// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! A socket handling library for those running in Tokio environments who wish to use //! rust-lightning with native [`TcpStream`]s. //! //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled". //! //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference, //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s //! `SocketDescriptor` implementation. //! //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls; //! see their individual docs for details. //! //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings. #![deny(broken_intra_doc_links)] #![deny(private_intra_doc_links)] #![deny(missing_docs)] #![cfg_attr(docsrs, feature(doc_auto_cfg))] use bitcoin::secp256k1::PublicKey; use tokio::net::TcpStream; use tokio::{io, time}; use tokio::sync::mpsc; use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt}; use lightning::ln::peer_handler; use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait; use lightning::ln::peer_handler::APeerManager; use lightning::ln::msgs::NetAddress; use std::ops::Deref; use std::task::{self, Poll}; use std::future::Future; use std::net::SocketAddr; use std::net::TcpStream as StdTcpStream; use std::sync::{Arc, Mutex}; use std::sync::atomic::{AtomicU64, Ordering}; use std::time::Duration; use std::pin::Pin; use std::hash::Hash; static ID_COUNTER: AtomicU64 = AtomicU64::new(0); // We only need to select over multiple futures in one place, and taking on the full `tokio/macros` // dependency tree in order to do so (which has broken our MSRV before) is excessive. Instead, we // define a trivial two- and three- select macro with the specific types we need and just use that. pub(crate) enum SelectorOutput { A(Option<()>), B(Option<()>), C(tokio::io::Result), } pub(crate) struct TwoSelector< A: Future> + Unpin, B: Future> + Unpin > { pub a: A, pub b: B, } impl< A: Future> + Unpin, B: Future> + Unpin > Future for TwoSelector { type Output = SelectorOutput; fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll { match Pin::new(&mut self.a).poll(ctx) { Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); }, Poll::Pending => {}, } match Pin::new(&mut self.b).poll(ctx) { Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); }, Poll::Pending => {}, } Poll::Pending } } pub(crate) struct ThreeSelector< A: Future> + Unpin, B: Future> + Unpin, C: Future> + Unpin > { pub a: A, pub b: B, pub c: C, } impl< A: Future> + Unpin, B: Future> + Unpin, C: Future> + Unpin > Future for ThreeSelector { type Output = SelectorOutput; fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll { match Pin::new(&mut self.a).poll(ctx) { Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); }, Poll::Pending => {}, } match Pin::new(&mut self.b).poll(ctx) { Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); }, Poll::Pending => {}, } match Pin::new(&mut self.c).poll(ctx) { Poll::Ready(res) => { return Poll::Ready(SelectorOutput::C(res)); }, Poll::Pending => {}, } Poll::Pending } } /// Connection contains all our internal state for a connection - we hold a reference to the /// Connection object (in an Arc>) in each SocketDescriptor we create as well as in the /// read future (which is returned by schedule_read). struct Connection { writer: Option>, // Because our PeerManager is templated by user-provided types, and we can't (as far as I can // tell) have a const RawWakerVTable built out of templated functions, we need some indirection // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail. // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on // the schedule_read stack. // // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at // runtime with functions templated by the Arc type, calling // write_buffer_space_avail directly from tokio's write wake, however doing so would require // more unsafe voodo than I really feel like writing. write_avail: mpsc::Sender<()>, // When we are told by rust-lightning to pause read (because we have writes backing up), we do // so by setting read_paused. At that point, the read task will stop reading bytes from the // socket. To wake it up (without otherwise changing its state, we can push a value into this // Sender. read_waker: mpsc::Sender<()>, read_paused: bool, rl_requested_disconnect: bool, id: u64, } impl Connection { async fn poll_event_process( peer_manager: PM, mut event_receiver: mpsc::Receiver<()>, ) where PM::Target: APeerManager { loop { if event_receiver.recv().await.is_none() { return; } peer_manager.as_ref().process_events(); } } async fn schedule_read( peer_manager: PM, us: Arc>, mut reader: io::ReadHalf, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>, ) where PM::Target: APeerManager { // Create a waker to wake up poll_event_process, above let (event_waker, event_receiver) = mpsc::channel(1); tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver)); // 4KiB is nice and big without handling too many messages all at once, giving other peers // a chance to do some work. let mut buf = [0; 4096]; let mut our_descriptor = SocketDescriptor::new(us.clone()); // An enum describing why we did/are disconnecting: enum Disconnect { // Rust-Lightning told us to disconnect, either by returning an Err or by calling // SocketDescriptor::disconnect_socket. // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning // already knows we're disconnected. CloseConnection, // The connection was disconnected for some other reason, ie because the socket was // closed. // In this case, we do need to call peer_manager.socket_disconnected() to inform // Rust-Lightning that the socket is gone. PeerDisconnected } let disconnect_type = loop { let read_paused = { let us_lock = us.lock().unwrap(); if us_lock.rl_requested_disconnect { break Disconnect::CloseConnection; } us_lock.read_paused }; // TODO: Drop the Box'ing of the futures once Rust has pin-on-stack support. let select_result = if read_paused { TwoSelector { a: Box::pin(write_avail_receiver.recv()), b: Box::pin(read_wake_receiver.recv()), }.await } else { ThreeSelector { a: Box::pin(write_avail_receiver.recv()), b: Box::pin(read_wake_receiver.recv()), c: Box::pin(reader.read(&mut buf)), }.await }; match select_result { SelectorOutput::A(v) => { assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc! if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() { break Disconnect::CloseConnection; } }, SelectorOutput::B(_) => {}, SelectorOutput::C(read) => { match read { Ok(0) => break Disconnect::PeerDisconnected, Ok(len) => { let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]); let mut us_lock = us.lock().unwrap(); match read_res { Ok(pause_read) => { if pause_read { us_lock.read_paused = true; } }, Err(_) => break Disconnect::CloseConnection, } }, Err(_) => break Disconnect::PeerDisconnected, } }, } let _ = event_waker.try_send(()); // At this point we've processed a message or two, and reset the ping timer for this // peer, at least in the "are we still receiving messages" context, if we don't give up // our timeslice to another task we may just spin on this peer, starving other peers // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield // here. let _ = tokio::task::yield_now().await; }; let writer_option = us.lock().unwrap().writer.take(); if let Some(mut writer) = writer_option { // If the socket is already closed, shutdown() will fail, so just ignore it. let _ = writer.shutdown().await; } if let Disconnect::PeerDisconnected = disconnect_type { peer_manager.as_ref().socket_disconnected(&our_descriptor); peer_manager.as_ref().process_events(); } } fn new(stream: StdTcpStream) -> (io::ReadHalf, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc>) { // We only ever need a channel of depth 1 here: if we returned a non-full write to the // PeerManager, we will eventually get notified that there is room in the socket to write // new bytes, which will generate an event. That event will be popped off the queue before // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during // the write_buffer_space_avail() call, send_data() returns a non-full write. let (write_avail, write_receiver) = mpsc::channel(1); // Similarly here - our only goal is to make sure the reader wakes up at some point after // we shove a value into the channel which comes after we've reset the read_paused bool to // false. let (read_waker, read_receiver) = mpsc::channel(1); stream.set_nonblocking(true).unwrap(); let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap()); (reader, write_receiver, read_receiver, Arc::new(Mutex::new(Self { writer: Some(writer), write_avail, read_waker, read_paused: false, rl_requested_disconnect: false, id: ID_COUNTER.fetch_add(1, Ordering::AcqRel) }))) } } fn get_addr_from_stream(stream: &StdTcpStream) -> Option { match stream.peer_addr() { Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 { addr: sockaddr.ip().octets(), port: sockaddr.port(), }), Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 { addr: sockaddr.ip().octets(), port: sockaddr.port(), }), Err(_) => None, } } /// Process incoming messages and feed outgoing messages on the provided socket generated by /// accepting an incoming connection. /// /// The returned future will complete when the peer is disconnected and associated handling /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do /// not need to poll the provided future in order to make progress. pub fn setup_inbound( peer_manager: PM, stream: StdTcpStream, ) -> impl std::future::Future where PM::Target: APeerManager { let remote_addr = get_addr_from_stream(&stream); let (reader, write_receiver, read_receiver, us) = Connection::new(stream); #[cfg(test)] let last_us = Arc::clone(&us); let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() { Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver))) } else { // Note that we will skip socket_disconnected here, in accordance with the PeerManager // requirements. None }; async move { if let Some(handle) = handle_opt { if let Err(e) = handle.await { assert!(e.is_cancelled()); } else { // This is certainly not guaranteed to always be true - the read loop may exit // while there are still pending write wakers that need to be woken up after the // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't // keep too many wakers around, this makes sense. The race should be rare (we do // some work after shutdown()) and an error would be a major memory leak. #[cfg(test)] debug_assert!(Arc::try_unwrap(last_us).is_ok()); } } } } /// Process incoming messages and feed outgoing messages on the provided socket generated by /// making an outbound connection which is expected to be accepted by a peer with the given /// public key. The relevant processing is set to run free (via tokio::spawn). /// /// The returned future will complete when the peer is disconnected and associated handling /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do /// not need to poll the provided future in order to make progress. pub fn setup_outbound( peer_manager: PM, their_node_id: PublicKey, stream: StdTcpStream, ) -> impl std::future::Future where PM::Target: APeerManager { let remote_addr = get_addr_from_stream(&stream); let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream); #[cfg(test)] let last_us = Arc::clone(&us); let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) { Some(tokio::spawn(async move { // We should essentially always have enough room in a TCP socket buffer to send the // initial 10s of bytes. However, tokio running in single-threaded mode will always // fail writes and wake us back up later to write. Thus, we handle a single // std::task::Poll::Pending but still expect to write the full set of bytes at once // and use a relatively tight timeout. if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async { loop { match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) { v if v == initial_send.len() => break Ok(()), 0 => { write_receiver.recv().await; // In theory we could check for if we've been instructed to disconnect // the peer here, but its OK to just skip it - we'll check for it in // schedule_read prior to any relevant calls into RL. }, _ => { eprintln!("Failed to write first full message to socket!"); peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us))); break Err(()); } } } }).await { Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await; } })) } else { // Note that we will skip socket_disconnected here, in accordance with the PeerManager // requirements. None }; async move { if let Some(handle) = handle_opt { if let Err(e) = handle.await { assert!(e.is_cancelled()); } else { // This is certainly not guaranteed to always be true - the read loop may exit // while there are still pending write wakers that need to be woken up after the // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't // keep too many wakers around, this makes sense. The race should be rare (we do // some work after shutdown()) and an error would be a major memory leak. #[cfg(test)] debug_assert!(Arc::try_unwrap(last_us).is_ok()); } } } } /// Process incoming messages and feed outgoing messages on a new connection made to the given /// socket address which is expected to be accepted by a peer with the given public key (by /// scheduling futures with tokio::spawn). /// /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound(). /// /// Returns a future (as the fn is async) which needs to be polled to complete the connection and /// connection setup. That future then returns a future which will complete when the peer is /// disconnected and associated handling futures are freed, though, because all processing in said /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to /// make progress. pub async fn connect_outbound( peer_manager: PM, their_node_id: PublicKey, addr: SocketAddr, ) -> Option> where PM::Target: APeerManager { if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await { Some(setup_outbound(peer_manager, their_node_id, stream)) } else { None } } const SOCK_WAKER_VTABLE: task::RawWakerVTable = task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker); fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker { write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>) } // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the // sending thread may have already gone away due to a socket close, in which case there's nothing // to wake up anyway. fn wake_socket_waker(orig_ptr: *const ()) { let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) }; let _ = sender.try_send(()); drop_socket_waker(orig_ptr); } fn wake_socket_waker_by_ref(orig_ptr: *const ()) { let sender_ptr = orig_ptr as *const mpsc::Sender<()>; let sender = unsafe { (*sender_ptr).clone() }; let _ = sender.try_send(()); } fn drop_socket_waker(orig_ptr: *const ()) { let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) }; // _orig_box is now dropped } fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker { let new_box = Box::leak(Box::new(unsafe { (*sender).clone() })); let new_ptr = new_box as *const mpsc::Sender<()>; task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE) } /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a /// type in the template of PeerHandler. pub struct SocketDescriptor { conn: Arc>, id: u64, } impl SocketDescriptor { fn new(conn: Arc>) -> Self { let id = conn.lock().unwrap().id; Self { conn, id } } } impl peer_handler::SocketDescriptor for SocketDescriptor { fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize { // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream, // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the // processing future which will call write_buffer_space_avail and we'll end up back here. let mut us = self.conn.lock().unwrap(); if us.writer.is_none() { // The writer gets take()n when it is time to shut down, so just fast-return 0 here. return 0; } if resume_read && us.read_paused { // The schedule_read future may go to lock up but end up getting woken up by there // being more room in the write buffer, dropping the other end of this Sender // before we get here, so we ignore any failures to wake it up. us.read_paused = false; let _ = us.read_waker.try_send(()); } if data.is_empty() { return 0; } let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) }; let mut ctx = task::Context::from_waker(&waker); let mut written_len = 0; loop { match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) { task::Poll::Ready(Ok(res)) => { // The tokio docs *seem* to indicate this can't happen, and I certainly don't // know how to handle it if it does (cause it should be a Poll::Pending // instead): assert_ne!(res, 0); written_len += res; if written_len == data.len() { return written_len; } }, task::Poll::Ready(Err(e)) => { // The tokio docs *seem* to indicate this can't happen, and I certainly don't // know how to handle it if it does (cause it should be a Poll::Pending // instead): assert_ne!(e.kind(), io::ErrorKind::WouldBlock); // Probably we've already been closed, just return what we have and let the // read thread handle closing logic. return written_len; }, task::Poll::Pending => { // We're queued up for a write event now, but we need to make sure we also // pause read given we're now waiting on the remote end to ACK (and in // accordance with the send_data() docs). us.read_paused = true; // Further, to avoid any current pending read causing a `read_event` call, wake // up the read_waker and restart its loop. let _ = us.read_waker.try_send(()); return written_len; }, } } } fn disconnect_socket(&mut self) { let mut us = self.conn.lock().unwrap(); us.rl_requested_disconnect = true; // Wake up the sending thread, assuming it is still alive let _ = us.write_avail.try_send(()); } } impl Clone for SocketDescriptor { fn clone(&self) -> Self { Self { conn: Arc::clone(&self.conn), id: self.id, } } } impl Eq for SocketDescriptor {} impl PartialEq for SocketDescriptor { fn eq(&self, o: &Self) -> bool { self.id == o.id } } impl Hash for SocketDescriptor { fn hash(&self, state: &mut H) { self.id.hash(state); } } #[cfg(test)] mod tests { use lightning::ln::features::*; use lightning::ln::msgs::*; use lightning::ln::peer_handler::{MessageHandler, PeerManager}; use lightning::ln::features::NodeFeatures; use lightning::routing::gossip::NodeId; use lightning::events::*; use lightning::util::test_utils::TestNodeSigner; use bitcoin::Network; use bitcoin::blockdata::constants::ChainHash; use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey}; use tokio::sync::mpsc; use std::mem; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, Mutex}; use std::time::Duration; pub struct TestLogger(); impl lightning::util::logger::Logger for TestLogger { fn log(&self, record: &lightning::util::logger::Record) { println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args); } } struct MsgHandler{ expected_pubkey: PublicKey, pubkey_connected: mpsc::Sender<()>, pubkey_disconnected: mpsc::Sender<()>, disconnected_flag: AtomicBool, msg_events: Mutex>, } impl RoutingMessageHandler for MsgHandler { fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result { Ok(false) } fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result { Ok(false) } fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result { Ok(false) } fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option, Option)> { None } fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option { None } fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) } fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) } fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) } fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) } fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) } fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() } fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() } fn processing_queue_high(&self) -> bool { false } } impl ChannelMessageHandler for MsgHandler { fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {} fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {} fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {} fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {} fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {} fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {} fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {} fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {} fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {} fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {} fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {} fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {} fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {} fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {} fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {} fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {} fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {} fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {} fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {} fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {} fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {} fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {} fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {} fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {} fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {} fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {} fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {} fn peer_disconnected(&self, their_node_id: &PublicKey) { if *their_node_id == self.expected_pubkey { self.disconnected_flag.store(true, Ordering::SeqCst); self.pubkey_disconnected.clone().try_send(()).unwrap(); } } fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { if *their_node_id == self.expected_pubkey { self.pubkey_connected.clone().try_send(()).unwrap(); } Ok(()) } fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {} fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {} fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() } fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() } fn get_genesis_hashes(&self) -> Option> { Some(vec![ChainHash::using_genesis_block(Network::Testnet)]) } } impl MessageSendEventsProvider for MsgHandler { fn get_and_clear_pending_msg_events(&self) -> Vec { let mut ret = Vec::new(); mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret); ret } } fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) { if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") { (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0) } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") { (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0) } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") { (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0) } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") { (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0) } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") { (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0) } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") { (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0) } else { panic!("Failed to bind to v4 localhost on common ports"); } } async fn do_basic_connection_test() { let secp_ctx = Secp256k1::new(); let a_key = SecretKey::from_slice(&[1; 32]).unwrap(); let b_key = SecretKey::from_slice(&[1; 32]).unwrap(); let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key); let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key); let (a_connected_sender, mut a_connected) = mpsc::channel(1); let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1); let a_handler = Arc::new(MsgHandler { expected_pubkey: b_pub, pubkey_connected: a_connected_sender, pubkey_disconnected: a_disconnected_sender, disconnected_flag: AtomicBool::new(false), msg_events: Mutex::new(Vec::new()), }); let a_manager = Arc::new(PeerManager::new(MessageHandler { chan_handler: Arc::clone(&a_handler), route_handler: Arc::clone(&a_handler), onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key)))); let (b_connected_sender, mut b_connected) = mpsc::channel(1); let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1); let b_handler = Arc::new(MsgHandler { expected_pubkey: a_pub, pubkey_connected: b_connected_sender, pubkey_disconnected: b_disconnected_sender, disconnected_flag: AtomicBool::new(false), msg_events: Mutex::new(Vec::new()), }); let b_manager = Arc::new(PeerManager::new(MessageHandler { chan_handler: Arc::clone(&b_handler), route_handler: Arc::clone(&b_handler), onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key)))); // We bind on localhost, hoping the environment is properly configured with a local // address. This may not always be the case in containers and the like, so if this test is // failing for you check that you have a loopback interface and it is configured with // 127.0.0.1. let (conn_a, conn_b) = make_tcp_connection(); let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a); let fut_b = super::setup_inbound(b_manager, conn_b); tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap(); tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap(); a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError { node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None } }); assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst)); assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst)); a_manager.process_events(); tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap(); tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap(); assert!(a_handler.disconnected_flag.load(Ordering::SeqCst)); assert!(b_handler.disconnected_flag.load(Ordering::SeqCst)); fut_a.await; fut_b.await; } #[tokio::test(flavor = "multi_thread")] async fn basic_threaded_connection_test() { do_basic_connection_test().await; } #[tokio::test] async fn basic_unthreaded_connection_test() { do_basic_connection_test().await; } async fn race_disconnect_accept() { // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic. // This attempts to find other similar races by opening connections and shutting them down // while connecting. Sadly in testing this did *not* reproduce the previous issue. let secp_ctx = Secp256k1::new(); let a_key = SecretKey::from_slice(&[1; 32]).unwrap(); let b_key = SecretKey::from_slice(&[2; 32]).unwrap(); let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key); let a_manager = Arc::new(PeerManager::new(MessageHandler { chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()), onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key)))); // Make two connections, one for an inbound and one for an outbound connection let conn_a = { let (conn_a, _) = make_tcp_connection(); conn_a }; let conn_b = { let (_, conn_b) = make_tcp_connection(); conn_b }; // Call connection setup inside new tokio tasks. let manager_reference = Arc::clone(&a_manager); tokio::spawn(async move { super::setup_inbound(manager_reference, conn_a).await }); tokio::spawn(async move { super::setup_outbound(a_manager, b_pub, conn_b).await }); } #[tokio::test(flavor = "multi_thread")] async fn threaded_race_disconnect_accept() { race_disconnect_accept().await; } #[tokio::test] async fn unthreaded_race_disconnect_accept() { race_disconnect_accept().await; } }