// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Further functional tests which test blockchain reorganizations. use chain::channelmonitor::{ANTI_REORG_DELAY, Balance}; use chain::transaction::OutPoint; use ln::channel; use ln::channelmanager::BREAKDOWN_TIMEOUT; use ln::features::InitFeatures; use ln::msgs::ChannelMessageHandler; use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, ClosureReason}; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use bitcoin::secp256k1::Secp256k1; use prelude::*; use ln::functional_test_utils::*; #[test] fn chanmon_fail_from_stale_commitment() { // If we forward an HTLC to our counterparty, but we force-closed the channel before our // counterparty provides us an updated commitment transaction, we'll end up with a commitment // transaction that does not contain the HTLC which we attempted to forward. In this case, we // need to wait `ANTI_REORG_DELAY` blocks and then fail back the HTLC as there is no way for us // to learn the preimage and the confirmed commitment transaction paid us the value of the // HTLC. // // However, previously, we did not do this, ignoring the HTLC entirely. // // This could lead to channel closure if the sender we received the HTLC from decides to go on // chain to get their HTLC back before it times out. // // Here, we check exactly this case, forwarding a payment from A, through B, to C, before B // broadcasts its latest commitment transaction, which should result in it eventually failing // the HTLC back off-chain to A. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (update_a, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let bs_txn = get_local_commitment_txn!(nodes[1], chan_id_2); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // Don't bother delivering the new HTLC add/commits, instead confirming the pre-HTLC commitment // transaction for nodes[1]. mine_transaction(&nodes[1], &bs_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], fail_updates.commitment_signed, true, true); expect_payment_failed_with_update!(nodes[0], payment_hash, false, update_a.contents.short_channel_id, true); } #[test] fn chanmon_claim_value_coop_close() { // Tests `get_claimable_balances` returns the correct values across a simple cooperative claim. // Specifically, this tests that the channel non-HTLC balances show up in // `get_claimable_balances` until the cooperative claims have confirmed and generated a // `SpendableOutputs` event, and no longer. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000, InitFeatures::known(), InitFeatures::known()); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); let chan_feerate = get_feerate!(nodes[0], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], chan_id); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::commitment_tx_base_weight(opt_anchors) / 1000 }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); nodes[0].node.close_channel(&chan_id, &nodes[1].node.get_our_node_id()).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &InitFeatures::known(), &node_0_shutdown); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &InitFeatures::known(), &node_1_shutdown); let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed); let node_1_closing_signed = get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed); let (_, node_0_2nd_closing_signed) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_2nd_closing_signed.unwrap()); let (_, node_1_none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); assert!(node_1_none.is_none()); let shutdown_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(shutdown_tx, nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0)); assert_eq!(shutdown_tx.len(), 1); mine_transaction(&nodes[0], &shutdown_tx[0]); mine_transaction(&nodes[1], &shutdown_tx[0]); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[1].node.list_channels().is_empty()); assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::commitment_tx_base_weight(opt_anchors) / 1000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1000, confirmation_height: nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(Vec::::new(), nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_a_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, shutdown_tx[0]); } let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_b_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, shutdown_tx[0]); } check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); } fn sorted_vec(mut v: Vec) -> Vec { v.sort_unstable(); v } fn do_test_claim_value_force_close(prev_commitment_tx: bool) { // Tests `get_claimable_balances` with an HTLC across a force-close. // We build a channel with an HTLC pending, then force close the channel and check that the // `get_claimable_balances` return value is correct as transactions confirm on-chain. let mut chanmon_cfgs = create_chanmon_cfgs(2); if prev_commitment_tx { // We broadcast a second-to-latest commitment transaction, without providing the revocation // secret to the counterparty. However, because we always immediately take the revocation // secret from the keys_manager, we would panic at broadcast as we're trying to sign a // transaction which, from the point of view of our keys_manager, is revoked. chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; } let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000, InitFeatures::known(), InitFeatures::known()); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); // This HTLC is immediately claimed, giving node B the preimage let payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 3_000_000).0; // This HTLC is allowed to time out, letting A claim it. However, in order to test claimable // balances more fully we also give B the preimage for this HTLC. let (timeout_payment_preimage, timeout_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 4_000_000); // This HTLC will be dust, and not be claimable at all: let (dust_payment_preimage, dust_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 3_000); let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety let chan_feerate = get_feerate!(nodes[0], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], chan_id); let remote_txn = get_local_commitment_txn!(nodes[1], chan_id); // Before B receives the payment preimage, it only suggests the push_msat value of 1_000 sats // as claimable. A lists both its to-self balance and the (possibly-claimable) HTLCs. assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); let b_htlc_msgs = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id()); // We claim the dust payment here as well, but it won't impact our claimable balances as its // dust and thus doesn't appear on chain at all. nodes[1].node.claim_funds(dust_payment_preimage); check_added_monitors!(nodes[1], 1); nodes[1].node.claim_funds(timeout_payment_preimage); check_added_monitors!(nodes[1], 1); if prev_commitment_tx { // To build a previous commitment transaction, deliver one round of commitment messages. nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.update_fulfill_htlcs[0]); expect_payment_sent_without_paths!(nodes[0], payment_preimage); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.commitment_signed); check_added_monitors!(nodes[0], 1); let (as_raa, as_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa); let _htlc_updates = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs); let _bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); } // Once B has received the payment preimage, it includes the value of the HTLC in its // "claimable if you were to close the channel" balance. let mut a_expected_balances = vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - // Channel funding value in satoshis 4_000 - // The to-be-failed HTLC value in satoshis 3_000 - // The claimed HTLC value in satoshis 1_000 - // The push_msat value in satoshis 3 - // The dust HTLC value in satoshis // The commitment transaction fee with two HTLC outputs: chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + if prev_commitment_tx { 1 } else { 2 } * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]; if !prev_commitment_tx { a_expected_balances.push(Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }); } assert_eq!(sorted_vec(a_expected_balances), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000 + 3_000 + 4_000, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // Broadcast the closing transaction (which has both pending HTLCs in it) and get B's // broadcasted HTLC claim transaction with preimage. let node_b_commitment_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &remote_txn[0]); mine_transaction(&nodes[1], &remote_txn[0]); let b_broadcast_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(b_broadcast_txn.len(), if prev_commitment_tx { 4 } else { 5 }); if prev_commitment_tx { check_spends!(b_broadcast_txn[3], b_broadcast_txn[2]); } else { assert_eq!(b_broadcast_txn[0], b_broadcast_txn[3]); assert_eq!(b_broadcast_txn[1], b_broadcast_txn[4]); } // b_broadcast_txn[0] should spend the HTLC output of the commitment tx for 3_000 sats check_spends!(b_broadcast_txn[0], remote_txn[0]); check_spends!(b_broadcast_txn[1], remote_txn[0]); assert_eq!(b_broadcast_txn[0].input.len(), 1); assert_eq!(b_broadcast_txn[1].input.len(), 1); assert_eq!(remote_txn[0].output[b_broadcast_txn[0].input[0].previous_output.vout as usize].value, 3_000); assert_eq!(remote_txn[0].output[b_broadcast_txn[1].input[0].previous_output.vout as usize].value, 4_000); check_spends!(b_broadcast_txn[2], funding_tx); assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // Once the commitment transaction confirms, we will wait until ANTI_REORG_DELAY until we // generate any `SpendableOutputs` events. Thus, the same balances will still be listed // available in `get_claimable_balances`. However, both will swap from `ClaimableOnClose` to // other Balance variants, as close has already happened. assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // The main non-HTLC balance is just awaiting confirmations, but the claimable height is the // CSV delay, not ANTI_REORG_DELAY. assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, // Both HTLC balances are "contentious" as our counterparty could claim them if we wait too // long. Balance::ContentiousClaimable { claimable_amount_satoshis: 3_000, timeout_height: htlc_cltv_timeout, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], dust_payment_hash, true); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); // After ANTI_REORG_DELAY, A will consider its balance fully spendable and generate a // `SpendableOutputs` event. However, B still has to wait for the CSV delay. assert_eq!(sorted_vec(vec![Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 3_000, timeout_height: htlc_cltv_timeout, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_a_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, remote_txn[0]); } assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); // After broadcasting the HTLC claim transaction, node A will still consider the HTLC // possibly-claimable up to ANTI_REORG_DELAY, at which point it will drop it. mine_transaction(&nodes[0], &b_broadcast_txn[0]); if prev_commitment_tx { expect_payment_path_successful!(nodes[0]); } else { expect_payment_sent!(nodes[0], payment_preimage); } assert_eq!(sorted_vec(vec![Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert_eq!(vec![Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // When the HTLC timeout output is spendable in the next block, A should broadcast it connect_blocks(&nodes[0], htlc_cltv_timeout - nodes[0].best_block_info().1 - 1); let a_broadcast_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(a_broadcast_txn.len(), 3); check_spends!(a_broadcast_txn[0], funding_tx); assert_eq!(a_broadcast_txn[1].input.len(), 1); check_spends!(a_broadcast_txn[1], remote_txn[0]); assert_eq!(a_broadcast_txn[2].input.len(), 1); check_spends!(a_broadcast_txn[2], remote_txn[0]); assert_ne!(a_broadcast_txn[1].input[0].previous_output.vout, a_broadcast_txn[2].input[0].previous_output.vout); // a_broadcast_txn [1] and [2] should spend the HTLC outputs of the commitment tx assert_eq!(remote_txn[0].output[a_broadcast_txn[1].input[0].previous_output.vout as usize].value, 3_000); assert_eq!(remote_txn[0].output[a_broadcast_txn[2].input[0].previous_output.vout as usize].value, 4_000); // Once the HTLC-Timeout transaction confirms, A will no longer consider the HTLC // "MaybeClaimable", but instead move it to "AwaitingConfirmations". mine_transaction(&nodes[0], &a_broadcast_txn[2]); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 4_000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // After ANTI_REORG_DELAY, A will generate a SpendableOutputs event and drop the claimable // balance entry. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); expect_payment_failed!(nodes[0], timeout_payment_hash, true); let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_a_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, a_broadcast_txn[2]); } else { panic!(); } // Node B will no longer consider the HTLC "contentious" after the HTLC claim transaction // confirms, and consider it simply "awaiting confirmations". Note that it has to wait for the // standard revocable transaction CSV delay before receiving a `SpendableOutputs`. let node_b_htlc_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[1], &b_broadcast_txn[0]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 3_000, confirmation_height: node_b_htlc_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // After reaching the commitment output CSV, we'll get a SpendableOutputs event for it and have // only the HTLCs claimable on node B. connect_blocks(&nodes[1], node_b_commitment_claimable - nodes[1].best_block_info().1); let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_b_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, remote_txn[0]); } assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 3_000, confirmation_height: node_b_htlc_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // After reaching the claimed HTLC output CSV, we'll get a SpendableOutptus event for it and // have only one HTLC output left spendable. connect_blocks(&nodes[1], node_b_htlc_claimable - nodes[1].best_block_info().1); let mut node_b_spendable = nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_b_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_b_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[1].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, b_broadcast_txn[0]); } else { panic!(); } assert_eq!(vec![Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // Finally, mine the HTLC timeout transaction that A broadcasted (even though B should be able // to claim this HTLC with the preimage it knows!). It will remain listed as a claimable HTLC // until ANTI_REORG_DELAY confirmations on the spend. mine_transaction(&nodes[1], &a_broadcast_txn[2]); assert_eq!(vec![Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); } #[test] fn test_claim_value_force_close() { do_test_claim_value_force_close(true); do_test_claim_value_force_close(false); } #[test] fn test_balances_on_local_commitment_htlcs() { // Previously, when handling the broadcast of a local commitment transactions (with associated // CSV delays prior to spendability), we incorrectly handled the CSV delays on HTLC // transactions. This caused us to miss spendable outputs for HTLCs which were awaiting a CSV // delay prior to spendability. // // Further, because of this, we could hit an assertion as `get_claimable_balances` asserted // that HTLCs were resolved after the funding spend was resolved, which was not true if the // HTLC did not have a CSV delay attached (due to the above bug or due to it being an HTLC // claim by our counterparty). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create a single channel with two pending HTLCs from nodes[0] to nodes[1], one which nodes[1] // knows the preimage for, one which it does not. let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0, InitFeatures::known(), InitFeatures::known()); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 10_000_000); let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], payment_hash, payment_secret, 10_000_000); let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[1], 20_000_000); nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], payment_hash_2, payment_secret_2, 20_000_000); assert!(nodes[1].node.claim_funds(payment_preimage_2)); get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); let chan_feerate = get_feerate!(nodes[0], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], chan_id); // Get nodes[0]'s commitment transaction and HTLC-Timeout transactions let as_txn = get_local_commitment_txn!(nodes[0], chan_id); assert_eq!(as_txn.len(), 3); check_spends!(as_txn[1], as_txn[0]); check_spends!(as_txn[2], as_txn[0]); check_spends!(as_txn[0], funding_tx); // First confirm the commitment transaction on nodes[0], which should leave us with three // claimable balances. let node_a_commitment_claimable = nodes[0].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &as_txn[0]); check_added_monitors!(nodes[0], 1); check_closed_broadcast!(nodes[0], true); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Get nodes[1]'s HTLC claim tx for the second HTLC mine_transaction(&nodes[1], &as_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_claim_txn.len(), 3); check_spends!(bs_htlc_claim_txn[0], as_txn[0]); check_spends!(bs_htlc_claim_txn[1], funding_tx); check_spends!(bs_htlc_claim_txn[2], bs_htlc_claim_txn[1]); // Connect blocks until the HTLCs expire, allowing us to (validly) broadcast the HTLC-Timeout // transaction. connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(as_txn[1].lock_time, nodes[0].best_block_info().1 + 1); // as_txn[1] can be included in the next block // Now confirm nodes[0]'s HTLC-Timeout transaction, which changes the claimable balance to an // "awaiting confirmations" one. let node_a_htlc_claimable = nodes[0].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &as_txn[1]); // Note that prior to the fix in the commit which introduced this test, this (and the next // balance) check failed. With this check removed, the code panicked in the `connect_blocks` // call, as described, two hunks down. assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Now confirm nodes[1]'s HTLC claim, giving nodes[0] the preimage. Note that the "maybe // claimable" balance remains until we see ANTI_REORG_DELAY blocks. mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]); expect_payment_sent!(nodes[0], payment_preimage_2); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }, Balance::MaybeClaimableHTLCAwaitingTimeout { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Finally make the HTLC transactions have ANTI_REORG_DELAY blocks. This call previously // panicked as described in the test introduction. This will remove the "maybe claimable" // spendable output as nodes[1] has fully claimed the second HTLC. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], payment_hash, true); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Connect blocks until the commitment transaction's CSV expires, providing us the relevant // `SpendableOutputs` event and removing the claimable balance entry. connect_blocks(&nodes[0], node_a_commitment_claimable - nodes[0].best_block_info().1); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_a_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, as_txn[0]); } // Connect blocks until the HTLC-Timeout's CSV expires, providing us the relevant // `SpendableOutputs` event and removing the claimable balance entry. connect_blocks(&nodes[0], node_a_htlc_claimable - nodes[0].best_block_info().1); assert!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); let mut node_a_spendable = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(node_a_spendable.len(), 1); if let Event::SpendableOutputs { outputs } = node_a_spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = nodes[0].keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, as_txn[1]); } }