mirror of
https://github.com/lightningdevkit/rust-lightning.git
synced 2025-02-27 17:01:10 +01:00
3840 lines
170 KiB
Rust
3840 lines
170 KiB
Rust
//! The top-level channel management and payment tracking stuff lives here.
|
|
//!
|
|
//! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
|
|
//! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
|
|
//! upon reconnect to the relevant peer(s).
|
|
//!
|
|
//! It does not manage routing logic (see ln::router for that) nor does it manage constructing
|
|
//! on-chain transactions (it only monitors the chain to watch for any force-closes that might
|
|
//! imply it needs to fail HTLCs/payments/channels it manages).
|
|
|
|
use bitcoin::blockdata::block::BlockHeader;
|
|
use bitcoin::blockdata::transaction::Transaction;
|
|
use bitcoin::blockdata::constants::genesis_block;
|
|
use bitcoin::network::constants::Network;
|
|
use bitcoin::util::hash::BitcoinHash;
|
|
|
|
use bitcoin_hashes::{Hash, HashEngine};
|
|
use bitcoin_hashes::hmac::{Hmac, HmacEngine};
|
|
use bitcoin_hashes::sha256::Hash as Sha256;
|
|
use bitcoin_hashes::sha256d::Hash as Sha256dHash;
|
|
use bitcoin_hashes::cmp::fixed_time_eq;
|
|
|
|
use secp256k1::key::{SecretKey,PublicKey};
|
|
use secp256k1::Secp256k1;
|
|
use secp256k1::ecdh::SharedSecret;
|
|
use secp256k1;
|
|
|
|
use chain::chaininterface::{BroadcasterInterface,ChainListener,FeeEstimator};
|
|
use chain::transaction::OutPoint;
|
|
use ln::channel::{Channel, ChannelError};
|
|
use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateErr, ManyChannelMonitor, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
|
|
use ln::features::{InitFeatures, NodeFeatures};
|
|
use ln::router::{Route, RouteHop};
|
|
use ln::msgs;
|
|
use ln::onion_utils;
|
|
use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
|
|
use chain::keysinterface::{ChannelKeys, KeysInterface, KeysManager, InMemoryChannelKeys};
|
|
use util::config::UserConfig;
|
|
use util::{byte_utils, events};
|
|
use util::ser::{Readable, ReadableArgs, Writeable, Writer};
|
|
use util::chacha20::{ChaCha20, ChaChaReader};
|
|
use util::logger::Logger;
|
|
use util::errors::APIError;
|
|
|
|
use std::{cmp, mem};
|
|
use std::collections::{HashMap, hash_map, HashSet};
|
|
use std::io::{Cursor, Read};
|
|
use std::sync::{Arc, Mutex, MutexGuard, RwLock};
|
|
use std::sync::atomic::{AtomicUsize, Ordering};
|
|
use std::time::Duration;
|
|
use std::marker::{Sync, Send};
|
|
use std::ops::Deref;
|
|
|
|
// We hold various information about HTLC relay in the HTLC objects in Channel itself:
|
|
//
|
|
// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
|
|
// forward the HTLC with information it will give back to us when it does so, or if it should Fail
|
|
// the HTLC with the relevant message for the Channel to handle giving to the remote peer.
|
|
//
|
|
// Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
|
|
// Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
|
|
// with it to track where it came from (in case of onwards-forward error), waiting a random delay
|
|
// before we forward it.
|
|
//
|
|
// We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
|
|
// relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
|
|
// to either fail-backwards or fulfill the HTLC backwards along the relevant path).
|
|
// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
|
|
// our payment, which we can use to decode errors or inform the user that the payment was sent.
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
enum PendingHTLCRouting {
|
|
Forward {
|
|
onion_packet: msgs::OnionPacket,
|
|
short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
|
|
},
|
|
Receive {
|
|
payment_data: Option<msgs::FinalOnionHopData>,
|
|
incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
|
|
},
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) struct PendingHTLCInfo {
|
|
routing: PendingHTLCRouting,
|
|
incoming_shared_secret: [u8; 32],
|
|
payment_hash: PaymentHash,
|
|
pub(super) amt_to_forward: u64,
|
|
pub(super) outgoing_cltv_value: u32,
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum HTLCFailureMsg {
|
|
Relay(msgs::UpdateFailHTLC),
|
|
Malformed(msgs::UpdateFailMalformedHTLC),
|
|
}
|
|
|
|
/// Stores whether we can't forward an HTLC or relevant forwarding info
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum PendingHTLCStatus {
|
|
Forward(PendingHTLCInfo),
|
|
Fail(HTLCFailureMsg),
|
|
}
|
|
|
|
pub(super) enum HTLCForwardInfo {
|
|
AddHTLC {
|
|
prev_short_channel_id: u64,
|
|
prev_htlc_id: u64,
|
|
forward_info: PendingHTLCInfo,
|
|
},
|
|
FailHTLC {
|
|
htlc_id: u64,
|
|
err_packet: msgs::OnionErrorPacket,
|
|
},
|
|
}
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[derive(Clone, PartialEq)]
|
|
pub(super) struct HTLCPreviousHopData {
|
|
short_channel_id: u64,
|
|
htlc_id: u64,
|
|
incoming_packet_shared_secret: [u8; 32],
|
|
}
|
|
|
|
struct ClaimableHTLC {
|
|
prev_hop: HTLCPreviousHopData,
|
|
value: u64,
|
|
/// Filled in when the HTLC was received with a payment_secret packet, which contains a
|
|
/// total_msat (which may differ from value if this is a Multi-Path Payment) and a
|
|
/// payment_secret which prevents path-probing attacks and can associate different HTLCs which
|
|
/// are part of the same payment.
|
|
payment_data: Option<msgs::FinalOnionHopData>,
|
|
cltv_expiry: u32,
|
|
}
|
|
|
|
/// Tracks the inbound corresponding to an outbound HTLC
|
|
#[derive(Clone, PartialEq)]
|
|
pub(super) enum HTLCSource {
|
|
PreviousHopData(HTLCPreviousHopData),
|
|
OutboundRoute {
|
|
path: Vec<RouteHop>,
|
|
session_priv: SecretKey,
|
|
/// Technically we can recalculate this from the route, but we cache it here to avoid
|
|
/// doing a double-pass on route when we get a failure back
|
|
first_hop_htlc_msat: u64,
|
|
},
|
|
}
|
|
#[cfg(test)]
|
|
impl HTLCSource {
|
|
pub fn dummy() -> Self {
|
|
HTLCSource::OutboundRoute {
|
|
path: Vec::new(),
|
|
session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
|
|
first_hop_htlc_msat: 0,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
|
|
pub(super) enum HTLCFailReason {
|
|
LightningError {
|
|
err: msgs::OnionErrorPacket,
|
|
},
|
|
Reason {
|
|
failure_code: u16,
|
|
data: Vec<u8>,
|
|
}
|
|
}
|
|
|
|
/// payment_hash type, use to cross-lock hop
|
|
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct PaymentHash(pub [u8;32]);
|
|
/// payment_preimage type, use to route payment between hop
|
|
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct PaymentPreimage(pub [u8;32]);
|
|
/// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
|
|
#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct PaymentSecret(pub [u8;32]);
|
|
|
|
type ShutdownResult = (Option<OutPoint>, ChannelMonitorUpdate, Vec<(HTLCSource, PaymentHash)>);
|
|
|
|
/// Error type returned across the channel_state mutex boundary. When an Err is generated for a
|
|
/// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
|
|
/// immediately (ie with no further calls on it made). Thus, this step happens inside a
|
|
/// channel_state lock. We then return the set of things that need to be done outside the lock in
|
|
/// this struct and call handle_error!() on it.
|
|
|
|
struct MsgHandleErrInternal {
|
|
err: msgs::LightningError,
|
|
shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
|
|
}
|
|
impl MsgHandleErrInternal {
|
|
#[inline]
|
|
fn send_err_msg_no_close(err: &'static str, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err.to_string()
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
#[inline]
|
|
fn ignore_no_close(err: &'static str) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err,
|
|
action: msgs::ErrorAction::IgnoreError,
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_no_close(err: msgs::LightningError) -> Self {
|
|
Self { err, shutdown_finish: None }
|
|
}
|
|
#[inline]
|
|
fn from_finish_shutdown(err: &'static str, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
|
|
Self {
|
|
err: LightningError {
|
|
err,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: err.to_string()
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: Some((shutdown_res, channel_update)),
|
|
}
|
|
}
|
|
#[inline]
|
|
fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
|
|
Self {
|
|
err: match err {
|
|
ChannelError::Ignore(msg) => LightningError {
|
|
err: msg,
|
|
action: msgs::ErrorAction::IgnoreError,
|
|
},
|
|
ChannelError::Close(msg) => LightningError {
|
|
err: msg,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: msg.to_string()
|
|
},
|
|
},
|
|
},
|
|
ChannelError::CloseDelayBroadcast { msg, .. } => LightningError {
|
|
err: msg,
|
|
action: msgs::ErrorAction::SendErrorMessage {
|
|
msg: msgs::ErrorMessage {
|
|
channel_id,
|
|
data: msg.to_string()
|
|
},
|
|
},
|
|
},
|
|
},
|
|
shutdown_finish: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// We hold back HTLCs we intend to relay for a random interval greater than this (see
|
|
/// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
|
|
/// This provides some limited amount of privacy. Ideally this would range from somewhere like one
|
|
/// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
|
|
const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
|
|
|
|
/// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
|
|
/// be sent in the order they appear in the return value, however sometimes the order needs to be
|
|
/// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
|
|
/// they were originally sent). In those cases, this enum is also returned.
|
|
#[derive(Clone, PartialEq)]
|
|
pub(super) enum RAACommitmentOrder {
|
|
/// Send the CommitmentUpdate messages first
|
|
CommitmentFirst,
|
|
/// Send the RevokeAndACK message first
|
|
RevokeAndACKFirst,
|
|
}
|
|
|
|
// Note this is only exposed in cfg(test):
|
|
pub(super) struct ChannelHolder<ChanSigner: ChannelKeys> {
|
|
pub(super) by_id: HashMap<[u8; 32], Channel<ChanSigner>>,
|
|
pub(super) short_to_id: HashMap<u64, [u8; 32]>,
|
|
/// short channel id -> forward infos. Key of 0 means payments received
|
|
/// Note that while this is held in the same mutex as the channels themselves, no consistency
|
|
/// guarantees are made about the existence of a channel with the short id here, nor the short
|
|
/// ids in the PendingHTLCInfo!
|
|
pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
|
|
/// (payment_hash, payment_secret) -> Vec<HTLCs> for tracking HTLCs that
|
|
/// were to us and can be failed/claimed by the user
|
|
/// Note that while this is held in the same mutex as the channels themselves, no consistency
|
|
/// guarantees are made about the channels given here actually existing anymore by the time you
|
|
/// go to read them!
|
|
claimable_htlcs: HashMap<(PaymentHash, Option<PaymentSecret>), Vec<ClaimableHTLC>>,
|
|
/// Messages to send to peers - pushed to in the same lock that they are generated in (except
|
|
/// for broadcast messages, where ordering isn't as strict).
|
|
pub(super) pending_msg_events: Vec<events::MessageSendEvent>,
|
|
}
|
|
|
|
/// State we hold per-peer. In the future we should put channels in here, but for now we only hold
|
|
/// the latest Init features we heard from the peer.
|
|
struct PeerState {
|
|
latest_features: InitFeatures,
|
|
}
|
|
|
|
#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
|
|
const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height";
|
|
|
|
/// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
|
|
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
|
|
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
|
|
/// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
|
|
/// issues such as overly long function definitions. Note that the ChannelManager can take any
|
|
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
|
|
/// concrete type of the KeysManager.
|
|
pub type SimpleArcChannelManager<M, T, F> = Arc<ChannelManager<InMemoryChannelKeys, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>>>;
|
|
|
|
/// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
|
|
/// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
|
|
/// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
|
|
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
|
|
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
|
|
/// helps with issues such as long function definitions. Note that the ChannelManager can take any
|
|
/// type that implements KeysInterface for its keys manager, but this type alias chooses the
|
|
/// concrete type of the KeysManager.
|
|
pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, M, T, F> = ChannelManager<InMemoryChannelKeys, &'a M, &'b T, &'c KeysManager, &'d F>;
|
|
|
|
/// Manager which keeps track of a number of channels and sends messages to the appropriate
|
|
/// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
|
|
///
|
|
/// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
|
|
/// to individual Channels.
|
|
///
|
|
/// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
|
|
/// all peers during write/read (though does not modify this instance, only the instance being
|
|
/// serialized). This will result in any channels which have not yet exchanged funding_created (ie
|
|
/// called funding_transaction_generated for outbound channels).
|
|
///
|
|
/// Note that you can be a bit lazier about writing out ChannelManager than you can be with
|
|
/// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
|
|
/// returning from ManyChannelMonitor::add_/update_monitor, with ChannelManagers, writing updates
|
|
/// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
|
|
/// the serialization process). If the deserialized version is out-of-date compared to the
|
|
/// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
|
|
/// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
|
|
///
|
|
/// Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which
|
|
/// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
|
|
/// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
|
|
/// block_connected() to step towards your best block) upon deserialization before using the
|
|
/// object!
|
|
///
|
|
/// Note that ChannelManager is responsible for tracking liveness of its channels and generating
|
|
/// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
|
|
/// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
|
|
/// offline for a full minute. In order to track this, you must call
|
|
/// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfect.
|
|
///
|
|
/// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
|
|
/// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
|
|
/// essentially you should default to using a SimpleRefChannelManager, and use a
|
|
/// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
|
|
/// you're using lightning-net-tokio.
|
|
pub struct ChannelManager<ChanSigner: ChannelKeys, M: Deref, T: Deref, K: Deref, F: Deref>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
default_configuration: UserConfig,
|
|
genesis_hash: Sha256dHash,
|
|
fee_estimator: F,
|
|
monitor: M,
|
|
tx_broadcaster: T,
|
|
|
|
#[cfg(test)]
|
|
pub(super) latest_block_height: AtomicUsize,
|
|
#[cfg(not(test))]
|
|
latest_block_height: AtomicUsize,
|
|
last_block_hash: Mutex<Sha256dHash>,
|
|
secp_ctx: Secp256k1<secp256k1::All>,
|
|
|
|
#[cfg(test)]
|
|
pub(super) channel_state: Mutex<ChannelHolder<ChanSigner>>,
|
|
#[cfg(not(test))]
|
|
channel_state: Mutex<ChannelHolder<ChanSigner>>,
|
|
our_network_key: SecretKey,
|
|
|
|
/// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
|
|
/// value increases strictly since we don't assume access to a time source.
|
|
last_node_announcement_serial: AtomicUsize,
|
|
|
|
/// The bulk of our storage will eventually be here (channels and message queues and the like).
|
|
/// If we are connected to a peer we always at least have an entry here, even if no channels
|
|
/// are currently open with that peer.
|
|
/// Because adding or removing an entry is rare, we usually take an outer read lock and then
|
|
/// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
|
|
/// new channel.
|
|
per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
|
|
|
|
pending_events: Mutex<Vec<events::Event>>,
|
|
/// Used when we have to take a BIG lock to make sure everything is self-consistent.
|
|
/// Essentially just when we're serializing ourselves out.
|
|
/// Taken first everywhere where we are making changes before any other locks.
|
|
total_consistency_lock: RwLock<()>,
|
|
|
|
keys_manager: K,
|
|
|
|
logger: Arc<Logger>,
|
|
}
|
|
|
|
/// The amount of time we require our counterparty wait to claim their money (ie time between when
|
|
/// we, or our watchtower, must check for them having broadcast a theft transaction).
|
|
pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
|
|
/// The amount of time we're willing to wait to claim money back to us
|
|
pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7;
|
|
|
|
/// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
|
|
/// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
|
|
/// ie the node we forwarded the payment on to should always have enough room to reliably time out
|
|
/// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
|
|
/// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
|
|
const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO?
|
|
pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
|
|
|
|
// Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
|
|
// ie that if the next-hop peer fails the HTLC within
|
|
// LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
|
|
// then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
|
|
// failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
|
|
// LATENCY_GRACE_PERIOD_BLOCKS.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
|
|
|
|
// Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
|
|
// ChannelMontior::would_broadcast_at_height for a description of why this is needed.
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
|
|
|
|
/// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
|
|
pub struct ChannelDetails {
|
|
/// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
|
|
/// thereafter this is the txid of the funding transaction xor the funding transaction output).
|
|
/// Note that this means this value is *not* persistent - it can change once during the
|
|
/// lifetime of the channel.
|
|
pub channel_id: [u8; 32],
|
|
/// The position of the funding transaction in the chain. None if the funding transaction has
|
|
/// not yet been confirmed and the channel fully opened.
|
|
pub short_channel_id: Option<u64>,
|
|
/// The node_id of our counterparty
|
|
pub remote_network_id: PublicKey,
|
|
/// The Features the channel counterparty provided upon last connection.
|
|
/// Useful for routing as it is the most up-to-date copy of the counterparty's features and
|
|
/// many routing-relevant features are present in the init context.
|
|
pub counterparty_features: InitFeatures,
|
|
/// The value, in satoshis, of this channel as appears in the funding output
|
|
pub channel_value_satoshis: u64,
|
|
/// The user_id passed in to create_channel, or 0 if the channel was inbound.
|
|
pub user_id: u64,
|
|
/// The available outbound capacity for sending HTLCs to the remote peer. This does not include
|
|
/// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
/// available for inclusion in new outbound HTLCs). This further does not include any pending
|
|
/// outgoing HTLCs which are awaiting some other resolution to be sent.
|
|
pub outbound_capacity_msat: u64,
|
|
/// The available inbound capacity for the remote peer to send HTLCs to us. This does not
|
|
/// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
|
|
/// available for inclusion in new inbound HTLCs).
|
|
/// Note that there are some corner cases not fully handled here, so the actual available
|
|
/// inbound capacity may be slightly higher than this.
|
|
pub inbound_capacity_msat: u64,
|
|
/// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
|
|
/// the peer is connected, and (c) no monitor update failure is pending resolution.
|
|
pub is_live: bool,
|
|
}
|
|
|
|
/// If a payment fails to send, it can be in one of several states. This enum is returned as the
|
|
/// Err() type describing which state the payment is in, see the description of individual enum
|
|
/// states for more.
|
|
#[derive(Debug)]
|
|
pub enum PaymentSendFailure {
|
|
/// A parameter which was passed to send_payment was invalid, preventing us from attempting to
|
|
/// send the payment at all. No channel state has been changed or messages sent to peers, and
|
|
/// once you've changed the parameter at error, you can freely retry the payment in full.
|
|
ParameterError(APIError),
|
|
/// A parameter in a single path which was passed to send_payment was invalid, preventing us
|
|
/// from attempting to send the payment at all. No channel state has been changed or messages
|
|
/// sent to peers, and once you've changed the parameter at error, you can freely retry the
|
|
/// payment in full.
|
|
///
|
|
/// The results here are ordered the same as the paths in the route object which was passed to
|
|
/// send_payment.
|
|
PathParameterError(Vec<Result<(), APIError>>),
|
|
/// All paths which were attempted failed to send, with no channel state change taking place.
|
|
/// You can freely retry the payment in full (though you probably want to do so over different
|
|
/// paths than the ones selected).
|
|
AllFailedRetrySafe(Vec<APIError>),
|
|
/// Some paths which were attempted failed to send, though possibly not all. At least some
|
|
/// paths have irrevocably committed to the HTLC and retrying the payment in full would result
|
|
/// in over-/re-payment.
|
|
///
|
|
/// The results here are ordered the same as the paths in the route object which was passed to
|
|
/// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
|
|
/// retried (though there is currently no API with which to do so).
|
|
///
|
|
/// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
|
|
/// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
|
|
/// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
|
|
/// with the latest update_id.
|
|
PartialFailure(Vec<Result<(), APIError>>),
|
|
}
|
|
|
|
macro_rules! handle_error {
|
|
($self: ident, $internal: expr, $their_node_id: expr) => {
|
|
match $internal {
|
|
Ok(msg) => Ok(msg),
|
|
Err(MsgHandleErrInternal { err, shutdown_finish }) => {
|
|
#[cfg(debug_assertions)]
|
|
{
|
|
// In testing, ensure there are no deadlocks where the lock is already held upon
|
|
// entering the macro.
|
|
assert!($self.channel_state.try_lock().is_ok());
|
|
}
|
|
|
|
let mut msg_events = Vec::with_capacity(2);
|
|
|
|
if let Some((shutdown_res, update_option)) = shutdown_finish {
|
|
$self.finish_force_close_channel(shutdown_res);
|
|
if let Some(update) = update_option {
|
|
msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
|
|
log_error!($self, "{}", err.err);
|
|
if let msgs::ErrorAction::IgnoreError = err.action {
|
|
} else {
|
|
msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: $their_node_id,
|
|
action: err.action.clone()
|
|
});
|
|
}
|
|
|
|
if !msg_events.is_empty() {
|
|
$self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
|
|
}
|
|
|
|
// Return error in case higher-API need one
|
|
Err(err)
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! break_chan_entry {
|
|
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(ChannelError::Ignore(msg)) => {
|
|
break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
|
|
},
|
|
Err(ChannelError::Close(msg)) => {
|
|
log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
|
|
let (channel_id, mut chan) = $entry.remove_entry();
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
$channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok())) },
|
|
Err(ChannelError::CloseDelayBroadcast { .. }) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! try_chan_entry {
|
|
($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
|
|
match $res {
|
|
Ok(res) => res,
|
|
Err(ChannelError::Ignore(msg)) => {
|
|
return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
|
|
},
|
|
Err(ChannelError::Close(msg)) => {
|
|
log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
|
|
let (channel_id, mut chan) = $entry.remove_entry();
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
$channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
|
|
},
|
|
Err(ChannelError::CloseDelayBroadcast { msg, update }) => {
|
|
log_error!($self, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
|
|
let (channel_id, mut chan) = $entry.remove_entry();
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
$channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
if let Err(e) = $self.monitor.update_monitor(chan.get_funding_txo().unwrap(), update) {
|
|
match e {
|
|
// Upstream channel is dead, but we want at least to fail backward HTLCs to save
|
|
// downstream channels. In case of PermanentFailure, we are not going to be able
|
|
// to claim back to_remote output on remote commitment transaction. Doesn't
|
|
// make a difference here, we are concern about HTLCs circuit, not onchain funds.
|
|
ChannelMonitorUpdateErr::PermanentFailure => {},
|
|
ChannelMonitorUpdateErr::TemporaryFailure => {},
|
|
}
|
|
}
|
|
let shutdown_res = chan.force_shutdown(false);
|
|
return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! handle_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
|
|
};
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
|
|
match $err {
|
|
ChannelMonitorUpdateErr::PermanentFailure => {
|
|
log_error!($self, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
|
|
let (channel_id, mut chan) = $entry.remove_entry();
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
$channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
// TODO: $failed_fails is dropped here, which will cause other channels to hit the
|
|
// chain in a confused state! We need to move them into the ChannelMonitor which
|
|
// will be responsible for failing backwards once things confirm on-chain.
|
|
// It's ok that we drop $failed_forwards here - at this point we'd rather they
|
|
// broadcast HTLC-Timeout and pay the associated fees to get their funds back than
|
|
// us bother trying to claim it just to forward on to another peer. If we're
|
|
// splitting hairs we'd prefer to claim payments that were to us, but we haven't
|
|
// given up the preimage yet, so might as well just wait until the payment is
|
|
// retried, avoiding the on-chain fees.
|
|
let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
|
|
res
|
|
},
|
|
ChannelMonitorUpdateErr::TemporaryFailure => {
|
|
log_info!($self, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
|
|
log_bytes!($entry.key()[..]),
|
|
if $resend_commitment && $resend_raa {
|
|
match $action_type {
|
|
RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
|
|
RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
|
|
}
|
|
} else if $resend_commitment { "commitment" }
|
|
else if $resend_raa { "RAA" }
|
|
else { "nothing" },
|
|
(&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
|
|
(&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
|
|
if !$resend_commitment {
|
|
debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
|
|
}
|
|
if !$resend_raa {
|
|
debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
|
|
}
|
|
$entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
|
|
Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor"), *$entry.key()))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! return_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
|
|
};
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
|
|
return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
|
|
}
|
|
}
|
|
|
|
// Does not break in case of TemporaryFailure!
|
|
macro_rules! maybe_break_monitor_err {
|
|
($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
|
|
match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
|
|
(e, ChannelMonitorUpdateErr::PermanentFailure) => {
|
|
break e;
|
|
},
|
|
(_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys, M: Deref, T: Deref, K: Deref, F: Deref> ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
/// Constructs a new ChannelManager to hold several channels and route between them.
|
|
///
|
|
/// This is the main "logic hub" for all channel-related actions, and implements
|
|
/// ChannelMessageHandler.
|
|
///
|
|
/// Non-proportional fees are fixed according to our risk using the provided fee estimator.
|
|
///
|
|
/// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
|
|
///
|
|
/// Users must provide the current blockchain height from which to track onchain channel
|
|
/// funding outpoints and send payments with reliable timelocks.
|
|
///
|
|
/// Users need to notify the new ChannelManager when a new block is connected or
|
|
/// disconnected using its `block_connected` and `block_disconnected` methods.
|
|
/// However, rather than calling these methods directly, the user should register
|
|
/// the ChannelManager as a listener to the BlockNotifier and call the BlockNotifier's
|
|
/// `block_(dis)connected` methods, which will notify all registered listeners in one
|
|
/// go.
|
|
pub fn new(network: Network, fee_est: F, monitor: M, tx_broadcaster: T, logger: Arc<Logger>, keys_manager: K, config: UserConfig, current_blockchain_height: usize) -> Result<ChannelManager<ChanSigner, M, T, K, F>, secp256k1::Error> {
|
|
let secp_ctx = Secp256k1::new();
|
|
|
|
let res = ChannelManager {
|
|
default_configuration: config.clone(),
|
|
genesis_hash: genesis_block(network).header.bitcoin_hash(),
|
|
fee_estimator: fee_est,
|
|
monitor,
|
|
tx_broadcaster,
|
|
|
|
latest_block_height: AtomicUsize::new(current_blockchain_height),
|
|
last_block_hash: Mutex::new(Default::default()),
|
|
secp_ctx,
|
|
|
|
channel_state: Mutex::new(ChannelHolder{
|
|
by_id: HashMap::new(),
|
|
short_to_id: HashMap::new(),
|
|
forward_htlcs: HashMap::new(),
|
|
claimable_htlcs: HashMap::new(),
|
|
pending_msg_events: Vec::new(),
|
|
}),
|
|
our_network_key: keys_manager.get_node_secret(),
|
|
|
|
last_node_announcement_serial: AtomicUsize::new(0),
|
|
|
|
per_peer_state: RwLock::new(HashMap::new()),
|
|
|
|
pending_events: Mutex::new(Vec::new()),
|
|
total_consistency_lock: RwLock::new(()),
|
|
|
|
keys_manager,
|
|
|
|
logger,
|
|
};
|
|
|
|
Ok(res)
|
|
}
|
|
|
|
/// Creates a new outbound channel to the given remote node and with the given value.
|
|
///
|
|
/// user_id will be provided back as user_channel_id in FundingGenerationReady and
|
|
/// FundingBroadcastSafe events to allow tracking of which events correspond with which
|
|
/// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you
|
|
/// may wish to avoid using 0 for user_id here.
|
|
///
|
|
/// If successful, will generate a SendOpenChannel message event, so you should probably poll
|
|
/// PeerManager::process_events afterwards.
|
|
///
|
|
/// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
|
|
/// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
|
|
pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
|
|
if channel_value_satoshis < 1000 {
|
|
return Err(APIError::APIMisuseError { err: "channel_value must be at least 1000 satoshis" });
|
|
}
|
|
|
|
let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
|
|
let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, Arc::clone(&self.logger), config)?;
|
|
let res = channel.get_open_channel(self.genesis_hash.clone(), &self.fee_estimator);
|
|
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
match channel_state.by_id.entry(channel.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
if cfg!(feature = "fuzztarget") {
|
|
return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG" });
|
|
} else {
|
|
panic!("RNG is bad???");
|
|
}
|
|
},
|
|
hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
|
|
node_id: their_network_key,
|
|
msg: res,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<ChanSigner>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
|
|
let mut res = Vec::new();
|
|
{
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
res.reserve(channel_state.by_id.len());
|
|
for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
|
|
let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
|
|
res.push(ChannelDetails {
|
|
channel_id: (*channel_id).clone(),
|
|
short_channel_id: channel.get_short_channel_id(),
|
|
remote_network_id: channel.get_their_node_id(),
|
|
counterparty_features: InitFeatures::empty(),
|
|
channel_value_satoshis: channel.get_value_satoshis(),
|
|
inbound_capacity_msat,
|
|
outbound_capacity_msat,
|
|
user_id: channel.get_user_id(),
|
|
is_live: channel.is_live(),
|
|
});
|
|
}
|
|
}
|
|
let per_peer_state = self.per_peer_state.read().unwrap();
|
|
for chan in res.iter_mut() {
|
|
if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
|
|
chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Gets the list of open channels, in random order. See ChannelDetail field documentation for
|
|
/// more information.
|
|
pub fn list_channels(&self) -> Vec<ChannelDetails> {
|
|
self.list_channels_with_filter(|_| true)
|
|
}
|
|
|
|
/// Gets the list of usable channels, in random order. Useful as an argument to
|
|
/// Router::get_route to ensure non-announced channels are used.
|
|
///
|
|
/// These are guaranteed to have their is_live value set to true, see the documentation for
|
|
/// ChannelDetails::is_live for more info on exactly what the criteria are.
|
|
pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
|
|
// Note we use is_live here instead of usable which leads to somewhat confused
|
|
// internal/external nomenclature, but that's ok cause that's probably what the user
|
|
// really wanted anyway.
|
|
self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
|
|
}
|
|
|
|
/// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
|
|
/// will be accepted on the given channel, and after additional timeout/the closing of all
|
|
/// pending HTLCs, the channel will be closed on chain.
|
|
///
|
|
/// May generate a SendShutdown message event on success, which should be relayed.
|
|
pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let (mut failed_htlcs, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: chan_entry.get().get_their_node_id(),
|
|
msg: shutdown_msg
|
|
});
|
|
if chan_entry.get().is_shutdown() {
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(failed_htlcs, Some(chan_entry.remove_entry().1))
|
|
} else { (failed_htlcs, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel"})
|
|
}
|
|
};
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
let chan_update = if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
Some(update)
|
|
} else { None }
|
|
} else { None };
|
|
|
|
if let Some(update) = chan_update {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[inline]
|
|
fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
|
|
let (funding_txo_option, monitor_update, mut failed_htlcs) = shutdown_res;
|
|
log_trace!(self, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
if let Some(funding_txo) = funding_txo_option {
|
|
// There isn't anything we can do if we get an update failure - we're already
|
|
// force-closing. The monitor update on the required in-memory copy should broadcast
|
|
// the latest local state, which is the best we can do anyway. Thus, it is safe to
|
|
// ignore the result here.
|
|
let _ = self.monitor.update_monitor(funding_txo, monitor_update);
|
|
}
|
|
}
|
|
|
|
/// Force closes a channel, immediately broadcasting the latest local commitment transaction to
|
|
/// the chain and rejecting new HTLCs on the given channel.
|
|
pub fn force_close_channel(&self, channel_id: &[u8; 32]) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let mut chan = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
if let Some(chan) = channel_state.by_id.remove(channel_id) {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
chan
|
|
} else {
|
|
return;
|
|
}
|
|
};
|
|
log_trace!(self, "Force-closing channel {}", log_bytes!(channel_id[..]));
|
|
self.finish_force_close_channel(chan.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Force close all channels, immediately broadcasting the latest local commitment transaction
|
|
/// for each to the chain and rejecting new HTLCs on each.
|
|
pub fn force_close_all_channels(&self) {
|
|
for chan in self.list_channels() {
|
|
self.force_close_channel(&chan.channel_id);
|
|
}
|
|
}
|
|
|
|
fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<ChanSigner>>) {
|
|
macro_rules! return_malformed_err {
|
|
($msg: expr, $err_code: expr) => {
|
|
{
|
|
log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
|
|
failure_code: $err_code,
|
|
})), self.channel_state.lock().unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Err(_) = msg.onion_routing_packet.public_key {
|
|
return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
|
|
}
|
|
|
|
let shared_secret = {
|
|
let mut arr = [0; 32];
|
|
arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
|
|
arr
|
|
};
|
|
let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
|
|
|
|
if msg.onion_routing_packet.version != 0 {
|
|
//TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
|
|
//sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
|
|
//the hash doesn't really serve any purpose - in the case of hashing all data, the
|
|
//receiving node would have to brute force to figure out which version was put in the
|
|
//packet by the node that send us the message, in the case of hashing the hop_data, the
|
|
//node knows the HMAC matched, so they already know what is there...
|
|
return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
|
|
}
|
|
|
|
let mut hmac = HmacEngine::<Sha256>::new(&mu);
|
|
hmac.input(&msg.onion_routing_packet.hop_data);
|
|
hmac.input(&msg.payment_hash.0[..]);
|
|
if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
|
|
return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
|
|
}
|
|
|
|
let mut channel_state = None;
|
|
macro_rules! return_err {
|
|
($msg: expr, $err_code: expr, $data: expr) => {
|
|
{
|
|
log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg);
|
|
if channel_state.is_none() {
|
|
channel_state = Some(self.channel_state.lock().unwrap());
|
|
}
|
|
return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
|
|
})), channel_state.unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
|
|
let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
|
|
let (next_hop_data, next_hop_hmac) = {
|
|
match msgs::OnionHopData::read(&mut chacha_stream) {
|
|
Err(err) => {
|
|
let error_code = match err {
|
|
msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
|
|
msgs::DecodeError::UnknownRequiredFeature|
|
|
msgs::DecodeError::InvalidValue|
|
|
msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
|
|
_ => 0x2000 | 2, // Should never happen
|
|
};
|
|
return_err!("Unable to decode our hop data", error_code, &[0;0]);
|
|
},
|
|
Ok(msg) => {
|
|
let mut hmac = [0; 32];
|
|
if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
|
|
return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
|
|
}
|
|
(msg, hmac)
|
|
},
|
|
}
|
|
};
|
|
|
|
let pending_forward_info = if next_hop_hmac == [0; 32] {
|
|
#[cfg(test)]
|
|
{
|
|
// In tests, make sure that the initial onion pcket data is, at least, non-0.
|
|
// We could do some fancy randomness test here, but, ehh, whatever.
|
|
// This checks for the issue where you can calculate the path length given the
|
|
// onion data as all the path entries that the originator sent will be here
|
|
// as-is (and were originally 0s).
|
|
// Of course reverse path calculation is still pretty easy given naive routing
|
|
// algorithms, but this fixes the most-obvious case.
|
|
let mut next_bytes = [0; 32];
|
|
chacha_stream.read_exact(&mut next_bytes).unwrap();
|
|
assert_ne!(next_bytes[..], [0; 32][..]);
|
|
chacha_stream.read_exact(&mut next_bytes).unwrap();
|
|
assert_ne!(next_bytes[..], [0; 32][..]);
|
|
}
|
|
|
|
// OUR PAYMENT!
|
|
// final_expiry_too_soon
|
|
// We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
|
|
// HTLC_FAIL_BACK_BUFFER blocks to go.
|
|
// Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
|
|
// before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
|
|
if (msg.cltv_expiry as u64) <= self.latest_block_height.load(Ordering::Acquire) as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
|
|
return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
|
|
}
|
|
// final_incorrect_htlc_amount
|
|
if next_hop_data.amt_to_forward > msg.amount_msat {
|
|
return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
|
|
}
|
|
// final_incorrect_cltv_expiry
|
|
if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
|
|
return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
|
|
}
|
|
|
|
let payment_data = match next_hop_data.format {
|
|
msgs::OnionHopDataFormat::Legacy { .. } => None,
|
|
msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
|
|
msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
|
|
};
|
|
|
|
// Note that we could obviously respond immediately with an update_fulfill_htlc
|
|
// message, however that would leak that we are the recipient of this payment, so
|
|
// instead we stay symmetric with the forwarding case, only responding (after a
|
|
// delay) once they've send us a commitment_signed!
|
|
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Receive {
|
|
payment_data,
|
|
incoming_cltv_expiry: msg.cltv_expiry,
|
|
},
|
|
payment_hash: msg.payment_hash.clone(),
|
|
incoming_shared_secret: shared_secret,
|
|
amt_to_forward: next_hop_data.amt_to_forward,
|
|
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
|
|
})
|
|
} else {
|
|
let mut new_packet_data = [0; 20*65];
|
|
let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
|
|
#[cfg(debug_assertions)]
|
|
{
|
|
// Check two things:
|
|
// a) that the behavior of our stream here will return Ok(0) even if the TLV
|
|
// read above emptied out our buffer and the unwrap() wont needlessly panic
|
|
// b) that we didn't somehow magically end up with extra data.
|
|
let mut t = [0; 1];
|
|
debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
|
|
}
|
|
// Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
|
|
// fill the onion hop data we'll forward to our next-hop peer.
|
|
chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
|
|
|
|
let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
|
|
|
|
let blinding_factor = {
|
|
let mut sha = Sha256::engine();
|
|
sha.input(&new_pubkey.serialize()[..]);
|
|
sha.input(&shared_secret);
|
|
Sha256::from_engine(sha).into_inner()
|
|
};
|
|
|
|
let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
|
|
Err(e)
|
|
} else { Ok(new_pubkey) };
|
|
|
|
let outgoing_packet = msgs::OnionPacket {
|
|
version: 0,
|
|
public_key,
|
|
hop_data: new_packet_data,
|
|
hmac: next_hop_hmac.clone(),
|
|
};
|
|
|
|
let short_channel_id = match next_hop_data.format {
|
|
msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
|
|
msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
|
|
msgs::OnionHopDataFormat::FinalNode { .. } => {
|
|
return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
|
|
},
|
|
};
|
|
|
|
PendingHTLCStatus::Forward(PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Forward {
|
|
onion_packet: outgoing_packet,
|
|
short_channel_id: short_channel_id,
|
|
},
|
|
payment_hash: msg.payment_hash.clone(),
|
|
incoming_shared_secret: shared_secret,
|
|
amt_to_forward: next_hop_data.amt_to_forward,
|
|
outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
|
|
})
|
|
};
|
|
|
|
channel_state = Some(self.channel_state.lock().unwrap());
|
|
if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
|
|
// If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
|
|
// with a short_channel_id of 0. This is important as various things later assume
|
|
// short_channel_id is non-0 in any ::Forward.
|
|
if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
|
|
let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
|
|
let forwarding_id = match id_option {
|
|
None => { // unknown_next_peer
|
|
return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
|
|
},
|
|
Some(id) => id.clone(),
|
|
};
|
|
if let Some((err, code, chan_update)) = loop {
|
|
let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
|
|
|
|
// Note that we could technically not return an error yet here and just hope
|
|
// that the connection is reestablished or monitor updated by the time we get
|
|
// around to doing the actual forward, but better to fail early if we can and
|
|
// hopefully an attacker trying to path-trace payments cannot make this occur
|
|
// on a small/per-node/per-channel scale.
|
|
if !chan.is_live() { // channel_disabled
|
|
break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
if *amt_to_forward < chan.get_their_htlc_minimum_msat() { // amount_below_minimum
|
|
break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_our_fee_base_msat(&self.fee_estimator) as u64) });
|
|
if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
|
|
break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry
|
|
break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
|
|
// Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
|
|
// packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
|
|
if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
|
|
break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
|
|
break Some(("CLTV expiry is too far in the future", 21, None));
|
|
}
|
|
// In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
|
|
// But, to be safe against policy reception, we use a longuer delay.
|
|
if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
|
|
break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
|
|
}
|
|
|
|
break None;
|
|
}
|
|
{
|
|
let mut res = Vec::with_capacity(8 + 128);
|
|
if let Some(chan_update) = chan_update {
|
|
if code == 0x1000 | 11 || code == 0x1000 | 12 {
|
|
res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
|
|
}
|
|
else if code == 0x1000 | 13 {
|
|
res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
|
|
}
|
|
else if code == 0x1000 | 20 {
|
|
res.extend_from_slice(&byte_utils::be16_to_array(chan_update.contents.flags));
|
|
}
|
|
res.extend_from_slice(&chan_update.encode_with_len()[..]);
|
|
}
|
|
return_err!(err, code, &res[..]);
|
|
}
|
|
}
|
|
}
|
|
|
|
(pending_forward_info, channel_state.unwrap())
|
|
}
|
|
|
|
/// only fails if the channel does not yet have an assigned short_id
|
|
/// May be called with channel_state already locked!
|
|
fn get_channel_update(&self, chan: &Channel<ChanSigner>) -> Result<msgs::ChannelUpdate, LightningError> {
|
|
let short_channel_id = match chan.get_short_channel_id() {
|
|
None => return Err(LightningError{err: "Channel not yet established", action: msgs::ErrorAction::IgnoreError}),
|
|
Some(id) => id,
|
|
};
|
|
|
|
let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_their_node_id().serialize()[..];
|
|
|
|
let unsigned = msgs::UnsignedChannelUpdate {
|
|
chain_hash: self.genesis_hash,
|
|
short_channel_id: short_channel_id,
|
|
timestamp: chan.get_update_time_counter(),
|
|
flags: (!were_node_one) as u16 | ((!chan.is_live() as u16) << 1),
|
|
cltv_expiry_delta: CLTV_EXPIRY_DELTA,
|
|
htlc_minimum_msat: chan.get_our_htlc_minimum_msat(),
|
|
fee_base_msat: chan.get_our_fee_base_msat(&self.fee_estimator),
|
|
fee_proportional_millionths: chan.get_fee_proportional_millionths(),
|
|
excess_data: Vec::new(),
|
|
};
|
|
|
|
let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
|
|
let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
|
|
|
|
Ok(msgs::ChannelUpdate {
|
|
signature: sig,
|
|
contents: unsigned
|
|
})
|
|
}
|
|
|
|
// Only public for testing, this should otherwise never be called direcly
|
|
pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
|
|
log_trace!(self, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
|
|
let (session_priv, prng_seed) = self.keys_manager.get_onion_rand();
|
|
|
|
let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
|
|
.map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
|
|
let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
|
|
if onion_utils::route_size_insane(&onion_payloads) {
|
|
return Err(APIError::RouteError{err: "Route size too large considering onion data"});
|
|
}
|
|
let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
|
|
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let err: Result<(), _> = loop {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
|
|
None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!"}),
|
|
Some(id) => id.clone(),
|
|
};
|
|
|
|
let channel_state = &mut *channel_lock;
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
|
|
match {
|
|
if chan.get().get_their_node_id() != path.first().unwrap().pubkey {
|
|
return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
|
|
}
|
|
if !chan.get().is_live() {
|
|
return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!"});
|
|
}
|
|
break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
|
|
path: path.clone(),
|
|
session_priv: session_priv.clone(),
|
|
first_hop_htlc_msat: htlc_msat,
|
|
}, onion_packet), channel_state, chan)
|
|
} {
|
|
Some((update_add, commitment_signed, monitor_update)) => {
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
|
|
// Note that MonitorUpdateFailed here indicates (per function docs)
|
|
// that we will resend the commitment update once monitor updating
|
|
// is restored. Therefore, we must return an error indicating that
|
|
// it is unsafe to retry the payment wholesale, which we do in the
|
|
// send_payment check for MonitorUpdateFailed, below.
|
|
return Err(APIError::MonitorUpdateFailed);
|
|
}
|
|
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: path.first().unwrap().pubkey,
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: vec![update_add],
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed,
|
|
},
|
|
});
|
|
},
|
|
None => {},
|
|
}
|
|
} else { unreachable!(); }
|
|
return Ok(());
|
|
};
|
|
|
|
match handle_error!(self, err, path.first().unwrap().pubkey) {
|
|
Ok(_) => unreachable!(),
|
|
Err(e) => {
|
|
Err(APIError::ChannelUnavailable { err: e.err })
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Sends a payment along a given route.
|
|
///
|
|
/// Value parameters are provided via the last hop in route, see documentation for RouteHop
|
|
/// fields for more info.
|
|
///
|
|
/// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
|
|
/// payment), we don't do anything to stop you! We always try to ensure that if the provided
|
|
/// next hop knows the preimage to payment_hash they can claim an additional amount as
|
|
/// specified in the last hop in the route! Thus, you should probably do your own
|
|
/// payment_preimage tracking (which you should already be doing as they represent "proof of
|
|
/// payment") and prevent double-sends yourself.
|
|
///
|
|
/// May generate SendHTLCs message(s) event on success, which should be relayed.
|
|
///
|
|
/// Each path may have a different return value, and PaymentSendValue may return a Vec with
|
|
/// each entry matching the corresponding-index entry in the route paths, see
|
|
/// PaymentSendFailure for more info.
|
|
///
|
|
/// In general, a path may raise:
|
|
/// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
|
|
/// node public key) is specified.
|
|
/// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
|
|
/// (including due to previous monitor update failure or new permanent monitor update
|
|
/// failure).
|
|
/// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
|
|
/// relevant updates.
|
|
///
|
|
/// Note that depending on the type of the PaymentSendFailure the HTLC may have been
|
|
/// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
|
|
/// different route unless you intend to pay twice!
|
|
///
|
|
/// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
|
|
/// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
|
|
/// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
|
|
/// must not contain multiple paths as multi-path payments require a recipient-provided
|
|
/// payment_secret.
|
|
/// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
|
|
/// bit set (either as required or as available). If multiple paths are present in the Route,
|
|
/// we assume the invoice had the basic_mpp feature set.
|
|
pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
|
|
if route.paths.len() < 1 {
|
|
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
|
|
}
|
|
if route.paths.len() > 10 {
|
|
// This limit is completely arbitrary - there aren't any real fundamental path-count
|
|
// limits. After we support retrying individual paths we should likely bump this, but
|
|
// for now more than 10 paths likely carries too much one-path failure.
|
|
return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
|
|
}
|
|
let mut total_value = 0;
|
|
let our_node_id = self.get_our_node_id();
|
|
let mut path_errs = Vec::with_capacity(route.paths.len());
|
|
'path_check: for path in route.paths.iter() {
|
|
if path.len() < 1 || path.len() > 20 {
|
|
path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
|
|
continue 'path_check;
|
|
}
|
|
for (idx, hop) in path.iter().enumerate() {
|
|
if idx != path.len() - 1 && hop.pubkey == our_node_id {
|
|
path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
|
|
continue 'path_check;
|
|
}
|
|
}
|
|
total_value += path.last().unwrap().fee_msat;
|
|
path_errs.push(Ok(()));
|
|
}
|
|
if path_errs.iter().any(|e| e.is_err()) {
|
|
return Err(PaymentSendFailure::PathParameterError(path_errs));
|
|
}
|
|
|
|
let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1;
|
|
let mut results = Vec::new();
|
|
for path in route.paths.iter() {
|
|
results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
|
|
}
|
|
let mut has_ok = false;
|
|
let mut has_err = false;
|
|
for res in results.iter() {
|
|
if res.is_ok() { has_ok = true; }
|
|
if res.is_err() { has_err = true; }
|
|
if let &Err(APIError::MonitorUpdateFailed) = res {
|
|
// MonitorUpdateFailed is inherently unsafe to retry, so we call it a
|
|
// PartialFailure.
|
|
has_err = true;
|
|
has_ok = true;
|
|
break;
|
|
}
|
|
}
|
|
if has_err && has_ok {
|
|
Err(PaymentSendFailure::PartialFailure(results))
|
|
} else if has_err {
|
|
Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Call this upon creation of a funding transaction for the given channel.
|
|
///
|
|
/// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs
|
|
/// or your counterparty can steal your funds!
|
|
///
|
|
/// Panics if a funding transaction has already been provided for this channel.
|
|
///
|
|
/// May panic if the funding_txo is duplicative with some other channel (note that this should
|
|
/// be trivially prevented by using unique funding transaction keys per-channel).
|
|
pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let (chan, msg) = {
|
|
let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
|
|
Some(mut chan) => {
|
|
(chan.get_outbound_funding_created(funding_txo)
|
|
.map_err(|e| if let ChannelError::Close(msg) = e {
|
|
MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
|
|
} else { unreachable!(); })
|
|
, chan)
|
|
},
|
|
None => return
|
|
};
|
|
match handle_error!(self, res, chan.get_their_node_id()) {
|
|
Ok(funding_msg) => {
|
|
(chan, funding_msg)
|
|
},
|
|
Err(_) => { return; }
|
|
}
|
|
};
|
|
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
|
|
node_id: chan.get_their_node_id(),
|
|
msg: msg,
|
|
});
|
|
match channel_state.by_id.entry(chan.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
panic!("Generated duplicate funding txid?");
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(chan);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn get_announcement_sigs(&self, chan: &Channel<ChanSigner>) -> Option<msgs::AnnouncementSignatures> {
|
|
if !chan.should_announce() {
|
|
log_trace!(self, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
|
|
return None
|
|
}
|
|
|
|
let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
|
|
Ok(res) => res,
|
|
Err(_) => return None, // Only in case of state precondition violations eg channel is closing
|
|
};
|
|
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
|
|
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
|
|
|
|
Some(msgs::AnnouncementSignatures {
|
|
channel_id: chan.channel_id(),
|
|
short_channel_id: chan.get_short_channel_id().unwrap(),
|
|
node_signature: our_node_sig,
|
|
bitcoin_signature: our_bitcoin_sig,
|
|
})
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
// Messages of up to 64KB should never end up more than half full with addresses, as that would
|
|
// be absurd. We ensure this by checking that at least 500 (our stated public contract on when
|
|
// broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
|
|
// message...
|
|
const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (msgs::NetAddress::MAX_LEN as u32 + 1) / 2;
|
|
#[deny(const_err)]
|
|
#[allow(dead_code)]
|
|
// ...by failing to compile if the number of addresses that would be half of a message is
|
|
// smaller than 500:
|
|
const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
|
|
|
|
/// Generates a signed node_announcement from the given arguments and creates a
|
|
/// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
|
|
/// seen a channel_announcement from us (ie unless we have public channels open).
|
|
///
|
|
/// RGB is a node "color" and alias is a printable human-readable string to describe this node
|
|
/// to humans. They carry no in-protocol meaning.
|
|
///
|
|
/// addresses represent the set (possibly empty) of socket addresses on which this node accepts
|
|
/// incoming connections. These will be broadcast to the network, publicly tying these
|
|
/// addresses together. If you wish to preserve user privacy, addresses should likely contain
|
|
/// only Tor Onion addresses.
|
|
///
|
|
/// Panics if addresses is absurdly large (more than 500).
|
|
pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<msgs::NetAddress>) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
if addresses.len() > 500 {
|
|
panic!("More than half the message size was taken up by public addresses!");
|
|
}
|
|
|
|
let announcement = msgs::UnsignedNodeAnnouncement {
|
|
features: NodeFeatures::supported(),
|
|
timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
|
|
node_id: self.get_our_node_id(),
|
|
rgb, alias, addresses,
|
|
excess_address_data: Vec::new(),
|
|
excess_data: Vec::new(),
|
|
};
|
|
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
|
|
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
|
|
msg: msgs::NodeAnnouncement {
|
|
signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
|
|
contents: announcement
|
|
},
|
|
});
|
|
}
|
|
|
|
/// Processes HTLCs which are pending waiting on random forward delay.
|
|
///
|
|
/// Should only really ever be called in response to a PendingHTLCsForwardable event.
|
|
/// Will likely generate further events.
|
|
pub fn process_pending_htlc_forwards(&self) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let mut new_events = Vec::new();
|
|
let mut failed_forwards = Vec::new();
|
|
let mut handle_errors = Vec::new();
|
|
{
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
|
|
if short_chan_id != 0 {
|
|
let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
|
|
Some(chan_id) => chan_id.clone(),
|
|
None => {
|
|
failed_forwards.reserve(pending_forwards.len());
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => {
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: forward_info.incoming_shared_secret,
|
|
});
|
|
failed_forwards.push((htlc_source, forward_info.payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
|
|
));
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
// Channel went away before we could fail it. This implies
|
|
// the channel is now on chain and our counterparty is
|
|
// trying to broadcast the HTLC-Timeout, but that's their
|
|
// problem, not ours.
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
};
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
|
|
let mut add_htlc_msgs = Vec::new();
|
|
let mut fail_htlc_msgs = Vec::new();
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Forward {
|
|
onion_packet, ..
|
|
}, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value }, } => {
|
|
log_trace!(self, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
|
|
let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
});
|
|
match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
|
|
Err(e) => {
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
|
|
} else {
|
|
panic!("Stated return value requirements in send_htlc() were not met");
|
|
}
|
|
let chan_update = self.get_channel_update(chan.get()).unwrap();
|
|
failed_forwards.push((htlc_source, payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
|
|
));
|
|
continue;
|
|
},
|
|
Ok(update_add) => {
|
|
match update_add {
|
|
Some(msg) => { add_htlc_msgs.push(msg); },
|
|
None => {
|
|
// Nothing to do here...we're waiting on a remote
|
|
// revoke_and_ack before we can add anymore HTLCs. The Channel
|
|
// will automatically handle building the update_add_htlc and
|
|
// commitment_signed messages when we can.
|
|
// TODO: Do some kind of timer to set the channel as !is_live()
|
|
// as we don't really want others relying on us relaying through
|
|
// this channel currently :/.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
HTLCForwardInfo::AddHTLC { .. } => {
|
|
panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
|
|
},
|
|
HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
|
|
log_trace!(self, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
|
|
match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
|
|
Err(e) => {
|
|
if let ChannelError::Ignore(msg) = e {
|
|
log_trace!(self, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
|
|
} else {
|
|
panic!("Stated return value requirements in get_update_fail_htlc() were not met");
|
|
}
|
|
// fail-backs are best-effort, we probably already have one
|
|
// pending, and if not that's OK, if not, the channel is on
|
|
// the chain and sending the HTLC-Timeout is their problem.
|
|
continue;
|
|
},
|
|
Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
|
|
Ok(None) => {
|
|
// Nothing to do here...we're waiting on a remote
|
|
// revoke_and_ack before we can update the commitment
|
|
// transaction. The Channel will automatically handle
|
|
// building the update_fail_htlc and commitment_signed
|
|
// messages when we can.
|
|
// We don't need any kind of timer here as they should fail
|
|
// the channel onto the chain if they can't get our
|
|
// update_fail_htlc in time, it's not our problem.
|
|
}
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
|
|
let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment() {
|
|
Ok(res) => res,
|
|
Err(e) => {
|
|
// We surely failed send_commitment due to bad keys, in that case
|
|
// close channel and then send error message to peer.
|
|
let their_node_id = chan.get().get_their_node_id();
|
|
let err: Result<(), _> = match e {
|
|
ChannelError::Ignore(_) => {
|
|
panic!("Stated return value requirements in send_commitment() were not met");
|
|
},
|
|
ChannelError::Close(msg) => {
|
|
log_trace!(self, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
|
|
let (channel_id, mut channel) = chan.remove_entry();
|
|
if let Some(short_id) = channel.get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
|
|
},
|
|
ChannelError::CloseDelayBroadcast { .. } => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
|
|
};
|
|
handle_errors.push((their_node_id, err));
|
|
continue;
|
|
}
|
|
};
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
handle_errors.push((chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
|
|
continue;
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_their_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: add_htlc_msgs,
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: fail_htlc_msgs,
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed: commitment_msg,
|
|
},
|
|
});
|
|
}
|
|
} else {
|
|
unreachable!();
|
|
}
|
|
} else {
|
|
for forward_info in pending_forwards.drain(..) {
|
|
match forward_info {
|
|
HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
|
|
routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
|
|
incoming_shared_secret, payment_hash, amt_to_forward, .. }, } => {
|
|
let prev_hop = HTLCPreviousHopData {
|
|
short_channel_id: prev_short_channel_id,
|
|
htlc_id: prev_htlc_id,
|
|
incoming_packet_shared_secret: incoming_shared_secret,
|
|
};
|
|
|
|
let mut total_value = 0;
|
|
let payment_secret_opt =
|
|
if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None };
|
|
let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt))
|
|
.or_insert(Vec::new());
|
|
htlcs.push(ClaimableHTLC {
|
|
prev_hop,
|
|
value: amt_to_forward,
|
|
payment_data: payment_data.clone(),
|
|
cltv_expiry: incoming_cltv_expiry,
|
|
});
|
|
if let &Some(ref data) = &payment_data {
|
|
for htlc in htlcs.iter() {
|
|
total_value += htlc.value;
|
|
if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat {
|
|
total_value = msgs::MAX_VALUE_MSAT;
|
|
}
|
|
if total_value >= msgs::MAX_VALUE_MSAT { break; }
|
|
}
|
|
if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat {
|
|
for htlc in htlcs.iter() {
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(
|
|
&byte_utils::be32_to_array(
|
|
self.latest_block_height.load(Ordering::Acquire)
|
|
as u32,
|
|
),
|
|
);
|
|
failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
|
|
short_channel_id: htlc.prev_hop.short_channel_id,
|
|
htlc_id: htlc.prev_hop.htlc_id,
|
|
incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret,
|
|
}), payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
|
|
));
|
|
}
|
|
} else if total_value == data.total_msat {
|
|
new_events.push(events::Event::PaymentReceived {
|
|
payment_hash: payment_hash,
|
|
payment_secret: Some(data.payment_secret),
|
|
amt: total_value,
|
|
});
|
|
}
|
|
} else {
|
|
new_events.push(events::Event::PaymentReceived {
|
|
payment_hash: payment_hash,
|
|
payment_secret: None,
|
|
amt: amt_to_forward,
|
|
});
|
|
}
|
|
},
|
|
HTLCForwardInfo::AddHTLC { .. } => {
|
|
panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
|
|
},
|
|
HTLCForwardInfo::FailHTLC { .. } => {
|
|
panic!("Got pending fail of our own HTLC");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
|
|
}
|
|
|
|
for (their_node_id, err) in handle_errors.drain(..) {
|
|
let _ = handle_error!(self, err, their_node_id);
|
|
}
|
|
|
|
if new_events.is_empty() { return }
|
|
let mut events = self.pending_events.lock().unwrap();
|
|
events.append(&mut new_events);
|
|
}
|
|
|
|
/// If a peer is disconnected we mark any channels with that peer as 'disabled'.
|
|
/// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
|
|
/// to inform the network about the uselessness of these channels.
|
|
///
|
|
/// This method handles all the details, and must be called roughly once per minute.
|
|
pub fn timer_chan_freshness_every_min(&self) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
for (_, chan) in channel_state.by_id.iter_mut() {
|
|
if chan.is_disabled_staged() && !chan.is_live() {
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
chan.to_fresh();
|
|
} else if chan.is_disabled_staged() && chan.is_live() {
|
|
chan.to_fresh();
|
|
} else if chan.is_disabled_marked() {
|
|
chan.to_disabled_staged();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
|
|
/// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
|
|
/// along the path (including in our own channel on which we received it).
|
|
/// Returns false if no payment was found to fail backwards, true if the process of failing the
|
|
/// HTLC backwards has been started.
|
|
pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>) -> bool {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let mut channel_state = Some(self.channel_state.lock().unwrap());
|
|
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret));
|
|
if let Some(mut sources) = removed_source {
|
|
for htlc in sources.drain(..) {
|
|
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
|
|
self.latest_block_height.load(Ordering::Acquire) as u32,
|
|
));
|
|
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
|
|
HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
|
|
}
|
|
true
|
|
} else { false }
|
|
}
|
|
|
|
/// Fails an HTLC backwards to the sender of it to us.
|
|
/// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
|
|
/// There are several callsites that do stupid things like loop over a list of payment_hashes
|
|
/// to fail and take the channel_state lock for each iteration (as we take ownership and may
|
|
/// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
|
|
/// still-available channels.
|
|
fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<ChanSigner>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
|
|
//TODO: There is a timing attack here where if a node fails an HTLC back to us they can
|
|
//identify whether we sent it or not based on the (I presume) very different runtime
|
|
//between the branches here. We should make this async and move it into the forward HTLCs
|
|
//timer handling.
|
|
match source {
|
|
HTLCSource::OutboundRoute { ref path, .. } => {
|
|
log_trace!(self, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
|
|
mem::drop(channel_state_lock);
|
|
match &onion_error {
|
|
&HTLCFailReason::LightningError { ref err } => {
|
|
#[cfg(test)]
|
|
let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
|
|
#[cfg(not(test))]
|
|
let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
|
|
// TODO: If we decided to blame ourselves (or one of our channels) in
|
|
// process_onion_failure we should close that channel as it implies our
|
|
// next-hop is needlessly blaming us!
|
|
if let Some(update) = channel_update {
|
|
self.channel_state.lock().unwrap().pending_msg_events.push(
|
|
events::MessageSendEvent::PaymentFailureNetworkUpdate {
|
|
update,
|
|
}
|
|
);
|
|
}
|
|
self.pending_events.lock().unwrap().push(
|
|
events::Event::PaymentFailed {
|
|
payment_hash: payment_hash.clone(),
|
|
rejected_by_dest: !payment_retryable,
|
|
#[cfg(test)]
|
|
error_code: onion_error_code,
|
|
#[cfg(test)]
|
|
error_data: onion_error_data
|
|
}
|
|
);
|
|
},
|
|
&HTLCFailReason::Reason {
|
|
#[cfg(test)]
|
|
ref failure_code,
|
|
#[cfg(test)]
|
|
ref data,
|
|
.. } => {
|
|
// we get a fail_malformed_htlc from the first hop
|
|
// TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
|
|
// failures here, but that would be insufficient as Router::get_route
|
|
// generally ignores its view of our own channels as we provide them via
|
|
// ChannelDetails.
|
|
// TODO: For non-temporary failures, we really should be closing the
|
|
// channel here as we apparently can't relay through them anyway.
|
|
self.pending_events.lock().unwrap().push(
|
|
events::Event::PaymentFailed {
|
|
payment_hash: payment_hash.clone(),
|
|
rejected_by_dest: path.len() == 1,
|
|
#[cfg(test)]
|
|
error_code: Some(*failure_code),
|
|
#[cfg(test)]
|
|
error_data: Some(data.clone()),
|
|
}
|
|
);
|
|
}
|
|
}
|
|
},
|
|
HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret }) => {
|
|
let err_packet = match onion_error {
|
|
HTLCFailReason::Reason { failure_code, data } => {
|
|
log_trace!(self, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
|
|
let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
|
|
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
|
|
},
|
|
HTLCFailReason::LightningError { err } => {
|
|
log_trace!(self, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
|
|
onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
|
|
}
|
|
};
|
|
|
|
let mut forward_event = None;
|
|
if channel_state_lock.forward_htlcs.is_empty() {
|
|
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
|
|
}
|
|
match channel_state_lock.forward_htlcs.entry(short_channel_id) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
|
|
}
|
|
}
|
|
mem::drop(channel_state_lock);
|
|
if let Some(time) = forward_event {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable: time
|
|
});
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides a payment preimage in response to a PaymentReceived event, returning true and
|
|
/// generating message events for the net layer to claim the payment, if possible. Thus, you
|
|
/// should probably kick the net layer to go send messages if this returns true!
|
|
///
|
|
/// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
|
|
/// available within a few percent of the expected amount. This is critical for several
|
|
/// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
|
|
/// payment_preimage without having provided the full value and b) it avoids certain
|
|
/// privacy-breaking recipient-probing attacks which may reveal payment activity to
|
|
/// motivated attackers.
|
|
///
|
|
/// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
|
|
/// set. Thus, for such payments we will claim any payments which do not under-pay.
|
|
///
|
|
/// May panic if called except in response to a PaymentReceived event.
|
|
pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
|
|
let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
|
|
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let mut channel_state = Some(self.channel_state.lock().unwrap());
|
|
let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret));
|
|
if let Some(mut sources) = removed_source {
|
|
assert!(!sources.is_empty());
|
|
|
|
// If we are claiming an MPP payment, we have to take special care to ensure that each
|
|
// channel exists before claiming all of the payments (inside one lock).
|
|
// Note that channel existance is sufficient as we should always get a monitor update
|
|
// which will take care of the real HTLC claim enforcement.
|
|
//
|
|
// If we find an HTLC which we would need to claim but for which we do not have a
|
|
// channel, we will fail all parts of the MPP payment. While we could wait and see if
|
|
// the sender retries the already-failed path(s), it should be a pretty rare case where
|
|
// we got all the HTLCs and then a channel closed while we were waiting for the user to
|
|
// provide the preimage, so worrying too much about the optimal handling isn't worth
|
|
// it.
|
|
|
|
let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data {
|
|
assert!(payment_secret.is_some());
|
|
(true, data.total_msat >= expected_amount)
|
|
} else {
|
|
assert!(payment_secret.is_none());
|
|
(false, false)
|
|
};
|
|
|
|
for htlc in sources.iter() {
|
|
if !is_mpp || !valid_mpp { break; }
|
|
if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
|
|
valid_mpp = false;
|
|
}
|
|
}
|
|
|
|
let mut errs = Vec::new();
|
|
let mut claimed_any_htlcs = false;
|
|
for htlc in sources.drain(..) {
|
|
if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
|
|
if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) {
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
|
|
self.latest_block_height.load(Ordering::Acquire) as u32,
|
|
));
|
|
self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
|
|
HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
|
|
HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
|
|
} else {
|
|
match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
|
|
Err(Some(e)) => {
|
|
if let msgs::ErrorAction::IgnoreError = e.1.err.action {
|
|
// We got a temporary failure updating monitor, but will claim the
|
|
// HTLC when the monitor updating is restored (or on chain).
|
|
log_error!(self, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
|
|
claimed_any_htlcs = true;
|
|
} else { errs.push(e); }
|
|
},
|
|
Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"),
|
|
Err(None) => {
|
|
log_warn!(self, "Channel we expected to claim an HTLC from was closed.");
|
|
},
|
|
Ok(()) => claimed_any_htlcs = true,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've done the entire above loop in one lock, we can handle any errors
|
|
// which were generated.
|
|
channel_state.take();
|
|
|
|
for (their_node_id, err) in errs.drain(..) {
|
|
let res: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, res, their_node_id);
|
|
}
|
|
|
|
claimed_any_htlcs
|
|
} else { false }
|
|
}
|
|
|
|
fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<ChanSigner>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
|
|
//TODO: Delay the claimed_funds relaying just like we do outbound relay!
|
|
let channel_state = &mut **channel_state_lock;
|
|
let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
|
|
Some(chan_id) => chan_id.clone(),
|
|
None => {
|
|
return Err(None)
|
|
}
|
|
};
|
|
|
|
if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
|
|
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
|
|
match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage) {
|
|
Ok((msgs, monitor_option)) => {
|
|
if let Some(monitor_update) = monitor_option {
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
if was_frozen_for_monitor {
|
|
assert!(msgs.is_none());
|
|
} else {
|
|
return Err(Some((chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
|
|
}
|
|
}
|
|
}
|
|
if let Some((msg, commitment_signed)) = msgs {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_their_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: vec![msg],
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed,
|
|
}
|
|
});
|
|
}
|
|
return Ok(())
|
|
},
|
|
Err(e) => {
|
|
// TODO: Do something with e?
|
|
// This should only occur if we are claiming an HTLC at the same time as the
|
|
// HTLC is being failed (eg because a block is being connected and this caused
|
|
// an HTLC to time out). This should, of course, only occur if the user is the
|
|
// one doing the claiming (as it being a part of a peer claim would imply we're
|
|
// about to lose funds) and only if the lock in claim_funds was dropped as a
|
|
// previous HTLC was failed (thus not for an MPP payment).
|
|
debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
|
|
return Err(None)
|
|
},
|
|
}
|
|
} else { unreachable!(); }
|
|
}
|
|
|
|
fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<ChanSigner>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
|
|
match source {
|
|
HTLCSource::OutboundRoute { .. } => {
|
|
mem::drop(channel_state_lock);
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PaymentSent {
|
|
payment_preimage
|
|
});
|
|
},
|
|
HTLCSource::PreviousHopData(hop_data) => {
|
|
if let Err((their_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
|
|
Ok(()) => Ok(()),
|
|
Err(None) => {
|
|
// TODO: There is probably a channel monitor somewhere that needs to
|
|
// learn the preimage as the channel already hit the chain and that's
|
|
// why it's missing.
|
|
Ok(())
|
|
},
|
|
Err(Some(res)) => Err(res),
|
|
} {
|
|
mem::drop(channel_state_lock);
|
|
let res: Result<(), _> = Err(err);
|
|
let _ = handle_error!(self, res, their_node_id);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Gets the node_id held by this ChannelManager
|
|
pub fn get_our_node_id(&self) -> PublicKey {
|
|
PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key)
|
|
}
|
|
|
|
/// Restores a single, given channel to normal operation after a
|
|
/// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
|
|
/// operation.
|
|
///
|
|
/// All ChannelMonitor updates up to and including highest_applied_update_id must have been
|
|
/// fully committed in every copy of the given channels' ChannelMonitors.
|
|
///
|
|
/// Note that there is no effect to calling with a highest_applied_update_id other than the
|
|
/// current latest ChannelMonitorUpdate and one call to this function after multiple
|
|
/// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
|
|
/// exists largely only to prevent races between this and concurrent update_monitor calls.
|
|
///
|
|
/// Thus, the anticipated use is, at a high level:
|
|
/// 1) You register a ManyChannelMonitor with this ChannelManager,
|
|
/// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
|
|
/// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
|
|
/// any time it cannot do so instantly,
|
|
/// 3) update(s) are applied to each remote copy of a ChannelMonitor,
|
|
/// 4) once all remote copies are updated, you call this function with the update_id that
|
|
/// completed, and once it is the latest the Channel will be re-enabled.
|
|
pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
let mut close_results = Vec::new();
|
|
let mut htlc_forwards = Vec::new();
|
|
let mut htlc_failures = Vec::new();
|
|
let mut pending_events = Vec::new();
|
|
|
|
{
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
|
|
Some(chan) => chan,
|
|
None => return,
|
|
};
|
|
if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
|
|
return;
|
|
}
|
|
|
|
let (raa, commitment_update, order, pending_forwards, mut pending_failures, needs_broadcast_safe, funding_locked) = channel.monitor_updating_restored();
|
|
if !pending_forwards.is_empty() {
|
|
htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), pending_forwards));
|
|
}
|
|
htlc_failures.append(&mut pending_failures);
|
|
|
|
macro_rules! handle_cs { () => {
|
|
if let Some(update) = commitment_update {
|
|
pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: channel.get_their_node_id(),
|
|
updates: update,
|
|
});
|
|
}
|
|
} }
|
|
macro_rules! handle_raa { () => {
|
|
if let Some(revoke_and_ack) = raa {
|
|
pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: channel.get_their_node_id(),
|
|
msg: revoke_and_ack,
|
|
});
|
|
}
|
|
} }
|
|
match order {
|
|
RAACommitmentOrder::CommitmentFirst => {
|
|
handle_cs!();
|
|
handle_raa!();
|
|
},
|
|
RAACommitmentOrder::RevokeAndACKFirst => {
|
|
handle_raa!();
|
|
handle_cs!();
|
|
},
|
|
}
|
|
if needs_broadcast_safe {
|
|
pending_events.push(events::Event::FundingBroadcastSafe {
|
|
funding_txo: channel.get_funding_txo().unwrap(),
|
|
user_channel_id: channel.get_user_id(),
|
|
});
|
|
}
|
|
if let Some(msg) = funding_locked {
|
|
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
|
|
node_id: channel.get_their_node_id(),
|
|
msg,
|
|
});
|
|
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: channel.get_their_node_id(),
|
|
msg: announcement_sigs,
|
|
});
|
|
}
|
|
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
|
|
}
|
|
}
|
|
|
|
self.pending_events.lock().unwrap().append(&mut pending_events);
|
|
|
|
for failure in htlc_failures.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
|
|
}
|
|
self.forward_htlcs(&mut htlc_forwards[..]);
|
|
|
|
for res in close_results.drain(..) {
|
|
self.finish_force_close_channel(res);
|
|
}
|
|
}
|
|
|
|
fn internal_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
|
|
if msg.chain_hash != self.genesis_hash {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash", msg.temporary_channel_id.clone()));
|
|
}
|
|
|
|
let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, their_node_id.clone(), their_features, msg, 0, Arc::clone(&self.logger), &self.default_configuration)
|
|
.map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(channel.channel_id()) {
|
|
hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!", msg.temporary_channel_id.clone())),
|
|
hash_map::Entry::Vacant(entry) => {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
|
|
node_id: their_node_id.clone(),
|
|
msg: channel.get_accept_channel(),
|
|
});
|
|
entry.insert(channel);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
|
|
let (value, output_script, user_id) = {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.temporary_channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
|
|
(chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id))
|
|
}
|
|
};
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::FundingGenerationReady {
|
|
temporary_channel_id: msg.temporary_channel_id,
|
|
channel_value_satoshis: value,
|
|
output_script: output_script,
|
|
user_channel_id: user_id,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
|
|
let ((funding_msg, monitor_update), mut chan) = {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id));
|
|
}
|
|
(try_chan_entry!(self, chan.get_mut().funding_created(msg), channel_state, chan), chan.remove())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id))
|
|
}
|
|
};
|
|
// Because we have exclusive ownership of the channel here we can release the channel_state
|
|
// lock before add_monitor
|
|
if let Err(e) = self.monitor.add_monitor(monitor_update.get_funding_txo(), monitor_update) {
|
|
match e {
|
|
ChannelMonitorUpdateErr::PermanentFailure => {
|
|
// Note that we reply with the new channel_id in error messages if we gave up on the
|
|
// channel, not the temporary_channel_id. This is compatible with ourselves, but the
|
|
// spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
|
|
// any messages referencing a previously-closed channel anyway.
|
|
return Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", funding_msg.channel_id, chan.force_shutdown(true), None));
|
|
},
|
|
ChannelMonitorUpdateErr::TemporaryFailure => {
|
|
// There's no problem signing a counterparty's funding transaction if our monitor
|
|
// hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
|
|
// accepted payment from yet. We do, however, need to wait to send our funding_locked
|
|
// until we have persisted our monitor.
|
|
chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
|
|
},
|
|
}
|
|
}
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(funding_msg.channel_id) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id", funding_msg.channel_id))
|
|
},
|
|
hash_map::Entry::Vacant(e) => {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
|
|
node_id: their_node_id.clone(),
|
|
msg: funding_msg,
|
|
});
|
|
e.insert(chan);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let (funding_txo, user_id) = {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let monitor = match chan.get_mut().funding_signed(&msg) {
|
|
Ok(update) => update,
|
|
Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
|
|
};
|
|
if let Err(e) = self.monitor.add_monitor(chan.get().get_funding_txo().unwrap(), monitor) {
|
|
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
|
|
}
|
|
(chan.get().get_funding_txo().unwrap(), chan.get().get_user_id())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
};
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::FundingBroadcastSafe {
|
|
funding_txo: funding_txo,
|
|
user_channel_id: user_id,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
|
|
if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
|
|
log_trace!(self, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
|
|
// If we see locking block before receiving remote funding_locked, we broadcast our
|
|
// announcement_sigs at remote funding_locked reception. If we receive remote
|
|
// funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
|
|
// block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
|
|
// the order of the events but our peer may not receive it due to disconnection. The specs
|
|
// lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
|
|
// connection in the future if simultaneous misses by both peers due to network/hardware
|
|
// failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
|
|
// to be received, from then sigs are going to be flood to the whole network.
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: their_node_id.clone(),
|
|
msg: announcement_sigs,
|
|
});
|
|
}
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
|
|
let (mut dropped_htlcs, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
if chan_entry.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &msg), channel_state, chan_entry);
|
|
if let Some(msg) = shutdown {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if chan_entry.get().is_shutdown() {
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(dropped_htlcs, Some(chan_entry.remove_entry().1))
|
|
} else { (dropped_htlcs, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
};
|
|
for htlc_source in dropped_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let (tx, chan_option) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id.clone()) {
|
|
hash_map::Entry::Occupied(mut chan_entry) => {
|
|
if chan_entry.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
if tx.is_some() {
|
|
// We're done with this channel, we've got a signed closing transaction and
|
|
// will send the closing_signed back to the remote peer upon return. This
|
|
// also implies there are no pending HTLCs left on the channel, so we can
|
|
// fully delete it from tracking (the channel monitor is still around to
|
|
// watch for old state broadcasts)!
|
|
if let Some(short_id) = chan_entry.get().get_short_channel_id() {
|
|
channel_state.short_to_id.remove(&short_id);
|
|
}
|
|
(tx, Some(chan_entry.remove_entry().1))
|
|
} else { (tx, None) }
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
};
|
|
if let Some(broadcast_tx) = tx {
|
|
log_trace!(self, "Broadcast onchain {}", log_tx!(broadcast_tx));
|
|
self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
|
|
}
|
|
if let Some(chan) = chan_option {
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
//TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
|
|
//determine the state of the payment based on our response/if we forward anything/the time
|
|
//we take to respond. We should take care to avoid allowing such an attack.
|
|
//
|
|
//TODO: There exists a further attack where a node may garble the onion data, forward it to
|
|
//us repeatedly garbled in different ways, and compare our error messages, which are
|
|
//encrypted with the same key. It's not immediately obvious how to usefully exploit that,
|
|
//but we should prevent it anyway.
|
|
|
|
let (mut pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
if !chan.get().is_usable() {
|
|
// If the update_add is completely bogus, the call will Err and we will close,
|
|
// but if we've sent a shutdown and they haven't acknowledged it yet, we just
|
|
// want to reject the new HTLC and fail it backwards instead of forwarding.
|
|
if let PendingHTLCStatus::Forward(PendingHTLCInfo { incoming_shared_secret, .. }) = pending_forward_info {
|
|
let chan_update = self.get_channel_update(chan.get());
|
|
pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
|
|
channel_id: msg.channel_id,
|
|
htlc_id: msg.htlc_id,
|
|
reason: if let Ok(update) = chan_update {
|
|
// TODO: Note that |20 is defined as "channel FROM the processing
|
|
// node has been disabled" (emphasis mine), which seems to imply
|
|
// that we can't return |20 for an inbound channel being disabled.
|
|
// This probably needs a spec update but should definitely be
|
|
// allowed.
|
|
onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x1000|20, &{
|
|
let mut res = Vec::with_capacity(8 + 128);
|
|
res.extend_from_slice(&byte_utils::be16_to_array(update.contents.flags));
|
|
res.extend_from_slice(&update.encode_with_len()[..]);
|
|
res
|
|
}[..])
|
|
} else {
|
|
// This can only happen if the channel isn't in the fully-funded
|
|
// state yet, implying our counterparty is trying to route payments
|
|
// over the channel back to themselves (cause no one else should
|
|
// know the short_id is a lightning channel yet). We should have no
|
|
// problem just calling this unknown_next_peer
|
|
onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x4000|10, &[])
|
|
},
|
|
}));
|
|
}
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let htlc_source = {
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
};
|
|
self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
if (msg.failure_code & 0x8000) == 0 {
|
|
let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set");
|
|
try_chan_entry!(self, Err(chan_err), channel_state, chan);
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
}
|
|
|
|
fn internal_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
|
|
match chan.get_mut().commitment_signed(&msg, &self.fee_estimator) {
|
|
Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
|
|
Err((Some(update), e)) => {
|
|
assert!(chan.get().is_awaiting_monitor_update());
|
|
let _ = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), update);
|
|
try_chan_entry!(self, Err(e), channel_state, chan);
|
|
unreachable!();
|
|
},
|
|
Ok(res) => res
|
|
};
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
|
|
//TODO: Rebroadcast closing_signed if present on monitor update restoration
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: their_node_id.clone(),
|
|
msg: revoke_and_ack,
|
|
});
|
|
if let Some(msg) = commitment_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: their_node_id.clone(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: None,
|
|
commitment_signed: msg,
|
|
},
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, Vec<(PendingHTLCInfo, u64)>)]) {
|
|
for &mut (prev_short_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
|
|
let mut forward_event = None;
|
|
if !pending_forwards.is_empty() {
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
if channel_state.forward_htlcs.is_empty() {
|
|
forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
|
|
}
|
|
for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
|
|
match channel_state.forward_htlcs.entry(match forward_info.routing {
|
|
PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
|
|
PendingHTLCRouting::Receive { .. } => 0,
|
|
}) {
|
|
hash_map::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info });
|
|
},
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info }));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
match forward_event {
|
|
Some(time) => {
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
pending_events.push(events::Event::PendingHTLCsForwardable {
|
|
time_forwardable: time
|
|
});
|
|
}
|
|
None => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn internal_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
|
|
let (pending_forwards, mut pending_failures, short_channel_id) = {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
|
|
let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update) =
|
|
try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator), channel_state, chan);
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
if was_frozen_for_monitor {
|
|
assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
|
|
return Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA"));
|
|
} else {
|
|
return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures);
|
|
}
|
|
}
|
|
if let Some(updates) = commitment_update {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: their_node_id.clone(),
|
|
updates,
|
|
});
|
|
}
|
|
if let Some(msg) = closing_signed {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
(pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"))
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
};
|
|
for failure in pending_failures.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
|
|
}
|
|
self.forward_htlcs(&mut [(short_channel_id, pending_forwards)]);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
if !chan.get().is_usable() {
|
|
return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it", action: msgs::ErrorAction::IgnoreError}));
|
|
}
|
|
|
|
let our_node_id = self.get_our_node_id();
|
|
let (announcement, our_bitcoin_sig) =
|
|
try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
|
|
|
|
let were_node_one = announcement.node_id_1 == our_node_id;
|
|
let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
|
|
if self.secp_ctx.verify(&msghash, &msg.node_signature, if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 }).is_err() ||
|
|
self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 }).is_err() {
|
|
let chan_err: ChannelError = ChannelError::Close("Bad announcement_signatures node_signature");
|
|
try_chan_entry!(self, Err(chan_err), channel_state, chan);
|
|
}
|
|
|
|
let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
|
|
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
|
|
msg: msgs::ChannelAnnouncement {
|
|
node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
|
|
node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
|
|
bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
|
|
bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
|
|
contents: announcement,
|
|
},
|
|
update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
|
|
});
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn internal_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(msg.channel_id) {
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if chan.get().get_their_node_id() != *their_node_id {
|
|
return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id));
|
|
}
|
|
let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
|
|
try_chan_entry!(self, chan.get_mut().channel_reestablish(msg), channel_state, chan);
|
|
if let Some(monitor_update) = monitor_update_opt {
|
|
if let Err(e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
// channel_reestablish doesn't guarantee the order it returns is sensical
|
|
// for the messages it returns, but if we're setting what messages to
|
|
// re-transmit on monitor update success, we need to make sure it is sane.
|
|
if revoke_and_ack.is_none() {
|
|
order = RAACommitmentOrder::CommitmentFirst;
|
|
}
|
|
if commitment_update.is_none() {
|
|
order = RAACommitmentOrder::RevokeAndACKFirst;
|
|
}
|
|
return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
|
|
//TODO: Resend the funding_locked if needed once we get the monitor running again
|
|
}
|
|
}
|
|
if let Some(msg) = funding_locked {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
|
|
node_id: their_node_id.clone(),
|
|
msg
|
|
});
|
|
}
|
|
macro_rules! send_raa { () => {
|
|
if let Some(msg) = revoke_and_ack {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
|
|
node_id: their_node_id.clone(),
|
|
msg
|
|
});
|
|
}
|
|
} }
|
|
macro_rules! send_cu { () => {
|
|
if let Some(updates) = commitment_update {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: their_node_id.clone(),
|
|
updates
|
|
});
|
|
}
|
|
} }
|
|
match order {
|
|
RAACommitmentOrder::RevokeAndACKFirst => {
|
|
send_raa!();
|
|
send_cu!();
|
|
},
|
|
RAACommitmentOrder::CommitmentFirst => {
|
|
send_cu!();
|
|
send_raa!();
|
|
},
|
|
}
|
|
if let Some(msg) = shutdown {
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
|
|
node_id: their_node_id.clone(),
|
|
msg,
|
|
});
|
|
}
|
|
Ok(())
|
|
},
|
|
hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id))
|
|
}
|
|
}
|
|
|
|
/// Begin Update fee process. Allowed only on an outbound channel.
|
|
/// If successful, will generate a UpdateHTLCs event, so you should probably poll
|
|
/// PeerManager::process_events afterwards.
|
|
/// Note: This API is likely to change!
|
|
#[doc(hidden)]
|
|
pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u64) -> Result<(), APIError> {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let their_node_id;
|
|
let err: Result<(), _> = loop {
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
|
|
match channel_state.by_id.entry(channel_id) {
|
|
hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: "Failed to find corresponding channel"}),
|
|
hash_map::Entry::Occupied(mut chan) => {
|
|
if !chan.get().is_outbound() {
|
|
return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel"});
|
|
}
|
|
if chan.get().is_awaiting_monitor_update() {
|
|
return Err(APIError::MonitorUpdateFailed);
|
|
}
|
|
if !chan.get().is_live() {
|
|
return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected"});
|
|
}
|
|
their_node_id = chan.get().get_their_node_id();
|
|
if let Some((update_fee, commitment_signed, monitor_update)) =
|
|
break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw), channel_state, chan)
|
|
{
|
|
if let Err(_e) = self.monitor.update_monitor(chan.get().get_funding_txo().unwrap(), monitor_update) {
|
|
unimplemented!();
|
|
}
|
|
channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
|
|
node_id: chan.get().get_their_node_id(),
|
|
updates: msgs::CommitmentUpdate {
|
|
update_add_htlcs: Vec::new(),
|
|
update_fulfill_htlcs: Vec::new(),
|
|
update_fail_htlcs: Vec::new(),
|
|
update_fail_malformed_htlcs: Vec::new(),
|
|
update_fee: Some(update_fee),
|
|
commitment_signed,
|
|
},
|
|
});
|
|
}
|
|
},
|
|
}
|
|
return Ok(())
|
|
};
|
|
|
|
match handle_error!(self, err, their_node_id) {
|
|
Ok(_) => unreachable!(),
|
|
Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys, M: Deref, T: Deref, K: Deref, F: Deref> events::MessageSendEventsProvider for ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn get_and_clear_pending_msg_events(&self) -> Vec<events::MessageSendEvent> {
|
|
// TODO: Event release to users and serialization is currently race-y: it's very easy for a
|
|
// user to serialize a ChannelManager with pending events in it and lose those events on
|
|
// restart. This is doubly true for the fail/fulfill-backs from monitor events!
|
|
{
|
|
//TODO: This behavior should be documented.
|
|
for htlc_update in self.monitor.get_and_clear_pending_htlcs_updated() {
|
|
if let Some(preimage) = htlc_update.payment_preimage {
|
|
log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
|
|
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
|
|
} else {
|
|
log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut ret = Vec::new();
|
|
let mut channel_state = self.channel_state.lock().unwrap();
|
|
mem::swap(&mut ret, &mut channel_state.pending_msg_events);
|
|
ret
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys, M: Deref, T: Deref, K: Deref, F: Deref> events::EventsProvider for ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
|
|
// TODO: Event release to users and serialization is currently race-y: it's very easy for a
|
|
// user to serialize a ChannelManager with pending events in it and lose those events on
|
|
// restart. This is doubly true for the fail/fulfill-backs from monitor events!
|
|
{
|
|
//TODO: This behavior should be documented.
|
|
for htlc_update in self.monitor.get_and_clear_pending_htlcs_updated() {
|
|
if let Some(preimage) = htlc_update.payment_preimage {
|
|
log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
|
|
self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
|
|
} else {
|
|
log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut ret = Vec::new();
|
|
let mut pending_events = self.pending_events.lock().unwrap();
|
|
mem::swap(&mut ret, &mut *pending_events);
|
|
ret
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send>
|
|
ChainListener for ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], indexes_of_txn_matched: &[u32]) {
|
|
let header_hash = header.bitcoin_hash();
|
|
log_trace!(self, "Block {} at height {} connected with {} txn matched", header_hash, height, txn_matched.len());
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let mut failed_channels = Vec::new();
|
|
let mut timed_out_htlcs = Vec::new();
|
|
{
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
channel_state.by_id.retain(|_, channel| {
|
|
let res = channel.block_connected(header, height, txn_matched, indexes_of_txn_matched);
|
|
if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
|
|
for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
|
|
let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
|
|
timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
|
|
failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
|
|
data: chan_update,
|
|
}));
|
|
}
|
|
if let Some(funding_locked) = chan_res {
|
|
pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
|
|
node_id: channel.get_their_node_id(),
|
|
msg: funding_locked,
|
|
});
|
|
if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
|
|
log_trace!(self, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
|
|
pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
|
|
node_id: channel.get_their_node_id(),
|
|
msg: announcement_sigs,
|
|
});
|
|
} else {
|
|
log_trace!(self, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
|
|
}
|
|
short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
|
|
}
|
|
} else if let Err(e) = res {
|
|
pending_msg_events.push(events::MessageSendEvent::HandleError {
|
|
node_id: channel.get_their_node_id(),
|
|
action: msgs::ErrorAction::SendErrorMessage { msg: e },
|
|
});
|
|
return false;
|
|
}
|
|
if let Some(funding_txo) = channel.get_funding_txo() {
|
|
for tx in txn_matched {
|
|
for inp in tx.input.iter() {
|
|
if inp.previous_output == funding_txo.into_bitcoin_outpoint() {
|
|
log_trace!(self, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id()));
|
|
if let Some(short_id) = channel.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
// It looks like our counterparty went on-chain. We go ahead and
|
|
// broadcast our latest local state as well here, just in case its
|
|
// some kind of SPV attack, though we expect these to be dropped.
|
|
failed_channels.push(channel.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update(&channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if channel.is_funding_initiated() && channel.channel_monitor().would_broadcast_at_height(height) {
|
|
if let Some(short_id) = channel.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
// If would_broadcast_at_height() is true, the channel_monitor will broadcast
|
|
// the latest local tx for us, so we should skip that here (it doesn't really
|
|
// hurt anything, but does make tests a bit simpler).
|
|
failed_channels.push(channel.force_shutdown(false));
|
|
if let Ok(update) = self.get_channel_update(&channel) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
return false;
|
|
}
|
|
true
|
|
});
|
|
|
|
channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| {
|
|
htlcs.retain(|htlc| {
|
|
// If height is approaching the number of blocks we think it takes us to get
|
|
// our commitment transaction confirmed before the HTLC expires, plus the
|
|
// number of blocks we generally consider it to take to do a commitment update,
|
|
// just give up on it and fail the HTLC.
|
|
if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
|
|
let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
|
|
htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
|
|
timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
|
|
failure_code: 0x4000 | 15,
|
|
data: htlc_msat_height_data
|
|
}));
|
|
false
|
|
} else { true }
|
|
});
|
|
!htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
|
|
});
|
|
}
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
|
|
for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
|
|
}
|
|
self.latest_block_height.store(height as usize, Ordering::Release);
|
|
*self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash;
|
|
loop {
|
|
// Update last_node_announcement_serial to be the max of its current value and the
|
|
// block timestamp. This should keep us close to the current time without relying on
|
|
// having an explicit local time source.
|
|
// Just in case we end up in a race, we loop until we either successfully update
|
|
// last_node_announcement_serial or decide we don't need to.
|
|
let old_serial = self.last_node_announcement_serial.load(Ordering::Acquire);
|
|
if old_serial >= header.time as usize { break; }
|
|
if self.last_node_announcement_serial.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// We force-close the channel without letting our counterparty participate in the shutdown
|
|
fn block_disconnected(&self, header: &BlockHeader, _: u32) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let mut failed_channels = Vec::new();
|
|
{
|
|
let mut channel_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
channel_state.by_id.retain(|_, v| {
|
|
if v.block_disconnected(header) {
|
|
if let Some(short_id) = v.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
failed_channels.push(v.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update(&v) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
}
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
self.latest_block_height.fetch_sub(1, Ordering::AcqRel);
|
|
*self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash();
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send>
|
|
ChannelMessageHandler for ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_open_channel(their_node_id, their_features, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_accept_channel(their_node_id, their_features, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_funding_created(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_funding_signed(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_funding_locked(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_shutdown(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_closing_signed(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_update_add_htlc(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_update_fulfill_htlc(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_update_fail_htlc(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_commitment_signed(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_revoke_and_ack(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_update_fee(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_announcement_signatures(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let _ = handle_error!(self, self.internal_channel_reestablish(their_node_id, msg), *their_node_id);
|
|
}
|
|
|
|
fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
let mut failed_channels = Vec::new();
|
|
let mut failed_payments = Vec::new();
|
|
let mut no_channels_remain = true;
|
|
{
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let short_to_id = &mut channel_state.short_to_id;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
if no_connection_possible {
|
|
log_debug!(self, "Failing all channels with {} due to no_connection_possible", log_pubkey!(their_node_id));
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_their_node_id() == *their_node_id {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
failed_channels.push(chan.force_shutdown(true));
|
|
if let Ok(update) = self.get_channel_update(&chan) {
|
|
pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
|
|
msg: update
|
|
});
|
|
}
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
} else {
|
|
log_debug!(self, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(their_node_id));
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_their_node_id() == *their_node_id {
|
|
let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused();
|
|
chan.to_disabled_marked();
|
|
if !failed_adds.is_empty() {
|
|
let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
|
|
failed_payments.push((chan_update, failed_adds));
|
|
}
|
|
if chan.is_shutdown() {
|
|
if let Some(short_id) = chan.get_short_channel_id() {
|
|
short_to_id.remove(&short_id);
|
|
}
|
|
return false;
|
|
} else {
|
|
no_channels_remain = false;
|
|
}
|
|
}
|
|
true
|
|
})
|
|
}
|
|
pending_msg_events.retain(|msg| {
|
|
match msg {
|
|
&events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
|
|
&events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
|
|
&events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != their_node_id,
|
|
&events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
|
|
}
|
|
});
|
|
}
|
|
if no_channels_remain {
|
|
self.per_peer_state.write().unwrap().remove(their_node_id);
|
|
}
|
|
|
|
for failure in failed_channels.drain(..) {
|
|
self.finish_force_close_channel(failure);
|
|
}
|
|
for (chan_update, mut htlc_sources) in failed_payments {
|
|
for (htlc_source, payment_hash) in htlc_sources.drain(..) {
|
|
self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
|
|
}
|
|
}
|
|
}
|
|
|
|
fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &msgs::Init) {
|
|
log_debug!(self, "Generating channel_reestablish events for {}", log_pubkey!(their_node_id));
|
|
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
{
|
|
let mut peer_state_lock = self.per_peer_state.write().unwrap();
|
|
match peer_state_lock.entry(their_node_id.clone()) {
|
|
hash_map::Entry::Vacant(e) => {
|
|
e.insert(Mutex::new(PeerState {
|
|
latest_features: init_msg.features.clone(),
|
|
}));
|
|
},
|
|
hash_map::Entry::Occupied(e) => {
|
|
e.get().lock().unwrap().latest_features = init_msg.features.clone();
|
|
},
|
|
}
|
|
}
|
|
|
|
let mut channel_state_lock = self.channel_state.lock().unwrap();
|
|
let channel_state = &mut *channel_state_lock;
|
|
let pending_msg_events = &mut channel_state.pending_msg_events;
|
|
channel_state.by_id.retain(|_, chan| {
|
|
if chan.get_their_node_id() == *their_node_id {
|
|
if !chan.have_received_message() {
|
|
// If we created this (outbound) channel while we were disconnected from the
|
|
// peer we probably failed to send the open_channel message, which is now
|
|
// lost. We can't have had anything pending related to this channel, so we just
|
|
// drop it.
|
|
false
|
|
} else {
|
|
pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
|
|
node_id: chan.get_their_node_id(),
|
|
msg: chan.get_channel_reestablish(),
|
|
});
|
|
true
|
|
}
|
|
} else { true }
|
|
});
|
|
//TODO: Also re-broadcast announcement_signatures
|
|
}
|
|
|
|
fn handle_error(&self, their_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
|
|
let _ = self.total_consistency_lock.read().unwrap();
|
|
|
|
if msg.channel_id == [0; 32] {
|
|
for chan in self.list_channels() {
|
|
if chan.remote_network_id == *their_node_id {
|
|
self.force_close_channel(&chan.channel_id);
|
|
}
|
|
}
|
|
} else {
|
|
self.force_close_channel(&msg.channel_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
const SERIALIZATION_VERSION: u8 = 1;
|
|
const MIN_SERIALIZATION_VERSION: u8 = 1;
|
|
|
|
impl Writeable for PendingHTLCInfo {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match &self.routing {
|
|
&PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
|
|
0u8.write(writer)?;
|
|
onion_packet.write(writer)?;
|
|
short_channel_id.write(writer)?;
|
|
},
|
|
&PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
|
|
1u8.write(writer)?;
|
|
payment_data.write(writer)?;
|
|
incoming_cltv_expiry.write(writer)?;
|
|
},
|
|
}
|
|
self.incoming_shared_secret.write(writer)?;
|
|
self.payment_hash.write(writer)?;
|
|
self.amt_to_forward.write(writer)?;
|
|
self.outgoing_cltv_value.write(writer)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for PendingHTLCInfo {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
|
|
Ok(PendingHTLCInfo {
|
|
routing: match Readable::read(reader)? {
|
|
0u8 => PendingHTLCRouting::Forward {
|
|
onion_packet: Readable::read(reader)?,
|
|
short_channel_id: Readable::read(reader)?,
|
|
},
|
|
1u8 => PendingHTLCRouting::Receive {
|
|
payment_data: Readable::read(reader)?,
|
|
incoming_cltv_expiry: Readable::read(reader)?,
|
|
},
|
|
_ => return Err(DecodeError::InvalidValue),
|
|
},
|
|
incoming_shared_secret: Readable::read(reader)?,
|
|
payment_hash: Readable::read(reader)?,
|
|
amt_to_forward: Readable::read(reader)?,
|
|
outgoing_cltv_value: Readable::read(reader)?,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Writeable for HTLCFailureMsg {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self {
|
|
&HTLCFailureMsg::Relay(ref fail_msg) => {
|
|
0u8.write(writer)?;
|
|
fail_msg.write(writer)?;
|
|
},
|
|
&HTLCFailureMsg::Malformed(ref fail_msg) => {
|
|
1u8.write(writer)?;
|
|
fail_msg.write(writer)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCFailureMsg {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
|
|
1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
|
|
_ => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for PendingHTLCStatus {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self {
|
|
&PendingHTLCStatus::Forward(ref forward_info) => {
|
|
0u8.write(writer)?;
|
|
forward_info.write(writer)?;
|
|
},
|
|
&PendingHTLCStatus::Fail(ref fail_msg) => {
|
|
1u8.write(writer)?;
|
|
fail_msg.write(writer)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for PendingHTLCStatus {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
|
|
1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
|
|
_ => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_writeable!(HTLCPreviousHopData, 0, {
|
|
short_channel_id,
|
|
htlc_id,
|
|
incoming_packet_shared_secret
|
|
});
|
|
|
|
impl_writeable!(ClaimableHTLC, 0, {
|
|
prev_hop,
|
|
value,
|
|
payment_data,
|
|
cltv_expiry
|
|
});
|
|
|
|
impl Writeable for HTLCSource {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self {
|
|
&HTLCSource::PreviousHopData(ref hop_data) => {
|
|
0u8.write(writer)?;
|
|
hop_data.write(writer)?;
|
|
},
|
|
&HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
|
|
1u8.write(writer)?;
|
|
path.write(writer)?;
|
|
session_priv.write(writer)?;
|
|
first_hop_htlc_msat.write(writer)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCSource {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
|
|
1 => Ok(HTLCSource::OutboundRoute {
|
|
path: Readable::read(reader)?,
|
|
session_priv: Readable::read(reader)?,
|
|
first_hop_htlc_msat: Readable::read(reader)?,
|
|
}),
|
|
_ => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for HTLCFailReason {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self {
|
|
&HTLCFailReason::LightningError { ref err } => {
|
|
0u8.write(writer)?;
|
|
err.write(writer)?;
|
|
},
|
|
&HTLCFailReason::Reason { ref failure_code, ref data } => {
|
|
1u8.write(writer)?;
|
|
failure_code.write(writer)?;
|
|
data.write(writer)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCFailReason {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
|
|
1 => Ok(HTLCFailReason::Reason {
|
|
failure_code: Readable::read(reader)?,
|
|
data: Readable::read(reader)?,
|
|
}),
|
|
_ => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writeable for HTLCForwardInfo {
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
match self {
|
|
&HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_htlc_id, ref forward_info } => {
|
|
0u8.write(writer)?;
|
|
prev_short_channel_id.write(writer)?;
|
|
prev_htlc_id.write(writer)?;
|
|
forward_info.write(writer)?;
|
|
},
|
|
&HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
|
|
1u8.write(writer)?;
|
|
htlc_id.write(writer)?;
|
|
err_packet.write(writer)?;
|
|
},
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Readable for HTLCForwardInfo {
|
|
fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
|
|
match <u8 as Readable>::read(reader)? {
|
|
0 => Ok(HTLCForwardInfo::AddHTLC {
|
|
prev_short_channel_id: Readable::read(reader)?,
|
|
prev_htlc_id: Readable::read(reader)?,
|
|
forward_info: Readable::read(reader)?,
|
|
}),
|
|
1 => Ok(HTLCForwardInfo::FailHTLC {
|
|
htlc_id: Readable::read(reader)?,
|
|
err_packet: Readable::read(reader)?,
|
|
}),
|
|
_ => Err(DecodeError::InvalidValue),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<ChanSigner: ChannelKeys + Writeable, M: Deref, T: Deref, K: Deref, F: Deref> Writeable for ChannelManager<ChanSigner, M, T, K, F>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
|
|
let _ = self.total_consistency_lock.write().unwrap();
|
|
|
|
writer.write_all(&[SERIALIZATION_VERSION; 1])?;
|
|
writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
|
|
|
|
self.genesis_hash.write(writer)?;
|
|
(self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?;
|
|
self.last_block_hash.lock().unwrap().write(writer)?;
|
|
|
|
let channel_state = self.channel_state.lock().unwrap();
|
|
let mut unfunded_channels = 0;
|
|
for (_, channel) in channel_state.by_id.iter() {
|
|
if !channel.is_funding_initiated() {
|
|
unfunded_channels += 1;
|
|
}
|
|
}
|
|
((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
|
|
for (_, channel) in channel_state.by_id.iter() {
|
|
if channel.is_funding_initiated() {
|
|
channel.write(writer)?;
|
|
}
|
|
}
|
|
|
|
(channel_state.forward_htlcs.len() as u64).write(writer)?;
|
|
for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
|
|
short_channel_id.write(writer)?;
|
|
(pending_forwards.len() as u64).write(writer)?;
|
|
for forward in pending_forwards {
|
|
forward.write(writer)?;
|
|
}
|
|
}
|
|
|
|
(channel_state.claimable_htlcs.len() as u64).write(writer)?;
|
|
for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
|
|
payment_hash.write(writer)?;
|
|
(previous_hops.len() as u64).write(writer)?;
|
|
for htlc in previous_hops.iter() {
|
|
htlc.write(writer)?;
|
|
}
|
|
}
|
|
|
|
let per_peer_state = self.per_peer_state.write().unwrap();
|
|
(per_peer_state.len() as u64).write(writer)?;
|
|
for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
|
|
peer_pubkey.write(writer)?;
|
|
let peer_state = peer_state_mutex.lock().unwrap();
|
|
peer_state.latest_features.write(writer)?;
|
|
}
|
|
|
|
(self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Arguments for the creation of a ChannelManager that are not deserialized.
|
|
///
|
|
/// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
|
|
/// is:
|
|
/// 1) Deserialize all stored ChannelMonitors.
|
|
/// 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash,
|
|
/// ChannelManager)>::read(reader, args).
|
|
/// This may result in closing some Channels if the ChannelMonitor is newer than the stored
|
|
/// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
|
|
/// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using
|
|
/// ChannelMonitor::get_monitored_outpoints and ChannelMonitor::get_funding_txo().
|
|
/// 4) Reconnect blocks on your ChannelMonitors.
|
|
/// 5) Move the ChannelMonitors into your local ManyChannelMonitor.
|
|
/// 6) Disconnect/connect blocks on the ChannelManager.
|
|
/// 7) Register the new ChannelManager with your ChainWatchInterface.
|
|
pub struct ChannelManagerReadArgs<'a, ChanSigner: 'a + ChannelKeys, M: Deref, T: Deref, K: Deref, F: Deref>
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
|
|
/// The keys provider which will give us relevant keys. Some keys will be loaded during
|
|
/// deserialization.
|
|
pub keys_manager: K,
|
|
|
|
/// The fee_estimator for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the FeeEstimator will be made during deserialization.
|
|
pub fee_estimator: F,
|
|
/// The ManyChannelMonitor for use in the ChannelManager in the future.
|
|
///
|
|
/// No calls to the ManyChannelMonitor will be made during deserialization. It is assumed that
|
|
/// you have deserialized ChannelMonitors separately and will add them to your
|
|
/// ManyChannelMonitor after deserializing this ChannelManager.
|
|
pub monitor: M,
|
|
|
|
/// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
|
|
/// used to broadcast the latest local commitment transactions of channels which must be
|
|
/// force-closed during deserialization.
|
|
pub tx_broadcaster: T,
|
|
/// The Logger for use in the ChannelManager and which may be used to log information during
|
|
/// deserialization.
|
|
pub logger: Arc<Logger>,
|
|
/// Default settings used for new channels. Any existing channels will continue to use the
|
|
/// runtime settings which were stored when the ChannelManager was serialized.
|
|
pub default_config: UserConfig,
|
|
|
|
/// A map from channel funding outpoints to ChannelMonitors for those channels (ie
|
|
/// value.get_funding_txo() should be the key).
|
|
///
|
|
/// If a monitor is inconsistent with the channel state during deserialization the channel will
|
|
/// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
|
|
/// is true for missing channels as well. If there is a monitor missing for which we find
|
|
/// channel data Err(DecodeError::InvalidValue) will be returned.
|
|
///
|
|
/// In such cases the latest local transactions will be sent to the tx_broadcaster included in
|
|
/// this struct.
|
|
pub channel_monitors: &'a mut HashMap<OutPoint, &'a mut ChannelMonitor<ChanSigner>>,
|
|
}
|
|
|
|
// Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
|
|
// SipmleArcChannelManager type:
|
|
impl<'a, ChanSigner: ChannelKeys + Readable, M: Deref, T: Deref, K: Deref, F: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, ChanSigner, M, T, K, F>> for (Sha256dHash, Arc<ChannelManager<ChanSigner, M, T, K, F>>)
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, ChanSigner, M, T, K, F>) -> Result<Self, DecodeError> {
|
|
let (blockhash, chan_manager) = <(Sha256dHash, ChannelManager<ChanSigner, M, T, K, F>)>::read(reader, args)?;
|
|
Ok((blockhash, Arc::new(chan_manager)))
|
|
}
|
|
}
|
|
|
|
impl<'a, ChanSigner: ChannelKeys + Readable, M: Deref, T: Deref, K: Deref, F: Deref>
|
|
ReadableArgs<ChannelManagerReadArgs<'a, ChanSigner, M, T, K, F>> for (Sha256dHash, ChannelManager<ChanSigner, M, T, K, F>)
|
|
where M::Target: ManyChannelMonitor<ChanSigner>,
|
|
T::Target: BroadcasterInterface,
|
|
K::Target: KeysInterface<ChanKeySigner = ChanSigner>,
|
|
F::Target: FeeEstimator,
|
|
{
|
|
fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, ChanSigner, M, T, K, F>) -> Result<Self, DecodeError> {
|
|
let _ver: u8 = Readable::read(reader)?;
|
|
let min_ver: u8 = Readable::read(reader)?;
|
|
if min_ver > SERIALIZATION_VERSION {
|
|
return Err(DecodeError::UnknownVersion);
|
|
}
|
|
|
|
let genesis_hash: Sha256dHash = Readable::read(reader)?;
|
|
let latest_block_height: u32 = Readable::read(reader)?;
|
|
let last_block_hash: Sha256dHash = Readable::read(reader)?;
|
|
|
|
let mut failed_htlcs = Vec::new();
|
|
|
|
let channel_count: u64 = Readable::read(reader)?;
|
|
let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
|
|
for _ in 0..channel_count {
|
|
let mut channel: Channel<ChanSigner> = ReadableArgs::read(reader, args.logger.clone())?;
|
|
if channel.last_block_connected != Default::default() && channel.last_block_connected != last_block_hash {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
|
|
let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
|
|
funding_txo_set.insert(funding_txo.clone());
|
|
if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
|
|
if channel.get_cur_local_commitment_transaction_number() < monitor.get_cur_local_commitment_number() ||
|
|
channel.get_revoked_remote_commitment_transaction_number() < monitor.get_min_seen_secret() ||
|
|
channel.get_cur_remote_commitment_transaction_number() < monitor.get_cur_remote_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
|
|
// If the channel is ahead of the monitor, return InvalidValue:
|
|
return Err(DecodeError::InvalidValue);
|
|
} else if channel.get_cur_local_commitment_transaction_number() > monitor.get_cur_local_commitment_number() ||
|
|
channel.get_revoked_remote_commitment_transaction_number() > monitor.get_min_seen_secret() ||
|
|
channel.get_cur_remote_commitment_transaction_number() > monitor.get_cur_remote_commitment_number() ||
|
|
channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
|
|
// But if the channel is behind of the monitor, close the channel:
|
|
let (_, _, mut new_failed_htlcs) = channel.force_shutdown(true);
|
|
failed_htlcs.append(&mut new_failed_htlcs);
|
|
monitor.broadcast_latest_local_commitment_txn(&args.tx_broadcaster);
|
|
} else {
|
|
if let Some(short_channel_id) = channel.get_short_channel_id() {
|
|
short_to_id.insert(short_channel_id, channel.channel_id());
|
|
}
|
|
by_id.insert(channel.channel_id(), channel);
|
|
}
|
|
} else {
|
|
return Err(DecodeError::InvalidValue);
|
|
}
|
|
}
|
|
|
|
for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
|
|
if !funding_txo_set.contains(funding_txo) {
|
|
monitor.broadcast_latest_local_commitment_txn(&args.tx_broadcaster);
|
|
}
|
|
}
|
|
|
|
let forward_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
|
|
for _ in 0..forward_htlcs_count {
|
|
let short_channel_id = Readable::read(reader)?;
|
|
let pending_forwards_count: u64 = Readable::read(reader)?;
|
|
let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, 128));
|
|
for _ in 0..pending_forwards_count {
|
|
pending_forwards.push(Readable::read(reader)?);
|
|
}
|
|
forward_htlcs.insert(short_channel_id, pending_forwards);
|
|
}
|
|
|
|
let claimable_htlcs_count: u64 = Readable::read(reader)?;
|
|
let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
|
|
for _ in 0..claimable_htlcs_count {
|
|
let payment_hash = Readable::read(reader)?;
|
|
let previous_hops_len: u64 = Readable::read(reader)?;
|
|
let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, 2));
|
|
for _ in 0..previous_hops_len {
|
|
previous_hops.push(Readable::read(reader)?);
|
|
}
|
|
claimable_htlcs.insert(payment_hash, previous_hops);
|
|
}
|
|
|
|
let peer_count: u64 = Readable::read(reader)?;
|
|
let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, 128));
|
|
for _ in 0..peer_count {
|
|
let peer_pubkey = Readable::read(reader)?;
|
|
let peer_state = PeerState {
|
|
latest_features: Readable::read(reader)?,
|
|
};
|
|
per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
|
|
}
|
|
|
|
let last_node_announcement_serial: u32 = Readable::read(reader)?;
|
|
|
|
let channel_manager = ChannelManager {
|
|
genesis_hash,
|
|
fee_estimator: args.fee_estimator,
|
|
monitor: args.monitor,
|
|
tx_broadcaster: args.tx_broadcaster,
|
|
|
|
latest_block_height: AtomicUsize::new(latest_block_height as usize),
|
|
last_block_hash: Mutex::new(last_block_hash),
|
|
secp_ctx: Secp256k1::new(),
|
|
|
|
channel_state: Mutex::new(ChannelHolder {
|
|
by_id,
|
|
short_to_id,
|
|
forward_htlcs,
|
|
claimable_htlcs,
|
|
pending_msg_events: Vec::new(),
|
|
}),
|
|
our_network_key: args.keys_manager.get_node_secret(),
|
|
|
|
last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
|
|
|
|
per_peer_state: RwLock::new(per_peer_state),
|
|
|
|
pending_events: Mutex::new(Vec::new()),
|
|
total_consistency_lock: RwLock::new(()),
|
|
keys_manager: args.keys_manager,
|
|
logger: args.logger,
|
|
default_configuration: args.default_config,
|
|
};
|
|
|
|
for htlc_source in failed_htlcs.drain(..) {
|
|
channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
|
|
}
|
|
|
|
//TODO: Broadcast channel update for closed channels, but only after we've made a
|
|
//connection or two.
|
|
|
|
Ok((last_block_hash.clone(), channel_manager))
|
|
}
|
|
}
|