pub use ::alloc::sync::Arc; use core::ops::{Deref, DerefMut}; use core::time::Duration; use std::cell::RefCell; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Mutex as StdMutex; use std::sync::MutexGuard as StdMutexGuard; use std::sync::RwLock as StdRwLock; use std::sync::RwLockReadGuard as StdRwLockReadGuard; use std::sync::RwLockWriteGuard as StdRwLockWriteGuard; use std::sync::Condvar as StdCondvar; use prelude::HashMap; #[cfg(feature = "backtrace")] use {prelude::hash_map, backtrace::Backtrace, std::sync::Once}; #[cfg(not(feature = "backtrace"))] struct Backtrace{} #[cfg(not(feature = "backtrace"))] impl Backtrace { fn new() -> Backtrace { Backtrace {} } } pub type LockResult = Result; pub struct Condvar { inner: StdCondvar, } impl Condvar { pub fn new() -> Condvar { Condvar { inner: StdCondvar::new() } } pub fn wait<'a, T>(&'a self, guard: MutexGuard<'a, T>) -> LockResult> { let mutex: &'a Mutex = guard.mutex; self.inner.wait(guard.into_inner()).map(|lock| MutexGuard { mutex, lock }).map_err(|_| ()) } #[allow(unused)] pub fn wait_timeout<'a, T>(&'a self, guard: MutexGuard<'a, T>, dur: Duration) -> LockResult<(MutexGuard<'a, T>, ())> { let mutex = guard.mutex; self.inner.wait_timeout(guard.into_inner(), dur).map(|(lock, _)| (MutexGuard { mutex, lock }, ())).map_err(|_| ()) } pub fn notify_all(&self) { self.inner.notify_all(); } } thread_local! { /// We track the set of locks currently held by a reference to their `LockMetadata` static LOCKS_HELD: RefCell>> = RefCell::new(HashMap::new()); } static LOCK_IDX: AtomicUsize = AtomicUsize::new(0); #[cfg(feature = "backtrace")] static mut LOCKS: Option>>> = None; #[cfg(feature = "backtrace")] static LOCKS_INIT: Once = Once::new(); /// Metadata about a single lock, by id, the set of things locked-before it, and the backtrace of /// when the Mutex itself was constructed. struct LockMetadata { lock_idx: u64, locked_before: StdMutex>, _lock_construction_bt: Backtrace, } struct LockDep { lock: Arc, /// lockdep_trace is unused unless we're building with `backtrace`, so we mark it _ _lockdep_trace: Backtrace, } #[cfg(feature = "backtrace")] fn get_construction_location(backtrace: &Backtrace) -> String { // Find the first frame that is after `debug_sync` (or that is in our tests) and use // that as the mutex construction site. Note that the first few frames may be in // the `backtrace` crate, so we have to ignore those. let sync_mutex_constr_regex = regex::Regex::new(r"lightning.*debug_sync.*new").unwrap(); let mut found_debug_sync = false; for frame in backtrace.frames() { for symbol in frame.symbols() { let symbol_name = symbol.name().unwrap().as_str().unwrap(); if !sync_mutex_constr_regex.is_match(symbol_name) { if found_debug_sync { if let Some(col) = symbol.colno() { return format!("{}:{}:{}", symbol.filename().unwrap().display(), symbol.lineno().unwrap(), col); } else { // Windows debug symbols don't support column numbers, so fall back to // line numbers only if no `colno` is available return format!("{}:{}", symbol.filename().unwrap().display(), symbol.lineno().unwrap()); } } } else { found_debug_sync = true; } } } panic!("Couldn't find mutex construction callsite"); } impl LockMetadata { fn new() -> Arc { let backtrace = Backtrace::new(); let lock_idx = LOCK_IDX.fetch_add(1, Ordering::Relaxed) as u64; let res = Arc::new(LockMetadata { locked_before: StdMutex::new(HashMap::new()), lock_idx, _lock_construction_bt: backtrace, }); #[cfg(feature = "backtrace")] { let lock_constr_location = get_construction_location(&res._lock_construction_bt); LOCKS_INIT.call_once(|| { unsafe { LOCKS = Some(StdMutex::new(HashMap::new())); } }); let mut locks = unsafe { LOCKS.as_ref() }.unwrap().lock().unwrap(); match locks.entry(lock_constr_location) { hash_map::Entry::Occupied(e) => return Arc::clone(e.get()), hash_map::Entry::Vacant(e) => { e.insert(Arc::clone(&res)); }, } } res } // Returns whether we were a recursive lock (only relevant for read) fn _pre_lock(this: &Arc, read: bool) -> bool { let mut inserted = false; LOCKS_HELD.with(|held| { // For each lock which is currently locked, check that no lock's locked-before // set includes the lock we're about to lock, which would imply a lockorder // inversion. for (locked_idx, _locked) in held.borrow().iter() { if read && *locked_idx == this.lock_idx { // Recursive read locks are explicitly allowed return; } } for (locked_idx, locked) in held.borrow().iter() { if !read && *locked_idx == this.lock_idx { // With `feature = "backtrace"` set, we may be looking at different instances // of the same lock. debug_assert!(cfg!(feature = "backtrace"), "Tried to acquire a lock while it was held!"); } for (locked_dep_idx, _locked_dep) in locked.locked_before.lock().unwrap().iter() { if *locked_dep_idx == this.lock_idx && *locked_dep_idx != locked.lock_idx { #[cfg(feature = "backtrace")] panic!("Tried to violate existing lockorder.\nMutex that should be locked after the current lock was created at the following backtrace.\nNote that to get a backtrace for the lockorder violation, you should set RUST_BACKTRACE=1\nLock being taken constructed at: {} ({}):\n{:?}\nLock constructed at: {} ({})\n{:?}\n\nLock dep created at:\n{:?}\n\n", get_construction_location(&this._lock_construction_bt), this.lock_idx, this._lock_construction_bt, get_construction_location(&locked._lock_construction_bt), locked.lock_idx, locked._lock_construction_bt, _locked_dep._lockdep_trace); #[cfg(not(feature = "backtrace"))] panic!("Tried to violate existing lockorder. Build with the backtrace feature for more info."); } } // Insert any already-held locks in our locked-before set. let mut locked_before = this.locked_before.lock().unwrap(); if !locked_before.contains_key(&locked.lock_idx) { let lockdep = LockDep { lock: Arc::clone(locked), _lockdep_trace: Backtrace::new() }; locked_before.insert(lockdep.lock.lock_idx, lockdep); } } held.borrow_mut().insert(this.lock_idx, Arc::clone(this)); inserted = true; }); inserted } fn pre_lock(this: &Arc) { Self::_pre_lock(this, false); } fn pre_read_lock(this: &Arc) -> bool { Self::_pre_lock(this, true) } fn try_locked(this: &Arc) { LOCKS_HELD.with(|held| { // Since a try-lock will simply fail if the lock is held already, we do not // consider try-locks to ever generate lockorder inversions. However, if a try-lock // succeeds, we do consider it to have created lockorder dependencies. let mut locked_before = this.locked_before.lock().unwrap(); for (locked_idx, locked) in held.borrow().iter() { if !locked_before.contains_key(locked_idx) { let lockdep = LockDep { lock: Arc::clone(locked), _lockdep_trace: Backtrace::new() }; locked_before.insert(*locked_idx, lockdep); } } held.borrow_mut().insert(this.lock_idx, Arc::clone(this)); }); } } pub struct Mutex { inner: StdMutex, deps: Arc, } #[must_use = "if unused the Mutex will immediately unlock"] pub struct MutexGuard<'a, T: Sized + 'a> { mutex: &'a Mutex, lock: StdMutexGuard<'a, T>, } impl<'a, T: Sized> MutexGuard<'a, T> { fn into_inner(self) -> StdMutexGuard<'a, T> { // Somewhat unclear why we cannot move out of self.lock, but doing so gets E0509. unsafe { let v: StdMutexGuard<'a, T> = std::ptr::read(&self.lock); std::mem::forget(self); v } } } impl Drop for MutexGuard<'_, T> { fn drop(&mut self) { LOCKS_HELD.with(|held| { held.borrow_mut().remove(&self.mutex.deps.lock_idx); }); } } impl Deref for MutexGuard<'_, T> { type Target = T; fn deref(&self) -> &T { &self.lock.deref() } } impl DerefMut for MutexGuard<'_, T> { fn deref_mut(&mut self) -> &mut T { self.lock.deref_mut() } } impl Mutex { pub fn new(inner: T) -> Mutex { Mutex { inner: StdMutex::new(inner), deps: LockMetadata::new() } } pub fn lock<'a>(&'a self) -> LockResult> { LockMetadata::pre_lock(&self.deps); self.inner.lock().map(|lock| MutexGuard { mutex: self, lock }).map_err(|_| ()) } pub fn try_lock<'a>(&'a self) -> LockResult> { let res = self.inner.try_lock().map(|lock| MutexGuard { mutex: self, lock }).map_err(|_| ()); if res.is_ok() { LockMetadata::try_locked(&self.deps); } res } } pub struct RwLock { inner: StdRwLock, deps: Arc, } pub struct RwLockReadGuard<'a, T: Sized + 'a> { lock: &'a RwLock, first_lock: bool, guard: StdRwLockReadGuard<'a, T>, } pub struct RwLockWriteGuard<'a, T: Sized + 'a> { lock: &'a RwLock, guard: StdRwLockWriteGuard<'a, T>, } impl Deref for RwLockReadGuard<'_, T> { type Target = T; fn deref(&self) -> &T { &self.guard.deref() } } impl Drop for RwLockReadGuard<'_, T> { fn drop(&mut self) { if !self.first_lock { // Note that its not strictly true that the first taken read lock will get unlocked // last, but in practice our locks are always taken as RAII, so it should basically // always be true. return; } LOCKS_HELD.with(|held| { held.borrow_mut().remove(&self.lock.deps.lock_idx); }); } } impl Deref for RwLockWriteGuard<'_, T> { type Target = T; fn deref(&self) -> &T { &self.guard.deref() } } impl Drop for RwLockWriteGuard<'_, T> { fn drop(&mut self) { LOCKS_HELD.with(|held| { held.borrow_mut().remove(&self.lock.deps.lock_idx); }); } } impl DerefMut for RwLockWriteGuard<'_, T> { fn deref_mut(&mut self) -> &mut T { self.guard.deref_mut() } } impl RwLock { pub fn new(inner: T) -> RwLock { RwLock { inner: StdRwLock::new(inner), deps: LockMetadata::new() } } pub fn read<'a>(&'a self) -> LockResult> { let first_lock = LockMetadata::pre_read_lock(&self.deps); self.inner.read().map(|guard| RwLockReadGuard { lock: self, guard, first_lock }).map_err(|_| ()) } pub fn write<'a>(&'a self) -> LockResult> { LockMetadata::pre_lock(&self.deps); self.inner.write().map(|guard| RwLockWriteGuard { lock: self, guard }).map_err(|_| ()) } pub fn try_write<'a>(&'a self) -> LockResult> { let res = self.inner.try_write().map(|guard| RwLockWriteGuard { lock: self, guard }).map_err(|_| ()); if res.is_ok() { LockMetadata::try_locked(&self.deps); } res } } pub type FairRwLock = RwLock; mod tests { use super::{RwLock, Mutex}; #[test] #[should_panic] #[cfg(not(feature = "backtrace"))] fn recursive_lock_fail() { let mutex = Mutex::new(()); let _a = mutex.lock().unwrap(); let _b = mutex.lock().unwrap(); } #[test] fn recursive_read() { let lock = RwLock::new(()); let _a = lock.read().unwrap(); let _b = lock.read().unwrap(); } #[test] #[should_panic] fn lockorder_fail() { let a = Mutex::new(()); let b = Mutex::new(()); { let _a = a.lock().unwrap(); let _b = b.lock().unwrap(); } { let _b = b.lock().unwrap(); let _a = a.lock().unwrap(); } } #[test] #[should_panic] fn write_lockorder_fail() { let a = RwLock::new(()); let b = RwLock::new(()); { let _a = a.write().unwrap(); let _b = b.write().unwrap(); } { let _b = b.write().unwrap(); let _a = a.write().unwrap(); } } #[test] #[should_panic] fn read_lockorder_fail() { let a = RwLock::new(()); let b = RwLock::new(()); { let _a = a.read().unwrap(); let _b = b.read().unwrap(); } { let _b = b.read().unwrap(); let _a = a.read().unwrap(); } } #[test] fn read_recursive_no_lockorder() { // Like the above, but note that no lockorder is implied when we recursively read-lock a // RwLock, causing this to pass just fine. let a = RwLock::new(()); let b = RwLock::new(()); let _outer = a.read().unwrap(); { let _a = a.read().unwrap(); let _b = b.read().unwrap(); } { let _b = b.read().unwrap(); let _a = a.read().unwrap(); } } #[test] #[should_panic] fn read_write_lockorder_fail() { let a = RwLock::new(()); let b = RwLock::new(()); { let _a = a.write().unwrap(); let _b = b.read().unwrap(); } { let _b = b.read().unwrap(); let _a = a.write().unwrap(); } } }