//! Lightning exposes sets of supported operations through "feature flags". This module includes //! types to store those feature flags and query for specific flags. use std::{cmp, fmt}; use std::result::Result; use std::marker::PhantomData; use ln::msgs::DecodeError; use util::ser::{Readable, Writeable, Writer}; mod sealed { // You should just use the type aliases instead. pub struct InitContext {} pub struct NodeContext {} pub struct ChannelContext {} /// An internal trait capturing the various feature context types pub trait Context {} impl Context for InitContext {} impl Context for NodeContext {} impl Context for ChannelContext {} pub trait DataLossProtect: Context {} impl DataLossProtect for InitContext {} impl DataLossProtect for NodeContext {} pub trait InitialRoutingSync: Context {} impl InitialRoutingSync for InitContext {} pub trait UpfrontShutdownScript: Context {} impl UpfrontShutdownScript for InitContext {} impl UpfrontShutdownScript for NodeContext {} pub trait VariableLengthOnion: Context {} impl VariableLengthOnion for InitContext {} impl VariableLengthOnion for NodeContext {} pub trait PaymentSecret: Context {} impl PaymentSecret for InitContext {} impl PaymentSecret for NodeContext {} pub trait BasicMPP: Context {} impl BasicMPP for InitContext {} impl BasicMPP for NodeContext {} } /// Tracks the set of features which a node implements, templated by the context in which it /// appears. pub struct Features { /// Note that, for convinience, flags is LITTLE endian (despite being big-endian on the wire) flags: Vec, mark: PhantomData, } impl Clone for Features { fn clone(&self) -> Self { Self { flags: self.flags.clone(), mark: PhantomData, } } } impl PartialEq for Features { fn eq(&self, o: &Self) -> bool { self.flags.eq(&o.flags) } } impl fmt::Debug for Features { fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> { self.flags.fmt(fmt) } } /// A feature message as it appears in an init message pub type InitFeatures = Features; /// A feature message as it appears in a node_announcement message pub type NodeFeatures = Features; /// A feature message as it appears in a channel_announcement message pub type ChannelFeatures = Features; impl InitFeatures { /// Create a Features with the features we support pub fn supported() -> InitFeatures { InitFeatures { flags: vec![2 | 1 << 5, 1 << (9-8) | 1 << (15 - 8), 1 << (17 - 8*2)], mark: PhantomData, } } /// Writes all features present up to, and including, 13. pub(crate) fn write_up_to_13(&self, w: &mut W) -> Result<(), ::std::io::Error> { let len = cmp::min(2, self.flags.len()); w.size_hint(len + 2); (len as u16).write(w)?; for i in (0..len).rev() { if i == 0 { self.flags[i].write(w)?; } else { // On byte 1, we want up-to-and-including-bit-13, 0-indexed, which is // up-to-and-including-bit-5, 0-indexed, on this byte: (self.flags[i] & 0b00_11_11_11).write(w)?; } } Ok(()) } /// or's another InitFeatures into this one. pub(crate) fn or(mut self, o: InitFeatures) -> InitFeatures { let total_feature_len = cmp::max(self.flags.len(), o.flags.len()); self.flags.resize(total_feature_len, 0u8); for (byte, o_byte) in self.flags.iter_mut().zip(o.flags.iter()) { *byte |= *o_byte; } self } } impl ChannelFeatures { /// Create a Features with the features we support #[cfg(not(feature = "fuzztarget"))] pub(crate) fn supported() -> ChannelFeatures { ChannelFeatures { flags: Vec::new(), mark: PhantomData, } } #[cfg(feature = "fuzztarget")] pub fn supported() -> ChannelFeatures { ChannelFeatures { flags: Vec::new(), mark: PhantomData, } } /// Takes the flags that we know how to interpret in an init-context features that are also /// relevant in a channel-context features and creates a channel-context features from them. pub(crate) fn with_known_relevant_init_flags(_init_ctx: &InitFeatures) -> Self { // There are currently no channel flags defined that we understand. Self { flags: Vec::new(), mark: PhantomData, } } } impl NodeFeatures { /// Create a Features with the features we support #[cfg(not(feature = "fuzztarget"))] pub(crate) fn supported() -> NodeFeatures { NodeFeatures { flags: vec![2 | 1 << 5, 1 << (9 - 8) | 1 << (15 - 8), 1 << (17 - 8*2)], mark: PhantomData, } } #[cfg(feature = "fuzztarget")] pub fn supported() -> NodeFeatures { NodeFeatures { flags: vec![2 | 1 << 5, 1 << (9 - 8) | 1 << (15 - 8), 1 << (17 - 8*2)], mark: PhantomData, } } /// Takes the flags that we know how to interpret in an init-context features that are also /// relevant in a node-context features and creates a node-context features from them. /// Be sure to blank out features that are unknown to us. pub(crate) fn with_known_relevant_init_flags(init_ctx: &InitFeatures) -> Self { let mut flags = Vec::new(); for (i, feature_byte)in init_ctx.flags.iter().enumerate() { match i { // Blank out initial_routing_sync (feature bits 2/3), gossip_queries (6/7), // gossip_queries_ex (10/11), option_static_remotekey (12/13), and // option_support_large_channel (16/17) 0 => flags.push(feature_byte & 0b00110011), 1 => flags.push(feature_byte & 0b11000011), 2 => flags.push(feature_byte & 0b00000011), _ => (), } } Self { flags, mark: PhantomData, } } } impl Features { /// Create a blank Features with no features set pub fn empty() -> Features { Features { flags: Vec::new(), mark: PhantomData, } } #[cfg(test)] /// Create a Features given a set of flags, in LE. pub fn from_le_bytes(flags: Vec) -> Features { Features { flags, mark: PhantomData, } } #[cfg(test)] /// Gets the underlying flags set, in LE. pub fn le_flags(&self) -> &Vec { &self.flags } pub(crate) fn requires_unknown_bits(&self) -> bool { self.flags.iter().enumerate().any(|(idx, &byte)| { (match idx { // Unknown bits are even bits which we don't understand, we list ones which we do // here: // unknown, upfront_shutdown_script, unknown (actually initial_routing_sync, but it // is only valid as an optional feature), and data_loss_protect: 0 => (byte & 0b01000100), // payment_secret, unknown, unknown, var_onion_optin: 1 => (byte & 0b00010100), // unknown, unknown, unknown, basic_mpp: 2 => (byte & 0b01010100), // fallback, all even bits set: _ => (byte & 0b01010101), }) != 0 }) } pub(crate) fn supports_unknown_bits(&self) -> bool { self.flags.iter().enumerate().any(|(idx, &byte)| { (match idx { // unknown, upfront_shutdown_script, initial_routing_sync (is only valid as an // optional feature), and data_loss_protect: 0 => (byte & 0b11000100), // payment_secret, unknown, unknown, var_onion_optin: 1 => (byte & 0b00111100), // unknown, unknown, unknown, basic_mpp: 2 => (byte & 0b11111100), _ => byte, }) != 0 }) } /// The number of bytes required to represent the feature flags present. This does not include /// the length bytes which are included in the serialized form. pub(crate) fn byte_count(&self) -> usize { self.flags.len() } #[cfg(test)] pub(crate) fn set_require_unknown_bits(&mut self) { let newlen = cmp::max(3, self.flags.len()); self.flags.resize(newlen, 0u8); self.flags[2] |= 0x40; } #[cfg(test)] pub(crate) fn clear_require_unknown_bits(&mut self) { let newlen = cmp::max(3, self.flags.len()); self.flags.resize(newlen, 0u8); self.flags[2] &= !0x40; if self.flags.len() == 3 && self.flags[2] == 0 { self.flags.resize(2, 0u8); } if self.flags.len() == 2 && self.flags[1] == 0 { self.flags.resize(1, 0u8); } } } impl Features { pub(crate) fn supports_data_loss_protect(&self) -> bool { self.flags.len() > 0 && (self.flags[0] & 3) != 0 } } impl Features { pub(crate) fn supports_upfront_shutdown_script(&self) -> bool { self.flags.len() > 0 && (self.flags[0] & (3 << 4)) != 0 } #[cfg(test)] pub(crate) fn unset_upfront_shutdown_script(&mut self) { self.flags[0] ^= 1 << 5; } } impl Features { pub(crate) fn supports_variable_length_onion(&self) -> bool { self.flags.len() > 1 && (self.flags[1] & 3) != 0 } } impl Features { pub(crate) fn initial_routing_sync(&self) -> bool { self.flags.len() > 0 && (self.flags[0] & (1 << 3)) != 0 } pub(crate) fn set_initial_routing_sync(&mut self) { if self.flags.len() == 0 { self.flags.resize(1, 1 << 3); } else { self.flags[0] |= 1 << 3; } } } impl Features { #[allow(dead_code)] // Note that we never need to test this since what really matters is the invoice - iff the // invoice provides a payment_secret, we assume that we can use it (ie that the recipient // supports payment_secret). pub(crate) fn supports_payment_secret(&self) -> bool { self.flags.len() > 1 && (self.flags[1] & (3 << (14-8))) != 0 } } impl Features { // We currently never test for this since we don't actually *generate* multipath routes. #[allow(dead_code)] pub(crate) fn supports_basic_mpp(&self) -> bool { self.flags.len() > 2 && (self.flags[2] & (3 << (16-8*2))) != 0 } } impl Writeable for Features { fn write(&self, w: &mut W) -> Result<(), ::std::io::Error> { w.size_hint(self.flags.len() + 2); (self.flags.len() as u16).write(w)?; for f in self.flags.iter().rev() { // Swap back to big-endian f.write(w)?; } Ok(()) } } impl Readable for Features { fn read(r: &mut R) -> Result { let mut flags: Vec = Readable::read(r)?; flags.reverse(); // Swap to little-endian Ok(Self { flags, mark: PhantomData, }) } } #[cfg(test)] mod tests { use super::{ChannelFeatures, InitFeatures, NodeFeatures, Features}; #[test] fn sanity_test_our_features() { assert!(!ChannelFeatures::supported().requires_unknown_bits()); assert!(!ChannelFeatures::supported().supports_unknown_bits()); assert!(!InitFeatures::supported().requires_unknown_bits()); assert!(!InitFeatures::supported().supports_unknown_bits()); assert!(!NodeFeatures::supported().requires_unknown_bits()); assert!(!NodeFeatures::supported().supports_unknown_bits()); assert!(InitFeatures::supported().supports_upfront_shutdown_script()); assert!(NodeFeatures::supported().supports_upfront_shutdown_script()); assert!(InitFeatures::supported().supports_data_loss_protect()); assert!(NodeFeatures::supported().supports_data_loss_protect()); assert!(InitFeatures::supported().supports_variable_length_onion()); assert!(NodeFeatures::supported().supports_variable_length_onion()); assert!(InitFeatures::supported().supports_payment_secret()); assert!(NodeFeatures::supported().supports_payment_secret()); assert!(InitFeatures::supported().supports_basic_mpp()); assert!(NodeFeatures::supported().supports_basic_mpp()); let mut init_features = InitFeatures::supported(); init_features.set_initial_routing_sync(); assert!(!init_features.requires_unknown_bits()); assert!(!init_features.supports_unknown_bits()); } #[test] fn sanity_test_unkown_bits_testing() { let mut features = ChannelFeatures::supported(); features.set_require_unknown_bits(); assert!(features.requires_unknown_bits()); features.clear_require_unknown_bits(); assert!(!features.requires_unknown_bits()); } #[test] fn test_node_with_known_relevant_init_flags() { // Create an InitFeatures with initial_routing_sync supported. let mut init_features = InitFeatures::supported(); init_features.set_initial_routing_sync(); // Attempt to pull out non-node-context feature flags from these InitFeatures. let res = NodeFeatures::with_known_relevant_init_flags(&init_features); { // Check that the flags are as expected: optional_data_loss_protect, // option_upfront_shutdown_script, var_onion_optin, payment_secret, and // basic_mpp. assert_eq!(res.flags.len(), 3); assert_eq!(res.flags[0], 0b00100010); assert_eq!(res.flags[1], 0b10000010); assert_eq!(res.flags[2], 0b00000010); } // Check that the initial_routing_sync feature was correctly blanked out. let new_features: InitFeatures = Features::from_le_bytes(res.flags); assert!(!new_features.initial_routing_sync()); } }