message(&mut *peer, &ping);
self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
}
}
if !descriptors_needing_disconnect.is_empty() {
{
let mut peers_lock = self.peers.write().unwrap();
for descriptor in descriptors_needing_disconnect.iter() {
if let Some(peer) = peers_lock.remove(descriptor) {
if let Some(node_id) = peer.lock().unwrap().their_node_id {
log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
}
}
}
}
for mut descriptor in descriptors_needing_disconnect.drain(..) {
descriptor.disconnect_socket();
}
}
}
}
fn is_gossip_msg(type_id: u16) -> bool {
match type_id {
msgs::ChannelAnnouncement::TYPE |
msgs::ChannelUpdate::TYPE |
msgs::NodeAnnouncement::TYPE |
msgs::QueryChannelRange::TYPE |
msgs::ReplyChannelRange::TYPE |
msgs::QueryShortChannelIds::TYPE |
msgs::ReplyShortChannelIdsEnd::TYPE => true,
_ => false
}
}
#[cfg(test)]
mod tests {
use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
use ln::{msgs, wire};
use ln::msgs::NetAddress;
use util::events;
use util::test_utils;
use bitcoin::secp256k1::Secp256k1;
use bitcoin::secp256k1::{SecretKey, PublicKey};
use prelude::*;
use sync::{Arc, Mutex};
use core::sync::atomic::Ordering;
#[derive(Clone)]
struct FileDescriptor {
fd: u16,
outbound_data: Arc<Mutex<Vec<u8>>>,
}
impl PartialEq for FileDescriptor {
fn eq(&self, other: &Self) -> bool {
self.fd == other.fd
}
}
impl Eq for FileDescriptor { }
impl core::hash::Hash for FileDescriptor {
fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
self.fd.hash(hasher)
}
}
impl SocketDescriptor for FileDescriptor {
fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
self.outbound_data.lock().unwrap().extend_from_slice(data);
data.len()
}
fn disconnect_socket(&mut self) {}
}
struct PeerManagerCfg {
chan_handler: test_utils::TestChannelMessageHandler,
routing_handler: test_utils::TestRoutingMessageHandler,
logger: test_utils::TestLogger,
}
fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
let mut cfgs = Vec::new();
for _ in 0..peer_count {
cfgs.push(
PeerManagerCfg{
chan_handler: test_utils::TestChannelMessageHandler::new(),
logger: test_utils::TestLogger::new(),
routing_handler: test_utils::TestRoutingMessageHandler::new(),
}
);
}
cfgs
}
fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
let mut peers = Vec::new();
for i in 0..peer_count {
let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
let ephemeral_bytes = [i as u8; 32];
let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
peers.push(peer);
}
peers
}
fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
let secp_ctx = Secp256k1::new();
let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
peer_a.process_events();
assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
peer_b.process_events();
assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
peer_a.process_events();
assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
(fd_a.clone(), fd_b.clone())
}
#[test]
fn test_disconnect_peer() {
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
// push a DisconnectPeer event to remove the node flagged by id
let cfgs = create_peermgr_cfgs(2);
let chan_handler = test_utils::TestChannelMessageHandler::new();
let mut peers = create_network(2, &cfgs);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
let secp_ctx = Secp256k1::new();
let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
node_id: their_id,
action: msgs::ErrorAction::DisconnectPeer { msg: None },
});
assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
peers[0].message_handler.chan_handler = &chan_handler;
peers[0].process_events();
assert_eq!(peers[0].peers.read().unwrap().len(), 0);
}
#[test]
fn test_send_simple_msg() {
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
// push a message from one peer to another.
let cfgs = create_peermgr_cfgs(2);
let a_chan_handler = test_utils::TestChannelMessageHandler::new();
let b_chan_handler = test_utils::TestChannelMessageHandler::new();
let mut peers = create_network(2, &cfgs);
let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
let secp_ctx = Secp256k1::new();
let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
node_id: their_id, msg: msg.clone()
});
peers[0].message_handler.chan_handler = &a_chan_handler;
b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
peers[1].message_handler.chan_handler = &b_chan_handler;
peers[0].process_events();
let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
}
#[test]
fn test_disconnect_all_peer() {
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
// then calls disconnect_all_peers
let cfgs = create_peermgr_cfgs(2);
let peers = create_network(2, &cfgs);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
peers[0].disconnect_all_peers();
assert_eq!(peers[0].peers.read().unwrap().len(), 0);
}
#[test]
fn test_timer_tick_occurred() {
// Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
let cfgs = create_peermgr_cfgs(2);
let peers = create_network(2, &cfgs);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
// peers[0] awaiting_pong is set to true, but the Peer is still connected
peers[0].timer_tick_occurred();
peers[0].process_events();
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
// Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
peers[0].timer_tick_occurred();
peers[0].process_events();
assert_eq!(peers[0].peers.read().unwrap().len(), 0);
}
#[test]
fn test_do_attempt_write_data() {
// Create 2 peers with custom TestRoutingMessageHandlers and connect them.
let cfgs = create_peermgr_cfgs(2);
cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
let peers = create_network(2, &cfgs);
// By calling establish_connect, we trigger do_attempt_write_data between
// the peers. Previously this function would mistakenly enter an infinite loop
// when there were more channel messages available than could fit into a peer's
// buffer. This issue would now be detected by this test (because we use custom
// RoutingMessageHandlers that intentionally return more channel messages
// than can fit into a peer's buffer).
let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
// Make each peer to read the messages that the other peer just wrote to them. Note that
// due to the max-message-before-ping limits this may take a few iterations to complete.
for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
peers[1].process_events();
let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
assert!(!a_read_data.is_empty());
peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
peers[0].process_events();
let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
assert!(!b_read_data.is_empty());
peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
peers[0].process_events();
assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
}
// Check that each peer has received the expected number of channel updates and channel
// announcements.
assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100);
assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50);
}
#[test]
fn test_handshake_timeout() {
// Tests that we time out a peer still waiting on handshake completion after a full timer
// tick.
let cfgs = create_peermgr_cfgs(2);
cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
let peers = create_network(2, &cfgs);
let secp_ctx = Secp256k1::new();
let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
// If we get a single timer tick before completion, that's fine
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
peers[0].timer_tick_occurred();
assert_eq!(peers[0].peers.read().unwrap().len(), 1);
assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
peers[0].process_events();
assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
peers[1].process_events();
// ...but if we get a second timer tick, we should disconnect the peer
peers[0].timer_tick_occurred();
assert_eq!(peers[0].peers.read().unwrap().len(), 0);
assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err());
}
#[test]
fn test_filter_addresses(){
// Tests the filter_addresses function.
// For (10/8)
let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (0/8)
let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (100.64/10)
let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (127/8)
let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (169.254/16)
let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (172.16/12)
let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (192.168/16)
let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (192.88.99/24)
let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For other IPv4 addresses
let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
// For (2000::/3)
let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
// For other IPv6 addresses
let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
assert_eq!(filter_addresses(Some(ip_address.clone())), None);
// For (None)
assert_eq!(filter_addresses(None), None);
}
}