// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! The top-level channel management and payment tracking stuff lives here. //! //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those //! upon reconnect to the relevant peer(s). //! //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing //! on-chain transactions (it only monitors the chain to watch for any force-closes that might //! imply it needs to fail HTLCs/payments/channels it manages). //! use bitcoin::blockdata::block::{Block, BlockHeader}; use bitcoin::blockdata::transaction::Transaction; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hash_types::{BlockHash, Txid}; use bitcoin::secp256k1::key::{SecretKey,PublicKey}; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1::ecdh::SharedSecret; use bitcoin::secp256k1; use chain; use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock}; use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator}; use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID}; use chain::transaction::{OutPoint, TransactionData}; // Since this struct is returned in `list_channels` methods, expose it here in case users want to // construct one themselves. use ln::{PaymentHash, PaymentPreimage, PaymentSecret}; use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch}; use ln::features::{InitFeatures, NodeFeatures}; use routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters}; use ln::msgs; use ln::msgs::NetAddress; use ln::onion_utils; use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT, OptionalField}; use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner, Recipient}; use util::config::UserConfig; use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason}; use util::{byte_utils, events}; use util::scid_utils::fake_scid; use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer}; use util::logger::{Level, Logger}; use util::errors::APIError; use io; use prelude::*; use core::{cmp, mem}; use core::cell::RefCell; use io::Read; use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard}; use core::sync::atomic::{AtomicUsize, Ordering}; use core::time::Duration; use core::ops::Deref; #[cfg(any(test, feature = "std"))] use std::time::Instant; mod inbound_payment { use alloc::string::ToString; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::cmp::fixed_time_eq; use bitcoin::hashes::hmac::{Hmac, HmacEngine}; use bitcoin::hashes::sha256::Hash as Sha256; use chain::keysinterface::{KeyMaterial, KeysInterface, Sign}; use ln::{PaymentHash, PaymentPreimage, PaymentSecret}; use ln::channelmanager::APIError; use ln::msgs; use ln::msgs::MAX_VALUE_MSAT; use util::chacha20::ChaCha20; use util::crypto::hkdf_extract_expand_thrice; use util::logger::Logger; use core::convert::TryInto; use core::ops::Deref; const IV_LEN: usize = 16; const METADATA_LEN: usize = 16; const METADATA_KEY_LEN: usize = 32; const AMT_MSAT_LEN: usize = 8; // Used to shift the payment type bits to take up the top 3 bits of the metadata bytes, or to // retrieve said payment type bits. const METHOD_TYPE_OFFSET: usize = 5; /// A set of keys that were HKDF-expanded from an initial call to /// [`KeysInterface::get_inbound_payment_key_material`]. /// /// [`KeysInterface::get_inbound_payment_key_material`]: crate::chain::keysinterface::KeysInterface::get_inbound_payment_key_material pub(super) struct ExpandedKey { /// The key used to encrypt the bytes containing the payment metadata (i.e. the amount and /// expiry, included for payment verification on decryption). metadata_key: [u8; 32], /// The key used to authenticate an LDK-provided payment hash and metadata as previously /// registered with LDK. ldk_pmt_hash_key: [u8; 32], /// The key used to authenticate a user-provided payment hash and metadata as previously /// registered with LDK. user_pmt_hash_key: [u8; 32], } impl ExpandedKey { pub(super) fn new(key_material: &KeyMaterial) -> ExpandedKey { let (metadata_key, ldk_pmt_hash_key, user_pmt_hash_key) = hkdf_extract_expand_thrice(b"LDK Inbound Payment Key Expansion", &key_material.0); Self { metadata_key, ldk_pmt_hash_key, user_pmt_hash_key, } } } enum Method { LdkPaymentHash = 0, UserPaymentHash = 1, } impl Method { fn from_bits(bits: u8) -> Result { match bits { bits if bits == Method::LdkPaymentHash as u8 => Ok(Method::LdkPaymentHash), bits if bits == Method::UserPaymentHash as u8 => Ok(Method::UserPaymentHash), unknown => Err(unknown), } } } pub(super) fn create(keys: &ExpandedKey, min_value_msat: Option, invoice_expiry_delta_secs: u32, keys_manager: &K, highest_seen_timestamp: u64) -> Result<(PaymentHash, PaymentSecret), ()> where K::Target: KeysInterface { let metadata_bytes = construct_metadata_bytes(min_value_msat, Method::LdkPaymentHash, invoice_expiry_delta_secs, highest_seen_timestamp)?; let mut iv_bytes = [0 as u8; IV_LEN]; let rand_bytes = keys_manager.get_secure_random_bytes(); iv_bytes.copy_from_slice(&rand_bytes[..IV_LEN]); let mut hmac = HmacEngine::::new(&keys.ldk_pmt_hash_key); hmac.input(&iv_bytes); hmac.input(&metadata_bytes); let payment_preimage_bytes = Hmac::from_engine(hmac).into_inner(); let ldk_pmt_hash = PaymentHash(Sha256::hash(&payment_preimage_bytes).into_inner()); let payment_secret = construct_payment_secret(&iv_bytes, &metadata_bytes, &keys.metadata_key); Ok((ldk_pmt_hash, payment_secret)) } pub(super) fn create_from_hash(keys: &ExpandedKey, min_value_msat: Option, payment_hash: PaymentHash, invoice_expiry_delta_secs: u32, highest_seen_timestamp: u64) -> Result { let metadata_bytes = construct_metadata_bytes(min_value_msat, Method::UserPaymentHash, invoice_expiry_delta_secs, highest_seen_timestamp)?; let mut hmac = HmacEngine::::new(&keys.user_pmt_hash_key); hmac.input(&metadata_bytes); hmac.input(&payment_hash.0); let hmac_bytes = Hmac::from_engine(hmac).into_inner(); let mut iv_bytes = [0 as u8; IV_LEN]; iv_bytes.copy_from_slice(&hmac_bytes[..IV_LEN]); Ok(construct_payment_secret(&iv_bytes, &metadata_bytes, &keys.metadata_key)) } fn construct_metadata_bytes(min_value_msat: Option, payment_type: Method, invoice_expiry_delta_secs: u32, highest_seen_timestamp: u64) -> Result<[u8; METADATA_LEN], ()> { if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT { return Err(()); } let mut min_amt_msat_bytes: [u8; AMT_MSAT_LEN] = match min_value_msat { Some(amt) => amt.to_be_bytes(), None => [0; AMT_MSAT_LEN], }; min_amt_msat_bytes[0] |= (payment_type as u8) << METHOD_TYPE_OFFSET; // We assume that highest_seen_timestamp is pretty close to the current time - it's updated when // we receive a new block with the maximum time we've seen in a header. It should never be more // than two hours in the future. Thus, we add two hours here as a buffer to ensure we // absolutely never fail a payment too early. // Note that we assume that received blocks have reasonably up-to-date timestamps. let expiry_bytes = (highest_seen_timestamp + invoice_expiry_delta_secs as u64 + 7200).to_be_bytes(); let mut metadata_bytes: [u8; METADATA_LEN] = [0; METADATA_LEN]; metadata_bytes[..AMT_MSAT_LEN].copy_from_slice(&min_amt_msat_bytes); metadata_bytes[AMT_MSAT_LEN..].copy_from_slice(&expiry_bytes); Ok(metadata_bytes) } fn construct_payment_secret(iv_bytes: &[u8; IV_LEN], metadata_bytes: &[u8; METADATA_LEN], metadata_key: &[u8; METADATA_KEY_LEN]) -> PaymentSecret { let mut payment_secret_bytes: [u8; 32] = [0; 32]; let (iv_slice, encrypted_metadata_slice) = payment_secret_bytes.split_at_mut(IV_LEN); iv_slice.copy_from_slice(iv_bytes); let chacha_block = ChaCha20::get_single_block(metadata_key, iv_bytes); for i in 0..METADATA_LEN { encrypted_metadata_slice[i] = chacha_block[i] ^ metadata_bytes[i]; } PaymentSecret(payment_secret_bytes) } /// Check that an inbound payment's `payment_data` field is sane. /// /// LDK does not store any data for pending inbound payments. Instead, we construct our payment /// secret (and, if supplied by LDK, our payment preimage) to include encrypted metadata about the /// payment. /// /// The metadata is constructed as: /// payment method (3 bits) || payment amount (8 bytes - 3 bits) || expiry (8 bytes) /// and encrypted using a key derived from [`KeysInterface::get_inbound_payment_key_material`]. /// /// Then on payment receipt, we verify in this method that the payment preimage and payment secret /// match what was constructed. /// /// [`create_inbound_payment`] and [`create_inbound_payment_for_hash`] are called by the user to /// construct the payment secret and/or payment hash that this method is verifying. If the former /// method is called, then the payment method bits mentioned above are represented internally as /// [`Method::LdkPaymentHash`]. If the latter, [`Method::UserPaymentHash`]. /// /// For the former method, the payment preimage is constructed as an HMAC of payment metadata and /// random bytes. Because the payment secret is also encoded with these random bytes and metadata /// (with the metadata encrypted with a block cipher), we're able to authenticate the preimage on /// payment receipt. /// /// For the latter, the payment secret instead contains an HMAC of the user-provided payment hash /// and payment metadata (encrypted with a block cipher), allowing us to authenticate the payment /// hash and metadata on payment receipt. /// /// See [`ExpandedKey`] docs for more info on the individual keys used. /// /// [`KeysInterface::get_inbound_payment_key_material`]: crate::chain::keysinterface::KeysInterface::get_inbound_payment_key_material /// [`create_inbound_payment`]: crate::ln::channelmanager::ChannelManager::create_inbound_payment /// [`create_inbound_payment_for_hash`]: crate::ln::channelmanager::ChannelManager::create_inbound_payment_for_hash pub(super) fn verify(payment_hash: PaymentHash, payment_data: msgs::FinalOnionHopData, highest_seen_timestamp: u64, keys: &ExpandedKey, logger: &L) -> Result, ()> where L::Target: Logger { let (iv_bytes, metadata_bytes) = decrypt_metadata(payment_data.payment_secret, keys); let payment_type_res = Method::from_bits((metadata_bytes[0] & 0b1110_0000) >> METHOD_TYPE_OFFSET); let mut amt_msat_bytes = [0; AMT_MSAT_LEN]; amt_msat_bytes.copy_from_slice(&metadata_bytes[..AMT_MSAT_LEN]); // Zero out the bits reserved to indicate the payment type. amt_msat_bytes[0] &= 0b00011111; let min_amt_msat: u64 = u64::from_be_bytes(amt_msat_bytes.into()); let expiry = u64::from_be_bytes(metadata_bytes[AMT_MSAT_LEN..].try_into().unwrap()); // Make sure to check to check the HMAC before doing the other checks below, to mitigate timing // attacks. let mut payment_preimage = None; match payment_type_res { Ok(Method::UserPaymentHash) => { let mut hmac = HmacEngine::::new(&keys.user_pmt_hash_key); hmac.input(&metadata_bytes[..]); hmac.input(&payment_hash.0); if !fixed_time_eq(&iv_bytes, &Hmac::from_engine(hmac).into_inner().split_at_mut(IV_LEN).0) { log_trace!(logger, "Failing HTLC with user-generated payment_hash {}: unexpected payment_secret", log_bytes!(payment_hash.0)); return Err(()) } }, Ok(Method::LdkPaymentHash) => { match derive_ldk_payment_preimage(payment_hash, &iv_bytes, &metadata_bytes, keys) { Ok(preimage) => payment_preimage = Some(preimage), Err(bad_preimage_bytes) => { log_trace!(logger, "Failing HTLC with payment_hash {} due to mismatching preimage {}", log_bytes!(payment_hash.0), log_bytes!(bad_preimage_bytes)); return Err(()) } } }, Err(unknown_bits) => { log_trace!(logger, "Failing HTLC with payment hash {} due to unknown payment type {}", log_bytes!(payment_hash.0), unknown_bits); return Err(()); } } if payment_data.total_msat < min_amt_msat { log_trace!(logger, "Failing HTLC with payment_hash {} due to total_msat {} being less than the minimum amount of {} msat", log_bytes!(payment_hash.0), payment_data.total_msat, min_amt_msat); return Err(()) } if expiry < highest_seen_timestamp { log_trace!(logger, "Failing HTLC with payment_hash {}: expired payment", log_bytes!(payment_hash.0)); return Err(()) } Ok(payment_preimage) } pub(super) fn get_payment_preimage(payment_hash: PaymentHash, payment_secret: PaymentSecret, keys: &ExpandedKey) -> Result { let (iv_bytes, metadata_bytes) = decrypt_metadata(payment_secret, keys); match Method::from_bits((metadata_bytes[0] & 0b1110_0000) >> METHOD_TYPE_OFFSET) { Ok(Method::LdkPaymentHash) => { derive_ldk_payment_preimage(payment_hash, &iv_bytes, &metadata_bytes, keys) .map_err(|bad_preimage_bytes| APIError::APIMisuseError { err: format!("Payment hash {} did not match decoded preimage {}", log_bytes!(payment_hash.0), log_bytes!(bad_preimage_bytes)) }) }, Ok(Method::UserPaymentHash) => Err(APIError::APIMisuseError { err: "Expected payment type to be LdkPaymentHash, instead got UserPaymentHash".to_string() }), Err(other) => Err(APIError::APIMisuseError { err: format!("Unknown payment type: {}", other) }), } } fn decrypt_metadata(payment_secret: PaymentSecret, keys: &ExpandedKey) -> ([u8; IV_LEN], [u8; METADATA_LEN]) { let mut iv_bytes = [0; IV_LEN]; let (iv_slice, encrypted_metadata_bytes) = payment_secret.0.split_at(IV_LEN); iv_bytes.copy_from_slice(iv_slice); let chacha_block = ChaCha20::get_single_block(&keys.metadata_key, &iv_bytes); let mut metadata_bytes: [u8; METADATA_LEN] = [0; METADATA_LEN]; for i in 0..METADATA_LEN { metadata_bytes[i] = chacha_block[i] ^ encrypted_metadata_bytes[i]; } (iv_bytes, metadata_bytes) } // Errors if the payment preimage doesn't match `payment_hash`. Returns the bad preimage bytes in // this case. fn derive_ldk_payment_preimage(payment_hash: PaymentHash, iv_bytes: &[u8; IV_LEN], metadata_bytes: &[u8; METADATA_LEN], keys: &ExpandedKey) -> Result { let mut hmac = HmacEngine::::new(&keys.ldk_pmt_hash_key); hmac.input(iv_bytes); hmac.input(metadata_bytes); let decoded_payment_preimage = Hmac::from_engine(hmac).into_inner(); if !fixed_time_eq(&payment_hash.0, &Sha256::hash(&decoded_payment_preimage).into_inner()) { return Err(decoded_payment_preimage); } return Ok(PaymentPreimage(decoded_payment_preimage)) } } // We hold various information about HTLC relay in the HTLC objects in Channel itself: // // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should // forward the HTLC with information it will give back to us when it does so, or if it should Fail // the HTLC with the relevant message for the Channel to handle giving to the remote peer. // // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo // with it to track where it came from (in case of onwards-forward error), waiting a random delay // before we forward it. // // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use // to either fail-backwards or fulfill the HTLC backwards along the relevant path). // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is // our payment, which we can use to decode errors or inform the user that the payment was sent. #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCRouting { Forward { onion_packet: msgs::OnionPacket, short_channel_id: u64, // This should be NonZero eventually when we bump MSRV }, Receive { payment_data: msgs::FinalOnionHopData, incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed phantom_shared_secret: Option<[u8; 32]>, }, ReceiveKeysend { payment_preimage: PaymentPreimage, incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed }, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) struct PendingHTLCInfo { pub(super) routing: PendingHTLCRouting, pub(super) incoming_shared_secret: [u8; 32], payment_hash: PaymentHash, pub(super) amt_to_forward: u64, pub(super) outgoing_cltv_value: u32, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailureMsg { Relay(msgs::UpdateFailHTLC), Malformed(msgs::UpdateFailMalformedHTLC), } /// Stores whether we can't forward an HTLC or relevant forwarding info #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCStatus { Forward(PendingHTLCInfo), Fail(HTLCFailureMsg), } pub(super) enum HTLCForwardInfo { AddHTLC { forward_info: PendingHTLCInfo, // These fields are produced in `forward_htlcs()` and consumed in // `process_pending_htlc_forwards()` for constructing the // `HTLCSource::PreviousHopData` for failed and forwarded // HTLCs. prev_short_channel_id: u64, prev_htlc_id: u64, prev_funding_outpoint: OutPoint, }, FailHTLC { htlc_id: u64, err_packet: msgs::OnionErrorPacket, }, } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, Hash, PartialEq, Eq)] pub(crate) struct HTLCPreviousHopData { short_channel_id: u64, htlc_id: u64, incoming_packet_shared_secret: [u8; 32], phantom_shared_secret: Option<[u8; 32]>, // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards // channel with a preimage provided by the forward channel. outpoint: OutPoint, } enum OnionPayload { /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a /// payment_secret which prevents path-probing attacks and can associate different HTLCs which /// are part of the same payment. Invoice(msgs::FinalOnionHopData), /// Contains the payer-provided preimage. Spontaneous(PaymentPreimage), } struct ClaimableHTLC { prev_hop: HTLCPreviousHopData, cltv_expiry: u32, value: u64, onion_payload: OnionPayload, } /// A payment identifier used to uniquely identify a payment to LDK. /// (C-not exported) as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentId(pub [u8; 32]); impl Writeable for PaymentId { fn write(&self, w: &mut W) -> Result<(), io::Error> { self.0.write(w) } } impl Readable for PaymentId { fn read(r: &mut R) -> Result { let buf: [u8; 32] = Readable::read(r)?; Ok(PaymentId(buf)) } } /// Tracks the inbound corresponding to an outbound HTLC #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash #[derive(Clone, PartialEq, Eq)] pub(crate) enum HTLCSource { PreviousHopData(HTLCPreviousHopData), OutboundRoute { path: Vec, session_priv: SecretKey, /// Technically we can recalculate this from the route, but we cache it here to avoid /// doing a double-pass on route when we get a failure back first_hop_htlc_msat: u64, payment_id: PaymentId, payment_secret: Option, payment_params: Option, }, } #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash impl core::hash::Hash for HTLCSource { fn hash(&self, hasher: &mut H) { match self { HTLCSource::PreviousHopData(prev_hop_data) => { 0u8.hash(hasher); prev_hop_data.hash(hasher); }, HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => { 1u8.hash(hasher); path.hash(hasher); session_priv[..].hash(hasher); payment_id.hash(hasher); payment_secret.hash(hasher); first_hop_htlc_msat.hash(hasher); payment_params.hash(hasher); }, } } } #[cfg(test)] impl HTLCSource { pub fn dummy() -> Self { HTLCSource::OutboundRoute { path: Vec::new(), session_priv: SecretKey::from_slice(&[1; 32]).unwrap(), first_hop_htlc_msat: 0, payment_id: PaymentId([2; 32]), payment_secret: None, payment_params: None, } } } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailReason { LightningError { err: msgs::OnionErrorPacket, }, Reason { failure_code: u16, data: Vec, } } struct ReceiveError { err_code: u16, err_data: Vec, msg: &'static str, } /// Return value for claim_funds_from_hop enum ClaimFundsFromHop { PrevHopForceClosed, MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option), Success(u64), DuplicateClaim, } type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>); /// Error type returned across the channel_state mutex boundary. When an Err is generated for a /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel /// immediately (ie with no further calls on it made). Thus, this step happens inside a /// channel_state lock. We then return the set of things that need to be done outside the lock in /// this struct and call handle_error!() on it. struct MsgHandleErrInternal { err: msgs::LightningError, chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed shutdown_finish: Option<(ShutdownResult, Option)>, } impl MsgHandleErrInternal { #[inline] fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, chan_id: None, shutdown_finish: None, } } #[inline] fn ignore_no_close(err: String) -> Self { Self { err: LightningError { err, action: msgs::ErrorAction::IgnoreError, }, chan_id: None, shutdown_finish: None, } } #[inline] fn from_no_close(err: msgs::LightningError) -> Self { Self { err, chan_id: None, shutdown_finish: None } } #[inline] fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, chan_id: Some((channel_id, user_channel_id)), shutdown_finish: Some((shutdown_res, channel_update)), } } #[inline] fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Warn(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendWarningMessage { msg: msgs::WarningMessage { channel_id, data: msg }, log_level: Level::Warn, }, }, ChannelError::Ignore(msg) => LightningError { err: msg, action: msgs::ErrorAction::IgnoreError, }, ChannelError::Close(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg }, }, }, ChannelError::CloseDelayBroadcast(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg }, }, }, }, chan_id: None, shutdown_finish: None, } } } /// We hold back HTLCs we intend to relay for a random interval greater than this (see /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited). /// This provides some limited amount of privacy. Ideally this would range from somewhere like one /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly. const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100; /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should /// be sent in the order they appear in the return value, however sometimes the order needs to be /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order /// they were originally sent). In those cases, this enum is also returned. #[derive(Clone, PartialEq)] pub(super) enum RAACommitmentOrder { /// Send the CommitmentUpdate messages first CommitmentFirst, /// Send the RevokeAndACK message first RevokeAndACKFirst, } // Note this is only exposed in cfg(test): pub(super) struct ChannelHolder { pub(super) by_id: HashMap<[u8; 32], Channel>, pub(super) short_to_id: HashMap, /// short channel id -> forward infos. Key of 0 means payments received /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the existence of a channel with the short id here, nor the short /// ids in the PendingHTLCInfo! pub(super) forward_htlcs: HashMap>, /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user. /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the channels given here actually existing anymore by the time you /// go to read them! claimable_htlcs: HashMap>, /// Messages to send to peers - pushed to in the same lock that they are generated in (except /// for broadcast messages, where ordering isn't as strict). pub(super) pending_msg_events: Vec, } /// Events which we process internally but cannot be procsesed immediately at the generation site /// for some reason. They are handled in timer_tick_occurred, so may be processed with /// quite some time lag. enum BackgroundEvent { /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder /// commitment transaction. ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)), } /// State we hold per-peer. In the future we should put channels in here, but for now we only hold /// the latest Init features we heard from the peer. struct PeerState { latest_features: InitFeatures, } /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is /// actually ours and not some duplicate HTLC sent to us by a node along the route. /// /// For users who don't want to bother doing their own payment preimage storage, we also store that /// here. /// /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data /// and instead encoding it in the payment secret. struct PendingInboundPayment { /// The payment secret that the sender must use for us to accept this payment payment_secret: PaymentSecret, /// Time at which this HTLC expires - blocks with a header time above this value will result in /// this payment being removed. expiry_time: u64, /// Arbitrary identifier the user specifies (or not) user_payment_id: u64, // Other required attributes of the payment, optionally enforced: payment_preimage: Option, min_value_msat: Option, } /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102 /// and later, also stores information for retrying the payment. pub(crate) enum PendingOutboundPayment { Legacy { session_privs: HashSet<[u8; 32]>, }, Retryable { session_privs: HashSet<[u8; 32]>, payment_hash: PaymentHash, payment_secret: Option, pending_amt_msat: u64, /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+. pending_fee_msat: Option, /// The total payment amount across all paths, used to verify that a retry is not overpaying. total_msat: u64, /// Our best known block height at the time this payment was initiated. starting_block_height: u32, }, /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart /// and add a pending payment that was already fulfilled. Fulfilled { session_privs: HashSet<[u8; 32]>, payment_hash: Option, }, /// When a payer gives up trying to retry a payment, they inform us, letting us generate a /// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race /// conditions in MPP-aware payment retriers (1), where the possibility of multiple /// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a /// downstream event handler as to when a payment has actually failed. /// /// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164 Abandoned { session_privs: HashSet<[u8; 32]>, payment_hash: PaymentHash, }, } impl PendingOutboundPayment { fn is_retryable(&self) -> bool { match self { PendingOutboundPayment::Retryable { .. } => true, _ => false, } } fn is_fulfilled(&self) -> bool { match self { PendingOutboundPayment::Fulfilled { .. } => true, _ => false, } } fn abandoned(&self) -> bool { match self { PendingOutboundPayment::Abandoned { .. } => true, _ => false, } } fn get_pending_fee_msat(&self) -> Option { match self { PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(), _ => None, } } fn payment_hash(&self) -> Option { match self { PendingOutboundPayment::Legacy { .. } => None, PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash), PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash, PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash), } } fn mark_fulfilled(&mut self) { let mut session_privs = HashSet::new(); core::mem::swap(&mut session_privs, match self { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } | PendingOutboundPayment::Fulfilled { session_privs, .. } | PendingOutboundPayment::Abandoned { session_privs, .. } => session_privs, }); let payment_hash = self.payment_hash(); *self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash }; } fn mark_abandoned(&mut self) -> Result<(), ()> { let mut session_privs = HashSet::new(); let our_payment_hash; core::mem::swap(&mut session_privs, match self { PendingOutboundPayment::Legacy { .. } | PendingOutboundPayment::Fulfilled { .. } => return Err(()), PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } | PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => { our_payment_hash = *payment_hash; session_privs }, }); *self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash }; Ok(()) } /// panics if path is None and !self.is_fulfilled fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec>) -> bool { let remove_res = match self { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } | PendingOutboundPayment::Fulfilled { session_privs, .. } | PendingOutboundPayment::Abandoned { session_privs, .. } => { session_privs.remove(session_priv) } }; if remove_res { if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self { let path = path.expect("Fulfilling a payment should always come with a path"); let path_last_hop = path.last().expect("Outbound payments must have had a valid path"); *pending_amt_msat -= path_last_hop.fee_msat; if let Some(fee_msat) = pending_fee_msat.as_mut() { *fee_msat -= path.get_path_fees(); } } } remove_res } fn insert(&mut self, session_priv: [u8; 32], path: &Vec) -> bool { let insert_res = match self { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } => { session_privs.insert(session_priv) } PendingOutboundPayment::Fulfilled { .. } => false, PendingOutboundPayment::Abandoned { .. } => false, }; if insert_res { if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self { let path_last_hop = path.last().expect("Outbound payments must have had a valid path"); *pending_amt_msat += path_last_hop.fee_msat; if let Some(fee_msat) = pending_fee_msat.as_mut() { *fee_msat += path.get_path_fees(); } } } insert_res } fn remaining_parts(&self) -> usize { match self { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } | PendingOutboundPayment::Fulfilled { session_privs, .. } | PendingOutboundPayment::Abandoned { session_privs, .. } => { session_privs.len() } } } } /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g. /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static /// lifetimes). Other times you can afford a reference, which is more efficient, in which case /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents /// issues such as overly long function definitions. Note that the ChannelManager can take any /// type that implements KeysInterface for its keys manager, but this type alias chooses the /// concrete type of the KeysManager. pub type SimpleArcChannelManager = ChannelManager, Arc, Arc, Arc, Arc>; /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes). /// But if this is not necessary, using a reference is more efficient. Defining these type aliases /// helps with issues such as long function definitions. Note that the ChannelManager can take any /// type that implements KeysInterface for its keys manager, but this type alias chooses the /// concrete type of the KeysManager. pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager; /// Manager which keeps track of a number of channels and sends messages to the appropriate /// channel, also tracking HTLC preimages and forwarding onion packets appropriately. /// /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through /// to individual Channels. /// /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for /// all peers during write/read (though does not modify this instance, only the instance being /// serialized). This will result in any channels which have not yet exchanged funding_created (ie /// called funding_transaction_generated for outbound channels). /// /// Note that you can be a bit lazier about writing out ChannelManager than you can be with /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during /// the serialization process). If the deserialized version is out-of-date compared to the /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees). /// /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call /// block_connected() to step towards your best block) upon deserialization before using the /// object! /// /// Note that ChannelManager is responsible for tracking liveness of its channels and generating /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been /// offline for a full minute. In order to track this, you must call /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect. /// /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but /// essentially you should default to using a SimpleRefChannelManager, and use a /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when /// you're using lightning-net-tokio. pub struct ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { default_configuration: UserConfig, genesis_hash: BlockHash, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, #[cfg(test)] pub(super) best_block: RwLock, #[cfg(not(test))] best_block: RwLock, secp_ctx: Secp256k1, #[cfg(any(test, feature = "_test_utils"))] pub(super) channel_state: Mutex>, #[cfg(not(any(test, feature = "_test_utils")))] channel_state: Mutex>, /// Storage for PaymentSecrets and any requirements on future inbound payments before we will /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out. /// Locked *after* channel_state. pending_inbound_payments: Mutex>, /// The session_priv bytes and retry metadata of outbound payments which are pending resolution. /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors /// (if the channel has been force-closed), however we track them here to prevent duplicative /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice. /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s) /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents /// after reloading from disk while replaying blocks against ChannelMonitors. /// /// See `PendingOutboundPayment` documentation for more info. /// /// Locked *after* channel_state. pending_outbound_payments: Mutex>, our_network_key: SecretKey, our_network_pubkey: PublicKey, inbound_payment_key: inbound_payment::ExpandedKey, /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an /// incoming payment. To make it harder for a third-party to identify the type of a payment, /// we encrypt the namespace identifier using these bytes. /// /// [fake scids]: crate::util::scid_utils::fake_scid fake_scid_rand_bytes: [u8; 32], /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this /// value increases strictly since we don't assume access to a time source. last_node_announcement_serial: AtomicUsize, /// The highest block timestamp we've seen, which is usually a good guess at the current time. /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be /// very far in the past, and can only ever be up to two hours in the future. highest_seen_timestamp: AtomicUsize, /// The bulk of our storage will eventually be here (channels and message queues and the like). /// If we are connected to a peer we always at least have an entry here, even if no channels /// are currently open with that peer. /// Because adding or removing an entry is rare, we usually take an outer read lock and then /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a /// new channel. /// /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`. per_peer_state: RwLock>>, pending_events: Mutex>, pending_background_events: Mutex>, /// Used when we have to take a BIG lock to make sure everything is self-consistent. /// Essentially just when we're serializing ourselves out. /// Taken first everywhere where we are making changes before any other locks. /// When acquiring this lock in read mode, rather than acquiring it directly, call /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the /// PersistenceNotifier the lock contains sends out a notification when the lock is released. total_consistency_lock: RwLock<()>, persistence_notifier: PersistenceNotifier, keys_manager: K, logger: L, } /// Chain-related parameters used to construct a new `ChannelManager`. /// /// Typically, the block-specific parameters are derived from the best block hash for the network, /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters /// are not needed when deserializing a previously constructed `ChannelManager`. #[derive(Clone, Copy, PartialEq)] pub struct ChainParameters { /// The network for determining the `chain_hash` in Lightning messages. pub network: Network, /// The hash and height of the latest block successfully connected. /// /// Used to track on-chain channel funding outputs and send payments with reliable timelocks. pub best_block: BestBlock, } #[derive(Copy, Clone, PartialEq)] enum NotifyOption { DoPersist, SkipPersist, } /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is /// desirable to notify any listeners on `await_persistable_update_timeout`/ /// `await_persistable_update` when new updates are available for persistence. Therefore, this /// struct is responsible for locking the total consistency lock and, upon going out of scope, /// sending the aforementioned notification (since the lock being released indicates that the /// updates are ready for persistence). /// /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to /// notify or not based on whether relevant changes have been made, providing a closure to /// `optionally_notify` which returns a `NotifyOption`. struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> { persistence_notifier: &'a PersistenceNotifier, should_persist: F, // We hold onto this result so the lock doesn't get released immediately. _read_guard: RwLockReadGuard<'a, ()>, } impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> { PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist }) } fn optionally_notify NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> { let read_guard = lock.read().unwrap(); PersistenceNotifierGuard { persistence_notifier: notifier, should_persist: persist_check, _read_guard: read_guard, } } } impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> { fn drop(&mut self) { if (self.should_persist)() == NotifyOption::DoPersist { self.persistence_notifier.notify(); } } } /// The amount of time in blocks we require our counterparty wait to claim their money (ie time /// between when we, or our watchtower, must check for them having broadcast a theft transaction). /// /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`] /// /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24; /// The amount of time in blocks we're willing to wait to claim money back to us. This matches /// the maximum required amount in lnd as of March 2021. pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7; /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour. /// /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`] /// /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER, // i.e. the node we forwarded the payment on to should always have enough room to reliably time out // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more). pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7; pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO? /// Minimum CLTV difference between the current block height and received inbound payments. /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least /// this value. // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for // any payments to succeed. Further, we don't want payments to fail if a block was found while // a payment was being routed, so we add an extra block to be safe. pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3; // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS, // ie that if the next-hop peer fails the HTLC within // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain, // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before // LATENCY_GRACE_PERIOD_BLOCKS. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS; // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER; /// The number of blocks before we consider an outbound payment for expiry if it doesn't have any /// pending HTLCs in flight. pub(crate) const PAYMENT_EXPIRY_BLOCKS: u32 = 3; /// Information needed for constructing an invoice route hint for this channel. #[derive(Clone, Debug, PartialEq)] pub struct CounterpartyForwardingInfo { /// Base routing fee in millisatoshis. pub fee_base_msat: u32, /// Amount in millionths of a satoshi the channel will charge per transferred satoshi. pub fee_proportional_millionths: u32, /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart, /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s /// `cltv_expiry_delta` for more details. pub cltv_expiry_delta: u16, } /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`] /// to better separate parameters. #[derive(Clone, Debug, PartialEq)] pub struct ChannelCounterparty { /// The node_id of our counterparty pub node_id: PublicKey, /// The Features the channel counterparty provided upon last connection. /// Useful for routing as it is the most up-to-date copy of the counterparty's features and /// many routing-relevant features are present in the init context. pub features: InitFeatures, /// The value, in satoshis, that must always be held in the channel for our counterparty. This /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by /// claiming at least this value on chain. /// /// This value is not included in [`inbound_capacity_msat`] as it can never be spent. /// /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat pub unspendable_punishment_reserve: u64, /// Information on the fees and requirements that the counterparty requires when forwarding /// payments to us through this channel. pub forwarding_info: Option, } /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels #[derive(Clone, Debug, PartialEq)] pub struct ChannelDetails { /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes, /// thereafter this is the txid of the funding transaction xor the funding transaction output). /// Note that this means this value is *not* persistent - it can change once during the /// lifetime of the channel. pub channel_id: [u8; 32], /// Parameters which apply to our counterparty. See individual fields for more information. pub counterparty: ChannelCounterparty, /// The Channel's funding transaction output, if we've negotiated the funding transaction with /// our counterparty already. /// /// Note that, if this has been set, `channel_id` will be equivalent to /// `funding_txo.unwrap().to_channel_id()`. pub funding_txo: Option, /// The position of the funding transaction in the chain. None if the funding transaction has /// not yet been confirmed and the channel fully opened. pub short_channel_id: Option, /// The value, in satoshis, of this channel as appears in the funding output pub channel_value_satoshis: u64, /// The value, in satoshis, that must always be held in the channel for us. This value ensures /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least /// this value on chain. /// /// This value is not included in [`outbound_capacity_msat`] as it can never be spent. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. /// /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat pub unspendable_punishment_reserve: Option, /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound. pub user_channel_id: u64, /// Our total balance. This is the amount we would get if we close the channel. /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this /// amount is not likely to be recoverable on close. /// /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose /// balance is not available for inclusion in new outbound HTLCs). This further does not include /// any pending outgoing HTLCs which are awaiting some other resolution to be sent. /// This does not consider any on-chain fees. /// /// See also [`ChannelDetails::outbound_capacity_msat`] pub balance_msat: u64, /// The available outbound capacity for sending HTLCs to the remote peer. This does not include /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not /// available for inclusion in new outbound HTLCs). This further does not include any pending /// outgoing HTLCs which are awaiting some other resolution to be sent. /// /// See also [`ChannelDetails::balance_msat`] /// /// This value is not exact. Due to various in-flight changes, feerate changes, and our /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we /// should be able to spend nearly this amount. pub outbound_capacity_msat: u64, /// The available inbound capacity for the remote peer to send HTLCs to us. This does not /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not /// available for inclusion in new inbound HTLCs). /// Note that there are some corner cases not fully handled here, so the actual available /// inbound capacity may be slightly higher than this. /// /// This value is not exact. Due to various in-flight changes, feerate changes, and our /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable. /// However, our counterparty should be able to spend nearly this amount. pub inbound_capacity_msat: u64, /// The number of required confirmations on the funding transaction before the funding will be /// considered "locked". This number is selected by the channel fundee (i.e. us if /// [`is_outbound`] is *not* set), and can be selected for inbound channels with /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with /// [`ChannelHandshakeLimits::max_minimum_depth`]. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. /// /// [`is_outbound`]: ChannelDetails::is_outbound /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth pub confirmations_required: Option, /// The number of blocks (after our commitment transaction confirms) that we will need to wait /// until we can claim our funds after we force-close the channel. During this time our /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any /// time to claim our non-HTLC-encumbered funds. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. pub force_close_spend_delay: Option, /// True if the channel was initiated (and thus funded) by us. pub is_outbound: bool, /// True if the channel is confirmed, funding_locked messages have been exchanged, and the /// channel is not currently being shut down. `funding_locked` message exchange implies the /// required confirmation count has been reached (and we were connected to the peer at some /// point after the funding transaction received enough confirmations). The required /// confirmation count is provided in [`confirmations_required`]. /// /// [`confirmations_required`]: ChannelDetails::confirmations_required pub is_funding_locked: bool, /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b) /// the peer is connected, and (c) the channel is not currently negotiating a shutdown. /// /// This is a strict superset of `is_funding_locked`. pub is_usable: bool, /// True if this channel is (or will be) publicly-announced. pub is_public: bool, } /// If a payment fails to send, it can be in one of several states. This enum is returned as the /// Err() type describing which state the payment is in, see the description of individual enum /// states for more. #[derive(Clone, Debug)] pub enum PaymentSendFailure { /// A parameter which was passed to send_payment was invalid, preventing us from attempting to /// send the payment at all. No channel state has been changed or messages sent to peers, and /// once you've changed the parameter at error, you can freely retry the payment in full. ParameterError(APIError), /// A parameter in a single path which was passed to send_payment was invalid, preventing us /// from attempting to send the payment at all. No channel state has been changed or messages /// sent to peers, and once you've changed the parameter at error, you can freely retry the /// payment in full. /// /// The results here are ordered the same as the paths in the route object which was passed to /// send_payment. PathParameterError(Vec>), /// All paths which were attempted failed to send, with no channel state change taking place. /// You can freely retry the payment in full (though you probably want to do so over different /// paths than the ones selected). AllFailedRetrySafe(Vec), /// Some paths which were attempted failed to send, though possibly not all. At least some /// paths have irrevocably committed to the HTLC and retrying the payment in full would result /// in over-/re-payment. /// /// The results here are ordered the same as the paths in the route object which was passed to /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely /// retried (though there is currently no API with which to do so). /// /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel /// with the latest update_id. PartialFailure { /// The errors themselves, in the same order as the route hops. results: Vec>, /// If some paths failed without irrevocably committing to the new HTLC(s), this will /// contain a [`RouteParameters`] object which can be used to calculate a new route that /// will pay all remaining unpaid balance. failed_paths_retry: Option, /// The payment id for the payment, which is now at least partially pending. payment_id: PaymentId, }, } /// Route hints used in constructing invoices for [phantom node payents]. /// /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager #[derive(Clone)] pub struct PhantomRouteHints { /// The list of channels to be included in the invoice route hints. pub channels: Vec, /// A fake scid used for representing the phantom node's fake channel in generating the invoice /// route hints. pub phantom_scid: u64, /// The pubkey of the real backing node that would ultimately receive the payment. pub real_node_pubkey: PublicKey, } macro_rules! handle_error { ($self: ident, $internal: expr, $counterparty_node_id: expr) => { match $internal { Ok(msg) => Ok(msg), Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => { #[cfg(debug_assertions)] { // In testing, ensure there are no deadlocks where the lock is already held upon // entering the macro. assert!($self.channel_state.try_lock().is_ok()); assert!($self.pending_events.try_lock().is_ok()); } let mut msg_events = Vec::with_capacity(2); if let Some((shutdown_res, update_option)) = shutdown_finish { $self.finish_force_close_channel(shutdown_res); if let Some(update) = update_option { msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } if let Some((channel_id, user_channel_id)) = chan_id { $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed { channel_id, user_channel_id, reason: ClosureReason::ProcessingError { err: err.err.clone() } }); } } log_error!($self.logger, "{}", err.err); if let msgs::ErrorAction::IgnoreError = err.action { } else { msg_events.push(events::MessageSendEvent::HandleError { node_id: $counterparty_node_id, action: err.action.clone() }); } if !msg_events.is_empty() { $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events); } // Return error in case higher-API need one Err(err) }, } } } /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error) macro_rules! convert_chan_err { ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => { match $err { ChannelError::Warn(msg) => { (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone())) }, ChannelError::Ignore(msg) => { (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone())) }, ChannelError::Close(msg) => { log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg); if let Some(short_id) = $channel.get_short_channel_id() { $short_to_id.remove(&short_id); } let shutdown_res = $channel.force_shutdown(true); (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(), shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok())) }, ChannelError::CloseDelayBroadcast(msg) => { log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg); if let Some(short_id) = $channel.get_short_channel_id() { $short_to_id.remove(&short_id); } let shutdown_res = $channel.force_shutdown(false); (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(), shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok())) } } } } macro_rules! break_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(e) => { let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key()); if drop { $entry.remove_entry(); } break Err(res); } } } } macro_rules! try_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(e) => { let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key()); if drop { $entry.remove_entry(); } return Err(res); } } } } macro_rules! remove_channel { ($channel_state: expr, $entry: expr) => { { let channel = $entry.remove_entry().1; if let Some(short_id) = channel.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } channel } } } macro_rules! handle_monitor_err { ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => { match $err { ChannelMonitorUpdateErr::PermanentFailure => { log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..])); if let Some(short_id) = $chan.get_short_channel_id() { $short_to_id.remove(&short_id); } // TODO: $failed_fails is dropped here, which will cause other channels to hit the // chain in a confused state! We need to move them into the ChannelMonitor which // will be responsible for failing backwards once things confirm on-chain. // It's ok that we drop $failed_forwards here - at this point we'd rather they // broadcast HTLC-Timeout and pay the associated fees to get their funds back than // us bother trying to claim it just to forward on to another peer. If we're // splitting hairs we'd prefer to claim payments that were to us, but we haven't // given up the preimage yet, so might as well just wait until the payment is // retried, avoiding the on-chain fees. let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(), $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() )); (res, true) }, ChannelMonitorUpdateErr::TemporaryFailure => { log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations", log_bytes!($chan_id[..]), if $resend_commitment && $resend_raa { match $action_type { RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" }, RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" }, } } else if $resend_commitment { "commitment" } else if $resend_raa { "RAA" } else { "nothing" }, (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(), (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(), (&$failed_finalized_fulfills as &Vec).len()); if !$resend_commitment { debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa); } if !$resend_raa { debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment); } $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills); (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false) }, } }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { { let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key()); if drop { $entry.remove_entry(); } res } }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, COMMITMENT_UPDATE_ONLY) => { { debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst); handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, true, Vec::new(), Vec::new(), Vec::new(), $chan_id) } }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, NO_UPDATE) => { handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, false, Vec::new(), Vec::new(), Vec::new(), $chan_id) }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new(), Vec::new()) }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, Vec::new()) }; } macro_rules! return_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment); }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails); } } // Does not break in case of TemporaryFailure! macro_rules! maybe_break_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) { (e, ChannelMonitorUpdateErr::PermanentFailure) => { break e; }, (_, ChannelMonitorUpdateErr::TemporaryFailure) => { }, } } } macro_rules! handle_chan_restoration_locked { ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr, $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr, $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr, $announcement_sigs: expr) => { { let mut htlc_forwards = None; let counterparty_node_id = $channel_entry.get().get_counterparty_node_id(); let chanmon_update: Option = $chanmon_update; // Force type-checking to resolve let chanmon_update_is_none = chanmon_update.is_none(); let res = loop { let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve if !forwards.is_empty() { htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), $channel_entry.get().get_funding_txo().unwrap(), forwards)); } if chanmon_update.is_some() { // On reconnect, we, by definition, only resend a funding_locked if there have been // no commitment updates, so the only channel monitor update which could also be // associated with a funding_locked would be the funding_created/funding_signed // monitor update. That monitor update failing implies that we won't send // funding_locked until it's been updated, so we can't have a funding_locked and a // monitor update here (so we don't bother to handle it correctly below). assert!($funding_locked.is_none()); // A channel monitor update makes no sense without either a funding_locked or a // commitment update to process after it. Since we can't have a funding_locked, we // only bother to handle the monitor-update + commitment_update case below. assert!($commitment_update.is_some()); } if let Some(msg) = $funding_locked { // Similar to the above, this implies that we're letting the funding_locked fly // before it should be allowed to. assert!(chanmon_update.is_none()); $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: counterparty_node_id, msg, }); $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id()); } if let Some(msg) = $announcement_sigs { $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: counterparty_node_id, msg, }); } let funding_broadcastable: Option = $funding_broadcastable; // Force type-checking to resolve if let Some(monitor_update) = chanmon_update { // We only ever broadcast a funding transaction in response to a funding_signed // message and the resulting monitor update. Thus, on channel_reestablish // message handling we can't have a funding transaction to broadcast. When // processing a monitor update finishing resulting in a funding broadcast, we // cannot have a second monitor update, thus this case would indicate a bug. assert!(funding_broadcastable.is_none()); // Given we were just reconnected or finished updating a channel monitor, the // only case where we can get a new ChannelMonitorUpdate would be if we also // have some commitment updates to send as well. assert!($commitment_update.is_some()); if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) { // channel_reestablish doesn't guarantee the order it returns is sensical // for the messages it returns, but if we're setting what messages to // re-transmit on monitor update success, we need to make sure it is sane. let mut order = $order; if $raa.is_none() { order = RAACommitmentOrder::CommitmentFirst; } break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true); } } macro_rules! handle_cs { () => { if let Some(update) = $commitment_update { $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id, updates: update, }); } } } macro_rules! handle_raa { () => { if let Some(revoke_and_ack) = $raa { $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: counterparty_node_id, msg: revoke_and_ack, }); } } } match $order { RAACommitmentOrder::CommitmentFirst => { handle_cs!(); handle_raa!(); }, RAACommitmentOrder::RevokeAndACKFirst => { handle_raa!(); handle_cs!(); }, } if let Some(tx) = funding_broadcastable { log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid()); $self.tx_broadcaster.broadcast_transaction(&tx); } break Ok(()); }; if chanmon_update_is_none { // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which // should *never* end up calling back to `chain_monitor.update_channel()`. assert!(res.is_ok()); } (htlc_forwards, res, counterparty_node_id) } } } macro_rules! post_handle_chan_restoration { ($self: ident, $locked_res: expr) => { { let (htlc_forwards, res, counterparty_node_id) = $locked_res; let _ = handle_error!($self, res, counterparty_node_id); if let Some(forwards) = htlc_forwards { $self.forward_htlcs(&mut [forwards][..]); } } } } impl ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Constructs a new ChannelManager to hold several channels and route between them. /// /// This is the main "logic hub" for all channel-related actions, and implements /// ChannelMessageHandler. /// /// Non-proportional fees are fixed according to our risk using the provided fee estimator. /// /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`! /// /// Users need to notify the new ChannelManager when a new block is connected or /// disconnected using its `block_connected` and `block_disconnected` methods, starting /// from after `params.latest_hash`. pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self { let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes()); let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material(); let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material); ChannelManager { default_configuration: config.clone(), genesis_hash: genesis_block(params.network).header.block_hash(), fee_estimator: fee_est, chain_monitor, tx_broadcaster, best_block: RwLock::new(params.best_block), channel_state: Mutex::new(ChannelHolder{ by_id: HashMap::new(), short_to_id: HashMap::new(), forward_htlcs: HashMap::new(), claimable_htlcs: HashMap::new(), pending_msg_events: Vec::new(), }), pending_inbound_payments: Mutex::new(HashMap::new()), pending_outbound_payments: Mutex::new(HashMap::new()), our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(), our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()), secp_ctx, inbound_payment_key: expanded_inbound_key, fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(), last_node_announcement_serial: AtomicUsize::new(0), highest_seen_timestamp: AtomicUsize::new(0), per_peer_state: RwLock::new(HashMap::new()), pending_events: Mutex::new(Vec::new()), pending_background_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), persistence_notifier: PersistenceNotifier::new(), keys_manager, logger, } } /// Gets the current configuration applied to all new channels, as pub fn get_current_default_configuration(&self) -> &UserConfig { &self.default_configuration } /// Creates a new outbound channel to the given remote node and with the given value. /// /// `user_channel_id` will be provided back as in /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here. /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise /// ignored. /// /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`. /// /// Note that we do not check if you are currently connected to the given peer. If no /// connection is available, the outbound `open_channel` message may fail to send, resulting in /// the channel eventually being silently forgotten (dropped on reload). /// /// Returns the new Channel's temporary `channel_id`. This ID will appear as /// [`Event::FundingGenerationReady::temporary_channel_id`] and in /// [`ChannelDetails::channel_id`] until after /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for /// one derived from the funding transaction's TXID. If the counterparty rejects the channel /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`]. /// /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option) -> Result<[u8; 32], APIError> { if channel_value_satoshis < 1000 { return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) }); } let channel = { let per_peer_state = self.per_peer_state.read().unwrap(); match per_peer_state.get(&their_network_key) { Some(peer_state) => { let peer_state = peer_state.lock().unwrap(); let their_features = &peer_state.latest_features; let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration }; Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features, channel_value_satoshis, push_msat, user_channel_id, config, self.best_block.read().unwrap().height())? }, None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }), } }; let res = channel.get_open_channel(self.genesis_hash.clone()); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); // We want to make sure the lock is actually acquired by PersistenceNotifierGuard. debug_assert!(&self.total_consistency_lock.try_write().is_err()); let temporary_channel_id = channel.channel_id(); let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.entry(temporary_channel_id) { hash_map::Entry::Occupied(_) => { if cfg!(fuzzing) { return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() }); } else { panic!("RNG is bad???"); } }, hash_map::Entry::Vacant(entry) => { entry.insert(channel); } } channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: their_network_key, msg: res, }); Ok(temporary_channel_id) } fn list_channels_with_filter)) -> bool>(&self, f: Fn) -> Vec { let mut res = Vec::new(); { let channel_state = self.channel_state.lock().unwrap(); res.reserve(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter().filter(f) { let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat(); let balance_msat = channel.get_balance_msat(); let (to_remote_reserve_satoshis, to_self_reserve_satoshis) = channel.get_holder_counterparty_selected_channel_reserve_satoshis(); res.push(ChannelDetails { channel_id: (*channel_id).clone(), counterparty: ChannelCounterparty { node_id: channel.get_counterparty_node_id(), features: InitFeatures::empty(), unspendable_punishment_reserve: to_remote_reserve_satoshis, forwarding_info: channel.counterparty_forwarding_info(), }, funding_txo: channel.get_funding_txo(), short_channel_id: channel.get_short_channel_id(), channel_value_satoshis: channel.get_value_satoshis(), unspendable_punishment_reserve: to_self_reserve_satoshis, balance_msat, inbound_capacity_msat, outbound_capacity_msat, user_channel_id: channel.get_user_id(), confirmations_required: channel.minimum_depth(), force_close_spend_delay: channel.get_counterparty_selected_contest_delay(), is_outbound: channel.is_outbound(), is_funding_locked: channel.is_usable(), is_usable: channel.is_live(), is_public: channel.should_announce(), }); } } let per_peer_state = self.per_peer_state.read().unwrap(); for chan in res.iter_mut() { if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) { chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone(); } } res } /// Gets the list of open channels, in random order. See ChannelDetail field documentation for /// more information. pub fn list_channels(&self) -> Vec { self.list_channels_with_filter(|_| true) } /// Gets the list of usable channels, in random order. Useful as an argument to /// get_route to ensure non-announced channels are used. /// /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria /// are. pub fn list_usable_channels(&self) -> Vec { // Note we use is_live here instead of usable which leads to somewhat confused // internal/external nomenclature, but that's ok cause that's probably what the user // really wanted anyway. self.list_channels_with_filter(|&(_, ref channel)| channel.is_live()) } /// Helper function that issues the channel close events fn issue_channel_close_events(&self, channel: &Channel, closure_reason: ClosureReason) { let mut pending_events_lock = self.pending_events.lock().unwrap(); match channel.unbroadcasted_funding() { Some(transaction) => { pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction }) }, None => {}, } pending_events_lock.push(events::Event::ChannelClosed { channel_id: channel.channel_id(), user_channel_id: channel.get_user_id(), reason: closure_reason }); } fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let counterparty_node_id; let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>; let result: Result<(), _> = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { counterparty_node_id = chan_entry.get().get_counterparty_node_id(); let per_peer_state = self.per_peer_state.read().unwrap(); let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) { Some(peer_state) => { let peer_state = peer_state.lock().unwrap(); let their_features = &peer_state.latest_features; chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)? }, None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }), }; failed_htlcs = htlcs; // Update the monitor with the shutdown script if necessary. if let Some(monitor_update) = monitor_update { if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) { let (result, is_permanent) = handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE); if is_permanent { remove_channel!(channel_state, chan_entry); break result; } } } channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: counterparty_node_id, msg: shutdown_msg }); if chan_entry.get().is_shutdown() { let channel = remove_channel!(channel_state, chan_entry); if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) { channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: channel_update }); } self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed); } break Ok(()); }, hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}) } }; for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } let _ = handle_error!(self, result, counterparty_node_id); Ok(()) } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// * If we are the channel initiator, we will pay between our [`Background`] and /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee /// estimate. /// * If our counterparty is the channel initiator, we will require a channel closing /// transaction feerate of at least our [`Background`] feerate or the feerate which /// would appear on a force-closure transaction, whichever is lower. We will allow our /// counterparty to pay as much fee as they'd like, however. /// /// May generate a SendShutdown message event on success, which should be relayed. /// /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { self.close_channel_internal(channel_id, None) } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated /// the channel being closed or not: /// * If we are the channel initiator, we will pay at least this feerate on the closing /// transaction. The upper-bound is set by /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater). /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which /// will appear on a force-closure transaction, whichever is lower). /// /// May generate a SendShutdown message event on success, which should be relayed. /// /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> { self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight)) } #[inline] fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) { let (monitor_update_option, mut failed_htlcs) = shutdown_res; log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len()); for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } if let Some((funding_txo, monitor_update)) = monitor_update_option { // There isn't anything we can do if we get an update failure - we're already // force-closing. The monitor update on the required in-memory copy should broadcast // the latest local state, which is the best we can do anyway. Thus, it is safe to // ignore the result here. let _ = self.chain_monitor.update_channel(funding_txo, monitor_update); } } /// `peer_node_id` should be set when we receive a message from a peer, but not set when the /// user closes, which will be re-exposed as the `ChannelClosed` reason. fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result { let mut chan = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) { if let Some(node_id) = peer_node_id { if chan.get().get_counterparty_node_id() != *node_id { return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}); } } if let Some(short_id) = chan.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } if peer_node_id.is_some() { if let Some(peer_msg) = peer_msg { self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() }); } } else { self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed); } chan.remove_entry().1 } else { return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}); } }; log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..])); self.finish_force_close_channel(chan.force_shutdown(true)); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(chan.get_counterparty_node_id()) } /// Force closes a channel, immediately broadcasting the latest local commitment transaction to /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager. pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); match self.force_close_channel_with_peer(channel_id, None, None) { Ok(counterparty_node_id) => { self.channel_state.lock().unwrap().pending_msg_events.push( events::MessageSendEvent::HandleError { node_id: counterparty_node_id, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() } }, } ); Ok(()) }, Err(e) => Err(e) } } /// Force close all channels, immediately broadcasting the latest local commitment transaction /// for each to the chain and rejecting new HTLCs on each. pub fn force_close_all_channels(&self) { for chan in self.list_channels() { let _ = self.force_close_channel(&chan.channel_id); } } fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32], payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result { // final_incorrect_cltv_expiry if hop_data.outgoing_cltv_value != cltv_expiry { return Err(ReceiveError { msg: "Upstream node set CLTV to the wrong value", err_code: 18, err_data: byte_utils::be32_to_array(cltv_expiry).to_vec() }) } // final_expiry_too_soon // We have to have some headroom to broadcast on chain if we have the preimage, so make sure // we have at least HTLC_FAIL_BACK_BUFFER blocks to go. // Also, ensure that, in the case of an unknown preimage for the received payment hash, our // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a // channel closure (see HTLC_FAIL_BACK_BUFFER rationale). if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 { return Err(ReceiveError { err_code: 17, err_data: Vec::new(), msg: "The final CLTV expiry is too soon to handle", }); } if hop_data.amt_to_forward > amt_msat { return Err(ReceiveError { err_code: 19, err_data: byte_utils::be64_to_array(amt_msat).to_vec(), msg: "Upstream node sent less than we were supposed to receive in payment", }); } let routing = match hop_data.format { msgs::OnionHopDataFormat::Legacy { .. } => { return Err(ReceiveError { err_code: 0x4000|0x2000|3, err_data: Vec::new(), msg: "We require payment_secrets", }); }, msgs::OnionHopDataFormat::NonFinalNode { .. } => { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "Got non final data with an HMAC of 0", }); }, msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => { if payment_data.is_some() && keysend_preimage.is_some() { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "We don't support MPP keysend payments", }); } else if let Some(data) = payment_data { PendingHTLCRouting::Receive { payment_data: data, incoming_cltv_expiry: hop_data.outgoing_cltv_value, phantom_shared_secret, } } else if let Some(payment_preimage) = keysend_preimage { // We need to check that the sender knows the keysend preimage before processing this // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X // could discover the final destination of X, by probing the adjacent nodes on the route // with a keysend payment of identical payment hash to X and observing the processing // time discrepancies due to a hash collision with X. let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); if hashed_preimage != payment_hash { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "Payment preimage didn't match payment hash", }); } PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry: hop_data.outgoing_cltv_value, } } else { return Err(ReceiveError { err_code: 0x4000|0x2000|3, err_data: Vec::new(), msg: "We require payment_secrets", }); } }, }; Ok(PendingHTLCInfo { routing, payment_hash, incoming_shared_secret: shared_secret, amt_to_forward: amt_msat, outgoing_cltv_value: hop_data.outgoing_cltv_value, }) } fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard>) { macro_rules! return_malformed_err { ($msg: expr, $err_code: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(), failure_code: $err_code, })), self.channel_state.lock().unwrap()); } } } if let Err(_) = msg.onion_routing_packet.public_key { return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6); } let shared_secret = { let mut arr = [0; 32]; arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]); arr }; if msg.onion_routing_packet.version != 0 { //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way, //the hash doesn't really serve any purpose - in the case of hashing all data, the //receiving node would have to brute force to figure out which version was put in the //packet by the node that send us the message, in the case of hashing the hop_data, the //node knows the HMAC matched, so they already know what is there... return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4); } let mut channel_state = None; macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data), })), channel_state.unwrap()); } } } let next_hop = match onion_utils::decode_next_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) { Ok(res) => res, Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => { return_malformed_err!(err_msg, err_code); }, Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => { return_err!(err_msg, err_code, &[0; 0]); }, }; let pending_forward_info = match next_hop { onion_utils::Hop::Receive(next_hop_data) => { // OUR PAYMENT! match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) { Ok(info) => { // Note that we could obviously respond immediately with an update_fulfill_htlc // message, however that would leak that we are the recipient of this payment, so // instead we stay symmetric with the forwarding case, only responding (after a // delay) once they've send us a commitment_signed! PendingHTLCStatus::Forward(info) }, Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data) } }, onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => { let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap(); let blinding_factor = { let mut sha = Sha256::engine(); sha.input(&new_pubkey.serialize()[..]); sha.input(&shared_secret); Sha256::from_engine(sha).into_inner() }; let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) { Err(e) } else { Ok(new_pubkey) }; let outgoing_packet = msgs::OnionPacket { version: 0, public_key, hop_data: new_packet_bytes, hmac: next_hop_hmac.clone(), }; let short_channel_id = match next_hop_data.format { msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id, msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id, msgs::OnionHopDataFormat::FinalNode { .. } => { return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]); }, }; PendingHTLCStatus::Forward(PendingHTLCInfo { routing: PendingHTLCRouting::Forward { onion_packet: outgoing_packet, short_channel_id, }, payment_hash: msg.payment_hash.clone(), incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.amt_to_forward, outgoing_cltv_value: next_hop_data.outgoing_cltv_value, }) } }; channel_state = Some(self.channel_state.lock().unwrap()); if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info { // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel // with a short_channel_id of 0. This is important as various things later assume // short_channel_id is non-0 in any ::Forward. if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing { let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned(); if let Some((err, code, chan_update)) = loop { let forwarding_id_opt = match id_option { None => { // unknown_next_peer // Note that this is likely a timing oracle for detecting whether an scid is a // phantom. if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) { None } else { break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None)); } }, Some(id) => Some(id.clone()), }; let (chan_update_opt, forwardee_cltv_expiry_delta) = if let Some(forwarding_id) = forwarding_id_opt { let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap(); // Leave channel updates as None for private channels. let chan_update_opt = if chan.should_announce() { Some(self.get_channel_update_for_unicast(chan).unwrap()) } else { None }; if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels { // Note that the behavior here should be identical to the above block - we // should NOT reveal the existence or non-existence of a private channel if // we don't allow forwards outbound over them. break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None)); } // Note that we could technically not return an error yet here and just hope // that the connection is reestablished or monitor updated by the time we get // around to doing the actual forward, but better to fail early if we can and // hopefully an attacker trying to path-trace payments cannot make this occur // on a small/per-node/per-channel scale. if !chan.is_live() { // channel_disabled break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt)); } if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt)); } let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64) .and_then(|prop_fee| { (prop_fee / 1000000) .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) }); if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, chan_update_opt)); } (chan_update_opt, chan.get_cltv_expiry_delta()) } else { (None, MIN_CLTV_EXPIRY_DELTA) }; if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + forwardee_cltv_expiry_delta as u64 { // incorrect_cltv_expiry break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, chan_update_opt)); } let cur_height = self.best_block.read().unwrap().height() + 1; // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, // but we want to be robust wrt to counterparty packet sanitization (see // HTLC_FAIL_BACK_BUFFER rationale). if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt)); } if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far break Some(("CLTV expiry is too far in the future", 21, None)); } // If the HTLC expires ~now, don't bother trying to forward it to our // counterparty. They should fail it anyway, but we don't want to bother with // the round-trips or risk them deciding they definitely want the HTLC and // force-closing to ensure they get it if we're offline. // We previously had a much more aggressive check here which tried to ensure // our counterparty receives an HTLC which has *our* risk threshold met on it, // but there is no need to do that, and since we're a bit conservative with our // risk threshold it just results in failing to forward payments. if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 { break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt)); } break None; } { let mut res = Vec::with_capacity(8 + 128); if let Some(chan_update) = chan_update { if code == 0x1000 | 11 || code == 0x1000 | 12 { res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat)); } else if code == 0x1000 | 13 { res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry)); } else if code == 0x1000 | 20 { // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791 res.extend_from_slice(&byte_utils::be16_to_array(0)); } res.extend_from_slice(&chan_update.encode_with_len()[..]); } return_err!(err, code, &res[..]); } } } (pending_forward_info, channel_state.unwrap()) } /// Gets the current channel_update for the given channel. This first checks if the channel is /// public, and thus should be called whenever the result is going to be passed out in a /// [`MessageSendEvent::BroadcastChannelUpdate`] event. /// /// May be called with channel_state already locked! fn get_channel_update_for_broadcast(&self, chan: &Channel) -> Result { if !chan.should_announce() { return Err(LightningError { err: "Cannot broadcast a channel_update for a private channel".to_owned(), action: msgs::ErrorAction::IgnoreError }); } log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id())); self.get_channel_update_for_unicast(chan) } /// Gets the current channel_update for the given channel. This does not check if the channel /// is public (only returning an Err if the channel does not yet have an assigned short_id), /// and thus MUST NOT be called unless the recipient of the resulting message has already /// provided evidence that they know about the existence of the channel. /// May be called with channel_state already locked! fn get_channel_update_for_unicast(&self, chan: &Channel) -> Result { log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id())); let short_channel_id = match chan.get_short_channel_id() { None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}), Some(id) => id, }; let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..]; let unsigned = msgs::UnsignedChannelUpdate { chain_hash: self.genesis_hash, short_channel_id, timestamp: chan.get_update_time_counter(), flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1), cltv_expiry_delta: chan.get_cltv_expiry_delta(), htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(), htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()), fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(), fee_proportional_millionths: chan.get_fee_proportional_millionths(), excess_data: Vec::new(), }; let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]); let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key); Ok(msgs::ChannelUpdate { signature: sig, contents: unsigned }) } // Only public for testing, this should otherwise never be called direcly pub(crate) fn send_payment_along_path(&self, path: &Vec, payment_params: &Option, payment_hash: &PaymentHash, payment_secret: &Option, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option) -> Result<(), APIError> { log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id); let prng_seed = self.keys_manager.get_secure_random_bytes(); let session_priv_bytes = self.keys_manager.get_secure_random_bytes(); let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted"); let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv) .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?; let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?; if onion_utils::route_size_insane(&onion_payloads) { return Err(APIError::RouteError{err: "Route size too large considering onion data"}); } let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let err: Result<(), _> = loop { let mut channel_lock = self.channel_state.lock().unwrap(); let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap(); let payment_entry = pending_outbounds.entry(payment_id); if let hash_map::Entry::Occupied(payment) = &payment_entry { if !payment.get().is_retryable() { return Err(APIError::RouteError { err: "Payment already completed" }); } } let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) { None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}), Some(id) => id.clone(), }; macro_rules! insert_outbound_payment { () => { let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable { session_privs: HashSet::new(), pending_amt_msat: 0, pending_fee_msat: Some(0), payment_hash: *payment_hash, payment_secret: *payment_secret, starting_block_height: self.best_block.read().unwrap().height(), total_msat: total_value, }); assert!(payment.insert(session_priv_bytes, path)); } } let channel_state = &mut *channel_lock; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) { match { if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey { return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"}); } if !chan.get().is_live() { return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()}); } break_chan_entry!(self, chan.get_mut().send_htlc_and_commit( htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute { path: path.clone(), session_priv: session_priv.clone(), first_hop_htlc_msat: htlc_msat, payment_id, payment_secret: payment_secret.clone(), payment_params: payment_params.clone(), }, onion_packet, &self.logger), channel_state, chan) } { Some((update_add, commitment_signed, monitor_update)) => { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true); // Note that MonitorUpdateFailed here indicates (per function docs) // that we will resend the commitment update once monitor updating // is restored. Therefore, we must return an error indicating that // it is unsafe to retry the payment wholesale, which we do in the // send_payment check for MonitorUpdateFailed, below. insert_outbound_payment!(); // Only do this after possibly break'ing on Perm failure above. return Err(APIError::MonitorUpdateFailed); } insert_outbound_payment!(); log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id())); channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: path.first().unwrap().pubkey, updates: msgs::CommitmentUpdate { update_add_htlcs: vec![update_add], update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, }, }); }, None => { insert_outbound_payment!(); }, } } else { unreachable!(); } return Ok(()); }; match handle_error!(self, err, path.first().unwrap().pubkey) { Ok(_) => unreachable!(), Err(e) => { Err(APIError::ChannelUnavailable { err: e.err }) }, } } /// Sends a payment along a given route. /// /// Value parameters are provided via the last hop in route, see documentation for RouteHop /// fields for more info. /// /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative /// payment), we don't do anything to stop you! We always try to ensure that if the provided /// next hop knows the preimage to payment_hash they can claim an additional amount as /// specified in the last hop in the route! Thus, you should probably do your own /// payment_preimage tracking (which you should already be doing as they represent "proof of /// payment") and prevent double-sends yourself. /// /// May generate SendHTLCs message(s) event on success, which should be relayed. /// /// Each path may have a different return value, and PaymentSendValue may return a Vec with /// each entry matching the corresponding-index entry in the route paths, see /// PaymentSendFailure for more info. /// /// In general, a path may raise: /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee, /// node public key) is specified. /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates /// (including due to previous monitor update failure or new permanent monitor update /// failure). /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the /// relevant updates. /// /// Note that depending on the type of the PaymentSendFailure the HTLC may have been /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a /// different route unless you intend to pay twice! /// /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route /// must not contain multiple paths as multi-path payments require a recipient-provided /// payment_secret. /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature /// bit set (either as required or as available). If multiple paths are present in the Route, /// we assume the invoice had the basic_mpp feature set. pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option) -> Result { self.send_payment_internal(route, payment_hash, payment_secret, None, None, None) } fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option, keysend_preimage: Option, payment_id: Option, recv_value_msat: Option) -> Result { if route.paths.len() < 1 { return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"})); } if route.paths.len() > 10 { // This limit is completely arbitrary - there aren't any real fundamental path-count // limits. After we support retrying individual paths we should likely bump this, but // for now more than 10 paths likely carries too much one-path failure. return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"})); } if payment_secret.is_none() && route.paths.len() > 1 { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()})); } let mut total_value = 0; let our_node_id = self.get_our_node_id(); let mut path_errs = Vec::with_capacity(route.paths.len()); let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) }; 'path_check: for path in route.paths.iter() { if path.len() < 1 || path.len() > 20 { path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"})); continue 'path_check; } for (idx, hop) in path.iter().enumerate() { if idx != path.len() - 1 && hop.pubkey == our_node_id { path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"})); continue 'path_check; } } total_value += path.last().unwrap().fee_msat; path_errs.push(Ok(())); } if path_errs.iter().any(|e| e.is_err()) { return Err(PaymentSendFailure::PathParameterError(path_errs)); } if let Some(amt_msat) = recv_value_msat { debug_assert!(amt_msat >= total_value); total_value = amt_msat; } let cur_height = self.best_block.read().unwrap().height() + 1; let mut results = Vec::new(); for path in route.paths.iter() { results.push(self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage)); } let mut has_ok = false; let mut has_err = false; let mut pending_amt_unsent = 0; let mut max_unsent_cltv_delta = 0; for (res, path) in results.iter().zip(route.paths.iter()) { if res.is_ok() { has_ok = true; } if res.is_err() { has_err = true; } if let &Err(APIError::MonitorUpdateFailed) = res { // MonitorUpdateFailed is inherently unsafe to retry, so we call it a // PartialFailure. has_err = true; has_ok = true; } else if res.is_err() { pending_amt_unsent += path.last().unwrap().fee_msat; max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta); } } if has_err && has_ok { Err(PaymentSendFailure::PartialFailure { results, payment_id, failed_paths_retry: if pending_amt_unsent != 0 { if let Some(payment_params) = &route.payment_params { Some(RouteParameters { payment_params: payment_params.clone(), final_value_msat: pending_amt_unsent, final_cltv_expiry_delta: max_unsent_cltv_delta, }) } else { None } } else { None }, }) } else if has_err { // If we failed to send any paths, we shouldn't have inserted the new PaymentId into // our `pending_outbound_payments` map at all. debug_assert!(self.pending_outbound_payments.lock().unwrap().get(&payment_id).is_none()); Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect())) } else { Ok(payment_id) } } /// Retries a payment along the given [`Route`]. /// /// Errors returned are a superset of those returned from [`send_payment`], so see /// [`send_payment`] documentation for more details on errors. This method will also error if the /// retry amount puts the payment more than 10% over the payment's total amount, if the payment /// for the given `payment_id` cannot be found (likely due to timeout or success), or if /// further retries have been disabled with [`abandon_payment`]. /// /// [`send_payment`]: [`ChannelManager::send_payment`] /// [`abandon_payment`]: [`ChannelManager::abandon_payment`] pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> { const RETRY_OVERFLOW_PERCENTAGE: u64 = 10; for path in route.paths.iter() { if path.len() == 0 { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: "length-0 path in route".to_string() })) } } let (total_msat, payment_hash, payment_secret) = { let outbounds = self.pending_outbound_payments.lock().unwrap(); if let Some(payment) = outbounds.get(&payment_id) { match payment { PendingOutboundPayment::Retryable { total_msat, payment_hash, payment_secret, pending_amt_msat, .. } => { let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum(); if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string() })) } (*total_msat, *payment_hash, *payment_secret) }, PendingOutboundPayment::Legacy { .. } => { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string() })) }, PendingOutboundPayment::Fulfilled { .. } => { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: "Payment already completed".to_owned() })); }, PendingOutboundPayment::Abandoned { .. } => { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: "Payment already abandoned (with some HTLCs still pending)".to_owned() })); }, } } else { return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)), })) } }; return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ()) } /// Signals that no further retries for the given payment will occur. /// /// After this method returns, any future calls to [`retry_payment`] for the given `payment_id` /// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated, /// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining /// pending HTLCs for this payment. /// /// Note that calling this method does *not* prevent a payment from succeeding. You must still /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to /// determine the ultimate status of a payment. /// /// [`retry_payment`]: Self::retry_payment /// [`Event::PaymentFailed`]: events::Event::PaymentFailed /// [`Event::PaymentSent`]: events::Event::PaymentSent pub fn abandon_payment(&self, payment_id: PaymentId) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut outbounds = self.pending_outbound_payments.lock().unwrap(); if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) { if let Ok(()) = payment.get_mut().mark_abandoned() { if payment.get().remaining_parts() == 0 { self.pending_events.lock().unwrap().push(events::Event::PaymentFailed { payment_id, payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"), }); payment.remove(); } } } } /// Send a spontaneous payment, which is a payment that does not require the recipient to have /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify /// the preimage, it must be a cryptographically secure random value that no intermediate node /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will /// never reach the recipient. /// /// See [`send_payment`] documentation for more details on the return value of this function. /// /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See /// [`send_payment`] for more information about the risks of duplicate preimage usage. /// /// Note that `route` must have exactly one path. /// /// [`send_payment`]: Self::send_payment pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> { let preimage = match payment_preimage { Some(p) => p, None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()), }; let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner()); match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) { Ok(payment_id) => Ok((payment_hash, payment_id)), Err(e) => Err(e) } } /// Handles the generation of a funding transaction, optionally (for tests) with a function /// which checks the correctness of the funding transaction given the associated channel. fn funding_transaction_generated_intern, &Transaction) -> Result> (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> { let (chan, msg) = { let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) { Some(mut chan) => { let funding_txo = find_funding_output(&chan, &funding_transaction)?; (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger) .map_err(|e| if let ChannelError::Close(msg) = e { MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None) } else { unreachable!(); }) , chan) }, None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) }, }; match handle_error!(self, res, chan.get_counterparty_node_id()) { Ok(funding_msg) => { (chan, funding_msg) }, Err(_) => { return Err(APIError::ChannelUnavailable { err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned() }) }, } }; let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated { node_id: chan.get_counterparty_node_id(), msg, }); match channel_state.by_id.entry(chan.channel_id()) { hash_map::Entry::Occupied(_) => { panic!("Generated duplicate funding txid?"); }, hash_map::Entry::Vacant(e) => { e.insert(chan); } } Ok(()) } #[cfg(test)] pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> { self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| { Ok(OutPoint { txid: tx.txid(), index: output_index }) }) } /// Call this upon creation of a funding transaction for the given channel. /// /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`]. /// /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`]. /// /// May panic if the output found in the funding transaction is duplicative with some other /// channel (note that this should be trivially prevented by using unique funding transaction /// keys per-channel). /// /// Do NOT broadcast the funding transaction yourself. When we have safely received our /// counterparty's signature the funding transaction will automatically be broadcast via the /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed. /// /// Note that this includes RBF or similar transaction replacement strategies - lightning does /// not currently support replacing a funding transaction on an existing channel. Instead, /// create a new channel with a conflicting funding transaction. /// /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); for inp in funding_transaction.input.iter() { if inp.witness.is_empty() { return Err(APIError::APIMisuseError { err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned() }); } } self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| { let mut output_index = None; let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh(); for (idx, outp) in tx.output.iter().enumerate() { if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() { if output_index.is_some() { return Err(APIError::APIMisuseError { err: "Multiple outputs matched the expected script and value".to_owned() }); } if idx > u16::max_value() as usize { return Err(APIError::APIMisuseError { err: "Transaction had more than 2^16 outputs, which is not supported".to_owned() }); } output_index = Some(idx as u16); } } if output_index.is_none() { return Err(APIError::APIMisuseError { err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned() }); } Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() }) }) } #[allow(dead_code)] // Messages of up to 64KB should never end up more than half full with addresses, as that would // be absurd. We ensure this by checking that at least 500 (our stated public contract on when // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB // message... const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2; #[deny(const_err)] #[allow(dead_code)] // ...by failing to compile if the number of addresses that would be half of a message is // smaller than 500: const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500; /// Regenerates channel_announcements and generates a signed node_announcement from the given /// arguments, providing them in corresponding events via /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed /// on-chain. This effectively re-broadcasts all channel announcements and sends our node /// announcement to ensure that the lightning P2P network is aware of the channels we have and /// our network addresses. /// /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this /// node to humans. They carry no in-protocol meaning. /// /// `addresses` represent the set (possibly empty) of socket addresses on which this node /// accepts incoming connections. These will be included in the node_announcement, publicly /// tying these addresses together and to this node. If you wish to preserve user privacy, /// addresses should likely contain only Tor Onion addresses. /// /// Panics if `addresses` is absurdly large (more than 500). /// /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); if addresses.len() > 500 { panic!("More than half the message size was taken up by public addresses!"); } // While all existing nodes handle unsorted addresses just fine, the spec requires that // addresses be sorted for future compatibility. addresses.sort_by_key(|addr| addr.get_id()); let announcement = msgs::UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32, node_id: self.get_our_node_id(), rgb, alias, addresses, excess_address_data: Vec::new(), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let mut announced_chans = false; for (_, chan) in channel_state.by_id.iter() { if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) { channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg: match self.get_channel_update_for_broadcast(chan) { Ok(msg) => msg, Err(_) => continue, }, }); announced_chans = true; } else { // If the channel is not public or has not yet reached funding_locked, check the // next channel. If we don't yet have any public channels, we'll skip the broadcast // below as peers may not accept it without channels on chain first. } } if announced_chans { channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement { msg: msgs::NodeAnnouncement { signature: node_announce_sig, contents: announcement }, }); } } /// Processes HTLCs which are pending waiting on random forward delay. /// /// Should only really ever be called in response to a PendingHTLCsForwardable event. /// Will likely generate further events. pub fn process_pending_htlc_forwards(&self) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut new_events = Vec::new(); let mut failed_forwards = Vec::new(); let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new(); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() { if short_chan_id != 0 { let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) { Some(chan_id) => chan_id.clone(), None => { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo { routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value }, prev_funding_outpoint } => { macro_rules! fail_forward { ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, phantom_shared_secret: $phantom_ss, }); failed_forwards.push((htlc_source, payment_hash, HTLCFailReason::Reason { failure_code: $err_code, data: $err_data } )); continue; } } } if let PendingHTLCRouting::Forward { onion_packet, .. } = routing { let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode); if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) { let phantom_shared_secret = { let mut arr = [0; 32]; arr.copy_from_slice(&SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap())[..]); arr }; let next_hop = match onion_utils::decode_next_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) { Ok(res) => res, Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => { let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner(); // In this scenario, the phantom would have sent us an // `update_fail_malformed_htlc`, meaning here we encrypt the error as // if it came from us (the second-to-last hop) but contains the sha256 // of the onion. fail_forward!(err_msg, err_code, sha256_of_onion.to_vec(), None); }, Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => { fail_forward!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret)); }, }; match next_hop { onion_utils::Hop::Receive(hop_data) => { match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) { Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])), Err(ReceiveError { err_code, err_data, msg }) => fail_forward!(msg, err_code, err_data, Some(phantom_shared_secret)) } }, _ => panic!(), } } else { fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None); } } else { fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None); } }, HTLCForwardInfo::FailHTLC { .. } => { // Channel went away before we could fail it. This implies // the channel is now on chain and our counterparty is // trying to broadcast the HTLC-Timeout, but that's their // problem, not ours. } } } continue; } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) { let mut add_htlc_msgs = Vec::new(); let mut fail_htlc_msgs = Vec::new(); for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo { routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value }, prev_funding_outpoint } => { log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, // Phantom payments are only PendingHTLCRouting::Receive. phantom_shared_secret: None, }); match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg); } else { panic!("Stated return value requirements in send_htlc() were not met"); } let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap(); failed_forwards.push((htlc_source, payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() } )); continue; }, Ok(update_add) => { match update_add { Some(msg) => { add_htlc_msgs.push(msg); }, None => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can add anymore HTLCs. The Channel // will automatically handle building the update_add_htlc and // commitment_signed messages when we can. // TODO: Do some kind of timer to set the channel as !is_live() // as we don't really want others relying on us relaying through // this channel currently :/. } } } } }, HTLCForwardInfo::AddHTLC { .. } => { panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward"); }, HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => { log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id); match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg); } else { panic!("Stated return value requirements in get_update_fail_htlc() were not met"); } // fail-backs are best-effort, we probably already have one // pending, and if not that's OK, if not, the channel is on // the chain and sending the HTLC-Timeout is their problem. continue; }, Ok(Some(msg)) => { fail_htlc_msgs.push(msg); }, Ok(None) => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can update the commitment // transaction. The Channel will automatically handle // building the update_fail_htlc and commitment_signed // messages when we can. // We don't need any kind of timer here as they should fail // the channel onto the chain if they can't get our // update_fail_htlc in time, it's not our problem. } } }, } } if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() { let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) { Ok(res) => res, Err(e) => { // We surely failed send_commitment due to bad keys, in that case // close channel and then send error message to peer. let counterparty_node_id = chan.get().get_counterparty_node_id(); let err: Result<(), _> = match e { ChannelError::Ignore(_) | ChannelError::Warn(_) => { panic!("Stated return value requirements in send_commitment() were not met"); } ChannelError::Close(msg) => { log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg); let (channel_id, mut channel) = chan.remove_entry(); if let Some(short_id) = channel.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } // ChannelClosed event is generated by handle_error for us. Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok())) }, ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); } }; handle_errors.push((counterparty_node_id, err)); continue; } }; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true))); continue; } log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}", add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id())); channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: add_htlc_msgs, update_fulfill_htlcs: Vec::new(), update_fail_htlcs: fail_htlc_msgs, update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: commitment_msg, }, }); } } else { unreachable!(); } } else { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo { routing, incoming_shared_secret, payment_hash, amt_to_forward, .. }, prev_funding_outpoint } => { let (cltv_expiry, onion_payload, phantom_shared_secret) = match routing { PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => (incoming_cltv_expiry, OnionPayload::Invoice(payment_data), phantom_shared_secret), PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } => (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None), _ => { panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive"); } }; let claimable_htlc = ClaimableHTLC { prev_hop: HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, phantom_shared_secret, }, value: amt_to_forward, cltv_expiry, onion_payload, }; macro_rules! fail_htlc { ($htlc: expr) => { let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice( &byte_utils::be32_to_array(self.best_block.read().unwrap().height()), ); failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: $htlc.prev_hop.short_channel_id, outpoint: prev_funding_outpoint, htlc_id: $htlc.prev_hop.htlc_id, incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret, phantom_shared_secret, }), payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data } )); } } macro_rules! check_total_value { ($payment_data_total_msat: expr, $payment_secret: expr, $payment_preimage: expr) => {{ let mut payment_received_generated = false; let htlcs = channel_state.claimable_htlcs.entry(payment_hash) .or_insert(Vec::new()); if htlcs.len() == 1 { if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc); continue } } let mut total_value = claimable_htlc.value; for htlc in htlcs.iter() { total_value += htlc.value; match &htlc.onion_payload { OnionPayload::Invoice(htlc_payment_data) => { if htlc_payment_data.total_msat != $payment_data_total_msat { log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})", log_bytes!(payment_hash.0), $payment_data_total_msat, htlc_payment_data.total_msat); total_value = msgs::MAX_VALUE_MSAT; } if total_value >= msgs::MAX_VALUE_MSAT { break; } }, _ => unreachable!(), } } if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data_total_msat { log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)", log_bytes!(payment_hash.0), total_value, $payment_data_total_msat); fail_htlc!(claimable_htlc); } else if total_value == $payment_data_total_msat { htlcs.push(claimable_htlc); new_events.push(events::Event::PaymentReceived { payment_hash, purpose: events::PaymentPurpose::InvoicePayment { payment_preimage: $payment_preimage, payment_secret: $payment_secret, }, amt: total_value, }); payment_received_generated = true; } else { // Nothing to do - we haven't reached the total // payment value yet, wait until we receive more // MPP parts. htlcs.push(claimable_htlc); } payment_received_generated }} } // Check that the payment hash and secret are known. Note that we // MUST take care to handle the "unknown payment hash" and // "incorrect payment secret" cases here identically or we'd expose // that we are the ultimate recipient of the given payment hash. // Further, we must not expose whether we have any other HTLCs // associated with the same payment_hash pending or not. let mut payment_secrets = self.pending_inbound_payments.lock().unwrap(); match payment_secrets.entry(payment_hash) { hash_map::Entry::Vacant(_) => { match claimable_htlc.onion_payload { OnionPayload::Invoice(ref payment_data) => { let payment_preimage = match inbound_payment::verify(payment_hash, payment_data.clone(), self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) { Ok(payment_preimage) => payment_preimage, Err(()) => { fail_htlc!(claimable_htlc); continue } }; let payment_data_total_msat = payment_data.total_msat; let payment_secret = payment_data.payment_secret.clone(); check_total_value!(payment_data_total_msat, payment_secret, payment_preimage); }, OnionPayload::Spontaneous(preimage) => { match channel_state.claimable_htlcs.entry(payment_hash) { hash_map::Entry::Vacant(e) => { e.insert(vec![claimable_htlc]); new_events.push(events::Event::PaymentReceived { payment_hash, amt: amt_to_forward, purpose: events::PaymentPurpose::SpontaneousPayment(preimage), }); }, hash_map::Entry::Occupied(_) => { log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc); } } } } }, hash_map::Entry::Occupied(inbound_payment) => { let payment_data = if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload { data.clone() } else { log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc); continue }; if inbound_payment.get().payment_secret != payment_data.payment_secret { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc); } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).", log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap()); fail_htlc!(claimable_htlc); } else { let payment_received_generated = check_total_value!(payment_data.total_msat, payment_data.payment_secret, inbound_payment.get().payment_preimage); if payment_received_generated { inbound_payment.remove_entry(); } } }, }; }, HTLCForwardInfo::FailHTLC { .. } => { panic!("Got pending fail of our own HTLC"); } } } } } } for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason); } self.forward_htlcs(&mut phantom_receives); for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } if new_events.is_empty() { return } let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_events); } /// Free the background events, generally called from timer_tick_occurred. /// /// Exposed for testing to allow us to process events quickly without generating accidental /// BroadcastChannelUpdate events in timer_tick_occurred. /// /// Expects the caller to have a total_consistency_lock read lock. fn process_background_events(&self) -> bool { let mut background_events = Vec::new(); mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events); if background_events.is_empty() { return false; } for event in background_events.drain(..) { match event { BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => { // The channel has already been closed, so no use bothering to care about the // monitor updating completing. let _ = self.chain_monitor.update_channel(funding_txo, update); }, } } true } #[cfg(any(test, feature = "_test_utils"))] /// Process background events, for functional testing pub fn test_process_background_events(&self) { self.process_background_events(); } fn update_channel_fee(&self, short_to_id: &mut HashMap, pending_msg_events: &mut Vec, chan_id: &[u8; 32], chan: &mut Channel, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) { if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); } // If the feerate has decreased by less than half, don't bother if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() { log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.", log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate); return (true, NotifyOption::SkipPersist, Ok(())); } if !chan.is_live() { log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).", log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate); return (true, NotifyOption::SkipPersist, Ok(())); } log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.", log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate); let mut retain_channel = true; let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) { Ok(res) => Ok(res), Err(e) => { let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id); if drop { retain_channel = false; } Err(res) } }; let ret_err = match res { Ok(Some((update_fee, commitment_signed, monitor_update))) => { if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) { let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, chan_id, COMMITMENT_UPDATE_ONLY); if drop { retain_channel = false; } res } else { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: Some(update_fee), commitment_signed, }, }); Ok(()) } }, Ok(None) => Ok(()), Err(e) => Err(e), }; (retain_channel, NotifyOption::DoPersist, ret_err) } #[cfg(fuzzing)] /// In chanmon_consistency we want to sometimes do the channel fee updates done in /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what /// it wants to detect). Thus, we have a variant exposed here for its benefit. pub fn maybe_update_chan_fees(&self) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut should_persist = NotifyOption::SkipPersist; let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let pending_msg_events = &mut channel_state.pending_msg_events; let short_to_id = &mut channel_state.short_to_id; channel_state.by_id.retain(|chan_id, chan| { let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate); if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; } if err.is_err() { handle_errors.push(err); } retain_channel }); } should_persist }); } /// Performs actions which should happen on startup and roughly once per minute thereafter. /// /// This currently includes: /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels, /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more /// than a minute, informing the network that they should no longer attempt to route over /// the channel. /// /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate /// estimate fetches. pub fn timer_tick_occurred(&self) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut should_persist = NotifyOption::SkipPersist; if self.process_background_events() { should_persist = NotifyOption::DoPersist; } let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let pending_msg_events = &mut channel_state.pending_msg_events; let short_to_id = &mut channel_state.short_to_id; channel_state.by_id.retain(|chan_id, chan| { let counterparty_node_id = chan.get_counterparty_node_id(); let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate); if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; } if err.is_err() { handle_errors.push((err, counterparty_node_id)); } if !retain_channel { return false; } if let Err(e) = chan.timer_check_closing_negotiation_progress() { let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id); handle_errors.push((Err(err), chan.get_counterparty_node_id())); if needs_close { return false; } } match chan.channel_update_status() { ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged), ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged), ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled), ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled), ChannelUpdateStatus::DisabledStaged if !chan.is_live() => { if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } should_persist = NotifyOption::DoPersist; chan.set_channel_update_status(ChannelUpdateStatus::Disabled); }, ChannelUpdateStatus::EnabledStaged if chan.is_live() => { if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } should_persist = NotifyOption::DoPersist; chan.set_channel_update_status(ChannelUpdateStatus::Enabled); }, _ => {}, } true }); } for (err, counterparty_node_id) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } should_persist }); } /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources /// along the path (including in our own channel on which we received it). /// Returns false if no payment was found to fail backwards, true if the process of failing the /// HTLC backwards has been started. pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash); if let Some(mut sources) = removed_source { for htlc in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array( self.best_block.read().unwrap().height())); self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }); } true } else { false } } // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to // be surfaced to the user. fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) { for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) { match htlc_src { HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => { let (failure_code, onion_failure_data) = match self.channel_state.lock().unwrap().by_id.entry(channel_id) { hash_map::Entry::Occupied(chan_entry) => { if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) { (0x1000|7, upd.encode_with_len()) } else { (0x4000|10, Vec::new()) } }, hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new()) }; let channel_state = self.channel_state.lock().unwrap(); self.fail_htlc_backwards_internal(channel_state, htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data}); }, HTLCSource::OutboundRoute { session_priv, payment_id, path, payment_params, .. } => { let mut session_priv_bytes = [0; 32]; session_priv_bytes.copy_from_slice(&session_priv[..]); let mut outbounds = self.pending_outbound_payments.lock().unwrap(); if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) { if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() { let retry = if let Some(payment_params_data) = payment_params { let path_last_hop = path.last().expect("Outbound payments must have had a valid path"); Some(RouteParameters { payment_params: payment_params_data, final_value_msat: path_last_hop.fee_msat, final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta, }) } else { None }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PaymentPathFailed { payment_id: Some(payment_id), payment_hash, rejected_by_dest: false, network_update: None, all_paths_failed: payment.get().remaining_parts() == 0, path: path.clone(), short_channel_id: None, retry, #[cfg(test)] error_code: None, #[cfg(test)] error_data: None, }); if payment.get().abandoned() && payment.get().remaining_parts() == 0 { pending_events.push(events::Event::PaymentFailed { payment_id, payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"), }); payment.remove(); } } } else { log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0)); } }, }; } } /// Fails an HTLC backwards to the sender of it to us. /// Note that while we take a channel_state lock as input, we do *not* assume consistency here. /// There are several callsites that do stupid things like loop over a list of payment_hashes /// to fail and take the channel_state lock for each iteration (as we take ownership and may /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to /// still-available channels. fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) { //TODO: There is a timing attack here where if a node fails an HTLC back to us they can //identify whether we sent it or not based on the (I presume) very different runtime //between the branches here. We should make this async and move it into the forward HTLCs //timer handling. // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // from block_connected which may run during initialization prior to the chain_monitor // being fully configured. See the docs for `ChannelManagerReadArgs` for more. match source { HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => { let mut session_priv_bytes = [0; 32]; session_priv_bytes.copy_from_slice(&session_priv[..]); let mut outbounds = self.pending_outbound_payments.lock().unwrap(); let mut all_paths_failed = false; let mut full_failure_ev = None; if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) { if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) { log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0)); return; } if payment.get().is_fulfilled() { log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0)); return; } if payment.get().remaining_parts() == 0 { all_paths_failed = true; if payment.get().abandoned() { full_failure_ev = Some(events::Event::PaymentFailed { payment_id, payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"), }); payment.remove(); } } } else { log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0)); return; } mem::drop(channel_state_lock); let retry = if let Some(payment_params_data) = payment_params { let path_last_hop = path.last().expect("Outbound payments must have had a valid path"); Some(RouteParameters { payment_params: payment_params_data.clone(), final_value_msat: path_last_hop.fee_msat, final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta, }) } else { None }; log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0)); let path_failure = match &onion_error { &HTLCFailReason::LightningError { ref err } => { #[cfg(test)] let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); #[cfg(not(test))] let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); // TODO: If we decided to blame ourselves (or one of our channels) in // process_onion_failure we should close that channel as it implies our // next-hop is needlessly blaming us! events::Event::PaymentPathFailed { payment_id: Some(payment_id), payment_hash: payment_hash.clone(), rejected_by_dest: !payment_retryable, network_update, all_paths_failed, path: path.clone(), short_channel_id, retry, #[cfg(test)] error_code: onion_error_code, #[cfg(test)] error_data: onion_error_data } }, &HTLCFailReason::Reason { #[cfg(test)] ref failure_code, #[cfg(test)] ref data, .. } => { // we get a fail_malformed_htlc from the first hop // TODO: We'd like to generate a NetworkUpdate for temporary // failures here, but that would be insufficient as get_route // generally ignores its view of our own channels as we provide them via // ChannelDetails. // TODO: For non-temporary failures, we really should be closing the // channel here as we apparently can't relay through them anyway. events::Event::PaymentPathFailed { payment_id: Some(payment_id), payment_hash: payment_hash.clone(), rejected_by_dest: path.len() == 1, network_update: None, all_paths_failed, path: path.clone(), short_channel_id: Some(path.first().unwrap().short_channel_id), retry, #[cfg(test)] error_code: Some(*failure_code), #[cfg(test)] error_data: Some(data.clone()), } } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(path_failure); if let Some(ev) = full_failure_ev { pending_events.push(ev); } }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, phantom_shared_secret, .. }) => { let err_packet = match onion_error { HTLCFailReason::Reason { failure_code, data } => { log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code); if let Some(phantom_ss) = phantom_shared_secret { let phantom_packet = onion_utils::build_failure_packet(&phantom_ss, failure_code, &data[..]).encode(); let encrypted_phantom_packet = onion_utils::encrypt_failure_packet(&phantom_ss, &phantom_packet); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &encrypted_phantom_packet.data[..]) } else { let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode(); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet) } }, HTLCFailReason::LightningError { err } => { log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0)); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data) } }; let mut forward_event = None; if channel_state_lock.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)); } match channel_state_lock.forward_htlcs.entry(short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet })); } } mem::drop(channel_state_lock); if let Some(time) = forward_event { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } }, } } /// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any /// [`MessageSendEvent`]s needed to claim the payment. /// /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived` /// event matches your expectation. If you fail to do so and call this method, you may provide /// the sender "proof-of-payment" when they did not fulfill the full expected payment. /// /// Returns whether any HTLCs were claimed, and thus if any new [`MessageSendEvent`]s are now /// pending for processing via [`get_and_clear_pending_msg_events`]. /// /// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived /// [`create_inbound_payment`]: Self::create_inbound_payment /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool { let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash); if let Some(mut sources) = removed_source { assert!(!sources.is_empty()); // If we are claiming an MPP payment, we have to take special care to ensure that each // channel exists before claiming all of the payments (inside one lock). // Note that channel existance is sufficient as we should always get a monitor update // which will take care of the real HTLC claim enforcement. // // If we find an HTLC which we would need to claim but for which we do not have a // channel, we will fail all parts of the MPP payment. While we could wait and see if // the sender retries the already-failed path(s), it should be a pretty rare case where // we got all the HTLCs and then a channel closed while we were waiting for the user to // provide the preimage, so worrying too much about the optimal handling isn't worth // it. let mut valid_mpp = true; for htlc in sources.iter() { if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) { valid_mpp = false; break; } } let mut errs = Vec::new(); let mut claimed_any_htlcs = false; for htlc in sources.drain(..) { if !valid_mpp { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array( self.best_block.read().unwrap().height())); self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash, HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data }); } else { match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) { ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => { if let msgs::ErrorAction::IgnoreError = err.err.action { // We got a temporary failure updating monitor, but will claim the // HTLC when the monitor updating is restored (or on chain). log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err); claimed_any_htlcs = true; } else { errs.push((pk, err)); } }, ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"), ClaimFundsFromHop::DuplicateClaim => { // While we should never get here in most cases, if we do, it likely // indicates that the HTLC was timed out some time ago and is no longer // available to be claimed. Thus, it does not make sense to set // `claimed_any_htlcs`. }, ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true, } } } // Now that we've done the entire above loop in one lock, we can handle any errors // which were generated. channel_state.take(); for (counterparty_node_id, err) in errs.drain(..) { let res: Result<(), _> = Err(err); let _ = handle_error!(self, res, counterparty_node_id); } claimed_any_htlcs } else { false } } fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop { //TODO: Delay the claimed_funds relaying just like we do outbound relay! let channel_state = &mut **channel_state_lock; let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) { Some(chan_id) => chan_id.clone(), None => { return ClaimFundsFromHop::PrevHopForceClosed } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) { match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) { Ok(msgs_monitor_option) => { if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug }, "Failed to update channel monitor with preimage {:?}: {:?}", payment_preimage, e); return ClaimFundsFromHop::MonitorUpdateFail( chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(), Some(htlc_value_msat) ); } if let Some((msg, commitment_signed)) = msgs { log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}", log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id())); channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: vec![msg], update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, } }); } return ClaimFundsFromHop::Success(htlc_value_msat); } else { return ClaimFundsFromHop::DuplicateClaim; } }, Err((e, monitor_update)) => { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info }, "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}", payment_preimage, e); } let counterparty_node_id = chan.get().get_counterparty_node_id(); let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id); if drop { chan.remove_entry(); } return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None); }, } } else { unreachable!(); } } fn finalize_claims(&self, mut sources: Vec) { let mut outbounds = self.pending_outbound_payments.lock().unwrap(); let mut pending_events = self.pending_events.lock().unwrap(); for source in sources.drain(..) { if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source { let mut session_priv_bytes = [0; 32]; session_priv_bytes.copy_from_slice(&session_priv[..]); if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) { assert!(payment.get().is_fulfilled()); if payment.get_mut().remove(&session_priv_bytes, None) { pending_events.push( events::Event::PaymentPathSuccessful { payment_id, payment_hash: payment.get().payment_hash(), path, } ); } if payment.get().remaining_parts() == 0 { payment.remove(); } } } } } fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option, from_onchain: bool) { match source { HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => { mem::drop(channel_state_lock); let mut session_priv_bytes = [0; 32]; session_priv_bytes.copy_from_slice(&session_priv[..]); let mut outbounds = self.pending_outbound_payments.lock().unwrap(); if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) { let mut pending_events = self.pending_events.lock().unwrap(); if !payment.get().is_fulfilled() { let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let fee_paid_msat = payment.get().get_pending_fee_msat(); pending_events.push( events::Event::PaymentSent { payment_id: Some(payment_id), payment_preimage, payment_hash, fee_paid_msat, } ); payment.get_mut().mark_fulfilled(); } if from_onchain { // We currently immediately remove HTLCs which were fulfilled on-chain. // This could potentially lead to removing a pending payment too early, // with a reorg of one block causing us to re-add the fulfilled payment on // restart. // TODO: We should have a second monitor event that informs us of payments // irrevocably fulfilled. if payment.get_mut().remove(&session_priv_bytes, Some(&path)) { let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner())); pending_events.push( events::Event::PaymentPathSuccessful { payment_id, payment_hash, path, } ); } if payment.get().remaining_parts() == 0 { payment.remove(); } } } else { log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0)); } }, HTLCSource::PreviousHopData(hop_data) => { let prev_outpoint = hop_data.outpoint; let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage); let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true }; let htlc_claim_value_msat = match res { ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt, ClaimFundsFromHop::Success(amt) => Some(amt), _ => None, }; if let ClaimFundsFromHop::PrevHopForceClosed = res { let preimage_update = ChannelMonitorUpdate { update_id: CLOSED_CHANNEL_UPDATE_ID, updates: vec![ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage.clone(), }], }; // We update the ChannelMonitor on the backward link, after // receiving an offchain preimage event from the forward link (the // event being update_fulfill_htlc). if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) { log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}", payment_preimage, e); } // Note that we do *not* set `claimed_htlc` to false here. In fact, this // totally could be a duplicate claim, but we have no way of knowing // without interrogating the `ChannelMonitor` we've provided the above // update to. Instead, we simply document in `PaymentForwarded` that this // can happen. } mem::drop(channel_state_lock); if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res { let result: Result<(), _> = Err(err); let _ = handle_error!(self, result, pk); } if claimed_htlc { if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat { let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat { Some(claimed_htlc_value - forwarded_htlc_value) } else { None }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PaymentForwarded { fee_earned_msat, claim_from_onchain_tx: from_onchain, }); } } }, } } /// Gets the node_id held by this ChannelManager pub fn get_our_node_id(&self) -> PublicKey { self.our_network_pubkey.clone() } fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let chan_restoration_res; let (mut pending_failures, finalized_claims) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) { hash_map::Entry::Occupied(chan) => chan, hash_map::Entry::Vacant(_) => return, }; if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id { return; } let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height()); let channel_update = if updates.funding_locked.is_some() && channel.get().is_usable() { // We only send a channel_update in the case where we are just now sending a // funding_locked and the channel is in a usable state. We may re-send a // channel_update later through the announcement_signatures process for public // channels, but there's no reason not to just inform our counterparty of our fees // now. Some(events::MessageSendEvent::SendChannelUpdate { node_id: channel.get().get_counterparty_node_id(), msg: self.get_channel_update_for_unicast(channel.get()).unwrap(), }) } else { None }; chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.funding_locked, updates.announcement_sigs); if let Some(upd) = channel_update { channel_state.pending_msg_events.push(upd); } (updates.failed_htlcs, updates.finalized_claimed_htlcs) }; post_handle_chan_restoration!(self, chan_restoration_res); self.finalize_claims(finalized_claims); for failure in pending_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } } /// Called to accept a request to open a channel after [`Event::OpenChannelRequest`] has been /// triggered. /// /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted. /// /// [`Event::OpenChannelRequest`]: crate::util::events::Event::OpenChannelRequest pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32]) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut channel) => { if !channel.get().inbound_is_awaiting_accept() { return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() }); } channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: channel.get().get_counterparty_node_id(), msg: channel.get_mut().accept_inbound_channel(), }); } hash_map::Entry::Vacant(_) => { return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() }); } } Ok(()) } fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> { if msg.chain_hash != self.genesis_hash { return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone())); } if !self.default_configuration.accept_inbound_channels { return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone())); } let mut channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration, self.best_block.read().unwrap().height(), &self.logger) .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?; let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())), hash_map::Entry::Vacant(entry) => { if !self.default_configuration.manually_accept_inbound_channels { channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: counterparty_node_id.clone(), msg: channel.accept_inbound_channel(), }); } else { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push( events::Event::OpenChannelRequest { temporary_channel_id: msg.temporary_channel_id.clone(), counterparty_node_id: counterparty_node_id.clone(), funding_satoshis: msg.funding_satoshis, push_msat: msg.push_msat, } ); } entry.insert(channel); } } Ok(()) } fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> { let (value, output_script, user_id) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.temporary_channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id)); } try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.peer_channel_config_limits, &their_features), channel_state, chan); (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingGenerationReady { temporary_channel_id: msg.temporary_channel_id, channel_value_satoshis: value, output_script, user_channel_id: user_id, }); Ok(()) } fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> { let ((funding_msg, monitor), mut chan) = { let best_block = *self.best_block.read().unwrap(); let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id)); } (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id)) } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before watch_channel if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) { match e { ChannelMonitorUpdateErr::PermanentFailure => { // Note that we reply with the new channel_id in error messages if we gave up on the // channel, not the temporary_channel_id. This is compatible with ourselves, but the // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for // any messages referencing a previously-closed channel anyway. // We do not do a force-close here as that would generate a monitor update for // a monitor that we didn't manage to store (and that we don't care about - we // don't respond with the funding_signed so the channel can never go on chain). let (_monitor_update, failed_htlcs) = chan.force_shutdown(true); assert!(failed_htlcs.is_empty()); return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id)); }, ChannelMonitorUpdateErr::TemporaryFailure => { // There's no problem signing a counterparty's funding transaction if our monitor // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't // accepted payment from yet. We do, however, need to wait to send our funding_locked // until we have persisted our monitor. chan.monitor_update_failed(false, false, Vec::new(), Vec::new(), Vec::new()); }, } } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(funding_msg.channel_id) { hash_map::Entry::Occupied(_) => { return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id)) }, hash_map::Entry::Vacant(e) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned { node_id: counterparty_node_id.clone(), msg: funding_msg, }); e.insert(chan); } } Ok(()) } fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> { let funding_tx = { let best_block = *self.best_block.read().unwrap(); let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) { Ok(update) => update, Err(e) => try_chan_entry!(self, Err(e), channel_state, chan), }; if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) { let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false); if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res { // We weren't able to watch the channel to begin with, so no updates should be made on // it. Previously, full_stack_target found an (unreachable) panic when the // monitor update contained within `shutdown_finish` was applied. if let Some((ref mut shutdown_finish, _)) = shutdown_finish { shutdown_finish.0.take(); } } return res } funding_tx }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid()); self.tx_broadcaster.broadcast_transaction(&funding_tx); Ok(()) } fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().funding_locked(&msg, self.get_our_node_id(), self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan); if let Some(announcement_sigs) = announcement_sigs_opt { log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id())); channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: counterparty_node_id.clone(), msg: announcement_sigs, }); } else if chan.get().is_usable() { // If we're sending an announcement_signatures, we'll send the (public) // channel_update after sending a channel_announcement when we receive our // counterparty's announcement_signatures. Thus, we only bother to send a // channel_update here if the channel is not public, i.e. we're not sending an // announcement_signatures. log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id())); channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate { node_id: counterparty_node_id.clone(), msg: self.get_channel_update_for_unicast(chan.get()).unwrap(), }); } Ok(()) }, hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> { let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>; let result: Result<(), _> = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } if !chan_entry.get().received_shutdown() { log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.", log_bytes!(msg.channel_id), if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" }); } let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry); dropped_htlcs = htlcs; // Update the monitor with the shutdown script if necessary. if let Some(monitor_update) = monitor_update { if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) { let (result, is_permanent) = handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE); if is_permanent { remove_channel!(channel_state, chan_entry); break result; } } } if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: *counterparty_node_id, msg, }); } break Ok(()); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; for htlc_source in dropped_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } let _ = handle_error!(self, result, *counterparty_node_id); Ok(()) } fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> { let (tx, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry); if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } if tx.is_some() { // We're done with this channel, we've got a signed closing transaction and // will send the closing_signed back to the remote peer upon return. This // also implies there are no pending HTLCs left on the channel, so we can // fully delete it from tracking (the channel monitor is still around to // watch for old state broadcasts)! if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (tx, Some(chan_entry.remove_entry().1)) } else { (tx, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; if let Some(broadcast_tx) = tx { log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx)); self.tx_broadcaster.broadcast_transaction(&broadcast_tx); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure); } Ok(()) } fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> { //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and //determine the state of the payment based on our response/if we forward anything/the time //we take to respond. We should take care to avoid allowing such an attack. // //TODO: There exists a further attack where a node may garble the onion data, forward it to //us repeatedly garbled in different ways, and compare our error messages, which are //encrypted with the same key. It's not immediately obvious how to usefully exploit that, //but we should prevent it anyway. let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let create_pending_htlc_status = |chan: &Channel, pending_forward_info: PendingHTLCStatus, error_code: u16| { // If the update_add is completely bogus, the call will Err and we will close, // but if we've sent a shutdown and they haven't acknowledged it yet, we just // want to reject the new HTLC and fail it backwards instead of forwarding. match pending_forward_info { PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => { let reason = if (error_code & 0x1000) != 0 { if let Ok(upd) = self.get_channel_update_for_unicast(chan) { onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{ let mut res = Vec::with_capacity(8 + 128); // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791 if error_code == 0x1000 | 20 { res.extend_from_slice(&byte_utils::be16_to_array(0)); } res.extend_from_slice(&upd.encode_with_len()[..]); res }[..]) } else { // The only case where we'd be unable to // successfully get a channel update is if the // channel isn't in the fully-funded state yet, // implying our counterparty is trying to route // payments over the channel back to themselves // (because no one else should know the short_id // is a lightning channel yet). We should have // no problem just calling this // unknown_next_peer (0x4000|10). onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[]) } } else { onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[]) }; let msg = msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason }; PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg)) }, _ => pending_forward_info } }; try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let (htlc_source, forwarded_htlc_value) = { let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false); Ok(()) } fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } if (msg.failure_code & 0x8000) == 0 { let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned()); try_chan_entry!(self, Err(chan_err), channel_state, chan); } try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan); Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (revoke_and_ack, commitment_signed, monitor_update) = match chan.get_mut().commitment_signed(&msg, &self.logger) { Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan), Err((Some(update), e)) => { assert!(chan.get().is_awaiting_monitor_update()); let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update); try_chan_entry!(self, Err(e), channel_state, chan); unreachable!(); }, Ok(res) => res }; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some()); } channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: counterparty_node_id.clone(), msg: revoke_and_ack, }); if let Some(msg) = commitment_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id.clone(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: msg, }, }); } Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } #[inline] fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) { for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards { let mut forward_event = None; if !pending_forwards.is_empty() { let mut channel_state = self.channel_state.lock().unwrap(); if channel_state.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)) } for (forward_info, prev_htlc_id) in pending_forwards.drain(..) { match channel_state.forward_htlcs.entry(match forward_info.routing { PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id, PendingHTLCRouting::Receive { .. } => 0, PendingHTLCRouting::ReceiveKeysend { .. } => 0, }) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, forward_info }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, forward_info })); } } } } match forward_event { Some(time) => { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } None => {}, } } } fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> { let mut htlcs_to_fail = Vec::new(); let res = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update(); let raa_updates = break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan); htlcs_to_fail = raa_updates.holding_cell_failed_htlcs; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) { if was_frozen_for_monitor { assert!(raa_updates.commitment_update.is_none()); assert!(raa_updates.accepted_htlcs.is_empty()); assert!(raa_updates.failed_htlcs.is_empty()); assert!(raa_updates.finalized_claimed_htlcs.is_empty()); break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned())); } else { if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, raa_updates.commitment_update.is_some(), raa_updates.accepted_htlcs, raa_updates.failed_htlcs, raa_updates.finalized_claimed_htlcs) { break Err(e); } else { unreachable!(); } } } if let Some(updates) = raa_updates.commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id.clone(), updates, }); } break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs, raa_updates.finalized_claimed_htlcs, chan.get().get_short_channel_id() .expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap())) }, hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id); match res { Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs, short_channel_id, channel_outpoint)) => { for failure in pending_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]); self.finalize_claims(finalized_claim_htlcs); Ok(()) }, Err(e) => Err(e) } } fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } if !chan.get().is_usable() { return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError})); } channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: try_chan_entry!(self, chan.get_mut().announcement_signatures( self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan), // Note that announcement_signatures fails if the channel cannot be announced, // so get_channel_update_for_broadcast will never fail by the time we get here. update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(), }); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err. fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) { Some(chan_id) => chan_id.clone(), None => { // It's not a local channel return Ok(NotifyOption::SkipPersist) } }; match channel_state.by_id.entry(chan_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { if chan.get().should_announce() { // If the announcement is about a channel of ours which is public, some // other peer may simply be forwarding all its gossip to us. Don't provide // a scary-looking error message and return Ok instead. return Ok(NotifyOption::SkipPersist); } return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id)); } let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..]; let msg_from_node_one = msg.contents.flags & 1 == 0; if were_node_one == msg_from_node_one { return Ok(NotifyOption::SkipPersist); } else { try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan); } }, hash_map::Entry::Vacant(_) => unreachable!() } Ok(NotifyOption::DoPersist) } fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> { let chan_restoration_res; let (htlcs_failed_forward, need_lnd_workaround) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } // Currently, we expect all holding cell update_adds to be dropped on peer // disconnect, so Channel's reestablish will never hand us any holding cell // freed HTLCs to fail backwards. If in the future we no longer drop pending // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here. let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish( msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash, &*self.best_block.read().unwrap()), channel_state, chan); let mut channel_update = None; if let Some(msg) = responses.shutdown_msg { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: counterparty_node_id.clone(), msg, }); } else if chan.get().is_usable() { // If the channel is in a usable state (ie the channel is not being shut // down), send a unicast channel_update to our counterparty to make sure // they have the latest channel parameters. channel_update = Some(events::MessageSendEvent::SendChannelUpdate { node_id: chan.get().get_counterparty_node_id(), msg: self.get_channel_update_for_unicast(chan.get()).unwrap(), }); } let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take(); chan_restoration_res = handle_chan_restoration_locked!( self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order, responses.mon_update, Vec::new(), None, responses.funding_locked, responses.announcement_sigs); if let Some(upd) = channel_update { channel_state.pending_msg_events.push(upd); } (responses.holding_cell_failed_htlcs, need_lnd_workaround) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; post_handle_chan_restoration!(self, chan_restoration_res); self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id); if let Some(funding_locked_msg) = need_lnd_workaround { self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?; } Ok(()) } /// Process pending events from the `chain::Watch`, returning whether any events were processed. fn process_pending_monitor_events(&self) -> bool { let mut failed_channels = Vec::new(); let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events(); let has_pending_monitor_events = !pending_monitor_events.is_empty(); for monitor_event in pending_monitor_events.drain(..) { match monitor_event { MonitorEvent::HTLCEvent(htlc_update) => { if let Some(preimage) = htlc_update.payment_preimage { log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0)); self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true); } else { log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0)); self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } }, MonitorEvent::CommitmentTxConfirmed(funding_outpoint) | MonitorEvent::UpdateFailed(funding_outpoint) => { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let by_id = &mut channel_state.by_id; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown(false)); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event { ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() } } else { ClosureReason::CommitmentTxConfirmed }; self.issue_channel_close_events(&chan, reason); pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() } }, }); } }, MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => { self.channel_monitor_updated(&funding_txo, monitor_update_id); }, } } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } has_pending_monitor_events } /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor /// update events as a separate process method here. #[cfg(fuzzing)] pub fn process_monitor_events(&self) { self.process_pending_monitor_events(); } /// Check the holding cell in each channel and free any pending HTLCs in them if possible. /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor /// update was applied. /// /// This should only apply to HTLCs which were added to the holding cell because we were /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user /// code to inform them of a channel monitor update. fn check_free_holding_cells(&self) -> bool { let mut has_monitor_update = false; let mut failed_htlcs = Vec::new(); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let by_id = &mut channel_state.by_id; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; by_id.retain(|channel_id, chan| { match chan.maybe_free_holding_cell_htlcs(&self.logger) { Ok((commitment_opt, holding_cell_failed_htlcs)) => { if !holding_cell_failed_htlcs.is_empty() { failed_htlcs.push((holding_cell_failed_htlcs, *channel_id)); } if let Some((commitment_update, monitor_update)) = commitment_opt { if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) { has_monitor_update = true; let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, channel_id, COMMITMENT_UPDATE_ONLY); handle_errors.push((chan.get_counterparty_node_id(), res)); if close_channel { return false; } } else { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get_counterparty_node_id(), updates: commitment_update, }); } } true }, Err(e) => { let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id); handle_errors.push((chan.get_counterparty_node_id(), Err(res))); // ChannelClosed event is generated by handle_error for us !close_channel } } }); } let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty(); for (failures, channel_id) in failed_htlcs.drain(..) { self.fail_holding_cell_htlcs(failures, channel_id); } for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } has_update } /// Check whether any channels have finished removing all pending updates after a shutdown /// exchange and can now send a closing_signed. /// Returns whether any closing_signed messages were generated. fn maybe_generate_initial_closing_signed(&self) -> bool { let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new(); let mut has_update = false; { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let by_id = &mut channel_state.by_id; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; by_id.retain(|channel_id, chan| { match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) { Ok((msg_opt, tx_opt)) => { if let Some(msg) = msg_opt { has_update = true; pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: chan.get_counterparty_node_id(), msg, }); } if let Some(tx) = tx_opt { // We're done with this channel. We got a closing_signed and sent back // a closing_signed with a closing transaction to broadcast. if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure); log_info!(self.logger, "Broadcasting {}", log_tx!(tx)); self.tx_broadcaster.broadcast_transaction(&tx); false } else { true } }, Err(e) => { has_update = true; let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id); handle_errors.push((chan.get_counterparty_node_id(), Err(res))); !close_channel } } }); } for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } has_update } /// Handle a list of channel failures during a block_connected or block_disconnected call, /// pushing the channel monitor update (if any) to the background events queue and removing the /// Channel object. fn handle_init_event_channel_failures(&self, mut failed_channels: Vec) { for mut failure in failed_channels.drain(..) { // Either a commitment transactions has been confirmed on-chain or // Channel::block_disconnected detected that the funding transaction has been // reorganized out of the main chain. // We cannot broadcast our latest local state via monitor update (as // Channel::force_shutdown tries to make us do) as we may still be in initialization, // so we track the update internally and handle it when the user next calls // timer_tick_occurred, guaranteeing we're running normally. if let Some((funding_txo, update)) = failure.0.take() { assert_eq!(update.updates.len(), 1); if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] { assert!(should_broadcast); } else { unreachable!(); } self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update))); } self.finish_force_close_channel(failure); } } fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option, min_value_msat: Option, invoice_expiry_delta_secs: u32) -> Result { assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT { return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) }); } let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes()); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut payment_secrets = self.pending_inbound_payments.lock().unwrap(); match payment_secrets.entry(payment_hash) { hash_map::Entry::Vacant(e) => { e.insert(PendingInboundPayment { payment_secret, min_value_msat, payment_preimage, user_payment_id: 0, // For compatibility with version 0.0.103 and earlier // We assume that highest_seen_timestamp is pretty close to the current time - // it's updated when we receive a new block with the maximum time we've seen in // a header. It should never be more than two hours in the future. // Thus, we add two hours here as a buffer to ensure we absolutely // never fail a payment too early. // Note that we assume that received blocks have reasonably up-to-date // timestamps. expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200, }); }, hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }), } Ok(payment_secret) } /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing /// to pay us. /// /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the /// [`PaymentHash`] and [`PaymentPreimage`] for you. /// /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be /// passed directly to [`claim_funds`]. /// /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements. /// /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. /// /// # Note /// /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. /// /// Errors if `min_value_msat` is greater than total bitcoin supply. /// /// [`claim_funds`]: Self::claim_funds /// [`PaymentReceived`]: events::Event::PaymentReceived /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash pub fn create_inbound_payment(&self, min_value_msat: Option, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> { inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64) } /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share /// serialized state with LDK node(s) running 0.0.103 and earlier. /// /// # Note /// This method is deprecated and will be removed soon. /// /// [`create_inbound_payment`]: Self::create_inbound_payment #[deprecated] pub fn create_inbound_payment_legacy(&self, min_value_msat: Option, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> { let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes()); let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?; Ok((payment_hash, payment_secret)) } /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is /// stored external to LDK. /// /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least /// the `min_value_msat` provided here, if one is provided. /// /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though /// note that LDK will not stop you from registering duplicate payment hashes for inbound /// payments. /// /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat` /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the /// sender "proof-of-payment" unless they have paid the required amount. /// /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for /// in excess of the current time. This should roughly match the expiry time set in the invoice. /// After this many seconds, we will remove the inbound payment, resulting in any attempts to /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for /// invoices when no timeout is set. /// /// Note that we use block header time to time-out pending inbound payments (with some margin /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry. /// If you need exact expiry semantics, you should enforce them upon receipt of /// [`PaymentReceived`]. /// /// May panic if `invoice_expiry_delta_secs` is greater than one year. /// /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry` /// set to at least [`MIN_FINAL_CLTV_EXPIRY`]. /// /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. /// /// # Note /// /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. /// /// Errors if `min_value_msat` is greater than total bitcoin supply. /// /// [`create_inbound_payment`]: Self::create_inbound_payment /// [`PaymentReceived`]: events::Event::PaymentReceived pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option, invoice_expiry_delta_secs: u32) -> Result { inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64) } /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share /// serialized state with LDK node(s) running 0.0.103 and earlier. /// /// # Note /// This method is deprecated and will be removed soon. /// /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash #[deprecated] pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option, invoice_expiry_delta_secs: u32) -> Result { self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs) } /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were /// previously returned from [`create_inbound_payment`]. /// /// [`create_inbound_payment`]: Self::create_inbound_payment pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result { inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key) } /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids /// are used when constructing the phantom invoice's route hints. /// /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager pub fn get_phantom_scid(&self) -> u64 { let mut channel_state = self.channel_state.lock().unwrap(); let best_block = self.best_block.read().unwrap(); loop { let scid_candidate = fake_scid::get_phantom_scid(&self.fake_scid_rand_bytes, best_block.height(), &self.genesis_hash, &self.keys_manager); // Ensure the generated scid doesn't conflict with a real channel. match channel_state.short_to_id.entry(scid_candidate) { hash_map::Entry::Occupied(_) => continue, hash_map::Entry::Vacant(_) => return scid_candidate } } } /// Gets route hints for use in receiving [phantom node payments]. /// /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager pub fn get_phantom_route_hints(&self) -> PhantomRouteHints { PhantomRouteHints { channels: self.list_usable_channels(), phantom_scid: self.get_phantom_scid(), real_node_pubkey: self.get_our_node_id(), } } #[cfg(any(test, fuzzing, feature = "_test_utils"))] pub fn get_and_clear_pending_events(&self) -> Vec { let events = core::cell::RefCell::new(Vec::new()); let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone()); self.process_pending_events(&event_handler); events.into_inner() } #[cfg(test)] pub fn has_pending_payments(&self) -> bool { !self.pending_outbound_payments.lock().unwrap().is_empty() } #[cfg(test)] pub fn clear_pending_payments(&self) { self.pending_outbound_payments.lock().unwrap().clear() } } impl MessageSendEventsProvider for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn get_and_clear_pending_msg_events(&self) -> Vec { let events = RefCell::new(Vec::new()); PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut result = NotifyOption::SkipPersist; // TODO: This behavior should be documented. It's unintuitive that we query // ChannelMonitors when clearing other events. if self.process_pending_monitor_events() { result = NotifyOption::DoPersist; } if self.check_free_holding_cells() { result = NotifyOption::DoPersist; } if self.maybe_generate_initial_closing_signed() { result = NotifyOption::DoPersist; } let mut pending_events = Vec::new(); let mut channel_state = self.channel_state.lock().unwrap(); mem::swap(&mut pending_events, &mut channel_state.pending_msg_events); if !pending_events.is_empty() { events.replace(pending_events); } result }); events.into_inner() } } impl EventsProvider for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Processes events that must be periodically handled. /// /// An [`EventHandler`] may safely call back to the provider in order to handle an event. /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock. /// /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared /// when processed, an [`EventHandler`] must be able to handle previously seen events when /// restarting from an old state. fn process_pending_events(&self, handler: H) where H::Target: EventHandler { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut result = NotifyOption::SkipPersist; // TODO: This behavior should be documented. It's unintuitive that we query // ChannelMonitors when clearing other events. if self.process_pending_monitor_events() { result = NotifyOption::DoPersist; } let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]); if !pending_events.is_empty() { result = NotifyOption::DoPersist; } for event in pending_events.drain(..) { handler.handle_event(&event); } result }); } } impl chain::Listen for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn block_connected(&self, block: &Block, height: u32) { { let best_block = self.best_block.read().unwrap(); assert_eq!(best_block.block_hash(), block.header.prev_blockhash, "Blocks must be connected in chain-order - the connected header must build on the last connected header"); assert_eq!(best_block.height(), height - 1, "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height"); } let txdata: Vec<_> = block.txdata.iter().enumerate().collect(); self.transactions_confirmed(&block.header, &txdata, height); self.best_block_updated(&block.header, height); } fn block_disconnected(&self, header: &BlockHeader, height: u32) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let new_height = height - 1; { let mut best_block = self.best_block.write().unwrap(); assert_eq!(best_block.block_hash(), header.block_hash(), "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header"); assert_eq!(best_block.height(), height, "Blocks must be disconnected in chain-order - the disconnected block must have the correct height"); *best_block = BestBlock::new(header.prev_blockhash, new_height) } self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)); } } impl chain::Confirm for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger) .map(|(a, b)| (a, Vec::new(), b))); } fn best_block_updated(&self, header: &BlockHeader, height: u32) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "New best block: {} at height {}", block_hash, height); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); *self.best_block.write().unwrap() = BestBlock::new(block_hash, height); self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)); macro_rules! max_time { ($timestamp: expr) => { loop { // Update $timestamp to be the max of its current value and the block // timestamp. This should keep us close to the current time without relying on // having an explicit local time source. // Just in case we end up in a race, we loop until we either successfully // update $timestamp or decide we don't need to. let old_serial = $timestamp.load(Ordering::Acquire); if old_serial >= header.time as usize { break; } if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() { break; } } } } max_time!(self.last_node_announcement_serial); max_time!(self.highest_seen_timestamp); let mut payment_secrets = self.pending_inbound_payments.lock().unwrap(); payment_secrets.retain(|_, inbound_payment| { inbound_payment.expiry_time > header.time as u64 }); let mut outbounds = self.pending_outbound_payments.lock().unwrap(); let mut pending_events = self.pending_events.lock().unwrap(); outbounds.retain(|payment_id, payment| { if payment.remaining_parts() != 0 { return true } if let PendingOutboundPayment::Retryable { starting_block_height, payment_hash, .. } = payment { if *starting_block_height + PAYMENT_EXPIRY_BLOCKS <= height { log_info!(self.logger, "Timing out payment with id {} and hash {}", log_bytes!(payment_id.0), log_bytes!(payment_hash.0)); pending_events.push(events::Event::PaymentFailed { payment_id: *payment_id, payment_hash: *payment_hash, }); false } else { true } } else { true } }); } fn get_relevant_txids(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.short_to_id.len()); for chan in channel_state.by_id.values() { if let Some(funding_txo) = chan.get_funding_txo() { res.push(funding_txo.txid); } } res } fn transaction_unconfirmed(&self, txid: &Txid) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); self.do_chain_event(None, |channel| { if let Some(funding_txo) = channel.get_funding_txo() { if funding_txo.txid == *txid { channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None)) } else { Ok((None, Vec::new(), None)) } } else { Ok((None, Vec::new(), None)) } }); } } impl ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Calls a function which handles an on-chain event (blocks dis/connected, transactions /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by /// the function. fn do_chain_event) -> Result<(Option, Vec<(HTLCSource, PaymentHash)>, Option), ClosureReason>> (&self, height_opt: Option, f: FN) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let mut failed_channels = Vec::new(); let mut timed_out_htlcs = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { let res = f(channel); if let Ok((funding_locked_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res { for (source, payment_hash) in timed_out_pending_htlcs.drain(..) { let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now data: chan_update, })); } if let Some(funding_locked) = funding_locked_opt { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_counterparty_node_id(), msg: funding_locked, }); if channel.is_usable() { log_trace!(self.logger, "Sending funding_locked with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id())); pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate { node_id: channel.get_counterparty_node_id(), msg: self.get_channel_update_for_unicast(channel).unwrap(), }); } else { log_trace!(self.logger, "Sending funding_locked WITHOUT channel_update for {}", log_bytes!(channel.channel_id())); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } if let Some(announcement_sigs) = announcement_sigs { log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id())); pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_counterparty_node_id(), msg: announcement_sigs, }); if let Some(height) = height_opt { if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: announcement, // Note that announcement_signatures fails if the channel cannot be announced, // so get_channel_update_for_broadcast will never fail by the time we get here. update_msg: self.get_channel_update_for_broadcast(channel).unwrap(), }); } } } } else if let Err(reason) = res { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } // It looks like our counterparty went on-chain or funding transaction was // reorged out of the main chain. Close the channel. failed_channels.push(channel.force_shutdown(true)); if let Ok(update) = self.get_channel_update_for_broadcast(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } let reason_message = format!("{}", reason); self.issue_channel_close_events(channel, reason); pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: channel.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: channel.channel_id(), data: reason_message, } }, }); return false; } true }); if let Some(height) = height_opt { channel_state.claimable_htlcs.retain(|payment_hash, htlcs| { htlcs.retain(|htlc| { // If height is approaching the number of blocks we think it takes us to get // our commitment transaction confirmed before the HTLC expires, plus the // number of blocks we generally consider it to take to do a commitment update, // just give up on it and fail the HTLC. if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER { let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height)); timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data })); false } else { true } }); !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry. }); } } self.handle_init_event_channel_failures(failed_channels); for (source, payment_hash, reason) in timed_out_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason); } } /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool /// indicating whether persistence is necessary. Only one listener on /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken /// up. /// /// Note that this method is not available with the `no-std` feature. #[cfg(any(test, feature = "std"))] pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool { self.persistence_notifier.wait_timeout(max_wait) } /// Blocks until ChannelManager needs to be persisted. Only one listener on /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken /// up. pub fn await_persistable_update(&self) { self.persistence_notifier.wait() } #[cfg(any(test, feature = "_test_utils"))] pub fn get_persistence_condvar_value(&self) -> bool { let mutcond = &self.persistence_notifier.persistence_lock; let &(ref mtx, _) = mutcond; let guard = mtx.lock().unwrap(); *guard } /// Gets the latest best block which was connected either via the [`chain::Listen`] or /// [`chain::Confirm`] interfaces. pub fn current_best_block(&self) -> BestBlock { self.best_block.read().unwrap().clone() } } impl ChannelMessageHandler for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id); } fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id); } fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id); } fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id); } fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) { persist } else { NotifyOption::SkipPersist } }); } fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id); } fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); let mut failed_channels = Vec::new(); let mut no_channels_remain = true; { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; if no_connection_possible { log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown(true)); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer); false } else { true } }); } else { log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger); if chan.is_shutdown() { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer); return false; } else { no_channels_remain = false; } } true }) } pending_msg_events.retain(|msg| { match msg { &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true, &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendChannelRangeQuery { .. } => false, &events::MessageSendEvent::SendShortIdsQuery { .. } => false, &events::MessageSendEvent::SendReplyChannelRange { .. } => false, } }); } if no_channels_remain { self.per_peer_state.write().unwrap().remove(counterparty_node_id); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } } fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) { log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id)); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); { let mut peer_state_lock = self.per_peer_state.write().unwrap(); match peer_state_lock.entry(counterparty_node_id.clone()) { hash_map::Entry::Vacant(e) => { e.insert(Mutex::new(PeerState { latest_features: init_msg.features.clone(), })); }, hash_map::Entry::Occupied(e) => { e.get().lock().unwrap().latest_features = init_msg.features.clone(); }, } } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let pending_msg_events = &mut channel_state.pending_msg_events; channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { if !chan.have_received_message() { // If we created this (outbound) channel while we were disconnected from the // peer we probably failed to send the open_channel message, which is now // lost. We can't have had anything pending related to this channel, so we just // drop it. false } else { pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish { node_id: chan.get_counterparty_node_id(), msg: chan.get_channel_reestablish(&self.logger), }); true } } else { true } }); //TODO: Also re-broadcast announcement_signatures } fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier); if msg.channel_id == [0; 32] { for chan in self.list_channels() { if chan.counterparty.node_id == *counterparty_node_id { // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data)); } } } else { // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data)); } } } /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`. struct PersistenceNotifier { /// Users won't access the persistence_lock directly, but rather wait on its bool using /// `wait_timeout` and `wait`. persistence_lock: (Mutex, Condvar), } impl PersistenceNotifier { fn new() -> Self { Self { persistence_lock: (Mutex::new(false), Condvar::new()), } } fn wait(&self) { loop { let &(ref mtx, ref cvar) = &self.persistence_lock; let mut guard = mtx.lock().unwrap(); if *guard { *guard = false; return; } guard = cvar.wait(guard).unwrap(); let result = *guard; if result { *guard = false; return } } } #[cfg(any(test, feature = "std"))] fn wait_timeout(&self, max_wait: Duration) -> bool { let current_time = Instant::now(); loop { let &(ref mtx, ref cvar) = &self.persistence_lock; let mut guard = mtx.lock().unwrap(); if *guard { *guard = false; return true; } guard = cvar.wait_timeout(guard, max_wait).unwrap().0; // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the // desired wait time has actually passed, and if not then restart the loop with a reduced wait // time. Note that this logic can be highly simplified through the use of // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to // 1.42.0. let elapsed = current_time.elapsed(); let result = *guard; if result || elapsed >= max_wait { *guard = false; return result; } match max_wait.checked_sub(elapsed) { None => return result, Some(_) => continue } } } // Signal to the ChannelManager persister that there are updates necessitating persisting to disk. fn notify(&self) { let &(ref persist_mtx, ref cnd) = &self.persistence_lock; let mut persistence_lock = persist_mtx.lock().unwrap(); *persistence_lock = true; mem::drop(persistence_lock); cnd.notify_all(); } } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl_writeable_tlv_based!(CounterpartyForwardingInfo, { (2, fee_base_msat, required), (4, fee_proportional_millionths, required), (6, cltv_expiry_delta, required), }); impl_writeable_tlv_based!(ChannelCounterparty, { (2, node_id, required), (4, features, required), (6, unspendable_punishment_reserve, required), (8, forwarding_info, option), }); impl_writeable_tlv_based!(ChannelDetails, { (2, channel_id, required), (4, counterparty, required), (6, funding_txo, option), (8, short_channel_id, option), (10, channel_value_satoshis, required), (12, unspendable_punishment_reserve, option), (14, user_channel_id, required), (16, balance_msat, required), (18, outbound_capacity_msat, required), (20, inbound_capacity_msat, required), (22, confirmations_required, option), (24, force_close_spend_delay, option), (26, is_outbound, required), (28, is_funding_locked, required), (30, is_usable, required), (32, is_public, required), }); impl_writeable_tlv_based!(PhantomRouteHints, { (2, channels, vec_type), (4, phantom_scid, required), (6, real_node_pubkey, required), }); impl_writeable_tlv_based_enum!(PendingHTLCRouting, (0, Forward) => { (0, onion_packet, required), (2, short_channel_id, required), }, (1, Receive) => { (0, payment_data, required), (1, phantom_shared_secret, option), (2, incoming_cltv_expiry, required), }, (2, ReceiveKeysend) => { (0, payment_preimage, required), (2, incoming_cltv_expiry, required), }, ;); impl_writeable_tlv_based!(PendingHTLCInfo, { (0, routing, required), (2, incoming_shared_secret, required), (4, payment_hash, required), (6, amt_to_forward, required), (8, outgoing_cltv_value, required) }); impl Writeable for HTLCFailureMsg { fn write(&self, writer: &mut W) -> Result<(), io::Error> { match self { HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => { 0u8.write(writer)?; channel_id.write(writer)?; htlc_id.write(writer)?; reason.write(writer)?; }, HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id, htlc_id, sha256_of_onion, failure_code }) => { 1u8.write(writer)?; channel_id.write(writer)?; htlc_id.write(writer)?; sha256_of_onion.write(writer)?; failure_code.write(writer)?; }, } Ok(()) } } impl Readable for HTLCFailureMsg { fn read(reader: &mut R) -> Result { let id: u8 = Readable::read(reader)?; match id { 0 => { Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: Readable::read(reader)?, htlc_id: Readable::read(reader)?, reason: Readable::read(reader)?, })) }, 1 => { Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: Readable::read(reader)?, htlc_id: Readable::read(reader)?, sha256_of_onion: Readable::read(reader)?, failure_code: Readable::read(reader)?, })) }, // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network // messages contained in the variants. // In version 0.0.101, support for reading the variants with these types was added, and // we should migrate to writing these variants when UpdateFailHTLC or // UpdateFailMalformedHTLC get TLV fields. 2 => { let length: BigSize = Readable::read(reader)?; let mut s = FixedLengthReader::new(reader, length.0); let res = Readable::read(&mut s)?; s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes Ok(HTLCFailureMsg::Relay(res)) }, 3 => { let length: BigSize = Readable::read(reader)?; let mut s = FixedLengthReader::new(reader, length.0); let res = Readable::read(&mut s)?; s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes Ok(HTLCFailureMsg::Malformed(res)) }, _ => Err(DecodeError::UnknownRequiredFeature), } } } impl_writeable_tlv_based_enum!(PendingHTLCStatus, ; (0, Forward), (1, Fail), ); impl_writeable_tlv_based!(HTLCPreviousHopData, { (0, short_channel_id, required), (1, phantom_shared_secret, option), (2, outpoint, required), (4, htlc_id, required), (6, incoming_packet_shared_secret, required) }); impl Writeable for ClaimableHTLC { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let payment_data = match &self.onion_payload { OnionPayload::Invoice(data) => Some(data.clone()), _ => None, }; let keysend_preimage = match self.onion_payload { OnionPayload::Invoice(_) => None, OnionPayload::Spontaneous(preimage) => Some(preimage.clone()), }; write_tlv_fields! (writer, { (0, self.prev_hop, required), (2, self.value, required), (4, payment_data, option), (6, self.cltv_expiry, required), (8, keysend_preimage, option), }); Ok(()) } } impl Readable for ClaimableHTLC { fn read(reader: &mut R) -> Result { let mut prev_hop = ::util::ser::OptionDeserWrapper(None); let mut value = 0; let mut payment_data: Option = None; let mut cltv_expiry = 0; let mut keysend_preimage: Option = None; read_tlv_fields! (reader, { (0, prev_hop, required), (2, value, required), (4, payment_data, option), (6, cltv_expiry, required), (8, keysend_preimage, option) }); let onion_payload = match keysend_preimage { Some(p) => { if payment_data.is_some() { return Err(DecodeError::InvalidValue) } OnionPayload::Spontaneous(p) }, None => { if payment_data.is_none() { return Err(DecodeError::InvalidValue) } OnionPayload::Invoice(payment_data.unwrap()) }, }; Ok(Self { prev_hop: prev_hop.0.unwrap(), value, onion_payload, cltv_expiry, }) } } impl Readable for HTLCSource { fn read(reader: &mut R) -> Result { let id: u8 = Readable::read(reader)?; match id { 0 => { let mut session_priv: ::util::ser::OptionDeserWrapper = ::util::ser::OptionDeserWrapper(None); let mut first_hop_htlc_msat: u64 = 0; let mut path = Some(Vec::new()); let mut payment_id = None; let mut payment_secret = None; let mut payment_params = None; read_tlv_fields!(reader, { (0, session_priv, required), (1, payment_id, option), (2, first_hop_htlc_msat, required), (3, payment_secret, option), (4, path, vec_type), (5, payment_params, option), }); if payment_id.is_none() { // For backwards compat, if there was no payment_id written, use the session_priv bytes // instead. payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref())); } Ok(HTLCSource::OutboundRoute { session_priv: session_priv.0.unwrap(), first_hop_htlc_msat: first_hop_htlc_msat, path: path.unwrap(), payment_id: payment_id.unwrap(), payment_secret, payment_params, }) } 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)), _ => Err(DecodeError::UnknownRequiredFeature), } } } impl Writeable for HTLCSource { fn write(&self, writer: &mut W) -> Result<(), ::io::Error> { match self { HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => { 0u8.write(writer)?; let payment_id_opt = Some(payment_id); write_tlv_fields!(writer, { (0, session_priv, required), (1, payment_id_opt, option), (2, first_hop_htlc_msat, required), (3, payment_secret, option), (4, path, vec_type), (5, payment_params, option), }); } HTLCSource::PreviousHopData(ref field) => { 1u8.write(writer)?; field.write(writer)?; } } Ok(()) } } impl_writeable_tlv_based_enum!(HTLCFailReason, (0, LightningError) => { (0, err, required), }, (1, Reason) => { (0, failure_code, required), (2, data, vec_type), }, ;); impl_writeable_tlv_based_enum!(HTLCForwardInfo, (0, AddHTLC) => { (0, forward_info, required), (2, prev_short_channel_id, required), (4, prev_htlc_id, required), (6, prev_funding_outpoint, required), }, (1, FailHTLC) => { (0, htlc_id, required), (2, err_packet, required), }, ;); impl_writeable_tlv_based!(PendingInboundPayment, { (0, payment_secret, required), (2, expiry_time, required), (4, user_payment_id, required), (6, payment_preimage, required), (8, min_value_msat, required), }); impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment, (0, Legacy) => { (0, session_privs, required), }, (1, Fulfilled) => { (0, session_privs, required), (1, payment_hash, option), }, (2, Retryable) => { (0, session_privs, required), (1, pending_fee_msat, option), (2, payment_hash, required), (4, payment_secret, option), (6, total_msat, required), (8, pending_amt_msat, required), (10, starting_block_height, required), }, (3, Abandoned) => { (0, session_privs, required), (2, payment_hash, required), }, ); impl Writeable for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let _consistency_lock = self.total_consistency_lock.write().unwrap(); write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION); self.genesis_hash.write(writer)?; { let best_block = self.best_block.read().unwrap(); best_block.height().write(writer)?; best_block.block_hash().write(writer)?; } let channel_state = self.channel_state.lock().unwrap(); let mut unfunded_channels = 0; for (_, channel) in channel_state.by_id.iter() { if !channel.is_funding_initiated() { unfunded_channels += 1; } } ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?; for (_, channel) in channel_state.by_id.iter() { if channel.is_funding_initiated() { channel.write(writer)?; } } (channel_state.forward_htlcs.len() as u64).write(writer)?; for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() { short_channel_id.write(writer)?; (pending_forwards.len() as u64).write(writer)?; for forward in pending_forwards { forward.write(writer)?; } } (channel_state.claimable_htlcs.len() as u64).write(writer)?; for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() { payment_hash.write(writer)?; (previous_hops.len() as u64).write(writer)?; for htlc in previous_hops.iter() { htlc.write(writer)?; } } let per_peer_state = self.per_peer_state.write().unwrap(); (per_peer_state.len() as u64).write(writer)?; for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() { peer_pubkey.write(writer)?; let peer_state = peer_state_mutex.lock().unwrap(); peer_state.latest_features.write(writer)?; } let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap(); let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap(); let events = self.pending_events.lock().unwrap(); (events.len() as u64).write(writer)?; for event in events.iter() { event.write(writer)?; } let background_events = self.pending_background_events.lock().unwrap(); (background_events.len() as u64).write(writer)?; for event in background_events.iter() { match event { BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => { 0u8.write(writer)?; funding_txo.write(writer)?; monitor_update.write(writer)?; }, } } (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?; (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?; (pending_inbound_payments.len() as u64).write(writer)?; for (hash, pending_payment) in pending_inbound_payments.iter() { hash.write(writer)?; pending_payment.write(writer)?; } // For backwards compat, write the session privs and their total length. let mut num_pending_outbounds_compat: u64 = 0; for (_, outbound) in pending_outbound_payments.iter() { if !outbound.is_fulfilled() && !outbound.abandoned() { num_pending_outbounds_compat += outbound.remaining_parts() as u64; } } num_pending_outbounds_compat.write(writer)?; for (_, outbound) in pending_outbound_payments.iter() { match outbound { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } => { for session_priv in session_privs.iter() { session_priv.write(writer)?; } } PendingOutboundPayment::Fulfilled { .. } => {}, PendingOutboundPayment::Abandoned { .. } => {}, } } // Encode without retry info for 0.0.101 compatibility. let mut pending_outbound_payments_no_retry: HashMap> = HashMap::new(); for (id, outbound) in pending_outbound_payments.iter() { match outbound { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } => { pending_outbound_payments_no_retry.insert(*id, session_privs.clone()); }, _ => {}, } } write_tlv_fields!(writer, { (1, pending_outbound_payments_no_retry, required), (3, pending_outbound_payments, required), (5, self.our_network_pubkey, required), (7, self.fake_scid_rand_bytes, required), }); Ok(()) } } /// Arguments for the creation of a ChannelManager that are not deserialized. /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: /// 1) Deserialize all stored [`ChannelMonitor`]s. /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling: /// `<(BlockHash, ChannelManager)>::read(reader, args)` /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted. /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the /// same way you would handle a [`chain::Filter`] call using /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`]. /// 4) Reconnect blocks on your [`ChannelMonitor`]s. /// 5) Disconnect/connect blocks on the [`ChannelManager`]. /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk. /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in /// the next step. /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`]. /// /// Note that the ordering of #4-7 is not of importance, however all four must occur before you /// call any other methods on the newly-deserialized [`ChannelManager`]. /// /// Note that because some channels may be closed during deserialization, it is critical that you /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will /// not force-close the same channels but consider them live), you may end up revoking a state for /// which you've already broadcasted the transaction. /// /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// The keys provider which will give us relevant keys. Some keys will be loaded during /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel /// signing data. pub keys_manager: K, /// The fee_estimator for use in the ChannelManager in the future. /// /// No calls to the FeeEstimator will be made during deserialization. pub fee_estimator: F, /// The chain::Watch for use in the ChannelManager in the future. /// /// No calls to the chain::Watch will be made during deserialization. It is assumed that /// you have deserialized ChannelMonitors separately and will add them to your /// chain::Watch after deserializing this ChannelManager. pub chain_monitor: M, /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be /// used to broadcast the latest local commitment transactions of channels which must be /// force-closed during deserialization. pub tx_broadcaster: T, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: L, /// Default settings used for new channels. Any existing channels will continue to use the /// runtime settings which were stored when the ChannelManager was serialized. pub default_config: UserConfig, /// A map from channel funding outpoints to ChannelMonitors for those channels (ie /// value.get_funding_txo() should be the key). /// /// If a monitor is inconsistent with the channel state during deserialization the channel will /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This /// is true for missing channels as well. If there is a monitor missing for which we find /// channel data Err(DecodeError::InvalidValue) will be returned. /// /// In such cases the latest local transactions will be sent to the tx_broadcaster included in /// this struct. /// /// (C-not exported) because we have no HashMap bindings pub channel_monitors: HashMap>, } impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManagerReadArgs<'a, Signer, M, T, K, F, L> where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor /// HashMap for you. This is primarily useful for C bindings where it is not practical to /// populate a HashMap directly from C. pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig, mut channel_monitors: Vec<&'a mut ChannelMonitor>) -> Self { Self { keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config, channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect() } } } // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the // SipmleArcChannelManager type: impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ReadableArgs> for (BlockHash, Arc>) where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn read(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result { let (blockhash, chan_manager) = <(BlockHash, ChannelManager)>::read(reader, args)?; Ok((blockhash, Arc::new(chan_manager))) } } impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ReadableArgs> for (BlockHash, ChannelManager) where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn read(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result { let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION); let genesis_hash: BlockHash = Readable::read(reader)?; let best_block_height: u32 = Readable::read(reader)?; let best_block_hash: BlockHash = Readable::read(reader)?; let mut failed_htlcs = Vec::new(); let channel_count: u64 = Readable::read(reader)?; let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128)); let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut channel_closures = Vec::new(); for _ in 0..channel_count { let mut channel: Channel = Channel::read(reader, (&args.keys_manager, best_block_height))?; let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?; funding_txo_set.insert(funding_txo.clone()); if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) { if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() || channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() || channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() || channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() { // If the channel is ahead of the monitor, return InvalidValue: log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!"); log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.", log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id()); log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,"); log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!"); log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds."); log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning"); return Err(DecodeError::InvalidValue); } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() || channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() || channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() || channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() { // But if the channel is behind of the monitor, close the channel: log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!"); log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast."); log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.", log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id()); let (_, mut new_failed_htlcs) = channel.force_shutdown(true); failed_htlcs.append(&mut new_failed_htlcs); monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger); channel_closures.push(events::Event::ChannelClosed { channel_id: channel.channel_id(), user_channel_id: channel.get_user_id(), reason: ClosureReason::OutdatedChannelManager }); } else { log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id())); if let Some(short_channel_id) = channel.get_short_channel_id() { short_to_id.insert(short_channel_id, channel.channel_id()); } by_id.insert(channel.channel_id(), channel); } } else { log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id())); log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,"); log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!"); log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds."); log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning"); return Err(DecodeError::InvalidValue); } } for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() { if !funding_txo_set.contains(funding_txo) { log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id())); monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger); } } const MAX_ALLOC_SIZE: usize = 1024 * 64; let forward_htlcs_count: u64 = Readable::read(reader)?; let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128)); for _ in 0..forward_htlcs_count { let short_channel_id = Readable::read(reader)?; let pending_forwards_count: u64 = Readable::read(reader)?; let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..pending_forwards_count { pending_forwards.push(Readable::read(reader)?); } forward_htlcs.insert(short_channel_id, pending_forwards); } let claimable_htlcs_count: u64 = Readable::read(reader)?; let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128)); for _ in 0..claimable_htlcs_count { let payment_hash = Readable::read(reader)?; let previous_hops_len: u64 = Readable::read(reader)?; let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..previous_hops_len { previous_hops.push(Readable::read(reader)?); } claimable_htlcs.insert(payment_hash, previous_hops); } let peer_count: u64 = Readable::read(reader)?; let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex)>())); for _ in 0..peer_count { let peer_pubkey = Readable::read(reader)?; let peer_state = PeerState { latest_features: Readable::read(reader)?, }; per_peer_state.insert(peer_pubkey, Mutex::new(peer_state)); } let event_count: u64 = Readable::read(reader)?; let mut pending_events_read: Vec = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..event_count { match MaybeReadable::read(reader)? { Some(event) => pending_events_read.push(event), None => continue, } } if forward_htlcs_count > 0 { // If we have pending HTLCs to forward, assume we either dropped a // `PendingHTLCsForwardable` or the user received it but never processed it as they // shut down before the timer hit. Either way, set the time_forwardable to a small // constant as enough time has likely passed that we should simply handle the forwards // now, or at least after the user gets a chance to reconnect to our peers. pending_events_read.push(events::Event::PendingHTLCsForwardable { time_forwardable: Duration::from_secs(2), }); } let background_event_count: u64 = Readable::read(reader)?; let mut pending_background_events_read: Vec = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..background_event_count { match ::read(reader)? { 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))), _ => return Err(DecodeError::InvalidValue), } } let last_node_announcement_serial: u32 = Readable::read(reader)?; let highest_seen_timestamp: u32 = Readable::read(reader)?; let pending_inbound_payment_count: u64 = Readable::read(reader)?; let mut pending_inbound_payments: HashMap = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32))); for _ in 0..pending_inbound_payment_count { if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() { return Err(DecodeError::InvalidValue); } } let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?; let mut pending_outbound_payments_compat: HashMap = HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32)); for _ in 0..pending_outbound_payments_count_compat { let session_priv = Readable::read(reader)?; let payment = PendingOutboundPayment::Legacy { session_privs: [session_priv].iter().cloned().collect() }; if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() { return Err(DecodeError::InvalidValue) }; } // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients. let mut pending_outbound_payments_no_retry: Option>> = None; let mut pending_outbound_payments = None; let mut received_network_pubkey: Option = None; let mut fake_scid_rand_bytes: Option<[u8; 32]> = None; read_tlv_fields!(reader, { (1, pending_outbound_payments_no_retry, option), (3, pending_outbound_payments, option), (5, received_network_pubkey, option), (7, fake_scid_rand_bytes, option), }); if fake_scid_rand_bytes.is_none() { fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes()); } if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() { pending_outbound_payments = Some(pending_outbound_payments_compat); } else if pending_outbound_payments.is_none() { let mut outbounds = HashMap::new(); for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() { outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs }); } pending_outbound_payments = Some(outbounds); } else { // If we're tracking pending payments, ensure we haven't lost any by looking at the // ChannelMonitor data for any channels for which we do not have authorative state // (i.e. those for which we just force-closed above or we otherwise don't have a // corresponding `Channel` at all). // This avoids several edge-cases where we would otherwise "forget" about pending // payments which are still in-flight via their on-chain state. // We only rebuild the pending payments map if we were most recently serialized by // 0.0.102+ for (_, monitor) in args.channel_monitors { if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() { for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() { if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source { if path.is_empty() { log_error!(args.logger, "Got an empty path for a pending payment"); return Err(DecodeError::InvalidValue); } let path_amt = path.last().unwrap().fee_msat; let mut session_priv_bytes = [0; 32]; session_priv_bytes[..].copy_from_slice(&session_priv[..]); match pending_outbound_payments.as_mut().unwrap().entry(payment_id) { hash_map::Entry::Occupied(mut entry) => { let newly_added = entry.get_mut().insert(session_priv_bytes, &path); log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}", if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0)); }, hash_map::Entry::Vacant(entry) => { let path_fee = path.get_path_fees(); entry.insert(PendingOutboundPayment::Retryable { session_privs: [session_priv_bytes].iter().map(|a| *a).collect(), payment_hash: htlc.payment_hash, payment_secret, pending_amt_msat: path_amt, pending_fee_msat: Some(path_fee), total_msat: path_amt, starting_block_height: best_block_height, }); log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}", path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes)); } } } } } } } let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes()); if !channel_closures.is_empty() { pending_events_read.append(&mut channel_closures); } let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) { Ok(key) => key, Err(()) => return Err(DecodeError::InvalidValue) }; let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key); if let Some(network_pubkey) = received_network_pubkey { if network_pubkey != our_network_pubkey { log_error!(args.logger, "Key that was generated does not match the existing key."); return Err(DecodeError::InvalidValue); } } let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material(); let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material); let channel_manager = ChannelManager { genesis_hash, fee_estimator: args.fee_estimator, chain_monitor: args.chain_monitor, tx_broadcaster: args.tx_broadcaster, best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)), channel_state: Mutex::new(ChannelHolder { by_id, short_to_id, forward_htlcs, claimable_htlcs, pending_msg_events: Vec::new(), }), inbound_payment_key: expanded_inbound_key, pending_inbound_payments: Mutex::new(pending_inbound_payments), pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()), fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(), our_network_key, our_network_pubkey, secp_ctx, last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize), highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize), per_peer_state: RwLock::new(per_peer_state), pending_events: Mutex::new(pending_events_read), pending_background_events: Mutex::new(pending_background_events_read), total_consistency_lock: RwLock::new(()), persistence_notifier: PersistenceNotifier::new(), keys_manager: args.keys_manager, logger: args.logger, default_configuration: args.default_config, }; for htlc_source in failed_htlcs.drain(..) { channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } //TODO: Broadcast channel update for closed channels, but only after we've made a //connection or two. Ok((best_block_hash.clone(), channel_manager)) } } #[cfg(test)] mod tests { use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use core::time::Duration; use core::sync::atomic::Ordering; use ln::{PaymentPreimage, PaymentHash, PaymentSecret}; use ln::channelmanager::{PaymentId, PaymentSendFailure}; use ln::channelmanager::inbound_payment; use ln::features::InitFeatures; use ln::functional_test_utils::*; use ln::msgs; use ln::msgs::ChannelMessageHandler; use routing::router::{PaymentParameters, RouteParameters, find_route}; use util::errors::APIError; use util::events::{Event, MessageSendEvent, MessageSendEventsProvider}; use util::test_utils; #[cfg(feature = "std")] #[test] fn test_wait_timeout() { use ln::channelmanager::PersistenceNotifier; use sync::Arc; use core::sync::atomic::AtomicBool; use std::thread; let persistence_notifier = Arc::new(PersistenceNotifier::new()); let thread_notifier = Arc::clone(&persistence_notifier); let exit_thread = Arc::new(AtomicBool::new(false)); let exit_thread_clone = exit_thread.clone(); thread::spawn(move || { loop { let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock; let mut persistence_lock = persist_mtx.lock().unwrap(); *persistence_lock = true; cnd.notify_all(); if exit_thread_clone.load(Ordering::SeqCst) { break } } }); // Check that we can block indefinitely until updates are available. let _ = persistence_notifier.wait(); // Check that the PersistenceNotifier will return after the given duration if updates are // available. loop { if persistence_notifier.wait_timeout(Duration::from_millis(100)) { break } } exit_thread.store(true, Ordering::SeqCst); // Check that the PersistenceNotifier will return after the given duration even if no updates // are available. loop { if !persistence_notifier.wait_timeout(Duration::from_millis(100)) { break } } } #[test] fn test_notify_limits() { // Check that a few cases which don't require the persistence of a new ChannelManager, // indeed, do not cause the persistence of a new ChannelManager. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // All nodes start with a persistable update pending as `create_network` connects each node // with all other nodes to make most tests simpler. assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1))); let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // We check that the channel info nodes have doesn't change too early, even though we try // to connect messages with new values chan.0.contents.fee_base_msat *= 2; chan.1.contents.fee_base_msat *= 2; let node_a_chan_info = nodes[0].node.list_channels()[0].clone(); let node_b_chan_info = nodes[1].node.list_channels()[0].clone(); // The first two nodes (which opened a channel) should now require fresh persistence assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); // ... but the last node should not. assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1))); // After persisting the first two nodes they should no longer need fresh persistence. assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update // about the channel. nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0); nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1); assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1))); // The nodes which are a party to the channel should also ignore messages from unrelated // parties. nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0); nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1); nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0); nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1); assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); // At this point the channel info given by peers should still be the same. assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info); // An earlier version of handle_channel_update didn't check the directionality of the // update message and would always update the local fee info, even if our peer was // (spuriously) forwarding us our own channel_update. let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..]; let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 }; let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 }; // First deliver each peers' own message, checking that the node doesn't need to be // persisted and that its channel info remains the same. nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update); nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update); assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info); // Finally, deliver the other peers' message, ensuring each node needs to be persisted and // the channel info has updated. nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update); nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update); assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1))); assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1))); assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info); } #[test] fn test_keysend_dup_hash_partial_mpp() { // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as // expected. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // First, send a partial MPP payment. let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000); let payment_id = PaymentId([42; 32]); // Use the utility function send_payment_along_path to send the payment with MPP data which // indicates there are more HTLCs coming. let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match. nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None); // Next, send a keysend payment with the same payment_hash and make sure it fails. nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], our_payment_hash, true); // Send the second half of the original MPP payment. nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None); // Claim the full MPP payment. Note that we can't use a test utility like // claim_funds_along_route because the ordering of the messages causes the second half of the // payment to be put in the holding cell, which confuses the test utilities. So we exchange the // lightning messages manually. assert!(nodes[1].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[1], 2); let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa); check_added_monitors!(nodes[1], 1); let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs); check_added_monitors!(nodes[1], 1); let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa); let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed); check_added_monitors!(nodes[1], 1); let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa); check_added_monitors!(nodes[0], 1); // Note that successful MPP payments will generate a single PaymentSent event upon the first // path's success and a PaymentPathSuccessful event for each path's success. let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 3); match events[0] { Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => { assert_eq!(Some(payment_id), *id); assert_eq!(payment_preimage, *preimage); assert_eq!(our_payment_hash, *hash); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => { assert_eq!(payment_id, *actual_payment_id); assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap()); assert_eq!(route.paths[0], *path); }, _ => panic!("Unexpected event"), } match events[2] { Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => { assert_eq!(payment_id, *actual_payment_id); assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap()); assert_eq!(route.paths[0], *path); }, _ => panic!("Unexpected event"), } } #[test] fn test_keysend_dup_payment_hash() { // (1): Test that a keysend payment with a duplicate payment hash to an existing pending // outbound regular payment fails as expected. // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment // fails as expected. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let scorer = test_utils::TestScorer::with_penalty(0); // To start (1), send a regular payment but don't claim it. let expected_route = [&nodes[1]]; let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000); // Next, attempt a keysend payment and make sure it fails. let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()), final_value_msat: 100_000, final_cltv_expiry_delta: TEST_FINAL_CLTV, }; let route = find_route( &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None, nodes[0].logger, &scorer ).unwrap(); nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], payment_hash, true); // Finally, claim the original payment. claim_payment(&nodes[0], &expected_route, payment_preimage); // To start (2), send a keysend payment but don't claim it. let payment_preimage = PaymentPreimage([42; 32]); let route = find_route( &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None, nodes[0].logger, &scorer ).unwrap(); let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let event = events.pop().unwrap(); let path = vec![&nodes[1]]; pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage)); // Next, attempt a regular payment and make sure it fails. let payment_secret = PaymentSecret([43; 32]); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], payment_hash, true); // Finally, succeed the keysend payment. claim_payment(&nodes[0], &expected_route, payment_preimage); } #[test] fn test_keysend_hash_mismatch() { // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend // preimage doesn't match the msg's payment hash. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() }); nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() }); let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known()); let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(payee_pubkey), final_value_msat: 10000, final_cltv_expiry_delta: 40, }; let network_graph = nodes[0].network_graph; let first_hops = nodes[0].node.list_usable_channels(); let scorer = test_utils::TestScorer::with_penalty(0); let route = find_route( &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::>()), nodes[0].logger, &scorer ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let mismatch_payment_hash = PaymentHash([43; 32]); let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1); } #[test] fn test_keysend_msg_with_secret_err() { // Test that we error as expected if we receive a keysend payment that includes a payment secret. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() }); nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() }); let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known()); let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(payee_pubkey), final_value_msat: 10000, final_cltv_expiry_delta: 40, }; let network_graph = nodes[0].network_graph; let first_hops = nodes[0].node.list_usable_channels(); let scorer = test_utils::TestScorer::with_penalty(0); let route = find_route( &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::>()), nodes[0].logger, &scorer ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let test_secret = PaymentSecret([43; 32]); let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner()); let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1); } #[test] fn test_multi_hop_missing_secret() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; // Marshall an MPP route. let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() { PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => { assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) }, _ => panic!("unexpected error") } } #[test] fn bad_inbound_payment_hash() { // Add coverage for checking that a user-provided payment hash matches the payment secret. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]); let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat: 100_000, }; // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original, // payment verification fails as expected. let mut bad_payment_hash = payment_hash.clone(); bad_payment_hash.0[0] += 1; match inbound_payment::verify(bad_payment_hash, payment_data.clone(), nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) { Ok(_) => panic!("Unexpected ok"), Err(()) => { nodes[0].logger.assert_log_contains("lightning::ln::channelmanager::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1); } } // Check that using the original payment hash succeeds. assert!(inbound_payment::verify(payment_hash, payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok()); } } #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))] pub mod bench { use chain::Listen; use chain::chainmonitor::{ChainMonitor, Persist}; use chain::keysinterface::{KeysManager, InMemorySigner}; use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage}; use ln::features::{InitFeatures, InvoiceFeatures}; use ln::functional_test_utils::*; use ln::msgs::{ChannelMessageHandler, Init}; use routing::network_graph::NetworkGraph; use routing::router::{PaymentParameters, get_route}; use util::test_utils; use util::config::UserConfig; use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose}; use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::{Block, BlockHeader, Transaction, TxOut}; use sync::{Arc, Mutex}; use test::Bencher; struct NodeHolder<'a, P: Persist> { node: &'a ChannelManager, &'a test_utils::TestBroadcaster, &'a KeysManager, &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger> } #[cfg(test)] #[bench] fn bench_sends(bench: &mut Bencher) { bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new()); } pub fn bench_two_sends>(bench: &mut Bencher, persister_a: P, persister_b: P) { // Do a simple benchmark of sending a payment back and forth between two nodes. // Note that this is unrealistic as each payment send will require at least two fsync // calls per node. let network = bitcoin::Network::Testnet; let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash(); let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))}; let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; let mut config: UserConfig = Default::default(); config.own_channel_config.minimum_depth = 1; let logger_a = test_utils::TestLogger::with_id("node a".to_owned()); let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a); let seed_a = [1u8; 32]; let keys_manager_a = KeysManager::new(&seed_a, 42, 42); let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters { network, best_block: BestBlock::from_genesis(network), }); let node_a_holder = NodeHolder { node: &node_a }; let logger_b = test_utils::TestLogger::with_id("node a".to_owned()); let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b); let seed_b = [2u8; 32]; let keys_manager_b = KeysManager::new(&seed_b, 42, 42); let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters { network, best_block: BestBlock::from_genesis(network), }); let node_b_holder = NodeHolder { node: &node_b }; node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() }); node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() }); node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap(); node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id())); node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id())); let tx; if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) { tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut { value: 8_000_000, script_pubkey: output_script, }]}; node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); } else { panic!(); } node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id())); node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id())); assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]); let block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![tx], }; Listen::block_connected(&node_a, &block, 1); Listen::block_connected(&node_b, &block, 1); node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id())); let msg_events = node_a.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 2); match msg_events[0] { MessageSendEvent::SendFundingLocked { ref msg, .. } => { node_b.handle_funding_locked(&node_a.get_our_node_id(), msg); get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id()); }, _ => panic!(), } match msg_events[1] { MessageSendEvent::SendChannelUpdate { .. } => {}, _ => panic!(), } let dummy_graph = NetworkGraph::new(genesis_hash); let mut payment_count: u64 = 0; macro_rules! send_payment { ($node_a: expr, $node_b: expr) => { let usable_channels = $node_a.list_usable_channels(); let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id()) .with_features(InvoiceFeatures::known()); let scorer = test_utils::TestScorer::with_penalty(0); let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph, Some(&usable_channels.iter().map(|r| r).collect::>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer).unwrap(); let mut payment_preimage = PaymentPreimage([0; 32]); payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes()); payment_count += 1; let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()); let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap(); $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap()); $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg); let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id()); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id())); expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b }); expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000); assert!($node_b.claim_funds(payment_preimage)); match $node_b.get_and_clear_pending_msg_events().pop().unwrap() { MessageSendEvent::UpdateHTLCs { node_id, updates } => { assert_eq!(node_id, $node_a.get_our_node_id()); $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed); }, _ => panic!("Failed to generate claim event"), } let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id()); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id())); expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage); } } bench.iter(|| { send_payment!(node_a, node_b); send_payment!(node_b, node_a); }); } }