// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! The top-level channel management and payment tracking stuff lives here. //! //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those //! upon reconnect to the relevant peer(s). //! //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing //! on-chain transactions (it only monitors the chain to watch for any force-closes that might //! imply it needs to fail HTLCs/payments/channels it manages). use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::transaction::Transaction; use bitcoin::blockdata::constants::{genesis_block, ChainHash}; use bitcoin::network::constants::Network; use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hash_types::{BlockHash, Txid}; use bitcoin::secp256k1::{SecretKey,PublicKey}; use bitcoin::secp256k1::Secp256k1; use bitcoin::{LockTime, secp256k1, Sequence}; use crate::chain; use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock}; use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator}; use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID}; use crate::chain::transaction::{OutPoint, TransactionData}; use crate::events; use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason}; // Since this struct is returned in `list_channels` methods, expose it here in case users want to // construct one themselves. use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret}; use crate::ln::channel::{Channel, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel}; use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures}; #[cfg(any(feature = "_test_utils", test))] use crate::ln::features::InvoiceFeatures; use crate::routing::gossip::NetworkGraph; use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router}; use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters}; use crate::ln::msgs; use crate::ln::onion_utils; use crate::ln::onion_utils::HTLCFailReason; use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError}; #[cfg(test)] use crate::ln::outbound_payment; use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment}; use crate::ln::wire::Encode; use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner}; use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate}; use crate::util::wakers::{Future, Notifier}; use crate::util::scid_utils::fake_scid; use crate::util::string::UntrustedString; use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter}; use crate::util::logger::{Level, Logger}; use crate::util::errors::APIError; use alloc::collections::BTreeMap; use crate::io; use crate::prelude::*; use core::{cmp, mem}; use core::cell::RefCell; use crate::io::Read; use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState}; use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering}; use core::time::Duration; use core::ops::Deref; // Re-export this for use in the public API. pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields}; use crate::ln::script::ShutdownScript; // We hold various information about HTLC relay in the HTLC objects in Channel itself: // // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should // forward the HTLC with information it will give back to us when it does so, or if it should Fail // the HTLC with the relevant message for the Channel to handle giving to the remote peer. // // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo // with it to track where it came from (in case of onwards-forward error), waiting a random delay // before we forward it. // // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use // to either fail-backwards or fulfill the HTLC backwards along the relevant path). // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is // our payment, which we can use to decode errors or inform the user that the payment was sent. #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCRouting { Forward { onion_packet: msgs::OnionPacket, /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one /// generated using `get_fake_scid` from the scid_utils::fake_scid module. short_channel_id: u64, // This should be NonZero eventually when we bump MSRV }, Receive { payment_data: msgs::FinalOnionHopData, payment_metadata: Option>, incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed phantom_shared_secret: Option<[u8; 32]>, }, ReceiveKeysend { /// This was added in 0.0.116 and will break deserialization on downgrades. payment_data: Option, payment_preimage: PaymentPreimage, payment_metadata: Option>, incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed }, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) struct PendingHTLCInfo { pub(super) routing: PendingHTLCRouting, pub(super) incoming_shared_secret: [u8; 32], payment_hash: PaymentHash, /// Amount received pub(super) incoming_amt_msat: Option, // Added in 0.0.113 /// Sender intended amount to forward or receive (actual amount received /// may overshoot this in either case) pub(super) outgoing_amt_msat: u64, pub(super) outgoing_cltv_value: u32, /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed. pub(super) skimmed_fee_msat: Option, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailureMsg { Relay(msgs::UpdateFailHTLC), Malformed(msgs::UpdateFailMalformedHTLC), } /// Stores whether we can't forward an HTLC or relevant forwarding info #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCStatus { Forward(PendingHTLCInfo), Fail(HTLCFailureMsg), } pub(super) struct PendingAddHTLCInfo { pub(super) forward_info: PendingHTLCInfo, // These fields are produced in `forward_htlcs()` and consumed in // `process_pending_htlc_forwards()` for constructing the // `HTLCSource::PreviousHopData` for failed and forwarded // HTLCs. // // Note that this may be an outbound SCID alias for the associated channel. prev_short_channel_id: u64, prev_htlc_id: u64, prev_funding_outpoint: OutPoint, prev_user_channel_id: u128, } pub(super) enum HTLCForwardInfo { AddHTLC(PendingAddHTLCInfo), FailHTLC { htlc_id: u64, err_packet: msgs::OnionErrorPacket, }, } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, Hash, PartialEq, Eq)] pub(crate) struct HTLCPreviousHopData { // Note that this may be an outbound SCID alias for the associated channel. short_channel_id: u64, htlc_id: u64, incoming_packet_shared_secret: [u8; 32], phantom_shared_secret: Option<[u8; 32]>, // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards // channel with a preimage provided by the forward channel. outpoint: OutPoint, } enum OnionPayload { /// Indicates this incoming onion payload is for the purpose of paying an invoice. Invoice { /// This is only here for backwards-compatibility in serialization, in the future it can be /// removed, breaking clients running 0.0.106 and earlier. _legacy_hop_data: Option, }, /// Contains the payer-provided preimage. Spontaneous(PaymentPreimage), } /// HTLCs that are to us and can be failed/claimed by the user struct ClaimableHTLC { prev_hop: HTLCPreviousHopData, cltv_expiry: u32, /// The amount (in msats) of this MPP part value: u64, /// The amount (in msats) that the sender intended to be sent in this MPP /// part (used for validating total MPP amount) sender_intended_value: u64, onion_payload: OnionPayload, timer_ticks: u8, /// The total value received for a payment (sum of all MPP parts if the payment is a MPP). /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`]. total_value_received: Option, /// The sender intended sum total of all MPP parts specified in the onion total_msat: u64, /// The extra fee our counterparty skimmed off the top of this HTLC. counterparty_skimmed_fee_msat: Option, } /// A payment identifier used to uniquely identify a payment to LDK. /// /// This is not exported to bindings users as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentId(pub [u8; 32]); impl Writeable for PaymentId { fn write(&self, w: &mut W) -> Result<(), io::Error> { self.0.write(w) } } impl Readable for PaymentId { fn read(r: &mut R) -> Result { let buf: [u8; 32] = Readable::read(r)?; Ok(PaymentId(buf)) } } /// An identifier used to uniquely identify an intercepted HTLC to LDK. /// /// This is not exported to bindings users as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct InterceptId(pub [u8; 32]); impl Writeable for InterceptId { fn write(&self, w: &mut W) -> Result<(), io::Error> { self.0.write(w) } } impl Readable for InterceptId { fn read(r: &mut R) -> Result { let buf: [u8; 32] = Readable::read(r)?; Ok(InterceptId(buf)) } } #[derive(Clone, Copy, PartialEq, Eq, Hash)] /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`]. pub(crate) enum SentHTLCId { PreviousHopData { short_channel_id: u64, htlc_id: u64 }, OutboundRoute { session_priv: SecretKey }, } impl SentHTLCId { pub(crate) fn from_source(source: &HTLCSource) -> Self { match source { HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData { short_channel_id: hop_data.short_channel_id, htlc_id: hop_data.htlc_id, }, HTLCSource::OutboundRoute { session_priv, .. } => Self::OutboundRoute { session_priv: *session_priv }, } } } impl_writeable_tlv_based_enum!(SentHTLCId, (0, PreviousHopData) => { (0, short_channel_id, required), (2, htlc_id, required), }, (2, OutboundRoute) => { (0, session_priv, required), }; ); /// Tracks the inbound corresponding to an outbound HTLC #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash #[derive(Clone, PartialEq, Eq)] pub(crate) enum HTLCSource { PreviousHopData(HTLCPreviousHopData), OutboundRoute { path: Path, session_priv: SecretKey, /// Technically we can recalculate this from the route, but we cache it here to avoid /// doing a double-pass on route when we get a failure back first_hop_htlc_msat: u64, payment_id: PaymentId, }, } #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash impl core::hash::Hash for HTLCSource { fn hash(&self, hasher: &mut H) { match self { HTLCSource::PreviousHopData(prev_hop_data) => { 0u8.hash(hasher); prev_hop_data.hash(hasher); }, HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => { 1u8.hash(hasher); path.hash(hasher); session_priv[..].hash(hasher); payment_id.hash(hasher); first_hop_htlc_msat.hash(hasher); }, } } } impl HTLCSource { #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))] #[cfg(test)] pub fn dummy() -> Self { HTLCSource::OutboundRoute { path: Path { hops: Vec::new(), blinded_tail: None }, session_priv: SecretKey::from_slice(&[1; 32]).unwrap(), first_hop_htlc_msat: 0, payment_id: PaymentId([2; 32]), } } #[cfg(debug_assertions)] /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment /// transaction. Useful to ensure different datastructures match up. pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool { if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self { *first_hop_htlc_msat == htlc.amount_msat } else { // There's nothing we can check for forwarded HTLCs true } } } struct ReceiveError { err_code: u16, err_data: Vec, msg: &'static str, } /// This enum is used to specify which error data to send to peers when failing back an HTLC /// using [`ChannelManager::fail_htlc_backwards_with_reason`]. /// /// For more info on failure codes, see . #[derive(Clone, Copy)] pub enum FailureCode { /// We had a temporary error processing the payment. Useful if no other error codes fit /// and you want to indicate that the payer may want to retry. TemporaryNodeFailure = 0x2000 | 2, /// We have a required feature which was not in this onion. For example, you may require /// some additional metadata that was not provided with this payment. RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3, /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of /// the HTLC is too close to the current block height for safe handling. /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is /// equivalent to calling [`ChannelManager::fail_htlc_backwards`]. IncorrectOrUnknownPaymentDetails = 0x4000 | 15, } /// Error type returned across the peer_state mutex boundary. When an Err is generated for a /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel /// immediately (ie with no further calls on it made). Thus, this step happens inside a /// peer_state lock. We then return the set of things that need to be done outside the lock in /// this struct and call handle_error!() on it. struct MsgHandleErrInternal { err: msgs::LightningError, chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed shutdown_finish: Option<(ShutdownResult, Option)>, } impl MsgHandleErrInternal { #[inline] fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, chan_id: None, shutdown_finish: None, } } #[inline] fn from_no_close(err: msgs::LightningError) -> Self { Self { err, chan_id: None, shutdown_finish: None } } #[inline] fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, chan_id: Some((channel_id, user_channel_id)), shutdown_finish: Some((shutdown_res, channel_update)), } } #[inline] fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Warn(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendWarningMessage { msg: msgs::WarningMessage { channel_id, data: msg }, log_level: Level::Warn, }, }, ChannelError::Ignore(msg) => LightningError { err: msg, action: msgs::ErrorAction::IgnoreError, }, ChannelError::Close(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg }, }, }, }, chan_id: None, shutdown_finish: None, } } } /// We hold back HTLCs we intend to relay for a random interval greater than this (see /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited). /// This provides some limited amount of privacy. Ideally this would range from somewhere like one /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly. pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100; /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should /// be sent in the order they appear in the return value, however sometimes the order needs to be /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order /// they were originally sent). In those cases, this enum is also returned. #[derive(Clone, PartialEq)] pub(super) enum RAACommitmentOrder { /// Send the CommitmentUpdate messages first CommitmentFirst, /// Send the RevokeAndACK message first RevokeAndACKFirst, } /// Information about a payment which is currently being claimed. struct ClaimingPayment { amount_msat: u64, payment_purpose: events::PaymentPurpose, receiver_node_id: PublicKey, } impl_writeable_tlv_based!(ClaimingPayment, { (0, amount_msat, required), (2, payment_purpose, required), (4, receiver_node_id, required), }); struct ClaimablePayment { purpose: events::PaymentPurpose, onion_fields: Option, htlcs: Vec, } /// Information about claimable or being-claimed payments struct ClaimablePayments { /// Map from payment hash to the payment data and any HTLCs which are to us and can be /// failed/claimed by the user. /// /// Note that, no consistency guarantees are made about the channels given here actually /// existing anymore by the time you go to read them! /// /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure /// we don't get a duplicate payment. claimable_payments: HashMap, /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user /// as an [`events::Event::PaymentClaimed`]. pending_claiming_payments: HashMap, } /// Events which we process internally but cannot be processed immediately at the generation site /// usually because we're running pre-full-init. They are handled immediately once we detect we are /// running normally, and specifically must be processed before any other non-background /// [`ChannelMonitorUpdate`]s are applied. enum BackgroundEvent { /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel. /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the /// channel has been force-closed we do not need the counterparty node_id. /// /// Note that any such events are lost on shutdown, so in general they must be updates which /// are regenerated on startup. ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)), /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the /// channel to continue normal operation. /// /// In general this should be used rather than /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`] /// error the other variant is acceptable. /// /// Note that any such events are lost on shutdown, so in general they must be updates which /// are regenerated on startup. MonitorUpdateRegeneratedOnStartup { counterparty_node_id: PublicKey, funding_txo: OutPoint, update: ChannelMonitorUpdate }, /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending /// on a channel. MonitorUpdatesComplete { counterparty_node_id: PublicKey, channel_id: [u8; 32], }, } #[derive(Debug)] pub(crate) enum MonitorUpdateCompletionAction { /// Indicates that a payment ultimately destined for us was claimed and we should emit an /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate /// event can be generated. PaymentClaimed { payment_hash: PaymentHash }, /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the /// operation of another channel. /// /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge /// from completing a monitor update which removes the payment preimage until the inbound edge /// completes a monitor update containing the payment preimage. In that case, after the inbound /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the /// outbound edge. EmitEventAndFreeOtherChannel { event: events::Event, downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>, }, } impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction, (0, PaymentClaimed) => { (0, payment_hash, required) }, (2, EmitEventAndFreeOtherChannel) => { (0, event, upgradable_required), // LDK prior to 0.0.116 did not have this field as the monitor update application order was // required by clients. If we downgrade to something prior to 0.0.116 this may result in // monitor updates which aren't properly blocked or resumed, however that's fine - we don't // support async monitor updates even in LDK 0.0.116 and once we do we'll require no // downgrades to prior versions. (1, downstream_counterparty_and_funding_outpoint, option), }, ); #[derive(Clone, Debug, PartialEq, Eq)] pub(crate) enum EventCompletionAction { ReleaseRAAChannelMonitorUpdate { counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, }, } impl_writeable_tlv_based_enum!(EventCompletionAction, (0, ReleaseRAAChannelMonitorUpdate) => { (0, channel_funding_outpoint, required), (2, counterparty_node_id, required), }; ); #[derive(Clone, PartialEq, Eq, Debug)] /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track /// the blocked action here. See enum variants for more info. pub(crate) enum RAAMonitorUpdateBlockingAction { /// A forwarded payment was claimed. We block the downstream channel completing its monitor /// update which removes the HTLC preimage until the upstream channel has gotten the preimage /// durably to disk. ForwardedPaymentInboundClaim { /// The upstream channel ID (i.e. the inbound edge). channel_id: [u8; 32], /// The HTLC ID on the inbound edge. htlc_id: u64, }, } impl RAAMonitorUpdateBlockingAction { #[allow(unused)] fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self { Self::ForwardedPaymentInboundClaim { channel_id: prev_hop.outpoint.to_channel_id(), htlc_id: prev_hop.htlc_id, } } } impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction, (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) } ;); /// State we hold per-peer. pub(super) struct PeerState { /// `channel_id` -> `Channel`. /// /// Holds all funded channels where the peer is the counterparty. pub(super) channel_by_id: HashMap<[u8; 32], Channel>, /// `temporary_channel_id` -> `OutboundV1Channel`. /// /// Holds all outbound V1 channels where the peer is the counterparty. Once an outbound channel has /// been assigned a `channel_id`, the entry in this map is removed and one is created in /// `channel_by_id`. pub(super) outbound_v1_channel_by_id: HashMap<[u8; 32], OutboundV1Channel>, /// `temporary_channel_id` -> `InboundV1Channel`. /// /// Holds all inbound V1 channels where the peer is the counterparty. Once an inbound channel has /// been assigned a `channel_id`, the entry in this map is removed and one is created in /// `channel_by_id`. pub(super) inbound_v1_channel_by_id: HashMap<[u8; 32], InboundV1Channel>, /// The latest `InitFeatures` we heard from the peer. latest_features: InitFeatures, /// Messages to send to the peer - pushed to in the same lock that they are generated in (except /// for broadcast messages, where ordering isn't as strict). pub(super) pending_msg_events: Vec, /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the /// user but which have not yet completed. /// /// Note that the channel may no longer exist. For example if the channel was closed but we /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update /// for a missing channel. in_flight_monitor_updates: BTreeMap>, /// Map from a specific channel to some action(s) that should be taken when all pending /// [`ChannelMonitorUpdate`]s for the channel complete updating. /// /// Note that because we generally only have one entry here a HashMap is pretty overkill. A /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few /// channels with a peer this will just be one allocation and will amount to a linear list of /// channels to walk, avoiding the whole hashing rigmarole. /// /// Note that the channel may no longer exist. For example, if a channel was closed but we /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update /// for a missing channel. While a malicious peer could construct a second channel with the /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure /// duplicates do not occur, so such channels should fail without a monitor update completing. monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec>, /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update /// will remove a preimage that needs to be durably in an upstream channel first), we put an /// entry here to note that the channel with the key's ID is blocked on a set of actions. actions_blocking_raa_monitor_updates: BTreeMap<[u8; 32], Vec>, /// The peer is currently connected (i.e. we've seen a /// [`ChannelMessageHandler::peer_connected`] and no corresponding /// [`ChannelMessageHandler::peer_disconnected`]. is_connected: bool, } impl PeerState { /// Indicates that a peer meets the criteria where we're ok to remove it from our storage. /// If true is passed for `require_disconnected`, the function will return false if we haven't /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`. fn ok_to_remove(&self, require_disconnected: bool) -> bool { if require_disconnected && self.is_connected { return false } self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty() && self.in_flight_monitor_updates.is_empty() } // Returns a count of all channels we have with this peer, including pending channels. fn total_channel_count(&self) -> usize { self.channel_by_id.len() + self.outbound_v1_channel_by_id.len() + self.inbound_v1_channel_by_id.len() } // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer. fn has_channel(&self, channel_id: &[u8; 32]) -> bool { self.channel_by_id.contains_key(channel_id) || self.outbound_v1_channel_by_id.contains_key(channel_id) || self.inbound_v1_channel_by_id.contains_key(channel_id) } } /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is /// actually ours and not some duplicate HTLC sent to us by a node along the route. /// /// For users who don't want to bother doing their own payment preimage storage, we also store that /// here. /// /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data /// and instead encoding it in the payment secret. struct PendingInboundPayment { /// The payment secret that the sender must use for us to accept this payment payment_secret: PaymentSecret, /// Time at which this HTLC expires - blocks with a header time above this value will result in /// this payment being removed. expiry_time: u64, /// Arbitrary identifier the user specifies (or not) user_payment_id: u64, // Other required attributes of the payment, optionally enforced: payment_preimage: Option, min_value_msat: Option, } /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g. /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static /// lifetimes). Other times you can afford a reference, which is more efficient, in which case /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager, /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types /// of [`KeysManager`] and [`DefaultRouter`]. /// /// This is not exported to bindings users as Arcs don't make sense in bindings pub type SimpleArcChannelManager = ChannelManager< Arc, Arc, Arc, Arc, Arc, Arc, Arc>>, Arc, Arc>>, Arc>>>, ProbabilisticScoringFeeParameters, ProbabilisticScorer>>, Arc>, >>, Arc >; /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes). /// But if this is not necessary, using a reference is more efficient. Defining these type aliases /// issues such as overly long function definitions. Note that the ChannelManager can take any type /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager, /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types /// of [`KeysManager`] and [`DefaultRouter`]. /// /// This is not exported to bindings users as Arcs don't make sense in bindings pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager< &'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter< &'f NetworkGraph<&'g L>, &'g L, &'h Mutex, &'g L>>, ProbabilisticScoringFeeParameters, ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L> >, &'g L >; macro_rules! define_test_pub_trait { ($vis: vis) => { /// A trivial trait which describes any [`ChannelManager`] used in testing. $vis trait AChannelManager { type Watch: chain::Watch + ?Sized; type M: Deref; type Broadcaster: BroadcasterInterface + ?Sized; type T: Deref; type EntropySource: EntropySource + ?Sized; type ES: Deref; type NodeSigner: NodeSigner + ?Sized; type NS: Deref; type Signer: WriteableEcdsaChannelSigner + Sized; type SignerProvider: SignerProvider + ?Sized; type SP: Deref; type FeeEstimator: FeeEstimator + ?Sized; type F: Deref; type Router: Router + ?Sized; type R: Deref; type Logger: Logger + ?Sized; type L: Deref; fn get_cm(&self) -> &ChannelManager; } } } #[cfg(any(test, feature = "_test_utils"))] define_test_pub_trait!(pub); #[cfg(not(any(test, feature = "_test_utils")))] define_test_pub_trait!(pub(crate)); impl AChannelManager for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { type Watch = M::Target; type M = M; type Broadcaster = T::Target; type T = T; type EntropySource = ES::Target; type ES = ES; type NodeSigner = NS::Target; type NS = NS; type Signer = ::Signer; type SignerProvider = SP::Target; type SP = SP; type FeeEstimator = F::Target; type F = F; type Router = R::Target; type R = R; type Logger = L::Target; type L = L; fn get_cm(&self) -> &ChannelManager { self } } /// Manager which keeps track of a number of channels and sends messages to the appropriate /// channel, also tracking HTLC preimages and forwarding onion packets appropriately. /// /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through /// to individual Channels. /// /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for /// all peers during write/read (though does not modify this instance, only the instance being /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e., /// called [`funding_transaction_generated`] for outbound channels) being closed. /// /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during /// the serialization process). If the deserialized version is out-of-date compared to the /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees). /// /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which /// tells you the last block hash which was connected. You should get the best block tip before using the manager. /// See [`chain::Listen`] and [`chain::Confirm`] for more details. /// /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been /// offline for a full minute. In order to track this, you must call /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect. /// /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and /// inbound channels without confirmed funding transactions. This may result in nodes which we do /// not have a channel with being unable to connect to us or open new channels with us if we have /// many peers with unfunded channels. /// /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are /// never limited. Please ensure you limit the count of such channels yourself. /// /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`] /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but /// essentially you should default to using a [`SimpleRefChannelManager`], and use a /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when /// you're using lightning-net-tokio. /// /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected /// [`funding_created`]: msgs::FundingCreated /// [`funding_transaction_generated`]: Self::funding_transaction_generated /// [`BlockHash`]: bitcoin::hash_types::BlockHash /// [`update_channel`]: chain::Watch::update_channel /// [`ChannelUpdate`]: msgs::ChannelUpdate /// [`timer_tick_occurred`]: Self::timer_tick_occurred /// [`read`]: ReadableArgs::read // // Lock order: // The tree structure below illustrates the lock order requirements for the different locks of the // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree, // and should then be taken in the order of the lowest to the highest level in the tree. // Note that locks on different branches shall not be taken at the same time, as doing so will // create a new lock order for those specific locks in the order they were taken. // // Lock order tree: // // `total_consistency_lock` // | // |__`forward_htlcs` // | | // | |__`pending_intercepted_htlcs` // | // |__`per_peer_state` // | | // | |__`pending_inbound_payments` // | | // | |__`claimable_payments` // | | // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds // | | // | |__`peer_state` // | | // | |__`id_to_peer` // | | // | |__`short_to_chan_info` // | | // | |__`outbound_scid_aliases` // | | // | |__`best_block` // | | // | |__`pending_events` // | | // | |__`pending_background_events` // pub struct ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { default_configuration: UserConfig, genesis_hash: BlockHash, fee_estimator: LowerBoundedFeeEstimator, chain_monitor: M, tx_broadcaster: T, #[allow(unused)] router: R, /// See `ChannelManager` struct-level documentation for lock order requirements. #[cfg(test)] pub(super) best_block: RwLock, #[cfg(not(test))] best_block: RwLock, secp_ctx: Secp256k1, /// Storage for PaymentSecrets and any requirements on future inbound payments before we will /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out. /// /// See `ChannelManager` struct-level documentation for lock order requirements. pending_inbound_payments: Mutex>, /// The session_priv bytes and retry metadata of outbound payments which are pending resolution. /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors /// (if the channel has been force-closed), however we track them here to prevent duplicative /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice. /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s) /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents /// after reloading from disk while replaying blocks against ChannelMonitors. /// /// See `PendingOutboundPayment` documentation for more info. /// /// See `ChannelManager` struct-level documentation for lock order requirements. pending_outbound_payments: OutboundPayments, /// SCID/SCID Alias -> forward infos. Key of 0 means payments received. /// /// Note that because we may have an SCID Alias as the key we can have two entries per channel, /// though in practice we probably won't be receiving HTLCs for a channel both via the alias /// and via the classic SCID. /// /// Note that no consistency guarantees are made about the existence of a channel with the /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`! /// /// See `ChannelManager` struct-level documentation for lock order requirements. #[cfg(test)] pub(super) forward_htlcs: Mutex>>, #[cfg(not(test))] forward_htlcs: Mutex>>, /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here /// until the user tells us what we should do with them. /// /// See `ChannelManager` struct-level documentation for lock order requirements. pending_intercepted_htlcs: Mutex>, /// The sets of payments which are claimable or currently being claimed. See /// [`ClaimablePayments`]' individual field docs for more info. /// /// See `ChannelManager` struct-level documentation for lock order requirements. claimable_payments: Mutex, /// The set of outbound SCID aliases across all our channels, including unconfirmed channels /// and some closed channels which reached a usable state prior to being closed. This is used /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the /// active channel list on load. /// /// See `ChannelManager` struct-level documentation for lock order requirements. outbound_scid_aliases: Mutex>, /// `channel_id` -> `counterparty_node_id`. /// /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As /// multiple channels with the same `temporary_channel_id` to different peers can exist, /// allowing `temporary_channel_id`s in this map would cause collisions for such channels. /// /// Note that this map should only be used for `MonitorEvent` handling, to be able to access /// the corresponding channel for the event, as we only have access to the `channel_id` during /// the handling of the events. /// /// Note that no consistency guarantees are made about the existence of a peer with the /// `counterparty_node_id` in our other maps. /// /// TODO: /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately /// would break backwards compatability. /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is /// required to access the channel with the `counterparty_node_id`. /// /// See `ChannelManager` struct-level documentation for lock order requirements. id_to_peer: Mutex>, /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s. /// /// Outbound SCID aliases are added here once the channel is available for normal use, with /// SCIDs being added once the funding transaction is confirmed at the channel's required /// confirmation depth. /// /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a /// channel with the `channel_id` in our other maps. /// /// See `ChannelManager` struct-level documentation for lock order requirements. #[cfg(test)] pub(super) short_to_chan_info: FairRwLock>, #[cfg(not(test))] short_to_chan_info: FairRwLock>, our_network_pubkey: PublicKey, inbound_payment_key: inbound_payment::ExpandedKey, /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an /// incoming payment. To make it harder for a third-party to identify the type of a payment, /// we encrypt the namespace identifier using these bytes. /// /// [fake scids]: crate::util::scid_utils::fake_scid fake_scid_rand_bytes: [u8; 32], /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without /// keeping additional state. probing_cookie_secret: [u8; 32], /// The highest block timestamp we've seen, which is usually a good guess at the current time. /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be /// very far in the past, and can only ever be up to two hours in the future. highest_seen_timestamp: AtomicUsize, /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer /// basis, as well as the peer's latest features. /// /// If we are connected to a peer we always at least have an entry here, even if no channels /// are currently open with that peer. /// /// Because adding or removing an entry is rare, we usually take an outer read lock and then /// operate on the inner value freely. This opens up for parallel per-peer operation for /// channels. /// /// Note that the same thread must never acquire two inner `PeerState` locks at the same time. /// /// See `ChannelManager` struct-level documentation for lock order requirements. #[cfg(not(any(test, feature = "_test_utils")))] per_peer_state: FairRwLock::Signer>>>>, #[cfg(any(test, feature = "_test_utils"))] pub(super) per_peer_state: FairRwLock::Signer>>>>, /// The set of events which we need to give to the user to handle. In some cases an event may /// require some further action after the user handles it (currently only blocking a monitor /// update from being handed to the user to ensure the included changes to the channel state /// are handled by the user before they're persisted durably to disk). In that case, the second /// element in the tuple is set to `Some` with further details of the action. /// /// Note that events MUST NOT be removed from pending_events after deserialization, as they /// could be in the middle of being processed without the direct mutex held. /// /// See `ChannelManager` struct-level documentation for lock order requirements. pending_events: Mutex)>>, /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously. pending_events_processor: AtomicBool, /// If we are running during init (either directly during the deserialization method or in /// block connection methods which run after deserialization but before normal operation) we /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow - /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their /// [`ChainMonitor`] and thus attempting to update it will fail or panic. /// /// Thus, we place them here to be handled as soon as possible once we are running normally. /// /// See `ChannelManager` struct-level documentation for lock order requirements. /// /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor pending_background_events: Mutex>, /// Used when we have to take a BIG lock to make sure everything is self-consistent. /// Essentially just when we're serializing ourselves out. /// Taken first everywhere where we are making changes before any other locks. /// When acquiring this lock in read mode, rather than acquiring it directly, call /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the /// Notifier the lock contains sends out a notification when the lock is released. total_consistency_lock: RwLock<()>, background_events_processed_since_startup: AtomicBool, persistence_notifier: Notifier, entropy_source: ES, node_signer: NS, signer_provider: SP, logger: L, } /// Chain-related parameters used to construct a new `ChannelManager`. /// /// Typically, the block-specific parameters are derived from the best block hash for the network, /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters /// are not needed when deserializing a previously constructed `ChannelManager`. #[derive(Clone, Copy, PartialEq)] pub struct ChainParameters { /// The network for determining the `chain_hash` in Lightning messages. pub network: Network, /// The hash and height of the latest block successfully connected. /// /// Used to track on-chain channel funding outputs and send payments with reliable timelocks. pub best_block: BestBlock, } #[derive(Copy, Clone, PartialEq)] #[must_use] enum NotifyOption { DoPersist, SkipPersist, } /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is /// desirable to notify any listeners on `await_persistable_update_timeout`/ /// `await_persistable_update` when new updates are available for persistence. Therefore, this /// struct is responsible for locking the total consistency lock and, upon going out of scope, /// sending the aforementioned notification (since the lock being released indicates that the /// updates are ready for persistence). /// /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to /// notify or not based on whether relevant changes have been made, providing a closure to /// `optionally_notify` which returns a `NotifyOption`. struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> { persistence_notifier: &'a Notifier, should_persist: F, // We hold onto this result so the lock doesn't get released immediately. _read_guard: RwLockReadGuard<'a, ()>, } impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused fn notify_on_drop(cm: &'a C) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> { let read_guard = cm.get_cm().total_consistency_lock.read().unwrap(); let _ = cm.get_cm().process_background_events(); // We always persist PersistenceNotifierGuard { persistence_notifier: &cm.get_cm().persistence_notifier, should_persist: || -> NotifyOption { NotifyOption::DoPersist }, _read_guard: read_guard, } } /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated, /// [`ChannelManager::process_background_events`] MUST be called first. fn optionally_notify NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> { let read_guard = lock.read().unwrap(); PersistenceNotifierGuard { persistence_notifier: notifier, should_persist: persist_check, _read_guard: read_guard, } } } impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> { fn drop(&mut self) { if (self.should_persist)() == NotifyOption::DoPersist { self.persistence_notifier.notify(); } } } /// The amount of time in blocks we require our counterparty wait to claim their money (ie time /// between when we, or our watchtower, must check for them having broadcast a theft transaction). /// /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`] /// /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24; /// The amount of time in blocks we're willing to wait to claim money back to us. This matches /// the maximum required amount in lnd as of March 2021. pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7; /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour. /// /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`] /// /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER, // i.e. the node we forwarded the payment on to should always have enough room to reliably time out // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more). pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7; // This should be long enough to allow a payment path drawn across multiple routing hops with substantial // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much, // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of // routing failure for any HTLC sender picking up an LDK node among the first hops. pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6; /// Minimum CLTV difference between the current block height and received inbound payments. /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least /// this value. // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for // any payments to succeed. Further, we don't want payments to fail if a block was found while // a payment was being routed, so we add an extra block to be safe. pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3; // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS, // ie that if the next-hop peer fails the HTLC within // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain, // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before // LATENCY_GRACE_PERIOD_BLOCKS. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS; // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER; /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3; /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the /// idempotency of payments by [`PaymentId`]. See /// [`OutboundPayments::remove_stale_resolved_payments`]. pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7; /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected /// until we mark the channel disabled and gossip the update. pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10; /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until /// we mark the channel enabled and gossip the update. pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5; /// The maximum number of unfunded channels we can have per-peer before we start rejecting new /// (inbound) ones. The number of peers with unfunded channels is limited separately in /// [`MAX_UNFUNDED_CHANNEL_PEERS`]. const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4; /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach /// this many peers we reject new (inbound) channels from peers with which we don't have a channel. const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50; /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this /// many peers we reject new (inbound) connections. const MAX_NO_CHANNEL_PEERS: usize = 250; /// Information needed for constructing an invoice route hint for this channel. #[derive(Clone, Debug, PartialEq)] pub struct CounterpartyForwardingInfo { /// Base routing fee in millisatoshis. pub fee_base_msat: u32, /// Amount in millionths of a satoshi the channel will charge per transferred satoshi. pub fee_proportional_millionths: u32, /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart, /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s /// `cltv_expiry_delta` for more details. pub cltv_expiry_delta: u16, } /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`] /// to better separate parameters. #[derive(Clone, Debug, PartialEq)] pub struct ChannelCounterparty { /// The node_id of our counterparty pub node_id: PublicKey, /// The Features the channel counterparty provided upon last connection. /// Useful for routing as it is the most up-to-date copy of the counterparty's features and /// many routing-relevant features are present in the init context. pub features: InitFeatures, /// The value, in satoshis, that must always be held in the channel for our counterparty. This /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by /// claiming at least this value on chain. /// /// This value is not included in [`inbound_capacity_msat`] as it can never be spent. /// /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat pub unspendable_punishment_reserve: u64, /// Information on the fees and requirements that the counterparty requires when forwarding /// payments to us through this channel. pub forwarding_info: Option, /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107. pub outbound_htlc_minimum_msat: Option, /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel. pub outbound_htlc_maximum_msat: Option, } /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`] #[derive(Clone, Debug, PartialEq)] pub struct ChannelDetails { /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes, /// thereafter this is the txid of the funding transaction xor the funding transaction output). /// Note that this means this value is *not* persistent - it can change once during the /// lifetime of the channel. pub channel_id: [u8; 32], /// Parameters which apply to our counterparty. See individual fields for more information. pub counterparty: ChannelCounterparty, /// The Channel's funding transaction output, if we've negotiated the funding transaction with /// our counterparty already. /// /// Note that, if this has been set, `channel_id` will be equivalent to /// `funding_txo.unwrap().to_channel_id()`. pub funding_txo: Option, /// The features which this channel operates with. See individual features for more info. /// /// `None` until negotiation completes and the channel type is finalized. pub channel_type: Option, /// The position of the funding transaction in the chain. None if the funding transaction has /// not yet been confirmed and the channel fully opened. /// /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound /// payments instead of this. See [`get_inbound_payment_scid`]. /// /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`]. /// /// [`inbound_scid_alias`]: Self::inbound_scid_alias /// [`outbound_scid_alias`]: Self::outbound_scid_alias /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid /// [`confirmations_required`]: Self::confirmations_required pub short_channel_id: Option, /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when /// the channel has not yet been confirmed (as long as [`confirmations_required`] is /// `Some(0)`). /// /// This will be `None` as long as the channel is not available for routing outbound payments. /// /// [`short_channel_id`]: Self::short_channel_id /// [`confirmations_required`]: Self::confirmations_required pub outbound_scid_alias: Option, /// An optional [`short_channel_id`] alias for this channel, randomly generated by our /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our /// counterparty will recognize the alias provided here in place of the [`short_channel_id`] /// when they see a payment to be routed to us. /// /// Our counterparty may choose to rotate this value at any time, though will always recognize /// previous values for inbound payment forwarding. /// /// [`short_channel_id`]: Self::short_channel_id pub inbound_scid_alias: Option, /// The value, in satoshis, of this channel as appears in the funding output pub channel_value_satoshis: u64, /// The value, in satoshis, that must always be held in the channel for us. This value ensures /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least /// this value on chain. /// /// This value is not included in [`outbound_capacity_msat`] as it can never be spent. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. /// /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat pub unspendable_punishment_reserve: Option, /// The `user_channel_id` passed in to create_channel, or a random value if the channel was /// inbound. This may be zero for inbound channels serialized with LDK versions prior to /// 0.0.113. pub user_channel_id: u128, /// The currently negotiated fee rate denominated in satoshi per 1000 weight units, /// which is applied to commitment and HTLC transactions. /// /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115. pub feerate_sat_per_1000_weight: Option, /// Our total balance. This is the amount we would get if we close the channel. /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this /// amount is not likely to be recoverable on close. /// /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose /// balance is not available for inclusion in new outbound HTLCs). This further does not include /// any pending outgoing HTLCs which are awaiting some other resolution to be sent. /// This does not consider any on-chain fees. /// /// See also [`ChannelDetails::outbound_capacity_msat`] pub balance_msat: u64, /// The available outbound capacity for sending HTLCs to the remote peer. This does not include /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not /// available for inclusion in new outbound HTLCs). This further does not include any pending /// outgoing HTLCs which are awaiting some other resolution to be sent. /// /// See also [`ChannelDetails::balance_msat`] /// /// This value is not exact. Due to various in-flight changes, feerate changes, and our /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we /// should be able to spend nearly this amount. pub outbound_capacity_msat: u64, /// The available outbound capacity for sending a single HTLC to the remote peer. This is /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us /// to use a limit as close as possible to the HTLC limit we can currently send. /// /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`], /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`]. pub next_outbound_htlc_limit_msat: u64, /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a /// route which is valid. pub next_outbound_htlc_minimum_msat: u64, /// The available inbound capacity for the remote peer to send HTLCs to us. This does not /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not /// available for inclusion in new inbound HTLCs). /// Note that there are some corner cases not fully handled here, so the actual available /// inbound capacity may be slightly higher than this. /// /// This value is not exact. Due to various in-flight changes, feerate changes, and our /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable. /// However, our counterparty should be able to spend nearly this amount. pub inbound_capacity_msat: u64, /// The number of required confirmations on the funding transaction before the funding will be /// considered "locked". This number is selected by the channel fundee (i.e. us if /// [`is_outbound`] is *not* set), and can be selected for inbound channels with /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with /// [`ChannelHandshakeLimits::max_minimum_depth`]. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. /// /// [`is_outbound`]: ChannelDetails::is_outbound /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth pub confirmations_required: Option, /// The current number of confirmations on the funding transaction. /// /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113. pub confirmations: Option, /// The number of blocks (after our commitment transaction confirms) that we will need to wait /// until we can claim our funds after we force-close the channel. During this time our /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any /// time to claim our non-HTLC-encumbered funds. /// /// This value will be `None` for outbound channels until the counterparty accepts the channel. pub force_close_spend_delay: Option, /// True if the channel was initiated (and thus funded) by us. pub is_outbound: bool, /// True if the channel is confirmed, channel_ready messages have been exchanged, and the /// channel is not currently being shut down. `channel_ready` message exchange implies the /// required confirmation count has been reached (and we were connected to the peer at some /// point after the funding transaction received enough confirmations). The required /// confirmation count is provided in [`confirmations_required`]. /// /// [`confirmations_required`]: ChannelDetails::confirmations_required pub is_channel_ready: bool, /// The stage of the channel's shutdown. /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116. pub channel_shutdown_state: Option, /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b) /// the peer is connected, and (c) the channel is not currently negotiating a shutdown. /// /// This is a strict superset of `is_channel_ready`. pub is_usable: bool, /// True if this channel is (or will be) publicly-announced. pub is_public: bool, /// The smallest value HTLC (in msat) we will accept, for this channel. This field /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107 pub inbound_htlc_minimum_msat: Option, /// The largest value HTLC (in msat) we currently will accept, for this channel. pub inbound_htlc_maximum_msat: Option, /// Set of configurable parameters that affect channel operation. /// /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109. pub config: Option, } impl ChannelDetails { /// Gets the current SCID which should be used to identify this channel for inbound payments. /// This should be used for providing invoice hints or in any other context where our /// counterparty will forward a payment to us. /// /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the /// [`ChannelDetails::short_channel_id`]. See those for more information. pub fn get_inbound_payment_scid(&self) -> Option { self.inbound_scid_alias.or(self.short_channel_id) } /// Gets the current SCID which should be used to identify this channel for outbound payments. /// This should be used in [`Route`]s to describe the first hop or in other contexts where /// we're sending or forwarding a payment outbound over this channel. /// /// This is either the [`ChannelDetails::short_channel_id`], if set, or the /// [`ChannelDetails::outbound_scid_alias`]. See those for more information. pub fn get_outbound_payment_scid(&self) -> Option { self.short_channel_id.or(self.outbound_scid_alias) } fn from_channel_context( context: &ChannelContext, best_block_height: u32, latest_features: InitFeatures, fee_estimator: &LowerBoundedFeeEstimator ) -> Self where F::Target: FeeEstimator { let balance = context.get_available_balances(fee_estimator); let (to_remote_reserve_satoshis, to_self_reserve_satoshis) = context.get_holder_counterparty_selected_channel_reserve_satoshis(); ChannelDetails { channel_id: context.channel_id(), counterparty: ChannelCounterparty { node_id: context.get_counterparty_node_id(), features: latest_features, unspendable_punishment_reserve: to_remote_reserve_satoshis, forwarding_info: context.counterparty_forwarding_info(), // Ensures that we have actually received the `htlc_minimum_msat` value // from the counterparty through the `OpenChannel` or `AcceptChannel` // message (as they are always the first message from the counterparty). // Else `Channel::get_counterparty_htlc_minimum_msat` could return the // default `0` value set by `Channel::new_outbound`. outbound_htlc_minimum_msat: if context.have_received_message() { Some(context.get_counterparty_htlc_minimum_msat()) } else { None }, outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(), }, funding_txo: context.get_funding_txo(), // Note that accept_channel (or open_channel) is always the first message, so // `have_received_message` indicates that type negotiation has completed. channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None }, short_channel_id: context.get_short_channel_id(), outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None }, inbound_scid_alias: context.latest_inbound_scid_alias(), channel_value_satoshis: context.get_value_satoshis(), feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()), unspendable_punishment_reserve: to_self_reserve_satoshis, balance_msat: balance.balance_msat, inbound_capacity_msat: balance.inbound_capacity_msat, outbound_capacity_msat: balance.outbound_capacity_msat, next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat, next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat, user_channel_id: context.get_user_id(), confirmations_required: context.minimum_depth(), confirmations: Some(context.get_funding_tx_confirmations(best_block_height)), force_close_spend_delay: context.get_counterparty_selected_contest_delay(), is_outbound: context.is_outbound(), is_channel_ready: context.is_usable(), is_usable: context.is_live(), is_public: context.should_announce(), inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()), inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(), config: Some(context.config()), channel_shutdown_state: Some(context.shutdown_state()), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq)] /// Further information on the details of the channel shutdown. /// Upon channels being forced closed (i.e. commitment transaction confirmation detected /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or /// the channel will be removed shortly. /// Also note, that in normal operation, peers could disconnect at any of these states /// and require peer re-connection before making progress onto other states pub enum ChannelShutdownState { /// Channel has not sent or received a shutdown message. NotShuttingDown, /// Local node has sent a shutdown message for this channel. ShutdownInitiated, /// Shutdown message exchanges have concluded and the channels are in the midst of /// resolving all existing open HTLCs before closing can continue. ResolvingHTLCs, /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates. NegotiatingClosingFee, /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about /// to drop the channel. ShutdownComplete, } /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments. /// These include payments that have yet to find a successful path, or have unresolved HTLCs. #[derive(Debug, PartialEq)] pub enum RecentPaymentDetails { /// When a payment is still being sent and awaiting successful delivery. Pending { /// Hash of the payment that is currently being sent but has yet to be fulfilled or /// abandoned. payment_hash: PaymentHash, /// Total amount (in msat, excluding fees) across all paths for this payment, /// not just the amount currently inflight. total_msat: u64, }, /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the /// payment is removed from tracking. Fulfilled { /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`] /// made before LDK version 0.0.104. payment_hash: Option, }, /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated. Abandoned { /// Hash of the payment that we have given up trying to send. payment_hash: PaymentHash, }, } /// Route hints used in constructing invoices for [phantom node payents]. /// /// [phantom node payments]: crate::sign::PhantomKeysManager #[derive(Clone)] pub struct PhantomRouteHints { /// The list of channels to be included in the invoice route hints. pub channels: Vec, /// A fake scid used for representing the phantom node's fake channel in generating the invoice /// route hints. pub phantom_scid: u64, /// The pubkey of the real backing node that would ultimately receive the payment. pub real_node_pubkey: PublicKey, } macro_rules! handle_error { ($self: ident, $internal: expr, $counterparty_node_id: expr) => { { // In testing, ensure there are no deadlocks where the lock is already held upon // entering the macro. debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread); debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread); match $internal { Ok(msg) => Ok(msg), Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => { let mut msg_events = Vec::with_capacity(2); if let Some((shutdown_res, update_option)) = shutdown_finish { $self.finish_force_close_channel(shutdown_res); if let Some(update) = update_option { msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } if let Some((channel_id, user_channel_id)) = chan_id { $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed { channel_id, user_channel_id, reason: ClosureReason::ProcessingError { err: err.err.clone() } }, None)); } } log_error!($self.logger, "{}", err.err); if let msgs::ErrorAction::IgnoreError = err.action { } else { msg_events.push(events::MessageSendEvent::HandleError { node_id: $counterparty_node_id, action: err.action.clone() }); } if !msg_events.is_empty() { let per_peer_state = $self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) { let mut peer_state = peer_state_mutex.lock().unwrap(); peer_state.pending_msg_events.append(&mut msg_events); } } // Return error in case higher-API need one Err(err) }, } } }; ($self: ident, $internal: expr) => { match $internal { Ok(res) => Ok(res), Err((chan, msg_handle_err)) => { let counterparty_node_id = chan.get_counterparty_node_id(); handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err)) }, } }; } macro_rules! update_maps_on_chan_removal { ($self: expr, $channel_context: expr) => {{ $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id()); let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap(); if let Some(short_id) = $channel_context.get_short_channel_id() { short_to_chan_info.remove(&short_id); } else { // If the channel was never confirmed on-chain prior to its closure, remove the // outbound SCID alias we used for it from the collision-prevention set. While we // generally want to avoid ever re-using an outbound SCID alias across all channels, we // also don't want a counterparty to be able to trivially cause a memory leak by simply // opening a million channels with us which are closed before we ever reach the funding // stage. let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias()); debug_assert!(alias_removed); } short_to_chan_info.remove(&$channel_context.outbound_scid_alias()); }} } /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error) macro_rules! convert_chan_err { ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => { match $err { ChannelError::Warn(msg) => { (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone())) }, ChannelError::Ignore(msg) => { (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone())) }, ChannelError::Close(msg) => { log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg); update_maps_on_chan_removal!($self, &$channel.context); let shutdown_res = $channel.context.force_shutdown(true); (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.context.get_user_id(), shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok())) }, } }; ($self: ident, $err: expr, $channel_context: expr, $channel_id: expr, PREFUNDED) => { match $err { // We should only ever have `ChannelError::Close` when prefunded channels error. // In any case, just close the channel. ChannelError::Warn(msg) | ChannelError::Ignore(msg) | ChannelError::Close(msg) => { log_error!($self.logger, "Closing prefunded channel {} due to an error: {}", log_bytes!($channel_id[..]), msg); update_maps_on_chan_removal!($self, &$channel_context); let shutdown_res = $channel_context.force_shutdown(false); (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel_context.get_user_id(), shutdown_res, None)) }, } } } macro_rules! break_chan_entry { ($self: ident, $res: expr, $entry: expr) => { match $res { Ok(res) => res, Err(e) => { let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key()); if drop { $entry.remove_entry(); } break Err(res); } } } } macro_rules! try_v1_outbound_chan_entry { ($self: ident, $res: expr, $entry: expr) => { match $res { Ok(res) => res, Err(e) => { let (drop, res) = convert_chan_err!($self, e, $entry.get_mut().context, $entry.key(), PREFUNDED); if drop { $entry.remove_entry(); } return Err(res); } } } } macro_rules! try_chan_entry { ($self: ident, $res: expr, $entry: expr) => { match $res { Ok(res) => res, Err(e) => { let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key()); if drop { $entry.remove_entry(); } return Err(res); } } } } macro_rules! remove_channel { ($self: expr, $entry: expr) => { { let channel = $entry.remove_entry().1; update_maps_on_chan_removal!($self, &channel.context); channel } } } macro_rules! send_channel_ready { ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{ $pending_msg_events.push(events::MessageSendEvent::SendChannelReady { node_id: $channel.context.get_counterparty_node_id(), msg: $channel_ready_msg, }); // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so // we allow collisions, but we shouldn't ever be updating the channel ID pointed to. let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap(); let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id())); assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()), "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels"); if let Some(real_scid) = $channel.context.get_short_channel_id() { let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id())); assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()), "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels"); } }} } macro_rules! emit_channel_pending_event { ($locked_events: expr, $channel: expr) => { if $channel.context.should_emit_channel_pending_event() { $locked_events.push_back((events::Event::ChannelPending { channel_id: $channel.context.channel_id(), former_temporary_channel_id: $channel.context.temporary_channel_id(), counterparty_node_id: $channel.context.get_counterparty_node_id(), user_channel_id: $channel.context.get_user_id(), funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(), }, None)); $channel.context.set_channel_pending_event_emitted(); } } } macro_rules! emit_channel_ready_event { ($locked_events: expr, $channel: expr) => { if $channel.context.should_emit_channel_ready_event() { debug_assert!($channel.context.channel_pending_event_emitted()); $locked_events.push_back((events::Event::ChannelReady { channel_id: $channel.context.channel_id(), user_channel_id: $channel.context.get_user_id(), counterparty_node_id: $channel.context.get_counterparty_node_id(), channel_type: $channel.context.get_channel_type().clone(), }, None)); $channel.context.set_channel_ready_event_emitted(); } } } macro_rules! handle_monitor_update_completion { ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { { let mut updates = $chan.monitor_updating_restored(&$self.logger, &$self.node_signer, $self.genesis_hash, &$self.default_configuration, $self.best_block.read().unwrap().height()); let counterparty_node_id = $chan.context.get_counterparty_node_id(); let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() { // We only send a channel_update in the case where we are just now sending a // channel_ready and the channel is in a usable state. We may re-send a // channel_update later through the announcement_signatures process for public // channels, but there's no reason not to just inform our counterparty of our fees // now. if let Ok(msg) = $self.get_channel_update_for_unicast($chan) { Some(events::MessageSendEvent::SendChannelUpdate { node_id: counterparty_node_id, msg, }) } else { None } } else { None }; let update_actions = $peer_state.monitor_update_blocked_actions .remove(&$chan.context.channel_id()).unwrap_or(Vec::new()); let htlc_forwards = $self.handle_channel_resumption( &mut $peer_state.pending_msg_events, $chan, updates.raa, updates.commitment_update, updates.order, updates.accepted_htlcs, updates.funding_broadcastable, updates.channel_ready, updates.announcement_sigs); if let Some(upd) = channel_update { $peer_state.pending_msg_events.push(upd); } let channel_id = $chan.context.channel_id(); core::mem::drop($peer_state_lock); core::mem::drop($per_peer_state_lock); $self.handle_monitor_update_completion_actions(update_actions); if let Some(forwards) = htlc_forwards { $self.forward_htlcs(&mut [forwards][..]); } $self.finalize_claims(updates.finalized_claimed_htlcs); for failure in updates.failed_htlcs.drain(..) { let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id }; $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver); } } } } macro_rules! handle_new_monitor_update { ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, _internal, $remove: expr, $completed: expr) => { { // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in // any case so that it won't deadlock. debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread); debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire)); match $update_res { ChannelMonitorUpdateStatus::InProgress => { log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.", log_bytes!($chan.context.channel_id()[..])); Ok(false) }, ChannelMonitorUpdateStatus::PermanentFailure => { log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure", log_bytes!($chan.context.channel_id()[..])); update_maps_on_chan_removal!($self, &$chan.context); let res = Err(MsgHandleErrInternal::from_finish_shutdown( "ChannelMonitor storage failure".to_owned(), $chan.context.channel_id(), $chan.context.get_user_id(), $chan.context.force_shutdown(false), $self.get_channel_update_for_broadcast(&$chan).ok())); $remove; res }, ChannelMonitorUpdateStatus::Completed => { $completed; Ok(true) }, } } }; ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING_INITIAL_MONITOR, $remove: expr) => { handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan, _internal, $remove, handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan)) }; ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr, INITIAL_MONITOR) => { handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING_INITIAL_MONITOR, $chan_entry.remove_entry()) }; ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { { let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo) .or_insert_with(Vec::new); // During startup, we push monitor updates as background events through to here in // order to replay updates that were in-flight when we shut down. Thus, we have to // filter for uniqueness here. let idx = in_flight_updates.iter().position(|upd| upd == &$update) .unwrap_or_else(|| { in_flight_updates.push($update); in_flight_updates.len() - 1 }); let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]); handle_new_monitor_update!($self, update_res, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan, _internal, $remove, { let _ = in_flight_updates.remove(idx); if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 { handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan); } }) } }; ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => { handle_new_monitor_update!($self, $funding_txo, $update, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry()) } } macro_rules! process_events_body { ($self: expr, $event_to_handle: expr, $handle_event: expr) => { let mut processed_all_events = false; while !processed_all_events { if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() { return; } let mut result = NotifyOption::SkipPersist; { // We'll acquire our total consistency lock so that we can be sure no other // persists happen while processing monitor events. let _read_guard = $self.total_consistency_lock.read().unwrap(); // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must // ensure any startup-generated background events are handled first. if $self.process_background_events() == NotifyOption::DoPersist { result = NotifyOption::DoPersist; } // TODO: This behavior should be documented. It's unintuitive that we query // ChannelMonitors when clearing other events. if $self.process_pending_monitor_events() { result = NotifyOption::DoPersist; } } let pending_events = $self.pending_events.lock().unwrap().clone(); let num_events = pending_events.len(); if !pending_events.is_empty() { result = NotifyOption::DoPersist; } let mut post_event_actions = Vec::new(); for (event, action_opt) in pending_events { $event_to_handle = event; $handle_event; if let Some(action) = action_opt { post_event_actions.push(action); } } { let mut pending_events = $self.pending_events.lock().unwrap(); pending_events.drain(..num_events); processed_all_events = pending_events.is_empty(); // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being // updated here with the `pending_events` lock acquired. $self.pending_events_processor.store(false, Ordering::Release); } if !post_event_actions.is_empty() { $self.handle_post_event_actions(post_event_actions); // If we had some actions, go around again as we may have more events now processed_all_events = false; } if result == NotifyOption::DoPersist { $self.persistence_notifier.notify(); } } } } impl ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// Constructs a new `ChannelManager` to hold several channels and route between them. /// /// The current time or latest block header time can be provided as the `current_timestamp`. /// /// This is the main "logic hub" for all channel-related actions, and implements /// [`ChannelMessageHandler`]. /// /// Non-proportional fees are fixed according to our risk using the provided fee estimator. /// /// Users need to notify the new `ChannelManager` when a new block is connected or /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for /// more details. /// /// [`block_connected`]: chain::Listen::block_connected /// [`block_disconnected`]: chain::Listen::block_disconnected /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash pub fn new( fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters, current_timestamp: u32, ) -> Self { let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes()); let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material(); let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material); ChannelManager { default_configuration: config.clone(), genesis_hash: genesis_block(params.network).header.block_hash(), fee_estimator: LowerBoundedFeeEstimator::new(fee_est), chain_monitor, tx_broadcaster, router, best_block: RwLock::new(params.best_block), outbound_scid_aliases: Mutex::new(HashSet::new()), pending_inbound_payments: Mutex::new(HashMap::new()), pending_outbound_payments: OutboundPayments::new(), forward_htlcs: Mutex::new(HashMap::new()), claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }), pending_intercepted_htlcs: Mutex::new(HashMap::new()), id_to_peer: Mutex::new(HashMap::new()), short_to_chan_info: FairRwLock::new(HashMap::new()), our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(), secp_ctx, inbound_payment_key: expanded_inbound_key, fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(), probing_cookie_secret: entropy_source.get_secure_random_bytes(), highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize), per_peer_state: FairRwLock::new(HashMap::new()), pending_events: Mutex::new(VecDeque::new()), pending_events_processor: AtomicBool::new(false), pending_background_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), background_events_processed_since_startup: AtomicBool::new(false), persistence_notifier: Notifier::new(), entropy_source, node_signer, signer_provider, logger, } } /// Gets the current configuration applied to all new channels. pub fn get_current_default_configuration(&self) -> &UserConfig { &self.default_configuration } fn create_and_insert_outbound_scid_alias(&self) -> u64 { let height = self.best_block.read().unwrap().height(); let mut outbound_scid_alias = 0; let mut i = 0; loop { if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias outbound_scid_alias += 1; } else { outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source); } if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) { break; } i += 1; if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); } } outbound_scid_alias } /// Creates a new outbound channel to the given remote node and with the given value. /// /// `user_channel_id` will be provided back as in /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it /// is simply copied to events and otherwise ignored. /// /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`. /// /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to /// generate a shutdown scriptpubkey or destination script set by /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`]. /// /// Note that we do not check if you are currently connected to the given peer. If no /// connection is available, the outbound `open_channel` message may fail to send, resulting in /// the channel eventually being silently forgotten (dropped on reload). /// /// Returns the new Channel's temporary `channel_id`. This ID will appear as /// [`Event::FundingGenerationReady::temporary_channel_id`] and in /// [`ChannelDetails::channel_id`] until after /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for /// one derived from the funding transaction's TXID. If the counterparty rejects the channel /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`]. /// /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option) -> Result<[u8; 32], APIError> { if channel_value_satoshis < 1000 { return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) }); } let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); // We want to make sure the lock is actually acquired by PersistenceNotifierGuard. debug_assert!(&self.total_consistency_lock.try_write().is_err()); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(&their_network_key) .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?; let mut peer_state = peer_state_mutex.lock().unwrap(); let channel = { let outbound_scid_alias = self.create_and_insert_outbound_scid_alias(); let their_features = &peer_state.latest_features; let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration }; match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key, their_features, channel_value_satoshis, push_msat, user_channel_id, config, self.best_block.read().unwrap().height(), outbound_scid_alias) { Ok(res) => res, Err(e) => { self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias); return Err(e); }, } }; let res = channel.get_open_channel(self.genesis_hash.clone()); let temporary_channel_id = channel.context.channel_id(); match peer_state.outbound_v1_channel_by_id.entry(temporary_channel_id) { hash_map::Entry::Occupied(_) => { if cfg!(fuzzing) { return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() }); } else { panic!("RNG is bad???"); } }, hash_map::Entry::Vacant(entry) => { entry.insert(channel); } } peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: their_network_key, msg: res, }); Ok(temporary_channel_id) } fn list_funded_channels_with_filter::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec { // Allocate our best estimate of the number of channels we have in the `res` // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside // of the ChannelMonitor handling. Therefore reallocations may still occur, but is // unlikely as the `short_to_chan_info` map often contains 2 entries for // the same channel. let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len()); { let best_block_height = self.best_block.read().unwrap().height(); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) { let details = ChannelDetails::from_channel_context(&channel.context, best_block_height, peer_state.latest_features.clone(), &self.fee_estimator); res.push(details); } } } res } /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for /// more information. pub fn list_channels(&self) -> Vec { // Allocate our best estimate of the number of channels we have in the `res` // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside // of the ChannelMonitor handling. Therefore reallocations may still occur, but is // unlikely as the `short_to_chan_info` map often contains 2 entries for // the same channel. let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len()); { let best_block_height = self.best_block.read().unwrap().height(); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (_channel_id, channel) in peer_state.channel_by_id.iter() { let details = ChannelDetails::from_channel_context(&channel.context, best_block_height, peer_state.latest_features.clone(), &self.fee_estimator); res.push(details); } for (_channel_id, channel) in peer_state.inbound_v1_channel_by_id.iter() { let details = ChannelDetails::from_channel_context(&channel.context, best_block_height, peer_state.latest_features.clone(), &self.fee_estimator); res.push(details); } for (_channel_id, channel) in peer_state.outbound_v1_channel_by_id.iter() { let details = ChannelDetails::from_channel_context(&channel.context, best_block_height, peer_state.latest_features.clone(), &self.fee_estimator); res.push(details); } } } res } /// Gets the list of usable channels, in random order. Useful as an argument to /// [`Router::find_route`] to ensure non-announced channels are used. /// /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria /// are. pub fn list_usable_channels(&self) -> Vec { // Note we use is_live here instead of usable which leads to somewhat confused // internal/external nomenclature, but that's ok cause that's probably what the user // really wanted anyway. self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live()) } /// Gets the list of channels we have with a given counterparty, in random order. pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec { let best_block_height = self.best_block.read().unwrap().height(); let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let features = &peer_state.latest_features; return peer_state.channel_by_id .iter() .map(|(_, channel)| ChannelDetails::from_channel_context(&channel.context, best_block_height, features.clone(), &self.fee_estimator)) .collect(); } vec![] } /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a /// successful path, or have unresolved HTLCs. /// /// This can be useful for payments that may have been prepared, but ultimately not sent, as a /// result of a crash. If such a payment exists, is not listed here, and an /// [`Event::PaymentSent`] has not been received, you may consider resending the payment. /// /// [`Event::PaymentSent`]: events::Event::PaymentSent pub fn list_recent_payments(&self) -> Vec { self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter() .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment { PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => { Some(RecentPaymentDetails::Pending { payment_hash: *payment_hash, total_msat: *total_msat, }) }, PendingOutboundPayment::Abandoned { payment_hash, .. } => { Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash }) }, PendingOutboundPayment::Fulfilled { payment_hash, .. } => { Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash }) }, PendingOutboundPayment::Legacy { .. } => None }) .collect() } /// Helper function that issues the channel close events fn issue_channel_close_events(&self, context: &ChannelContext<::Signer>, closure_reason: ClosureReason) { let mut pending_events_lock = self.pending_events.lock().unwrap(); match context.unbroadcasted_funding() { Some(transaction) => { pending_events_lock.push_back((events::Event::DiscardFunding { channel_id: context.channel_id(), transaction }, None)); }, None => {}, } pending_events_lock.push_back((events::Event::ChannelClosed { channel_id: context.channel_id(), user_channel_id: context.get_user_id(), reason: closure_reason }, None)); } fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option, override_shutdown_script: Option) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>; let result: Result<(), _> = loop { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { let funding_txo_opt = chan_entry.get().context.get_funding_txo(); let their_features = &peer_state.latest_features; let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut() .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?; failed_htlcs = htlcs; // We can send the `shutdown` message before updating the `ChannelMonitor` // here as we don't need the monitor update to complete until we send a // `shutdown_signed`, which we'll delay if we're pending a monitor update. peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: *counterparty_node_id, msg: shutdown_msg, }); // Update the monitor with the shutdown script if necessary. if let Some(monitor_update) = monitor_update_opt.take() { break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update, peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ()); } if chan_entry.get().is_shutdown() { let channel = remove_channel!(self, chan_entry); if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) { peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: channel_update }); } self.issue_channel_close_events(&channel.context, ClosureReason::HolderForceClosed); } break Ok(()); }, hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) }) } }; for htlc_source in failed_htlcs.drain(..) { let reason = HTLCFailReason::from_failure_code(0x4000 | 8); let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id }; self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver); } let _ = handle_error!(self, result, *counterparty_node_id); Ok(()) } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// * If we are the channel initiator, we will pay between our [`Background`] and /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee /// estimate. /// * If our counterparty is the channel initiator, we will require a channel closing /// transaction feerate of at least our [`Background`] feerate or the feerate which /// would appear on a force-closure transaction, whichever is lower. We will allow our /// counterparty to pay as much fee as they'd like, however. /// /// May generate a [`SendShutdown`] message event on success, which should be relayed. /// /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to /// generate a shutdown scriptpubkey or destination script set by /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the /// channel. /// /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> { self.close_channel_internal(channel_id, counterparty_node_id, None, None) } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated /// the channel being closed or not: /// * If we are the channel initiator, we will pay at least this feerate on the closing /// transaction. The upper-bound is set by /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater). /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which /// will appear on a force-closure transaction, whichever is lower). /// /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction. /// Will fail if a shutdown script has already been set for this channel by /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must /// also be compatible with our and the counterparty's features. /// /// May generate a [`SendShutdown`] message event on success, which should be relayed. /// /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to /// generate a shutdown scriptpubkey or destination script set by /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the /// channel. /// /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown pub fn close_channel_with_feerate_and_script(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option, shutdown_script: Option) -> Result<(), APIError> { self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script) } #[inline] fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) { let (monitor_update_option, mut failed_htlcs) = shutdown_res; log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len()); for htlc_source in failed_htlcs.drain(..) { let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source; let reason = HTLCFailReason::from_failure_code(0x4000 | 8); let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id }; self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver); } if let Some((_, funding_txo, monitor_update)) = monitor_update_option { // There isn't anything we can do if we get an update failure - we're already // force-closing. The monitor update on the required in-memory copy should broadcast // the latest local state, which is the best we can do anyway. Thus, it is safe to // ignore the result here. let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update); } } /// `peer_msg` should be set when we receive a message from a peer, but not set when the /// user closes, which will be re-exposed as the `ChannelClosed` reason. fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool) -> Result { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(peer_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?; let (update_opt, counterparty_node_id) = { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let closure_reason = if let Some(peer_msg) = peer_msg { ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) } } else { ClosureReason::HolderForceClosed }; if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) { log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..])); self.issue_channel_close_events(&chan.get().context, closure_reason); let mut chan = remove_channel!(self, chan); self.finish_force_close_channel(chan.context.force_shutdown(broadcast)); (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id()) } else if let hash_map::Entry::Occupied(chan) = peer_state.outbound_v1_channel_by_id.entry(channel_id.clone()) { log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..])); self.issue_channel_close_events(&chan.get().context, closure_reason); let mut chan = remove_channel!(self, chan); self.finish_force_close_channel(chan.context.force_shutdown(false)); // Prefunded channel has no update (None, chan.context.get_counterparty_node_id()) } else if let hash_map::Entry::Occupied(chan) = peer_state.inbound_v1_channel_by_id.entry(channel_id.clone()) { log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..])); self.issue_channel_close_events(&chan.get().context, closure_reason); let mut chan = remove_channel!(self, chan); self.finish_force_close_channel(chan.context.force_shutdown(false)); // Prefunded channel has no update (None, chan.context.get_counterparty_node_id()) } else { return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) }); } }; if let Some(update) = update_opt { let mut peer_state = peer_state_mutex.lock().unwrap(); peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(counterparty_node_id) } fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) { Ok(counterparty_node_id) => { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) { let mut peer_state = peer_state_mutex.lock().unwrap(); peer_state.pending_msg_events.push( events::MessageSendEvent::HandleError { node_id: counterparty_node_id, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() } }, } ); } Ok(()) }, Err(e) => Err(e) } } /// Force closes a channel, immediately broadcasting the latest local transaction(s) and /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding /// channel. pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> { self.force_close_sending_error(channel_id, counterparty_node_id, true) } /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the /// `counterparty_node_id` isn't the counterparty of the corresponding channel. /// /// You can always get the latest local transaction(s) to broadcast from /// [`ChannelMonitor::get_latest_holder_commitment_txn`]. pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> { self.force_close_sending_error(channel_id, counterparty_node_id, false) } /// Force close all channels, immediately broadcasting the latest local commitment transaction /// for each to the chain and rejecting new HTLCs on each. pub fn force_close_all_channels_broadcasting_latest_txn(&self) { for chan in self.list_channels() { let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id); } } /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest /// local transaction(s). pub fn force_close_all_channels_without_broadcasting_txn(&self) { for chan in self.list_channels() { let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id); } } fn construct_recv_pending_htlc_info( &self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32], payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool, counterparty_skimmed_fee_msat: Option, ) -> Result { // final_incorrect_cltv_expiry if hop_data.outgoing_cltv_value > cltv_expiry { return Err(ReceiveError { msg: "Upstream node set CLTV to less than the CLTV set by the sender", err_code: 18, err_data: cltv_expiry.to_be_bytes().to_vec() }) } // final_expiry_too_soon // We have to have some headroom to broadcast on chain if we have the preimage, so make sure // we have at least HTLC_FAIL_BACK_BUFFER blocks to go. // // Also, ensure that, in the case of an unknown preimage for the received payment hash, our // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a // channel closure (see HTLC_FAIL_BACK_BUFFER rationale). let current_height: u32 = self.best_block.read().unwrap().height(); if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 { let mut err_data = Vec::with_capacity(12); err_data.extend_from_slice(&amt_msat.to_be_bytes()); err_data.extend_from_slice(¤t_height.to_be_bytes()); return Err(ReceiveError { err_code: 0x4000 | 15, err_data, msg: "The final CLTV expiry is too soon to handle", }); } if (!allow_underpay && hop_data.amt_to_forward > amt_msat) || (allow_underpay && hop_data.amt_to_forward > amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0))) { return Err(ReceiveError { err_code: 19, err_data: amt_msat.to_be_bytes().to_vec(), msg: "Upstream node sent less than we were supposed to receive in payment", }); } let routing = match hop_data.format { msgs::OnionHopDataFormat::NonFinalNode { .. } => { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "Got non final data with an HMAC of 0", }); }, msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage, payment_metadata } => { if let Some(payment_preimage) = keysend_preimage { // We need to check that the sender knows the keysend preimage before processing this // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X // could discover the final destination of X, by probing the adjacent nodes on the route // with a keysend payment of identical payment hash to X and observing the processing // time discrepancies due to a hash collision with X. let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); if hashed_preimage != payment_hash { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "Payment preimage didn't match payment hash", }); } if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() { return Err(ReceiveError { err_code: 0x4000|22, err_data: Vec::new(), msg: "We don't support MPP keysend payments", }); } PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry: hop_data.outgoing_cltv_value, } } else if let Some(data) = payment_data { PendingHTLCRouting::Receive { payment_data: data, payment_metadata, incoming_cltv_expiry: hop_data.outgoing_cltv_value, phantom_shared_secret, } } else { return Err(ReceiveError { err_code: 0x4000|0x2000|3, err_data: Vec::new(), msg: "We require payment_secrets", }); } }, }; Ok(PendingHTLCInfo { routing, payment_hash, incoming_shared_secret: shared_secret, incoming_amt_msat: Some(amt_msat), outgoing_amt_msat: hop_data.amt_to_forward, outgoing_cltv_value: hop_data.outgoing_cltv_value, skimmed_fee_msat: counterparty_skimmed_fee_msat, }) } fn decode_update_add_htlc_onion( &self, msg: &msgs::UpdateAddHTLC ) -> Result<(onion_utils::Hop, [u8; 32], Option>), HTLCFailureMsg> { macro_rules! return_malformed_err { ($msg: expr, $err_code: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(), failure_code: $err_code, })); } } } if let Err(_) = msg.onion_routing_packet.public_key { return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6); } let shared_secret = self.node_signer.ecdh( Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None ).unwrap().secret_bytes(); if msg.onion_routing_packet.version != 0 { //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way, //the hash doesn't really serve any purpose - in the case of hashing all data, the //receiving node would have to brute force to figure out which version was put in the //packet by the node that send us the message, in the case of hashing the hop_data, the //node knows the HMAC matched, so they already know what is there... return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4); } macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: HTLCFailReason::reason($err_code, $data.to_vec()) .get_encrypted_failure_packet(&shared_secret, &None), })); } } } let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) { Ok(res) => res, Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => { return_malformed_err!(err_msg, err_code); }, Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => { return_err!(err_msg, err_code, &[0; 0]); }, }; let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop { onion_utils::Hop::Forward { next_hop_data: msgs::OnionHopData { format: msgs::OnionHopDataFormat::NonFinalNode { short_channel_id }, amt_to_forward, outgoing_cltv_value, }, .. } => { let next_pk = onion_utils::next_hop_packet_pubkey(&self.secp_ctx, msg.onion_routing_packet.public_key.unwrap(), &shared_secret); (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_pk)) }, // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the // inbound channel's state. onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)), onion_utils::Hop::Forward { next_hop_data: msgs::OnionHopData { format: msgs::OnionHopDataFormat::FinalNode { .. }, .. }, .. } => { return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]); } }; // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we // can't hold the outbound peer state lock at the same time as the inbound peer state lock. if let Some((err, mut code, chan_update)) = loop { let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned(); let forwarding_chan_info_opt = match id_option { None => { // unknown_next_peer // Note that this is likely a timing oracle for detecting whether an scid is a // phantom or an intercept. if (self.default_configuration.accept_intercept_htlcs && fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) || fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash) { None } else { break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None)); } }, Some((cp_id, id)) => Some((cp_id.clone(), id.clone())), }; let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id); if peer_state_mutex_opt.is_none() { break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None)); } let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) { None => { // Channel was removed. The short_to_chan_info and channel_by_id maps // have no consistency guarantees. break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None)); }, Some(chan) => chan }; if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels { // Note that the behavior here should be identical to the above block - we // should NOT reveal the existence or non-existence of a private channel if // we don't allow forwards outbound over them. break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None)); } if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() { // `option_scid_alias` (referred to in LDK as `scid_privacy`) means // "refuse to forward unless the SCID alias was used", so we pretend // we don't have the channel here. break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None)); } let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok(); // Note that we could technically not return an error yet here and just hope // that the connection is reestablished or monitor updated by the time we get // around to doing the actual forward, but better to fail early if we can and // hopefully an attacker trying to path-trace payments cannot make this occur // on a small/per-node/per-channel scale. if !chan.context.is_live() { // channel_disabled // If the channel_update we're going to return is disabled (i.e. the // peer has been disabled for some time), return `channel_disabled`, // otherwise return `temporary_channel_failure`. if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) { break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt)); } else { break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt)); } } if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt)); } if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) { break Some((err, code, chan_update_opt)); } chan_update_opt } else { if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 { // We really should set `incorrect_cltv_expiry` here but as we're not // forwarding over a real channel we can't generate a channel_update // for it. Instead we just return a generic temporary_node_failure. break Some(( "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x2000 | 2, None, )); } None }; let cur_height = self.best_block.read().unwrap().height() + 1; // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, // but we want to be robust wrt to counterparty packet sanitization (see // HTLC_FAIL_BACK_BUFFER rationale). if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt)); } if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far break Some(("CLTV expiry is too far in the future", 21, None)); } // If the HTLC expires ~now, don't bother trying to forward it to our // counterparty. They should fail it anyway, but we don't want to bother with // the round-trips or risk them deciding they definitely want the HTLC and // force-closing to ensure they get it if we're offline. // We previously had a much more aggressive check here which tried to ensure // our counterparty receives an HTLC which has *our* risk threshold met on it, // but there is no need to do that, and since we're a bit conservative with our // risk threshold it just results in failing to forward payments. if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 { break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt)); } break None; } { let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2)); if let Some(chan_update) = chan_update { if code == 0x1000 | 11 || code == 0x1000 | 12 { msg.amount_msat.write(&mut res).expect("Writes cannot fail"); } else if code == 0x1000 | 13 { msg.cltv_expiry.write(&mut res).expect("Writes cannot fail"); } else if code == 0x1000 | 20 { // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791 0u16.write(&mut res).expect("Writes cannot fail"); } (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail"); msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail"); chan_update.write(&mut res).expect("Writes cannot fail"); } else if code & 0x1000 == 0x1000 { // If we're trying to return an error that requires a `channel_update` but // we're forwarding to a phantom or intercept "channel" (i.e. cannot // generate an update), just use the generic "temporary_node_failure" // instead. code = 0x2000 | 2; } return_err!(err, code, &res.0[..]); } Ok((next_hop, shared_secret, next_packet_pk_opt)) } fn construct_pending_htlc_status<'a>( &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop, allow_underpay: bool, next_packet_pubkey_opt: Option> ) -> PendingHTLCStatus { macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: HTLCFailReason::reason($err_code, $data.to_vec()) .get_encrypted_failure_packet(&shared_secret, &None), })); } } } match decoded_hop { onion_utils::Hop::Receive(next_hop_data) => { // OUR PAYMENT! match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat) { Ok(info) => { // Note that we could obviously respond immediately with an update_fulfill_htlc // message, however that would leak that we are the recipient of this payment, so // instead we stay symmetric with the forwarding case, only responding (after a // delay) once they've send us a commitment_signed! PendingHTLCStatus::Forward(info) }, Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data) } }, onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => { debug_assert!(next_packet_pubkey_opt.is_some()); let outgoing_packet = msgs::OnionPacket { version: 0, public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)), hop_data: new_packet_bytes, hmac: next_hop_hmac.clone(), }; let short_channel_id = match next_hop_data.format { msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id, msgs::OnionHopDataFormat::FinalNode { .. } => { return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]); }, }; PendingHTLCStatus::Forward(PendingHTLCInfo { routing: PendingHTLCRouting::Forward { onion_packet: outgoing_packet, short_channel_id, }, payment_hash: msg.payment_hash.clone(), incoming_shared_secret: shared_secret, incoming_amt_msat: Some(msg.amount_msat), outgoing_amt_msat: next_hop_data.amt_to_forward, outgoing_cltv_value: next_hop_data.outgoing_cltv_value, skimmed_fee_msat: None, }) } } } /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is /// public, and thus should be called whenever the result is going to be passed out in a /// [`MessageSendEvent::BroadcastChannelUpdate`] event. /// /// Note that in [`internal_closing_signed`], this function is called without the `peer_state` /// corresponding to the channel's counterparty locked, as the channel been removed from the /// storage and the `peer_state` lock has been dropped. /// /// [`channel_update`]: msgs::ChannelUpdate /// [`internal_closing_signed`]: Self::internal_closing_signed fn get_channel_update_for_broadcast(&self, chan: &Channel<::Signer>) -> Result { if !chan.context.should_announce() { return Err(LightningError { err: "Cannot broadcast a channel_update for a private channel".to_owned(), action: msgs::ErrorAction::IgnoreError }); } if chan.context.get_short_channel_id().is_none() { return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}); } log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.context.channel_id())); self.get_channel_update_for_unicast(chan) } /// Gets the current [`channel_update`] for the given channel. This does not check if the channel /// is public (only returning an `Err` if the channel does not yet have an assigned SCID), /// and thus MUST NOT be called unless the recipient of the resulting message has already /// provided evidence that they know about the existence of the channel. /// /// Note that through [`internal_closing_signed`], this function is called without the /// `peer_state` corresponding to the channel's counterparty locked, as the channel been /// removed from the storage and the `peer_state` lock has been dropped. /// /// [`channel_update`]: msgs::ChannelUpdate /// [`internal_closing_signed`]: Self::internal_closing_signed fn get_channel_update_for_unicast(&self, chan: &Channel<::Signer>) -> Result { log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.context.channel_id())); let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) { None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}), Some(id) => id, }; self.get_channel_update_for_onion(short_channel_id, chan) } fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<::Signer>) -> Result { log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.context.channel_id())); let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..]; let enabled = chan.context.is_usable() && match chan.channel_update_status() { ChannelUpdateStatus::Enabled => true, ChannelUpdateStatus::DisabledStaged(_) => true, ChannelUpdateStatus::Disabled => false, ChannelUpdateStatus::EnabledStaged(_) => false, }; let unsigned = msgs::UnsignedChannelUpdate { chain_hash: self.genesis_hash, short_channel_id, timestamp: chan.context.get_update_time_counter(), flags: (!were_node_one) as u8 | ((!enabled as u8) << 1), cltv_expiry_delta: chan.context.get_cltv_expiry_delta(), htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(), htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(), fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(), fee_proportional_millionths: chan.context.get_fee_proportional_millionths(), excess_data: Vec::new(), }; // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`. // If we returned an error and the `node_signer` cannot provide a signature for whatever // reason`, we wouldn't be able to receive inbound payments through the corresponding // channel. let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap(); Ok(msgs::ChannelUpdate { signature: sig, contents: unsigned }) } #[cfg(test)] pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option, session_priv_bytes: [u8; 32]) -> Result<(), APIError> { let _lck = self.total_consistency_lock.read().unwrap(); self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes) } fn send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option, session_priv_bytes: [u8; 32]) -> Result<(), APIError> { // The top-level caller should hold the total_consistency_lock read lock. debug_assert!(self.total_consistency_lock.try_write().is_err()); log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.hops.first().unwrap().short_channel_id); let prng_seed = self.entropy_source.get_secure_random_bytes(); let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted"); let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv) .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?; let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?; let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash) .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?; let err: Result<(), _> = loop { let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) { None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}), Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()), }; let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(&counterparty_node_id) .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) { if !chan.get().context.is_live() { return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()}); } let funding_txo = chan.get().context.get_funding_txo().unwrap(); let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute { path: path.clone(), session_priv: session_priv.clone(), first_hop_htlc_msat: htlc_msat, payment_id, }, onion_packet, None, &self.fee_estimator, &self.logger); match break_chan_entry!(self, send_res, chan) { Some(monitor_update) => { match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) { Err(e) => break Err(e), Ok(false) => { // Note that MonitorUpdateInProgress here indicates (per function // docs) that we will resend the commitment update once monitor // updating completes. Therefore, we must return an error // indicating that it is unsafe to retry the payment wholesale, // which we do in the send_payment check for // MonitorUpdateInProgress, below. return Err(APIError::MonitorUpdateInProgress); }, Ok(true) => {}, } }, None => { }, } } else { // The channel was likely removed after we fetched the id from the // `short_to_chan_info` map, but before we successfully locked the // `channel_by_id` map. // This can occur as no consistency guarantees exists between the two maps. return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}); } return Ok(()); }; match handle_error!(self, err, path.hops.first().unwrap().pubkey) { Ok(_) => unreachable!(), Err(e) => { Err(APIError::ChannelUnavailable { err: e.err }) }, } } /// Sends a payment along a given route. /// /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`] /// fields for more info. /// /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via /// [`PeerManager::process_events`]). /// /// # Avoiding Duplicate Payments /// /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a /// second payment with the same [`PaymentId`]. /// /// Thus, in order to ensure duplicate payments are not sent, you should implement your own /// tracking of payments, including state to indicate once a payment has completed. Because you /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes. /// /// Additionally, in the scenario where we begin the process of sending a payment, but crash /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See /// [`ChannelManager::list_recent_payments`] for more information. /// /// # Possible Error States on [`PaymentSendFailure`] /// /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with /// each entry matching the corresponding-index entry in the route paths, see /// [`PaymentSendFailure`] for more info. /// /// In general, a path may raise: /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee, /// node public key) is specified. /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates /// (including due to previous monitor update failure or new permanent monitor update /// failure). /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the /// relevant updates. /// /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a /// different route unless you intend to pay twice! /// /// [`RouteHop`]: crate::routing::router::RouteHop /// [`Event::PaymentSent`]: events::Event::PaymentSent /// [`Event::PaymentFailed`]: events::Event::PaymentFailed /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on /// `route_params` and retry failed payment paths based on `retry_strategy`. pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height, &self.logger, &self.pending_events, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } #[cfg(test)] pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option, payment_id: PaymentId, recv_value_msat: Option, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } #[cfg(test)] pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result, PaymentSendFailure> { let best_block_height = self.best_block.read().unwrap().height(); self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height) } #[cfg(test)] pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option>) { self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata); } /// Signals that no further retries for the given payment should occur. Useful if you have a /// pending outbound payment with retries remaining, but wish to stop retrying the payment before /// retries are exhausted. /// /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon /// as there are no remaining pending HTLCs for this payment. /// /// Note that calling this method does *not* prevent a payment from succeeding. You must still /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to /// determine the ultimate status of a payment. /// /// If an [`Event::PaymentFailed`] event is generated and we restart without this /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated. /// /// [`Event::PaymentFailed`]: events::Event::PaymentFailed /// [`Event::PaymentSent`]: events::Event::PaymentSent pub fn abandon_payment(&self, payment_id: PaymentId) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events); } /// Send a spontaneous payment, which is a payment that does not require the recipient to have /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify /// the preimage, it must be a cryptographically secure random value that no intermediate node /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will /// never reach the recipient. /// /// See [`send_payment`] documentation for more details on the return value of this function /// and idempotency guarantees provided by the [`PaymentId`] key. /// /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See /// [`send_payment`] for more information about the risks of duplicate preimage usage. /// /// [`send_payment`]: Self::send_payment pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments.send_spontaneous_payment_with_route( route, payment_preimage, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route /// based on `route_params` and retry failed payment paths based on `retry_strategy`. /// /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous /// payments. /// /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion, payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height, &self.logger, &self.pending_events, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } /// Send a payment that is probing the given route for liquidity. We calculate the /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows /// us to easily discern them from real payments. pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> { let best_block_height = self.best_block.read().unwrap().height(); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)) } /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a /// payment probe. #[cfg(test)] pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool { outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret) } /// Handles the generation of a funding transaction, optionally (for tests) with a function /// which checks the correctness of the funding transaction given the associated channel. fn funding_transaction_generated_intern::Signer>, &Transaction) -> Result>( &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput ) -> Result<(), APIError> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let (chan, msg) = match peer_state.outbound_v1_channel_by_id.remove(temporary_channel_id) { Some(chan) => { let funding_txo = find_funding_output(&chan, &funding_transaction)?; let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger) .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e { let channel_id = chan.context.channel_id(); let user_id = chan.context.get_user_id(); let shutdown_res = chan.context.force_shutdown(false); (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None)) } else { unreachable!(); }); match funding_res { Ok((chan, funding_msg)) => (chan, funding_msg), Err((chan, err)) => { mem::drop(peer_state_lock); mem::drop(per_peer_state); let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id()); return Err(APIError::ChannelUnavailable { err: "Signer refused to sign the initial commitment transaction".to_owned() }); }, } }, None => { return Err(APIError::ChannelUnavailable { err: format!( "Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id), }) }, }; peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated { node_id: chan.context.get_counterparty_node_id(), msg, }); match peer_state.channel_by_id.entry(chan.context.channel_id()) { hash_map::Entry::Occupied(_) => { panic!("Generated duplicate funding txid?"); }, hash_map::Entry::Vacant(e) => { let mut id_to_peer = self.id_to_peer.lock().unwrap(); if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() { panic!("id_to_peer map already contained funding txid, which shouldn't be possible"); } e.insert(chan); } } Ok(()) } #[cfg(test)] pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> { self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| { Ok(OutPoint { txid: tx.txid(), index: output_index }) }) } /// Call this upon creation of a funding transaction for the given channel. /// /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`]. /// /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation /// across the p2p network. /// /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`]. /// /// May panic if the output found in the funding transaction is duplicative with some other /// channel (note that this should be trivially prevented by using unique funding transaction /// keys per-channel). /// /// Do NOT broadcast the funding transaction yourself. When we have safely received our /// counterparty's signature the funding transaction will automatically be broadcast via the /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed. /// /// Note that this includes RBF or similar transaction replacement strategies - lightning does /// not currently support replacing a funding transaction on an existing channel. Instead, /// create a new channel with a conflicting funding transaction. /// /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend /// the wallet software generating the funding transaction to apply anti-fee sniping as /// implemented by Bitcoin Core wallet. See /// for more details. /// /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); for inp in funding_transaction.input.iter() { if inp.witness.is_empty() { return Err(APIError::APIMisuseError { err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned() }); } } { let height = self.best_block.read().unwrap().height(); // Transactions are evaluated as final by network mempools if their locktime is strictly // lower than the next block height. However, the modules constituting our Lightning // node might not have perfect sync about their blockchain views. Thus, if the wallet // module is ahead of LDK, only allow one more block of headroom. if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 { return Err(APIError::APIMisuseError { err: "Funding transaction absolute timelock is non-final".to_owned() }); } } self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| { if tx.output.len() > u16::max_value() as usize { return Err(APIError::APIMisuseError { err: "Transaction had more than 2^16 outputs, which is not supported".to_owned() }); } let mut output_index = None; let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh(); for (idx, outp) in tx.output.iter().enumerate() { if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() { if output_index.is_some() { return Err(APIError::APIMisuseError { err: "Multiple outputs matched the expected script and value".to_owned() }); } output_index = Some(idx as u16); } } if output_index.is_none() { return Err(APIError::APIMisuseError { err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned() }); } Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() }) }) } /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels. /// /// Once the updates are applied, each eligible channel (advertised with a known short channel /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`], /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated /// containing the new [`ChannelUpdate`] message which should be broadcast to the network. /// /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect /// `counterparty_node_id` is provided. /// /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value /// below [`MIN_CLTV_EXPIRY_DELTA`]. /// /// If an error is returned, none of the updates should be considered applied. /// /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate /// [`ChannelUpdate`]: msgs::ChannelUpdate /// [`ChannelUnavailable`]: APIError::ChannelUnavailable /// [`APIMisuseError`]: APIError::APIMisuseError pub fn update_partial_channel_config( &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config_update: &ChannelConfigUpdate, ) -> Result<(), APIError> { if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) { return Err(APIError::APIMisuseError { err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA), }); } let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for channel_id in channel_ids { if !peer_state.channel_by_id.contains_key(channel_id) { return Err(APIError::ChannelUnavailable { err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id), }); } } for channel_id in channel_ids { let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap(); let mut config = channel.context.config(); config.apply(config_update); if !channel.context.update_config(&config) { continue; } if let Ok(msg) = self.get_channel_update_for_broadcast(channel) { peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg }); } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) { peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate { node_id: channel.context.get_counterparty_node_id(), msg, }); } } Ok(()) } /// Atomically updates the [`ChannelConfig`] for the given channels. /// /// Once the updates are applied, each eligible channel (advertised with a known short channel /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`], /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated /// containing the new [`ChannelUpdate`] message which should be broadcast to the network. /// /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect /// `counterparty_node_id` is provided. /// /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value /// below [`MIN_CLTV_EXPIRY_DELTA`]. /// /// If an error is returned, none of the updates should be considered applied. /// /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate /// [`ChannelUpdate`]: msgs::ChannelUpdate /// [`ChannelUnavailable`]: APIError::ChannelUnavailable /// [`APIMisuseError`]: APIError::APIMisuseError pub fn update_channel_config( &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig, ) -> Result<(), APIError> { return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into()); } /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event. /// /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time /// channel to a receiving node if the node lacks sufficient inbound liquidity. /// /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the /// receiver's invoice route hints. These route hints will signal to LDK to generate an /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event. /// /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop /// you from forwarding more than you received. See /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount /// than expected. /// /// Errors if the event was not handled in time, in which case the HTLC was automatically failed /// backwards. /// /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat // TODO: when we move to deciding the best outbound channel at forward time, only take // `next_node_id` and not `next_hop_channel_id` pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let next_hop_scid = { let peer_state_lock = self.per_peer_state.read().unwrap(); let peer_state_mutex = peer_state_lock.get(&next_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.get(next_hop_channel_id) { Some(chan) => { if !chan.context.is_usable() { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id)) }) } chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias()) }, None => return Err(APIError::ChannelUnavailable { err: format!("Funded channel with id {} not found for the passed counterparty node_id {}. Channel may still be opening.", log_bytes!(*next_hop_channel_id), next_node_id) }) } }; let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id) .ok_or_else(|| APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) })?; let routing = match payment.forward_info.routing { PendingHTLCRouting::Forward { onion_packet, .. } => { PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid } }, _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted }; let skimmed_fee_msat = payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat); let pending_htlc_info = PendingHTLCInfo { skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) }, outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info }; let mut per_source_pending_forward = [( payment.prev_short_channel_id, payment.prev_funding_outpoint, payment.prev_user_channel_id, vec![(pending_htlc_info, payment.prev_htlc_id)] )]; self.forward_htlcs(&mut per_source_pending_forward); Ok(()) } /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`]. /// /// Errors if the event was not handled in time, in which case the HTLC was automatically failed /// backwards. /// /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id) .ok_or_else(|| APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) })?; if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing { let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: payment.prev_short_channel_id, outpoint: payment.prev_funding_outpoint, htlc_id: payment.prev_htlc_id, incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret, phantom_shared_secret: None, }); let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10); let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id }; self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination); } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted Ok(()) } /// Processes HTLCs which are pending waiting on random forward delay. /// /// Should only really ever be called in response to a PendingHTLCsForwardable event. /// Will likely generate further events. pub fn process_pending_htlc_forwards(&self) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let mut new_events = VecDeque::new(); let mut failed_forwards = Vec::new(); let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new(); { let mut forward_htlcs = HashMap::new(); mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap()); for (short_chan_id, mut pending_forwards) in forward_htlcs { if short_chan_id != 0 { macro_rules! forwarding_channel_not_found { () => { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id, forward_info: PendingHTLCInfo { routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, .. } }) => { macro_rules! failure_handler { ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, phantom_shared_secret: $phantom_ss, }); let reason = if $next_hop_unknown { HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id } } else { HTLCDestination::FailedPayment{ payment_hash } }; failed_forwards.push((htlc_source, payment_hash, HTLCFailReason::reason($err_code, $err_data), reason )); continue; } } macro_rules! fail_forward { ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => { { failure_handler!($msg, $err_code, $err_data, $phantom_ss, true); } } } macro_rules! failed_payment { ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => { { failure_handler!($msg, $err_code, $err_data, $phantom_ss, false); } } } if let PendingHTLCRouting::Forward { onion_packet, .. } = routing { let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode); if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) { let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes(); let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) { Ok(res) => res, Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => { let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner(); // In this scenario, the phantom would have sent us an // `update_fail_malformed_htlc`, meaning here we encrypt the error as // if it came from us (the second-to-last hop) but contains the sha256 // of the onion. failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None); }, Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => { failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret)); }, }; match next_hop { onion_utils::Hop::Receive(hop_data) => { match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret), false, None) { Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])), Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret)) } }, _ => panic!(), } } else { fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None); } } else { fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None); } }, HTLCForwardInfo::FailHTLC { .. } => { // Channel went away before we could fail it. This implies // the channel is now on chain and our counterparty is // trying to broadcast the HTLC-Timeout, but that's their // problem, not ours. } } } } } let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) { Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()), None => { forwarding_channel_not_found!(); continue; } }; let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id); if peer_state_mutex_opt.is_none() { forwarding_channel_not_found!(); continue; } let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(forward_chan_id) { hash_map::Entry::Vacant(_) => { forwarding_channel_not_found!(); continue; }, hash_map::Entry::Occupied(mut chan) => { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _, forward_info: PendingHTLCInfo { incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, .. }, }) => { log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, // Phantom payments are only PendingHTLCRouting::Receive. phantom_shared_secret: None, }); if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, skimmed_fee_msat, &self.fee_estimator, &self.logger) { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg); } else { panic!("Stated return value requirements in send_htlc() were not met"); } let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get()); failed_forwards.push((htlc_source, payment_hash, HTLCFailReason::reason(failure_code, data), HTLCDestination::NextHopChannel { node_id: Some(chan.get().context.get_counterparty_node_id()), channel_id: forward_chan_id } )); continue; } }, HTLCForwardInfo::AddHTLC { .. } => { panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward"); }, HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => { log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id); if let Err(e) = chan.get_mut().queue_fail_htlc( htlc_id, err_packet, &self.logger ) { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg); } else { panic!("Stated return value requirements in queue_fail_htlc() were not met"); } // fail-backs are best-effort, we probably already have one // pending, and if not that's OK, if not, the channel is on // the chain and sending the HTLC-Timeout is their problem. continue; } }, } } } } } else { 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id, forward_info: PendingHTLCInfo { routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, skimmed_fee_msat, .. } }) => { let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing { PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret } => { let _legacy_hop_data = Some(payment_data.clone()); let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret), payment_metadata }; (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret, onion_fields) }, PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry } => { let onion_fields = RecipientOnionFields { payment_secret: payment_data.as_ref().map(|data| data.payment_secret), payment_metadata }; (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), payment_data, None, onion_fields) }, _ => { panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive"); } }; let claimable_htlc = ClaimableHTLC { prev_hop: HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, phantom_shared_secret, }, // We differentiate the received value from the sender intended value // if possible so that we don't prematurely mark MPP payments complete // if routing nodes overpay value: incoming_amt_msat.unwrap_or(outgoing_amt_msat), sender_intended_value: outgoing_amt_msat, timer_ticks: 0, total_value_received: None, total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat }, cltv_expiry, onion_payload, counterparty_skimmed_fee_msat: skimmed_fee_msat, }; let mut committed_to_claimable = false; macro_rules! fail_htlc { ($htlc: expr, $payment_hash: expr) => { debug_assert!(!committed_to_claimable); let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec(); htlc_msat_height_data.extend_from_slice( &self.best_block.read().unwrap().height().to_be_bytes(), ); failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: $htlc.prev_hop.short_channel_id, outpoint: prev_funding_outpoint, htlc_id: $htlc.prev_hop.htlc_id, incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret, phantom_shared_secret, }), payment_hash, HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data), HTLCDestination::FailedPayment { payment_hash: $payment_hash }, )); continue 'next_forwardable_htlc; } } let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret; let mut receiver_node_id = self.our_network_pubkey; if phantom_shared_secret.is_some() { receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode) .expect("Failed to get node_id for phantom node recipient"); } macro_rules! check_total_value { ($purpose: expr) => {{ let mut payment_claimable_generated = false; let is_keysend = match $purpose { events::PaymentPurpose::SpontaneousPayment(_) => true, events::PaymentPurpose::InvoicePayment { .. } => false, }; let mut claimable_payments = self.claimable_payments.lock().unwrap(); if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) { fail_htlc!(claimable_htlc, payment_hash); } let ref mut claimable_payment = claimable_payments.claimable_payments .entry(payment_hash) // Note that if we insert here we MUST NOT fail_htlc!() .or_insert_with(|| { committed_to_claimable = true; ClaimablePayment { purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None, } }); if $purpose != claimable_payment.purpose { let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" }; log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), log_bytes!(payment_hash.0), log_keysend(!is_keysend)); fail_htlc!(claimable_htlc, payment_hash); } if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() { log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc, payment_hash); } if let Some(earlier_fields) = &mut claimable_payment.onion_fields { if earlier_fields.check_merge(&mut onion_fields).is_err() { fail_htlc!(claimable_htlc, payment_hash); } } else { claimable_payment.onion_fields = Some(onion_fields); } let ref mut htlcs = &mut claimable_payment.htlcs; let mut total_value = claimable_htlc.sender_intended_value; let mut earliest_expiry = claimable_htlc.cltv_expiry; for htlc in htlcs.iter() { total_value += htlc.sender_intended_value; earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry); if htlc.total_msat != claimable_htlc.total_msat { log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})", log_bytes!(payment_hash.0), claimable_htlc.total_msat, htlc.total_msat); total_value = msgs::MAX_VALUE_MSAT; } if total_value >= msgs::MAX_VALUE_MSAT { break; } } // The condition determining whether an MPP is complete must // match exactly the condition used in `timer_tick_occurred` if total_value >= msgs::MAX_VALUE_MSAT { fail_htlc!(claimable_htlc, payment_hash); } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat { log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc, payment_hash); } else if total_value >= claimable_htlc.total_msat { #[allow(unused_assignments)] { committed_to_claimable = true; } let prev_channel_id = prev_funding_outpoint.to_channel_id(); htlcs.push(claimable_htlc); let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum(); htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat)); let counterparty_skimmed_fee_msat = htlcs.iter() .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum(); debug_assert!(total_value.saturating_sub(amount_msat) <= counterparty_skimmed_fee_msat); new_events.push_back((events::Event::PaymentClaimable { receiver_node_id: Some(receiver_node_id), payment_hash, purpose: $purpose, amount_msat, counterparty_skimmed_fee_msat, via_channel_id: Some(prev_channel_id), via_user_channel_id: Some(prev_user_channel_id), claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER), onion_fields: claimable_payment.onion_fields.clone(), }, None)); payment_claimable_generated = true; } else { // Nothing to do - we haven't reached the total // payment value yet, wait until we receive more // MPP parts. htlcs.push(claimable_htlc); #[allow(unused_assignments)] { committed_to_claimable = true; } } payment_claimable_generated }} } // Check that the payment hash and secret are known. Note that we // MUST take care to handle the "unknown payment hash" and // "incorrect payment secret" cases here identically or we'd expose // that we are the ultimate recipient of the given payment hash. // Further, we must not expose whether we have any other HTLCs // associated with the same payment_hash pending or not. let mut payment_secrets = self.pending_inbound_payments.lock().unwrap(); match payment_secrets.entry(payment_hash) { hash_map::Entry::Vacant(_) => { match claimable_htlc.onion_payload { OnionPayload::Invoice { .. } => { let payment_data = payment_data.unwrap(); let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) { Ok(result) => result, Err(()) => { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc, payment_hash); } }; if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta { let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64; if (cltv_expiry as u64) < expected_min_expiry_height { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})", log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height); fail_htlc!(claimable_htlc, payment_hash); } } let purpose = events::PaymentPurpose::InvoicePayment { payment_preimage: payment_preimage.clone(), payment_secret: payment_data.payment_secret, }; check_total_value!(purpose); }, OnionPayload::Spontaneous(preimage) => { let purpose = events::PaymentPurpose::SpontaneousPayment(preimage); check_total_value!(purpose); } } }, hash_map::Entry::Occupied(inbound_payment) => { if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload { log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc, payment_hash); } let payment_data = payment_data.unwrap(); if inbound_payment.get().payment_secret != payment_data.payment_secret { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0)); fail_htlc!(claimable_htlc, payment_hash); } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() { log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).", log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap()); fail_htlc!(claimable_htlc, payment_hash); } else { let purpose = events::PaymentPurpose::InvoicePayment { payment_preimage: inbound_payment.get().payment_preimage, payment_secret: payment_data.payment_secret, }; let payment_claimable_generated = check_total_value!(purpose); if payment_claimable_generated { inbound_payment.remove_entry(); } } }, }; }, HTLCForwardInfo::FailHTLC { .. } => { panic!("Got pending fail of our own HTLC"); } } } } } } let best_block_height = self.best_block.read().unwrap().height(); self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(), || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height, &self.pending_events, &self.logger, |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv| self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv)); for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) { self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination); } self.forward_htlcs(&mut phantom_receives); // Freeing the holding cell here is relatively redundant - in practice we'll do it when we // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's // nice to do the work now if we can rather than while we're trying to get messages in the // network stack. self.check_free_holding_cells(); if new_events.is_empty() { return } let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_events); } /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors. /// /// Expects the caller to have a total_consistency_lock read lock. fn process_background_events(&self) -> NotifyOption { debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread); self.background_events_processed_since_startup.store(true, Ordering::Release); let mut background_events = Vec::new(); mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events); if background_events.is_empty() { return NotifyOption::SkipPersist; } for event in background_events.drain(..) { match event { BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => { // The channel has already been closed, so no use bothering to care about the // monitor updating completing. let _ = self.chain_monitor.update_channel(funding_txo, &update); }, BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => { let mut updated_chan = false; let res = { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) { hash_map::Entry::Occupied(mut chan) => { updated_chan = true; handle_new_monitor_update!(self, funding_txo, update.clone(), peer_state_lock, peer_state, per_peer_state, chan).map(|_| ()) }, hash_map::Entry::Vacant(_) => Ok(()), } } else { Ok(()) } }; if !updated_chan { // TODO: Track this as in-flight even though the channel is closed. let _ = self.chain_monitor.update_channel(funding_txo, &update); } // TODO: If this channel has since closed, we're likely providing a payment // preimage update, which we must ensure is durable! We currently don't, // however, ensure that. if res.is_err() { log_error!(self.logger, "Failed to provide ChannelMonitorUpdate to closed channel! This likely lost us a payment preimage!"); } let _ = handle_error!(self, res, counterparty_node_id); }, BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) { handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan); } else { let update_actions = peer_state.monitor_update_blocked_actions .remove(&channel_id).unwrap_or(Vec::new()); mem::drop(peer_state_lock); mem::drop(per_peer_state); self.handle_monitor_update_completion_actions(update_actions); } } }, } } NotifyOption::DoPersist } #[cfg(any(test, feature = "_test_utils"))] /// Process background events, for functional testing pub fn test_process_background_events(&self) { let _lck = self.total_consistency_lock.read().unwrap(); let _ = self.process_background_events(); } fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<::Signer>, new_feerate: u32) -> NotifyOption { if !chan.context.is_outbound() { return NotifyOption::SkipPersist; } // If the feerate has decreased by less than half, don't bother if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() { log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.", log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate); return NotifyOption::SkipPersist; } if !chan.context.is_live() { log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).", log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate); return NotifyOption::SkipPersist; } log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.", log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate); chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger); NotifyOption::DoPersist } #[cfg(fuzzing)] /// In chanmon_consistency we want to sometimes do the channel fee updates done in /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what /// it wants to detect). Thus, we have a variant exposed here for its benefit. pub fn maybe_update_chan_fees(&self) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut should_persist = self.process_background_events(); let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (chan_id, chan) in peer_state.channel_by_id.iter_mut() { let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate); if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; } } } should_persist }); } /// Performs actions which should happen on startup and roughly once per minute thereafter. /// /// This currently includes: /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels, /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more /// than a minute, informing the network that they should no longer attempt to route over /// the channel. /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs /// with the current [`ChannelConfig`]. /// * Removing peers which have disconnected but and no longer have any channels. /// /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate /// estimate fetches. /// /// [`ChannelUpdate`]: msgs::ChannelUpdate /// [`ChannelConfig`]: crate::util::config::ChannelConfig pub fn timer_tick_occurred(&self) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut should_persist = self.process_background_events(); let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal); let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new(); let mut timed_out_mpp_htlcs = Vec::new(); let mut pending_peers_awaiting_removal = Vec::new(); { let per_peer_state = self.per_peer_state.read().unwrap(); for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; let counterparty_node_id = *counterparty_node_id; peer_state.channel_by_id.retain(|chan_id, chan| { let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate); if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; } if let Err(e) = chan.timer_check_closing_negotiation_progress() { let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id); handle_errors.push((Err(err), counterparty_node_id)); if needs_close { return false; } } match chan.channel_update_status() { ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)), ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)), ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled), ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled), ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => { n += 1; if n >= DISABLE_GOSSIP_TICKS { chan.set_channel_update_status(ChannelUpdateStatus::Disabled); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } should_persist = NotifyOption::DoPersist; } else { chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n)); } }, ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => { n += 1; if n >= ENABLE_GOSSIP_TICKS { chan.set_channel_update_status(ChannelUpdateStatus::Enabled); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } should_persist = NotifyOption::DoPersist; } else { chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n)); } }, _ => {}, } chan.context.maybe_expire_prev_config(); if chan.should_disconnect_peer_awaiting_response() { log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}", counterparty_node_id, log_bytes!(*chan_id)); pending_msg_events.push(MessageSendEvent::HandleError { node_id: counterparty_node_id, action: msgs::ErrorAction::DisconnectPeerWithWarning { msg: msgs::WarningMessage { channel_id: *chan_id, data: "Disconnecting due to timeout awaiting response".to_owned(), }, }, }); } true }); if peer_state.ok_to_remove(true) { pending_peers_awaiting_removal.push(counterparty_node_id); } } } // When a peer disconnects but still has channels, the peer's `peer_state` entry in the // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels // of to that peer is later closed while still being disconnected (i.e. force closed), // we therefore need to remove the peer from `peer_state` separately. // To avoid having to take the `per_peer_state` `write` lock once the channels are // closed, we instead remove such peers awaiting removal here on a timer, to limit the // negative effects on parallelism as much as possible. if pending_peers_awaiting_removal.len() > 0 { let mut per_peer_state = self.per_peer_state.write().unwrap(); for counterparty_node_id in pending_peers_awaiting_removal { match per_peer_state.entry(counterparty_node_id) { hash_map::Entry::Occupied(entry) => { // Remove the entry if the peer is still disconnected and we still // have no channels to the peer. let remove_entry = { let peer_state = entry.get().lock().unwrap(); peer_state.ok_to_remove(true) }; if remove_entry { entry.remove_entry(); } }, hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ } } } } self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| { if payment.htlcs.is_empty() { // This should be unreachable debug_assert!(false); return false; } if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload { // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat). // In this case we're not going to handle any timeouts of the parts here. // This condition determining whether the MPP is complete here must match // exactly the condition used in `process_pending_htlc_forwards`. if payment.htlcs[0].total_msat <= payment.htlcs.iter() .fold(0, |total, htlc| total + htlc.sender_intended_value) { return true; } else if payment.htlcs.iter_mut().any(|htlc| { htlc.timer_ticks += 1; return htlc.timer_ticks >= MPP_TIMEOUT_TICKS }) { timed_out_mpp_htlcs.extend(payment.htlcs.drain(..) .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash))); return false; } } true }); for htlc_source in timed_out_mpp_htlcs.drain(..) { let source = HTLCSource::PreviousHopData(htlc_source.0.clone()); let reason = HTLCFailReason::from_failure_code(23); let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 }; self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver); } for (err, counterparty_node_id) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events); // Technically we don't need to do this here, but if we have holding cell entries in a // channel that need freeing, it's better to do that here and block a background task // than block the message queueing pipeline. if self.check_free_holding_cells() { should_persist = NotifyOption::DoPersist; } should_persist }); } /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources /// along the path (including in our own channel on which we received it). /// /// Note that in some cases around unclean shutdown, it is possible the payment may have /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment /// may have already been failed automatically by LDK if it was nearing its expiration time. /// /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling /// [`ChannelManager::claim_funds`]), you should still monitor for /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on /// startup during which time claims that were in-progress at shutdown may be replayed. pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) { self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails); } /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the /// reason for the failure. /// /// See [`FailureCode`] for valid failure codes. pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash); if let Some(payment) = removed_source { for htlc in payment.htlcs { let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc); let source = HTLCSource::PreviousHopData(htlc.prev_hop); let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash }; self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver); } } } /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`]. fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason { match failure_code { FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16), FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16), FailureCode::IncorrectOrUnknownPaymentDetails => { let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec(); htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes()); HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data) } } } /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code /// that we want to return and a channel. /// /// This is for failures on the channel on which the HTLC was *received*, not failures /// forwarding fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<::Signer>) -> (u16, Vec) { // We can't be sure what SCID was used when relaying inbound towards us, so we have to // guess somewhat. If its a public channel, we figure best to just use the real SCID (as // we're not leaking that we have a channel with the counterparty), otherwise we try to use // an inbound SCID alias before the real SCID. let scid_pref = if chan.context.should_announce() { chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) } else { chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id()) }; if let Some(scid) = scid_pref { self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan) } else { (0x4000|10, Vec::new()) } } /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code /// that we want to return and a channel. fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<::Signer>) -> (u16, Vec) { debug_assert_eq!(desired_err_code & 0x1000, 0x1000); if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) { let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6)); if desired_err_code == 0x1000 | 20 { // No flags for `disabled_flags` are currently defined so they're always two zero bytes. // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008 0u16.write(&mut enc).expect("Writes cannot fail"); } (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail"); msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail"); upd.write(&mut enc).expect("Writes cannot fail"); (desired_err_code, enc.0) } else { // If we fail to get a unicast channel_update, it implies we don't yet have an SCID, // which means we really shouldn't have gotten a payment to be forwarded over this // channel yet, or if we did it's from a route hint. Either way, returning an error of // PERM|no_such_channel should be fine. (0x4000|10, Vec::new()) } } // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to // be surfaced to the user. fn fail_holding_cell_htlcs( &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32], counterparty_node_id: &PublicKey ) { let (failure_code, onion_failure_data) = { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(channel_id) { hash_map::Entry::Occupied(chan_entry) => { self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get()) }, hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new()) } } else { (0x4000|10, Vec::new()) } }; for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) { let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone()); let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id }; self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver); } } /// Fails an HTLC backwards to the sender of it to us. /// Note that we do not assume that channels corresponding to failed HTLCs are still available. fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) { // Ensure that no peer state channel storage lock is held when calling this function. // This ensures that future code doesn't introduce a lock-order requirement for // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling // this function with any `per_peer_state` peer lock acquired would. for (_, peer) in self.per_peer_state.read().unwrap().iter() { debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread); } //TODO: There is a timing attack here where if a node fails an HTLC back to us they can //identify whether we sent it or not based on the (I presume) very different runtime //between the branches here. We should make this async and move it into the forward HTLCs //timer handling. // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // from block_connected which may run during initialization prior to the chain_monitor // being fully configured. See the docs for `ChannelManagerReadArgs` for more. match source { HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => { if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path, session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx, &self.pending_events, &self.logger) { self.push_pending_forwards_ev(); } }, HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => { log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error); let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret); let mut push_forward_ev = false; let mut forward_htlcs = self.forward_htlcs.lock().unwrap(); if forward_htlcs.is_empty() { push_forward_ev = true; } match forward_htlcs.entry(*short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet })); } } mem::drop(forward_htlcs); if push_forward_ev { self.push_pending_forwards_ev(); } let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push_back((events::Event::HTLCHandlingFailed { prev_channel_id: outpoint.to_channel_id(), failed_next_destination: destination, }, None)); }, } } /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any /// [`MessageSendEvent`]s needed to claim the payment. /// /// This method is guaranteed to ensure the payment has been claimed but only if the current /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment /// successful. It will generally be available in the next [`process_pending_events`] call. /// /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable` /// event matches your expectation. If you fail to do so and call this method, you may provide /// the sender "proof-of-payment" when they did not fulfill the full expected payment. /// /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed /// [`process_pending_events`]: EventsProvider::process_pending_events /// [`create_inbound_payment`]: Self::create_inbound_payment /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash pub fn claim_funds(&self, payment_preimage: PaymentPreimage) { let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let mut sources = { let mut claimable_payments = self.claimable_payments.lock().unwrap(); if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) { let mut receiver_node_id = self.our_network_pubkey; for htlc in payment.htlcs.iter() { if htlc.prev_hop.phantom_shared_secret.is_some() { let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode) .expect("Failed to get node_id for phantom node recipient"); receiver_node_id = phantom_pubkey; break; } } let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash, ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(), payment_purpose: payment.purpose, receiver_node_id, }); if dup_purpose.is_some() { debug_assert!(false, "Shouldn't get a duplicate pending claim event ever"); log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug", log_bytes!(payment_hash.0)); } payment.htlcs } else { return; } }; debug_assert!(!sources.is_empty()); // Just in case one HTLC has been failed between when we generated the `PaymentClaimable` // and when we got here we need to check that the amount we're about to claim matches the // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that // the MPP parts all have the same `total_msat`. let mut claimable_amt_msat = 0; let mut prev_total_msat = None; let mut expected_amt_msat = None; let mut valid_mpp = true; let mut errs = Vec::new(); let per_peer_state = self.per_peer_state.read().unwrap(); for htlc in sources.iter() { if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) { log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!"); debug_assert!(false); valid_mpp = false; break; } prev_total_msat = Some(htlc.total_msat); if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received { log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!"); debug_assert!(false); valid_mpp = false; break; } expected_amt_msat = htlc.total_value_received; claimable_amt_msat += htlc.value; } mem::drop(per_peer_state); if sources.is_empty() || expected_amt_msat.is_none() { self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash); log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!"); return; } if claimable_amt_msat != expected_amt_msat.unwrap() { self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash); log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.", expected_amt_msat.unwrap(), claimable_amt_msat); return; } if valid_mpp { for htlc in sources.drain(..) { if let Err((pk, err)) = self.claim_funds_from_hop( htlc.prev_hop, payment_preimage, |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })) { if let msgs::ErrorAction::IgnoreError = err.err.action { // We got a temporary failure updating monitor, but will claim the // HTLC when the monitor updating is restored (or on chain). log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err); } else { errs.push((pk, err)); } } } } if !valid_mpp { for htlc in sources.drain(..) { let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec(); htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes()); let source = HTLCSource::PreviousHopData(htlc.prev_hop); let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data); let receiver = HTLCDestination::FailedPayment { payment_hash }; self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver); } self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash); } // Now we can handle any errors which were generated. for (counterparty_node_id, err) in errs.drain(..) { let res: Result<(), _> = Err(err); let _ = handle_error!(self, res, counterparty_node_id); } } fn claim_funds_from_hop) -> Option>(&self, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc) -> Result<(), (PublicKey, MsgHandleErrInternal)> { //TODO: Delay the claimed_funds relaying just like we do outbound relay! // If we haven't yet run background events assume we're still deserializing and shouldn't // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as // `BackgroundEvent`s. let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire); { let per_peer_state = self.per_peer_state.read().unwrap(); let chan_id = prev_hop.outpoint.to_channel_id(); let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) { Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()), None => None }; let peer_state_opt = counterparty_node_id_opt.as_ref().map( |counterparty_node_id| per_peer_state.get(counterparty_node_id) .map(|peer_mutex| peer_mutex.lock().unwrap()) ).unwrap_or(None); if peer_state_opt.is_some() { let mut peer_state_lock = peer_state_opt.unwrap(); let peer_state = &mut *peer_state_lock; if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) { let counterparty_node_id = chan.get().context.get_counterparty_node_id(); let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger); if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res { if let Some(action) = completion_action(Some(htlc_value_msat)) { log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}", log_bytes!(chan_id), action); peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action); } if !during_init { let res = handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock, peer_state, per_peer_state, chan); if let Err(e) = res { // TODO: This is a *critical* error - we probably updated the outbound edge // of the HTLC's monitor with a preimage. We should retry this monitor // update over and over again until morale improves. log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage); return Err((counterparty_node_id, e)); } } else { // If we're running during init we cannot update a monitor directly - // they probably haven't actually been loaded yet. Instead, push the // monitor update as a background event. self.pending_background_events.lock().unwrap().push( BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo: prev_hop.outpoint, update: monitor_update.clone(), }); } } return Ok(()); } } } let preimage_update = ChannelMonitorUpdate { update_id: CLOSED_CHANNEL_UPDATE_ID, updates: vec![ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage, }], }; if !during_init { // We update the ChannelMonitor on the backward link, after // receiving an `update_fulfill_htlc` from the forward link. let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update); if update_res != ChannelMonitorUpdateStatus::Completed { // TODO: This needs to be handled somehow - if we receive a monitor update // with a preimage we *must* somehow manage to propagate it to the upstream // channel, or we must have an ability to receive the same event and try // again on restart. log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}", payment_preimage, update_res); } } else { // If we're running during init we cannot update a monitor directly - they probably // haven't actually been loaded yet. Instead, push the monitor update as a background // event. // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the // channel is already closed) we need to ultimately handle the monitor update // completion action only after we've completed the monitor update. This is the only // way to guarantee this update *will* be regenerated on startup (otherwise if this was // from a forwarded HTLC the downstream preimage may be deleted before we claim // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will // complete the monitor update completion action from `completion_action`. self.pending_background_events.lock().unwrap().push( BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(( prev_hop.outpoint, preimage_update, ))); } // Note that we do process the completion action here. This totally could be a // duplicate claim, but we have no way of knowing without interrogating the // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are // generally always allowed to be duplicative (and it's specifically noted in // `PaymentForwarded`). self.handle_monitor_update_completion_actions(completion_action(None)); Ok(()) } fn finalize_claims(&self, sources: Vec) { self.pending_outbound_payments.finalize_claims(sources, &self.pending_events); } fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option, from_onchain: bool, next_channel_id: [u8; 32]) { match source { HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => { debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire), "We don't support claim_htlc claims during startup - monitors may not be available yet"); self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger); }, HTLCSource::PreviousHopData(hop_data) => { let prev_outpoint = hop_data.outpoint; let res = self.claim_funds_from_hop(hop_data, payment_preimage, |htlc_claim_value_msat| { if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat { let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat { Some(claimed_htlc_value - forwarded_htlc_value) } else { None }; Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel { event: events::Event::PaymentForwarded { fee_earned_msat, claim_from_onchain_tx: from_onchain, prev_channel_id: Some(prev_outpoint.to_channel_id()), next_channel_id: Some(next_channel_id), outbound_amount_forwarded_msat: forwarded_htlc_value_msat, }, downstream_counterparty_and_funding_outpoint: None, }) } else { None } }); if let Err((pk, err)) = res { let result: Result<(), _> = Err(err); let _ = handle_error!(self, result, pk); } }, } } /// Gets the node_id held by this ChannelManager pub fn get_our_node_id(&self) -> PublicKey { self.our_network_pubkey.clone() } fn handle_monitor_update_completion_actions>(&self, actions: I) { for action in actions.into_iter() { match action { MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => { let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash); if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment { self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed { payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id), }, None)); } }, MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel { event, downstream_counterparty_and_funding_outpoint } => { self.pending_events.lock().unwrap().push_back((event, None)); if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint { self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker)); } }, } } } /// Handles a channel reentering a functional state, either due to reconnect or a monitor /// update completion. fn handle_channel_resumption(&self, pending_msg_events: &mut Vec, channel: &mut Channel<::Signer>, raa: Option, commitment_update: Option, order: RAACommitmentOrder, pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option, channel_ready: Option, announcement_sigs: Option) -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> { log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement", log_bytes!(channel.context.channel_id()), if raa.is_some() { "an" } else { "no" }, if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(), if funding_broadcastable.is_some() { "" } else { "not " }, if channel_ready.is_some() { "sending" } else { "without" }, if announcement_sigs.is_some() { "sending" } else { "without" }); let mut htlc_forwards = None; let counterparty_node_id = channel.context.get_counterparty_node_id(); if !pending_forwards.is_empty() { htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()), channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards)); } if let Some(msg) = channel_ready { send_channel_ready!(self, pending_msg_events, channel, msg); } if let Some(msg) = announcement_sigs { pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: counterparty_node_id, msg, }); } macro_rules! handle_cs { () => { if let Some(update) = commitment_update { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id, updates: update, }); } } } macro_rules! handle_raa { () => { if let Some(revoke_and_ack) = raa { pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: counterparty_node_id, msg: revoke_and_ack, }); } } } match order { RAACommitmentOrder::CommitmentFirst => { handle_cs!(); handle_raa!(); }, RAACommitmentOrder::RevokeAndACKFirst => { handle_raa!(); handle_cs!(); }, } if let Some(tx) = funding_broadcastable { log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid()); self.tx_broadcaster.broadcast_transactions(&[&tx]); } { let mut pending_events = self.pending_events.lock().unwrap(); emit_channel_pending_event!(pending_events, channel); emit_channel_ready_event!(pending_events, channel); } htlc_forwards } fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) { debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock let counterparty_node_id = match counterparty_node_id { Some(cp_id) => cp_id.clone(), None => { // TODO: Once we can rely on the counterparty_node_id from the // monitor event, this and the id_to_peer map should be removed. let id_to_peer = self.id_to_peer.lock().unwrap(); match id_to_peer.get(&funding_txo.to_channel_id()) { Some(cp_id) => cp_id.clone(), None => return, } } }; let per_peer_state = self.per_peer_state.read().unwrap(); let mut peer_state_lock; let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id); if peer_state_mutex_opt.is_none() { return } peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; let channel = if let Some(chan) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) { chan } else { let update_actions = peer_state.monitor_update_blocked_actions .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new()); mem::drop(peer_state_lock); mem::drop(per_peer_state); self.handle_monitor_update_completion_actions(update_actions); return; }; let remaining_in_flight = if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) { pending.retain(|upd| upd.update_id > highest_applied_update_id); pending.len() } else { 0 }; log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.", highest_applied_update_id, channel.context.get_latest_monitor_update_id(), remaining_in_flight); if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id { return; } handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel); } /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`]. /// /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted, /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open /// the channel. /// /// The `user_channel_id` parameter will be provided back in /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call. /// /// Note that this method will return an error and reject the channel, if it requires support /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be /// used to accept such channels. /// /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> { self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id) } /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating /// it as confirmed immediately. /// /// The `user_channel_id` parameter will be provided back in /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call. /// /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel /// and (if the counterparty agrees), enables forwarding of payments immediately. /// /// This fully trusts that the counterparty has honestly and correctly constructed the funding /// transaction and blindly assumes that it will eventually confirm. /// /// If it does not confirm before we decide to close the channel, or if the funding transaction /// does not pay to the correct script the correct amount, *you will lose funds*. /// /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> { self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id) } fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let peers_without_funded_channels = self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 }); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let is_only_peer_channel = peer_state.total_channel_count() == 1; match peer_state.inbound_v1_channel_by_id.entry(temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut channel) => { if !channel.get().is_awaiting_accept() { return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() }); } if accept_0conf { channel.get_mut().set_0conf(); } else if channel.get().context.get_channel_type().requires_zero_conf() { let send_msg_err_event = events::MessageSendEvent::HandleError { node_id: channel.get().context.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage{ msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), } } }; peer_state.pending_msg_events.push(send_msg_err_event); let _ = remove_channel!(self, channel); return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() }); } else { // If this peer already has some channels, a new channel won't increase our number of peers // with unfunded channels, so as long as we aren't over the maximum number of unfunded // channels per-peer we can accept channels from a peer with existing ones. if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS { let send_msg_err_event = events::MessageSendEvent::HandleError { node_id: channel.get().context.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage{ msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), } } }; peer_state.pending_msg_events.push(send_msg_err_event); let _ = remove_channel!(self, channel); return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() }); } } peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: channel.get().context.get_counterparty_node_id(), msg: channel.get_mut().accept_inbound_channel(user_channel_id), }); } hash_map::Entry::Vacant(_) => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }); } } Ok(()) } /// Gets the number of peers which match the given filter and do not have any funded, outbound, /// or 0-conf channels. /// /// The filter is called for each peer and provided with the number of unfunded, inbound, and /// non-0-conf channels we have with the peer. fn peers_without_funded_channels(&self, maybe_count_peer: Filter) -> usize where Filter: Fn(&PeerState<::Signer>) -> bool { let mut peers_without_funded_channels = 0; let best_block_height = self.best_block.read().unwrap().height(); { let peer_state_lock = self.per_peer_state.read().unwrap(); for (_, peer_mtx) in peer_state_lock.iter() { let peer = peer_mtx.lock().unwrap(); if !maybe_count_peer(&*peer) { continue; } let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height); if num_unfunded_channels == peer.total_channel_count() { peers_without_funded_channels += 1; } } } return peers_without_funded_channels; } fn unfunded_channel_count( peer: &PeerState<::Signer>, best_block_height: u32 ) -> usize { let mut num_unfunded_channels = 0; for (_, chan) in peer.channel_by_id.iter() { // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those // which have not yet had any confirmations on-chain. if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 && chan.context.get_funding_tx_confirmations(best_block_height) == 0 { num_unfunded_channels += 1; } } for (_, chan) in peer.inbound_v1_channel_by_id.iter() { if chan.context.minimum_depth().unwrap_or(1) != 0 { num_unfunded_channels += 1; } } num_unfunded_channels } fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> { if msg.chain_hash != self.genesis_hash { return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone())); } if !self.default_configuration.accept_inbound_channels { return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone())); } let mut random_bytes = [0u8; 16]; random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]); let user_channel_id = u128::from_be_bytes(random_bytes); let outbound_scid_alias = self.create_and_insert_outbound_scid_alias(); // Get the number of peers with channels, but without funded ones. We don't care too much // about peers that never open a channel, so we filter by peers that have at least one // channel, and then limit the number of those with unfunded channels. let channeled_peers_without_funding = self.peers_without_funded_channels(|node| node.total_channel_count() > 0); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone()) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; // If this peer already has some channels, a new channel won't increase our number of peers // with unfunded channels, so as long as we aren't over the maximum number of unfunded // channels per-peer we can accept channels from a peer with existing ones. if peer_state.total_channel_count() == 0 && channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS && !self.default_configuration.manually_accept_inbound_channels { return Err(MsgHandleErrInternal::send_err_msg_no_close( "Have too many peers with unfunded channels, not accepting new ones".to_owned(), msg.temporary_channel_id.clone())); } let best_block_height = self.best_block.read().unwrap().height(); if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER { return Err(MsgHandleErrInternal::send_err_msg_no_close( format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER), msg.temporary_channel_id.clone())); } let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id, &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias) { Err(e) => { self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias); return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id)); }, Ok(res) => res }; let channel_id = channel.context.channel_id(); let channel_exists = peer_state.has_channel(&channel_id); if channel_exists { self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias); return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone())) } else { if !self.default_configuration.manually_accept_inbound_channels { let channel_type = channel.context.get_channel_type(); if channel_type.requires_zero_conf() { return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone())); } if channel_type.requires_anchors_zero_fee_htlc_tx() { return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone())); } peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: counterparty_node_id.clone(), msg: channel.accept_inbound_channel(user_channel_id), }); } else { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push_back((events::Event::OpenChannelRequest { temporary_channel_id: msg.temporary_channel_id.clone(), counterparty_node_id: counterparty_node_id.clone(), funding_satoshis: msg.funding_satoshis, push_msat: msg.push_msat, channel_type: channel.context.get_channel_type().clone(), }, None)); } peer_state.inbound_v1_channel_by_id.insert(channel_id, channel); } Ok(()) } fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> { let (value, output_script, user_id) = { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.outbound_v1_channel_by_id.entry(msg.temporary_channel_id) { hash_map::Entry::Occupied(mut chan) => { try_v1_outbound_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan); (chan.get().context.get_value_satoshis(), chan.get().context.get_funding_redeemscript().to_v0_p2wsh(), chan.get().context.get_user_id()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push_back((events::Event::FundingGenerationReady { temporary_channel_id: msg.temporary_channel_id, counterparty_node_id: *counterparty_node_id, channel_value_satoshis: value, output_script, user_channel_id: user_id, }, None)); Ok(()) } fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> { let best_block = *self.best_block.read().unwrap(); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let (chan, funding_msg, monitor) = match peer_state.inbound_v1_channel_by_id.remove(&msg.temporary_channel_id) { Some(inbound_chan) => { match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) { Ok(res) => res, Err((mut inbound_chan, err)) => { // We've already removed this inbound channel from the map in `PeerState` // above so at this point we just need to clean up any lingering entries // concerning this channel as it is safe to do so. update_maps_on_chan_removal!(self, &inbound_chan.context); let user_id = inbound_chan.context.get_user_id(); let shutdown_res = inbound_chan.context.force_shutdown(false); return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err), msg.temporary_channel_id, user_id, shutdown_res, None)); }, } }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id)) }; match peer_state.channel_by_id.entry(funding_msg.channel_id) { hash_map::Entry::Occupied(_) => { Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id)) }, hash_map::Entry::Vacant(e) => { match self.id_to_peer.lock().unwrap().entry(chan.context.channel_id()) { hash_map::Entry::Occupied(_) => { return Err(MsgHandleErrInternal::send_err_msg_no_close( "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(), funding_msg.channel_id)) }, hash_map::Entry::Vacant(i_e) => { i_e.insert(chan.context.get_counterparty_node_id()); } } // There's no problem signing a counterparty's funding transaction if our monitor // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't // accepted payment from yet. We do, however, need to wait to send our channel_ready // until we have persisted our monitor. let new_channel_id = funding_msg.channel_id; peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned { node_id: counterparty_node_id.clone(), msg: funding_msg, }); let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor); let chan = e.insert(chan); let mut res = handle_new_monitor_update!(self, monitor_res, peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING_INITIAL_MONITOR, { peer_state.channel_by_id.remove(&new_channel_id) }); // Note that we reply with the new channel_id in error messages if we gave up on the // channel, not the temporary_channel_id. This is compatible with ourselves, but the // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for // any messages referencing a previously-closed channel anyway. // We do not propagate the monitor update to the user as it would be for a monitor // that we didn't manage to store (and that we don't care about - we don't respond // with the funding_signed so the channel can never go on chain). if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res { res.0 = None; } res.map(|_| ()) } } } fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> { let best_block = *self.best_block.read().unwrap(); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { let monitor = try_chan_entry!(self, chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan); let update_res = self.chain_monitor.watch_channel(chan.get().context.get_funding_txo().unwrap(), monitor); let mut res = handle_new_monitor_update!(self, update_res, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR); if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res { // We weren't able to watch the channel to begin with, so no updates should be made on // it. Previously, full_stack_target found an (unreachable) panic when the // monitor update contained within `shutdown_finish` was applied. if let Some((ref mut shutdown_finish, _)) = shutdown_finish { shutdown_finish.0.take(); } } res.map(|_| ()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer, self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan); if let Some(announcement_sigs) = announcement_sigs_opt { log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().context.channel_id())); peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: counterparty_node_id.clone(), msg: announcement_sigs, }); } else if chan.get().context.is_usable() { // If we're sending an announcement_signatures, we'll send the (public) // channel_update after sending a channel_announcement when we receive our // counterparty's announcement_signatures. Thus, we only bother to send a // channel_update here if the channel is not public, i.e. we're not sending an // announcement_signatures. log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().context.channel_id())); if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) { peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate { node_id: counterparty_node_id.clone(), msg, }); } } { let mut pending_events = self.pending_events.lock().unwrap(); emit_channel_ready_event!(pending_events, chan.get_mut()); } Ok(()) }, hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } } fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> { let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>; let result: Result<(), _> = loop { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if !chan_entry.get().received_shutdown() { log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.", log_bytes!(msg.channel_id), if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" }); } let funding_txo_opt = chan_entry.get().context.get_funding_txo(); let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry); dropped_htlcs = htlcs; if let Some(msg) = shutdown { // We can send the `shutdown` message before updating the `ChannelMonitor` // here as we don't need the monitor update to complete until we send a // `shutdown_signed`, which we'll delay if we're pending a monitor update. peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: *counterparty_node_id, msg, }); } // Update the monitor with the shutdown script if necessary. if let Some(monitor_update) = monitor_update_opt { break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update, peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ()); } break Ok(()); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } }; for htlc_source in dropped_htlcs.drain(..) { let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id }; let reason = HTLCFailReason::from_failure_code(0x4000 | 8); self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver); } result } fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let (tx, chan_option) = { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry); if let Some(msg) = closing_signed { peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } if tx.is_some() { // We're done with this channel, we've got a signed closing transaction and // will send the closing_signed back to the remote peer upon return. This // also implies there are no pending HTLCs left on the channel, so we can // fully delete it from tracking (the channel monitor is still around to // watch for old state broadcasts)! (tx, Some(remove_channel!(self, chan_entry))) } else { (tx, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } }; if let Some(broadcast_tx) = tx { log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx)); self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure); } Ok(()) } fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> { //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and //determine the state of the payment based on our response/if we forward anything/the time //we take to respond. We should take care to avoid allowing such an attack. // //TODO: There exists a further attack where a node may garble the onion data, forward it to //us repeatedly garbled in different ways, and compare our error messages, which are //encrypted with the same key. It's not immediately obvious how to usefully exploit that, //but we should prevent it anyway. let decoded_hop_res = self.decode_update_add_htlc_onion(msg); let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { let pending_forward_info = match decoded_hop_res { Ok((next_hop, shared_secret, next_packet_pk_opt)) => self.construct_pending_htlc_status(msg, shared_secret, next_hop, chan.get().context.config().accept_underpaying_htlcs, next_packet_pk_opt), Err(e) => PendingHTLCStatus::Fail(e) }; let create_pending_htlc_status = |chan: &Channel<::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| { // If the update_add is completely bogus, the call will Err and we will close, // but if we've sent a shutdown and they haven't acknowledged it yet, we just // want to reject the new HTLC and fail it backwards instead of forwarding. match pending_forward_info { PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => { let reason = if (error_code & 0x1000) != 0 { let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan); HTLCFailReason::reason(real_code, error_data) } else { HTLCFailReason::from_failure_code(error_code) }.get_encrypted_failure_packet(incoming_shared_secret, &None); let msg = msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason }; PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg)) }, _ => pending_forward_info } }; try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } Ok(()) } fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> { let (htlc_source, forwarded_htlc_value) = { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } }; self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id); Ok(()) } fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } Ok(()) } fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if (msg.failure_code & 0x8000) == 0 { let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned()); try_chan_entry!(self, Err(chan_err), chan); } try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan); Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } } fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { let funding_txo = chan.get().context.get_funding_txo(); let monitor_update_opt = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan); if let Some(monitor_update) = monitor_update_opt { handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock, peer_state, per_peer_state, chan).map(|_| ()) } else { Ok(()) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } } #[inline] fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) { for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards { let mut push_forward_event = false; let mut new_intercept_events = VecDeque::new(); let mut failed_intercept_forwards = Vec::new(); if !pending_forwards.is_empty() { for (forward_info, prev_htlc_id) in pending_forwards.drain(..) { let scid = match forward_info.routing { PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id, PendingHTLCRouting::Receive { .. } => 0, PendingHTLCRouting::ReceiveKeysend { .. } => 0, }; // Pull this now to avoid introducing a lock order with `forward_htlcs`. let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid); let mut forward_htlcs = self.forward_htlcs.lock().unwrap(); let forward_htlcs_empty = forward_htlcs.is_empty(); match forward_htlcs.entry(scid) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })); }, hash_map::Entry::Vacant(entry) => { if !is_our_scid && forward_info.incoming_amt_msat.is_some() && fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash) { let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner()); let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap(); match pending_intercepts.entry(intercept_id) { hash_map::Entry::Vacant(entry) => { new_intercept_events.push_back((events::Event::HTLCIntercepted { requested_next_hop_scid: scid, payment_hash: forward_info.payment_hash, inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(), expected_outbound_amount_msat: forward_info.outgoing_amt_msat, intercept_id }, None)); entry.insert(PendingAddHTLCInfo { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }); }, hash_map::Entry::Occupied(_) => { log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, phantom_shared_secret: None, }); failed_intercept_forwards.push((htlc_source, forward_info.payment_hash, HTLCFailReason::from_failure_code(0x4000 | 10), HTLCDestination::InvalidForward { requested_forward_scid: scid }, )); } } } else { // We don't want to generate a PendingHTLCsForwardable event if only intercepted // payments are being processed. if forward_htlcs_empty { push_forward_event = true; } entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }))); } } } } } for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) { self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination); } if !new_intercept_events.is_empty() { let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_intercept_events); } if push_forward_event { self.push_pending_forwards_ev() } } } fn push_pending_forwards_ev(&self) { let mut pending_events = self.pending_events.lock().unwrap(); let is_processing_events = self.pending_events_processor.load(Ordering::Acquire); let num_forward_events = pending_events.iter().filter(|(ev, _)| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false } ).count(); // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing // events is done in batches and they are not removed until we're done processing each // batch. Since handling a `PendingHTLCsForwardable` event will call back into the // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom // payments will need an additional forwarding event before being claimed to make them look // real by taking more time. if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 { pending_events.push_back((Event::PendingHTLCsForwardable { time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS), }, None)); } } /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of /// the [`ChannelMonitorUpdate`] in question. fn raa_monitor_updates_held(&self, actions_blocking_raa_monitor_updates: &BTreeMap<[u8; 32], Vec>, channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey ) -> bool { actions_blocking_raa_monitor_updates .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false) || self.pending_events.lock().unwrap().iter().any(|(_, action)| { action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate { channel_funding_outpoint, counterparty_node_id, }) }) } fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> { let (htlcs_to_fail, res) = { let per_peer_state = self.per_peer_state.read().unwrap(); let mut peer_state_lock = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) }).map(|mtx| mtx.lock().unwrap())?; let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { let funding_txo = chan.get().context.get_funding_txo(); let (htlcs_to_fail, monitor_update_opt) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), chan); let res = if let Some(monitor_update) = monitor_update_opt { handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock, peer_state, per_peer_state, chan).map(|_| ()) } else { Ok(()) }; (htlcs_to_fail, res) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } }; self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id); res } fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } Ok(()) } fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if !chan.get().context.is_usable() { return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError})); } peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: try_chan_entry!(self, chan.get_mut().announcement_signatures( &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg, &self.default_configuration ), chan), // Note that announcement_signatures fails if the channel cannot be announced, // so get_channel_update_for_broadcast will never fail by the time we get here. update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()), }); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } Ok(()) } /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err. fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result { let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) { Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()), None => { // It's not a local channel return Ok(NotifyOption::SkipPersist) } }; let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id); if peer_state_mutex_opt.is_none() { return Ok(NotifyOption::SkipPersist) } let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(chan_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().context.get_counterparty_node_id() != *counterparty_node_id { if chan.get().context.should_announce() { // If the announcement is about a channel of ours which is public, some // other peer may simply be forwarding all its gossip to us. Don't provide // a scary-looking error message and return Ok instead. return Ok(NotifyOption::SkipPersist); } return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id)); } let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().context.get_counterparty_node_id().serialize()[..]; let msg_from_node_one = msg.contents.flags & 1 == 0; if were_node_one == msg_from_node_one { return Ok(NotifyOption::SkipPersist); } else { log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id)); try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan); } }, hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist) } Ok(NotifyOption::DoPersist) } fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> { let htlc_forwards; let need_lnd_workaround = { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex = per_peer_state.get(counterparty_node_id) .ok_or_else(|| { debug_assert!(false); MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id) })?; let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; match peer_state.channel_by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { // Currently, we expect all holding cell update_adds to be dropped on peer // disconnect, so Channel's reestablish will never hand us any holding cell // freed HTLCs to fail backwards. If in the future we no longer drop pending // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here. let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish( msg, &self.logger, &self.node_signer, self.genesis_hash, &self.default_configuration, &*self.best_block.read().unwrap()), chan); let mut channel_update = None; if let Some(msg) = responses.shutdown_msg { peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: counterparty_node_id.clone(), msg, }); } else if chan.get().context.is_usable() { // If the channel is in a usable state (ie the channel is not being shut // down), send a unicast channel_update to our counterparty to make sure // they have the latest channel parameters. if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) { channel_update = Some(events::MessageSendEvent::SendChannelUpdate { node_id: chan.get().context.get_counterparty_node_id(), msg, }); } } let need_lnd_workaround = chan.get_mut().context.workaround_lnd_bug_4006.take(); htlc_forwards = self.handle_channel_resumption( &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order, Vec::new(), None, responses.channel_ready, responses.announcement_sigs); if let Some(upd) = channel_update { peer_state.pending_msg_events.push(upd); } need_lnd_workaround }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id)) } }; if let Some(forwards) = htlc_forwards { self.forward_htlcs(&mut [forwards][..]); } if let Some(channel_ready_msg) = need_lnd_workaround { self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?; } Ok(()) } /// Process pending events from the [`chain::Watch`], returning whether any events were processed. fn process_pending_monitor_events(&self) -> bool { debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock let mut failed_channels = Vec::new(); let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events(); let has_pending_monitor_events = !pending_monitor_events.is_empty(); for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) { for monitor_event in monitor_events.drain(..) { match monitor_event { MonitorEvent::HTLCEvent(htlc_update) => { if let Some(preimage) = htlc_update.payment_preimage { log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0)); self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id()); } else { log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0)); let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() }; let reason = HTLCFailReason::from_failure_code(0x4000 | 8); self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver); } }, MonitorEvent::CommitmentTxConfirmed(funding_outpoint) | MonitorEvent::UpdateFailed(funding_outpoint) => { let counterparty_node_id_opt = match counterparty_node_id { Some(cp_id) => Some(cp_id), None => { // TODO: Once we can rely on the counterparty_node_id from the // monitor event, this and the id_to_peer map should be removed. let id_to_peer = self.id_to_peer.lock().unwrap(); id_to_peer.get(&funding_outpoint.to_channel_id()).cloned() } }; if let Some(counterparty_node_id) = counterparty_node_id_opt { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) { let mut chan = remove_channel!(self, chan_entry); failed_channels.push(chan.context.force_shutdown(false)); if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event { ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() } } else { ClosureReason::CommitmentTxConfirmed }; self.issue_channel_close_events(&chan.context, reason); pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.context.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() } }, }); } } } }, MonitorEvent::Completed { funding_txo, monitor_update_id } => { self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref()); }, } } } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } has_pending_monitor_events } /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor /// update events as a separate process method here. #[cfg(fuzzing)] pub fn process_monitor_events(&self) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); self.process_pending_monitor_events(); } /// Check the holding cell in each channel and free any pending HTLCs in them if possible. /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor /// update was applied. fn check_free_holding_cells(&self) -> bool { let mut has_monitor_update = false; let mut failed_htlcs = Vec::new(); let mut handle_errors = Vec::new(); // Walk our list of channels and find any that need to update. Note that when we do find an // update, if it includes actions that must be taken afterwards, we have to drop the // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we // manage to go through all our peers without finding a single channel to update. 'peer_loop: loop { let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { 'chan_loop: loop { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state: &mut PeerState<_> = &mut *peer_state_lock; for (channel_id, chan) in peer_state.channel_by_id.iter_mut() { let counterparty_node_id = chan.context.get_counterparty_node_id(); let funding_txo = chan.context.get_funding_txo(); let (monitor_opt, holding_cell_failed_htlcs) = chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger); if !holding_cell_failed_htlcs.is_empty() { failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id)); } if let Some(monitor_update) = monitor_opt { has_monitor_update = true; let channel_id: [u8; 32] = *channel_id; let res = handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING, peer_state.channel_by_id.remove(&channel_id)); if res.is_err() { handle_errors.push((counterparty_node_id, res)); } continue 'peer_loop; } } break 'chan_loop; } } break 'peer_loop; } let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty(); for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) { self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id); } for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } has_update } /// Check whether any channels have finished removing all pending updates after a shutdown /// exchange and can now send a closing_signed. /// Returns whether any closing_signed messages were generated. fn maybe_generate_initial_closing_signed(&self) -> bool { let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new(); let mut has_update = false; { let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; peer_state.channel_by_id.retain(|channel_id, chan| { match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) { Ok((msg_opt, tx_opt)) => { if let Some(msg) = msg_opt { has_update = true; pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: chan.context.get_counterparty_node_id(), msg, }); } if let Some(tx) = tx_opt { // We're done with this channel. We got a closing_signed and sent back // a closing_signed with a closing transaction to broadcast. if let Ok(update) = self.get_channel_update_for_broadcast(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure); log_info!(self.logger, "Broadcasting {}", log_tx!(tx)); self.tx_broadcaster.broadcast_transactions(&[&tx]); update_maps_on_chan_removal!(self, &chan.context); false } else { true } }, Err(e) => { has_update = true; let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id); handle_errors.push((chan.context.get_counterparty_node_id(), Err(res))); !close_channel } } }); } } for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } has_update } /// Handle a list of channel failures during a block_connected or block_disconnected call, /// pushing the channel monitor update (if any) to the background events queue and removing the /// Channel object. fn handle_init_event_channel_failures(&self, mut failed_channels: Vec) { for mut failure in failed_channels.drain(..) { // Either a commitment transactions has been confirmed on-chain or // Channel::block_disconnected detected that the funding transaction has been // reorganized out of the main chain. // We cannot broadcast our latest local state via monitor update (as // Channel::force_shutdown tries to make us do) as we may still be in initialization, // so we track the update internally and handle it when the user next calls // timer_tick_occurred, guaranteeing we're running normally. if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() { assert_eq!(update.updates.len(), 1); if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] { assert!(should_broadcast); } else { unreachable!(); } self.pending_background_events.lock().unwrap().push( BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update }); } self.finish_force_close_channel(failure); } } /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing /// to pay us. /// /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the /// [`PaymentHash`] and [`PaymentPreimage`] for you. /// /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be /// passed directly to [`claim_funds`]. /// /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements. /// /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. /// /// # Note /// /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. /// /// Errors if `min_value_msat` is greater than total bitcoin supply. /// /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable /// on versions of LDK prior to 0.0.114. /// /// [`claim_funds`]: Self::claim_funds /// [`PaymentClaimable`]: events::Event::PaymentClaimable /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash pub fn create_inbound_payment(&self, min_value_msat: Option, invoice_expiry_delta_secs: u32, min_final_cltv_expiry_delta: Option) -> Result<(PaymentHash, PaymentSecret), ()> { inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, min_final_cltv_expiry_delta) } /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is /// stored external to LDK. /// /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least /// the `min_value_msat` provided here, if one is provided. /// /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though /// note that LDK will not stop you from registering duplicate payment hashes for inbound /// payments. /// /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat` /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the /// sender "proof-of-payment" unless they have paid the required amount. /// /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for /// in excess of the current time. This should roughly match the expiry time set in the invoice. /// After this many seconds, we will remove the inbound payment, resulting in any attempts to /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for /// invoices when no timeout is set. /// /// Note that we use block header time to time-out pending inbound payments (with some margin /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry. /// If you need exact expiry semantics, you should enforce them upon receipt of /// [`PaymentClaimable`]. /// /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta` /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`]. /// /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. /// /// # Note /// /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. /// /// Errors if `min_value_msat` is greater than total bitcoin supply. /// /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable /// on versions of LDK prior to 0.0.114. /// /// [`create_inbound_payment`]: Self::create_inbound_payment /// [`PaymentClaimable`]: events::Event::PaymentClaimable pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option, invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option) -> Result { inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, min_final_cltv_expiry) } /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were /// previously returned from [`create_inbound_payment`]. /// /// [`create_inbound_payment`]: Self::create_inbound_payment pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result { inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key) } /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids /// are used when constructing the phantom invoice's route hints. /// /// [phantom node payments]: crate::sign::PhantomKeysManager pub fn get_phantom_scid(&self) -> u64 { let best_block_height = self.best_block.read().unwrap().height(); let short_to_chan_info = self.short_to_chan_info.read().unwrap(); loop { let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source); // Ensure the generated scid doesn't conflict with a real channel. match short_to_chan_info.get(&scid_candidate) { Some(_) => continue, None => return scid_candidate } } } /// Gets route hints for use in receiving [phantom node payments]. /// /// [phantom node payments]: crate::sign::PhantomKeysManager pub fn get_phantom_route_hints(&self) -> PhantomRouteHints { PhantomRouteHints { channels: self.list_usable_channels(), phantom_scid: self.get_phantom_scid(), real_node_pubkey: self.get_our_node_id(), } } /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are /// used when constructing the route hints for HTLCs intended to be intercepted. See /// [`ChannelManager::forward_intercepted_htlc`]. /// /// Note that this method is not guaranteed to return unique values, you may need to call it a few /// times to get a unique scid. pub fn get_intercept_scid(&self) -> u64 { let best_block_height = self.best_block.read().unwrap().height(); let short_to_chan_info = self.short_to_chan_info.read().unwrap(); loop { let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source); // Ensure the generated scid doesn't conflict with a real channel. if short_to_chan_info.contains_key(&scid_candidate) { continue } return scid_candidate } } /// Gets inflight HTLC information by processing pending outbound payments that are in /// our channels. May be used during pathfinding to account for in-use channel liquidity. pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs { let mut inflight_htlcs = InFlightHtlcs::new(); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for chan in peer_state.channel_by_id.values() { for (htlc_source, _) in chan.inflight_htlc_sources() { if let HTLCSource::OutboundRoute { path, .. } = htlc_source { inflight_htlcs.process_path(path, self.get_our_node_id()); } } } } inflight_htlcs } #[cfg(any(test, feature = "_test_utils"))] pub fn get_and_clear_pending_events(&self) -> Vec { let events = core::cell::RefCell::new(Vec::new()); let event_handler = |event: events::Event| events.borrow_mut().push(event); self.process_pending_events(&event_handler); events.into_inner() } #[cfg(feature = "_test_utils")] pub fn push_pending_event(&self, event: events::Event) { let mut events = self.pending_events.lock().unwrap(); events.push_back((event, None)); } #[cfg(test)] pub fn pop_pending_event(&self) -> Option { let mut events = self.pending_events.lock().unwrap(); events.pop_front().map(|(e, _)| e) } #[cfg(test)] pub fn has_pending_payments(&self) -> bool { self.pending_outbound_payments.has_pending_payments() } #[cfg(test)] pub fn clear_pending_payments(&self) { self.pending_outbound_payments.clear_pending_payments() } /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an /// [`Event`] being handled) completes, this should be called to restore the channel to normal /// operation. It will double-check that nothing *else* is also blocking the same channel from /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly. fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option) { let mut errors = Vec::new(); loop { let per_peer_state = self.per_peer_state.read().unwrap(); if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) { let mut peer_state_lck = peer_state_mtx.lock().unwrap(); let peer_state = &mut *peer_state_lck; if let Some(blocker) = completed_blocker.take() { // Only do this on the first iteration of the loop. if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates .get_mut(&channel_funding_outpoint.to_channel_id()) { blockers.retain(|iter| iter != &blocker); } } if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates, channel_funding_outpoint, counterparty_node_id) { // Check that, while holding the peer lock, we don't have anything else // blocking monitor updates for this channel. If we do, release the monitor // update(s) when those blockers complete. log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first", log_bytes!(&channel_funding_outpoint.to_channel_id()[..])); break; } if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) { debug_assert_eq!(chan.get().context.get_funding_txo().unwrap(), channel_funding_outpoint); if let Some((monitor_update, further_update_exists)) = chan.get_mut().unblock_next_blocked_monitor_update() { log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor", log_bytes!(&channel_funding_outpoint.to_channel_id()[..])); if let Err(e) = handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update, peer_state_lck, peer_state, per_peer_state, chan) { errors.push((e, counterparty_node_id)); } if further_update_exists { // If there are more `ChannelMonitorUpdate`s to process, restart at the // top of the loop. continue; } } else { log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update", log_bytes!(&channel_funding_outpoint.to_channel_id()[..])); } } } else { log_debug!(self.logger, "Got a release post-RAA monitor update for peer {} but the channel is gone", log_pubkey!(counterparty_node_id)); } break; } for (err, counterparty_node_id) in errors { let res = Err::<(), _>(err); let _ = handle_error!(self, res, counterparty_node_id); } } fn handle_post_event_actions(&self, actions: Vec) { for action in actions { match action { EventCompletionAction::ReleaseRAAChannelMonitorUpdate { channel_funding_outpoint, counterparty_node_id } => { self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None); } } } } /// Processes any events asynchronously in the order they were generated since the last call /// using the given event handler. /// /// See the trait-level documentation of [`EventsProvider`] for requirements. pub async fn process_pending_events_async Future>( &self, handler: H ) { let mut ev; process_events_body!(self, ev, { handler(ev).await }); } } impl MessageSendEventsProvider for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated. /// The returned array will contain `MessageSendEvent`s for different peers if /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer /// is always placed next to each other. /// /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a` /// will randomly be placed first or last in the returned array. /// /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate` /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among /// the `MessageSendEvent`s to the specific peer they were generated under. fn get_and_clear_pending_msg_events(&self) -> Vec { let events = RefCell::new(Vec::new()); PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let mut result = self.process_background_events(); // TODO: This behavior should be documented. It's unintuitive that we query // ChannelMonitors when clearing other events. if self.process_pending_monitor_events() { result = NotifyOption::DoPersist; } if self.check_free_holding_cells() { result = NotifyOption::DoPersist; } if self.maybe_generate_initial_closing_signed() { result = NotifyOption::DoPersist; } let mut pending_events = Vec::new(); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; if peer_state.pending_msg_events.len() > 0 { pending_events.append(&mut peer_state.pending_msg_events); } } if !pending_events.is_empty() { events.replace(pending_events); } result }); events.into_inner() } } impl EventsProvider for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// Processes events that must be periodically handled. /// /// An [`EventHandler`] may safely call back to the provider in order to handle an event. /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock. fn process_pending_events(&self, handler: H) where H::Target: EventHandler { let mut ev; process_events_body!(self, ev, handler.handle_event(ev)); } } impl chain::Listen for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) { { let best_block = self.best_block.read().unwrap(); assert_eq!(best_block.block_hash(), header.prev_blockhash, "Blocks must be connected in chain-order - the connected header must build on the last connected header"); assert_eq!(best_block.height(), height - 1, "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height"); } self.transactions_confirmed(header, txdata, height); self.best_block_updated(header, height); } fn block_disconnected(&self, header: &BlockHeader, height: u32) { let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist }); let new_height = height - 1; { let mut best_block = self.best_block.write().unwrap(); assert_eq!(best_block.block_hash(), header.block_hash(), "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header"); assert_eq!(best_block.height(), height, "Blocks must be disconnected in chain-order - the disconnected block must have the correct height"); *best_block = BestBlock::new(header.prev_blockhash, new_height) } self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)); } } impl chain::Confirm for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height); let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist }); self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger) .map(|(a, b)| (a, Vec::new(), b))); let last_best_block_height = self.best_block.read().unwrap().height(); if height < last_best_block_height { let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire); self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)); } } fn best_block_updated(&self, header: &BlockHeader, height: u32) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "New best block: {} at height {}", block_hash, height); let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist }); *self.best_block.write().unwrap() = BestBlock::new(block_hash, height); self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)); macro_rules! max_time { ($timestamp: expr) => { loop { // Update $timestamp to be the max of its current value and the block // timestamp. This should keep us close to the current time without relying on // having an explicit local time source. // Just in case we end up in a race, we loop until we either successfully // update $timestamp or decide we don't need to. let old_serial = $timestamp.load(Ordering::Acquire); if old_serial >= header.time as usize { break; } if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() { break; } } } } max_time!(self.highest_seen_timestamp); let mut payment_secrets = self.pending_inbound_payments.lock().unwrap(); payment_secrets.retain(|_, inbound_payment| { inbound_payment.expiry_time > header.time as u64 }); } fn get_relevant_txids(&self) -> Vec<(Txid, Option)> { let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len()); for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for chan in peer_state.channel_by_id.values() { if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) { res.push((funding_txo.txid, Some(block_hash))); } } } res } fn transaction_unconfirmed(&self, txid: &Txid) { let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist }); self.do_chain_event(None, |channel| { if let Some(funding_txo) = channel.context.get_funding_txo() { if funding_txo.txid == *txid { channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None)) } else { Ok((None, Vec::new(), None)) } } else { Ok((None, Vec::new(), None)) } }); } } impl ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// Calls a function which handles an on-chain event (blocks dis/connected, transactions /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by /// the function. fn do_chain_event::Signer>) -> Result<(Option, Vec<(HTLCSource, PaymentHash)>, Option), ClosureReason>> (&self, height_opt: Option, f: FN) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let mut failed_channels = Vec::new(); let mut timed_out_htlcs = Vec::new(); { let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; peer_state.channel_by_id.retain(|_, channel| { let res = f(channel); if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res { for (source, payment_hash) in timed_out_pending_htlcs.drain(..) { let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel); timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data), HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() })); } if let Some(channel_ready) = channel_ready_opt { send_channel_ready!(self, pending_msg_events, channel, channel_ready); if channel.context.is_usable() { log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.context.channel_id())); if let Ok(msg) = self.get_channel_update_for_unicast(channel) { pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate { node_id: channel.context.get_counterparty_node_id(), msg, }); } } else { log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.context.channel_id())); } } { let mut pending_events = self.pending_events.lock().unwrap(); emit_channel_ready_event!(pending_events, channel); } if let Some(announcement_sigs) = announcement_sigs { log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.context.channel_id())); pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.context.get_counterparty_node_id(), msg: announcement_sigs, }); if let Some(height) = height_opt { if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: announcement, // Note that announcement_signatures fails if the channel cannot be announced, // so get_channel_update_for_broadcast will never fail by the time we get here. update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()), }); } } } if channel.is_our_channel_ready() { if let Some(real_scid) = channel.context.get_short_channel_id() { // If we sent a 0conf channel_ready, and now have an SCID, we add it // to the short_to_chan_info map here. Note that we check whether we // can relay using the real SCID at relay-time (i.e. // enforce option_scid_alias then), and if the funding tx is ever // un-confirmed we force-close the channel, ensuring short_to_chan_info // is always consistent. let mut short_to_chan_info = self.short_to_chan_info.write().unwrap(); let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id())); assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()), "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels", fake_scid::MAX_SCID_BLOCKS_FROM_NOW); } } } else if let Err(reason) = res { update_maps_on_chan_removal!(self, &channel.context); // It looks like our counterparty went on-chain or funding transaction was // reorged out of the main chain. Close the channel. failed_channels.push(channel.context.force_shutdown(true)); if let Ok(update) = self.get_channel_update_for_broadcast(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } let reason_message = format!("{}", reason); self.issue_channel_close_events(&channel.context, reason); pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: channel.context.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: channel.context.channel_id(), data: reason_message, } }, }); return false; } true }); } } if let Some(height) = height_opt { self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| { payment.htlcs.retain(|htlc| { // If height is approaching the number of blocks we think it takes us to get // our commitment transaction confirmed before the HTLC expires, plus the // number of blocks we generally consider it to take to do a commitment update, // just give up on it and fail the HTLC. if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER { let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec(); htlc_msat_height_data.extend_from_slice(&height.to_be_bytes()); timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data), HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() })); false } else { true } }); !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry. }); let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap(); intercepted_htlcs.retain(|_, htlc| { if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER { let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: htlc.prev_short_channel_id, htlc_id: htlc.prev_htlc_id, incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret, phantom_shared_secret: None, outpoint: htlc.prev_funding_outpoint, }); let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing { PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id, _ => unreachable!(), }; timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash, HTLCFailReason::from_failure_code(0x2000 | 2), HTLCDestination::InvalidForward { requested_forward_scid })); log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid); false } else { true } }); } self.handle_init_event_channel_failures(failed_channels); for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) { self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination); } } /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted. /// /// Note that callbacks registered on the [`Future`] MUST NOT call back into this /// [`ChannelManager`] and should instead register actions to be taken later. /// pub fn get_persistable_update_future(&self) -> Future { self.persistence_notifier.get_future() } #[cfg(any(test, feature = "_test_utils"))] pub fn get_persistence_condvar_value(&self) -> bool { self.persistence_notifier.notify_pending() } /// Gets the latest best block which was connected either via the [`chain::Listen`] or /// [`chain::Confirm`] interfaces. pub fn current_best_block(&self) -> BestBlock { self.best_block.read().unwrap().clone() } /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub fn node_features(&self) -> NodeFeatures { provided_node_features(&self.default_configuration) } /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by /// [`ChannelManager`]. /// /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice" /// or not. Thus, this method is not public. #[cfg(any(feature = "_test_utils", test))] pub fn invoice_features(&self) -> InvoiceFeatures { provided_invoice_features(&self.default_configuration) } /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub fn channel_features(&self) -> ChannelFeatures { provided_channel_features(&self.default_configuration) } /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub fn channel_type_features(&self) -> ChannelTypeFeatures { provided_channel_type_features(&self.default_configuration) } /// Fetches the set of [`InitFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub fn init_features(&self) -> InitFeatures { provided_init_features(&self.default_configuration) } } impl ChannelMessageHandler for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id); } fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.temporary_channel_id.clone())), *counterparty_node_id); } fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id); } fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.temporary_channel_id.clone())), *counterparty_node_id); } fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id); } fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id); } fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id); } fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id); } fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id); } fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) { PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || { let force_persist = self.process_background_events(); if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) { if force_persist == NotifyOption::DoPersist { NotifyOption::DoPersist } else { persist } } else { NotifyOption::SkipPersist } }); } fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id); } fn peer_disconnected(&self, counterparty_node_id: &PublicKey) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); let mut failed_channels = Vec::new(); let mut per_peer_state = self.per_peer_state.write().unwrap(); let remove_peer = { log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.", log_pubkey!(counterparty_node_id)); if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; peer_state.channel_by_id.retain(|_, chan| { chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger); if chan.is_shutdown() { update_maps_on_chan_removal!(self, &chan.context); self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer); return false; } true }); peer_state.inbound_v1_channel_by_id.retain(|_, chan| { update_maps_on_chan_removal!(self, &chan.context); self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer); false }); peer_state.outbound_v1_channel_by_id.retain(|_, chan| { update_maps_on_chan_removal!(self, &chan.context); self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer); false }); pending_msg_events.retain(|msg| { match msg { // V1 Channel Establishment &events::MessageSendEvent::SendAcceptChannel { .. } => false, &events::MessageSendEvent::SendOpenChannel { .. } => false, &events::MessageSendEvent::SendFundingCreated { .. } => false, &events::MessageSendEvent::SendFundingSigned { .. } => false, // V2 Channel Establishment &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false, &events::MessageSendEvent::SendOpenChannelV2 { .. } => false, // Common Channel Establishment &events::MessageSendEvent::SendChannelReady { .. } => false, &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false, // Interactive Transaction Construction &events::MessageSendEvent::SendTxAddInput { .. } => false, &events::MessageSendEvent::SendTxAddOutput { .. } => false, &events::MessageSendEvent::SendTxRemoveInput { .. } => false, &events::MessageSendEvent::SendTxRemoveOutput { .. } => false, &events::MessageSendEvent::SendTxComplete { .. } => false, &events::MessageSendEvent::SendTxSignatures { .. } => false, &events::MessageSendEvent::SendTxInitRbf { .. } => false, &events::MessageSendEvent::SendTxAckRbf { .. } => false, &events::MessageSendEvent::SendTxAbort { .. } => false, // Channel Operations &events::MessageSendEvent::UpdateHTLCs { .. } => false, &events::MessageSendEvent::SendRevokeAndACK { .. } => false, &events::MessageSendEvent::SendClosingSigned { .. } => false, &events::MessageSendEvent::SendShutdown { .. } => false, &events::MessageSendEvent::SendChannelReestablish { .. } => false, &events::MessageSendEvent::HandleError { .. } => false, // Gossip &events::MessageSendEvent::SendChannelAnnouncement { .. } => false, &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true, &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true, &events::MessageSendEvent::SendChannelUpdate { .. } => false, &events::MessageSendEvent::SendChannelRangeQuery { .. } => false, &events::MessageSendEvent::SendShortIdsQuery { .. } => false, &events::MessageSendEvent::SendReplyChannelRange { .. } => false, &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false, } }); debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect"); peer_state.is_connected = false; peer_state.ok_to_remove(true) } else { debug_assert!(false, "Unconnected peer disconnected"); true } }; if remove_peer { per_peer_state.remove(counterparty_node_id); } mem::drop(per_peer_state); for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } } fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> { if !init_msg.features.supports_static_remote_key() { log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id)); return Err(()); } let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); // If we have too many peers connected which don't have funded channels, disconnect the // peer immediately (as long as it doesn't have funded channels). If we have a bunch of // unfunded channels taking up space in memory for disconnected peers, we still let new // peers connect, but we'll reject new channels from them. let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected); let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS; { let mut peer_state_lock = self.per_peer_state.write().unwrap(); match peer_state_lock.entry(counterparty_node_id.clone()) { hash_map::Entry::Vacant(e) => { if inbound_peer_limited { return Err(()); } e.insert(Mutex::new(PeerState { channel_by_id: HashMap::new(), outbound_v1_channel_by_id: HashMap::new(), inbound_v1_channel_by_id: HashMap::new(), latest_features: init_msg.features.clone(), pending_msg_events: Vec::new(), in_flight_monitor_updates: BTreeMap::new(), monitor_update_blocked_actions: BTreeMap::new(), actions_blocking_raa_monitor_updates: BTreeMap::new(), is_connected: true, })); }, hash_map::Entry::Occupied(e) => { let mut peer_state = e.get().lock().unwrap(); peer_state.latest_features = init_msg.features.clone(); let best_block_height = self.best_block.read().unwrap().height(); if inbound_peer_limited && Self::unfunded_channel_count(&*peer_state, best_block_height) == peer_state.channel_by_id.len() { return Err(()); } debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice"); peer_state.is_connected = true; }, } } log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id)); let per_peer_state = self.per_peer_state.read().unwrap(); for (_cp_id, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; let pending_msg_events = &mut peer_state.pending_msg_events; peer_state.channel_by_id.retain(|_, chan| { let retain = if chan.context.get_counterparty_node_id() == *counterparty_node_id { if !chan.context.have_received_message() { // If we created this (outbound) channel while we were disconnected from the // peer we probably failed to send the open_channel message, which is now // lost. We can't have had anything pending related to this channel, so we just // drop it. false } else { pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish { node_id: chan.context.get_counterparty_node_id(), msg: chan.get_channel_reestablish(&self.logger), }); true } } else { true }; if retain && chan.context.get_counterparty_node_id() != *counterparty_node_id { if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) { if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) { pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement { node_id: *counterparty_node_id, msg, update_msg, }); } } } retain }); } //TODO: Also re-broadcast announcement_signatures Ok(()) } fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) { let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self); if msg.channel_id == [0; 32] { let channel_ids: Vec<[u8; 32]> = { let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id); if peer_state_mutex_opt.is_none() { return; } let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; peer_state.channel_by_id.keys().cloned() .chain(peer_state.outbound_v1_channel_by_id.keys().cloned()) .chain(peer_state.inbound_v1_channel_by_id.keys().cloned()).collect() }; for channel_id in channel_ids { // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true); } } else { { // First check if we can advance the channel type and try again. let per_peer_state = self.per_peer_state.read().unwrap(); let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id); if peer_state_mutex_opt.is_none() { return; } let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap(); let peer_state = &mut *peer_state_lock; if let Some(chan) = peer_state.outbound_v1_channel_by_id.get_mut(&msg.channel_id) { if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) { peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: *counterparty_node_id, msg, }); return; } } } // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true); } } fn provided_node_features(&self) -> NodeFeatures { provided_node_features(&self.default_configuration) } fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures { provided_init_features(&self.default_configuration) } fn get_genesis_hashes(&self) -> Option> { Some(vec![ChainHash::from(&self.genesis_hash[..])]) } fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) { let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close( "Dual-funded channels not supported".to_owned(), msg.channel_id.clone())), *counterparty_node_id); } } /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures { provided_init_features(config).to_context() } /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by /// [`ChannelManager`]. /// /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice" /// or not. Thus, this method is not public. #[cfg(any(feature = "_test_utils", test))] pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures { provided_init_features(config).to_context() } /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures { provided_init_features(config).to_context() } /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures { ChannelTypeFeatures::from_init(&provided_init_features(config)) } /// Fetches the set of [`InitFeatures`] flags which are provided by or required by /// [`ChannelManager`]. pub fn provided_init_features(config: &UserConfig) -> InitFeatures { // Note that if new features are added here which other peers may (eventually) require, we // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for // [`ErroringMessageHandler`]. let mut features = InitFeatures::empty(); features.set_data_loss_protect_required(); features.set_upfront_shutdown_script_optional(); features.set_variable_length_onion_required(); features.set_static_remote_key_required(); features.set_payment_secret_required(); features.set_basic_mpp_optional(); features.set_wumbo_optional(); features.set_shutdown_any_segwit_optional(); features.set_channel_type_optional(); features.set_scid_privacy_optional(); features.set_zero_conf_optional(); if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx { features.set_anchors_zero_fee_htlc_tx_optional(); } features } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl_writeable_tlv_based!(CounterpartyForwardingInfo, { (2, fee_base_msat, required), (4, fee_proportional_millionths, required), (6, cltv_expiry_delta, required), }); impl_writeable_tlv_based!(ChannelCounterparty, { (2, node_id, required), (4, features, required), (6, unspendable_punishment_reserve, required), (8, forwarding_info, option), (9, outbound_htlc_minimum_msat, option), (11, outbound_htlc_maximum_msat, option), }); impl Writeable for ChannelDetails { fn write(&self, writer: &mut W) -> Result<(), io::Error> { // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with // versions prior to 0.0.113, the u128 is serialized as two separate u64 values. let user_channel_id_low = self.user_channel_id as u64; let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64); write_tlv_fields!(writer, { (1, self.inbound_scid_alias, option), (2, self.channel_id, required), (3, self.channel_type, option), (4, self.counterparty, required), (5, self.outbound_scid_alias, option), (6, self.funding_txo, option), (7, self.config, option), (8, self.short_channel_id, option), (9, self.confirmations, option), (10, self.channel_value_satoshis, required), (12, self.unspendable_punishment_reserve, option), (14, user_channel_id_low, required), (16, self.balance_msat, required), (18, self.outbound_capacity_msat, required), (19, self.next_outbound_htlc_limit_msat, required), (20, self.inbound_capacity_msat, required), (21, self.next_outbound_htlc_minimum_msat, required), (22, self.confirmations_required, option), (24, self.force_close_spend_delay, option), (26, self.is_outbound, required), (28, self.is_channel_ready, required), (30, self.is_usable, required), (32, self.is_public, required), (33, self.inbound_htlc_minimum_msat, option), (35, self.inbound_htlc_maximum_msat, option), (37, user_channel_id_high_opt, option), (39, self.feerate_sat_per_1000_weight, option), (41, self.channel_shutdown_state, option), }); Ok(()) } } impl Readable for ChannelDetails { fn read(reader: &mut R) -> Result { _init_and_read_tlv_fields!(reader, { (1, inbound_scid_alias, option), (2, channel_id, required), (3, channel_type, option), (4, counterparty, required), (5, outbound_scid_alias, option), (6, funding_txo, option), (7, config, option), (8, short_channel_id, option), (9, confirmations, option), (10, channel_value_satoshis, required), (12, unspendable_punishment_reserve, option), (14, user_channel_id_low, required), (16, balance_msat, required), (18, outbound_capacity_msat, required), // Note that by the time we get past the required read above, outbound_capacity_msat will be // filled in, so we can safely unwrap it here. (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)), (20, inbound_capacity_msat, required), (21, next_outbound_htlc_minimum_msat, (default_value, 0)), (22, confirmations_required, option), (24, force_close_spend_delay, option), (26, is_outbound, required), (28, is_channel_ready, required), (30, is_usable, required), (32, is_public, required), (33, inbound_htlc_minimum_msat, option), (35, inbound_htlc_maximum_msat, option), (37, user_channel_id_high_opt, option), (39, feerate_sat_per_1000_weight, option), (41, channel_shutdown_state, option), }); // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with // versions prior to 0.0.113, the u128 is serialized as two separate u64 values. let user_channel_id_low: u64 = user_channel_id_low.0.unwrap(); let user_channel_id = user_channel_id_low as u128 + ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64); Ok(Self { inbound_scid_alias, channel_id: channel_id.0.unwrap(), channel_type, counterparty: counterparty.0.unwrap(), outbound_scid_alias, funding_txo, config, short_channel_id, channel_value_satoshis: channel_value_satoshis.0.unwrap(), unspendable_punishment_reserve, user_channel_id, balance_msat: balance_msat.0.unwrap(), outbound_capacity_msat: outbound_capacity_msat.0.unwrap(), next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(), next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(), inbound_capacity_msat: inbound_capacity_msat.0.unwrap(), confirmations_required, confirmations, force_close_spend_delay, is_outbound: is_outbound.0.unwrap(), is_channel_ready: is_channel_ready.0.unwrap(), is_usable: is_usable.0.unwrap(), is_public: is_public.0.unwrap(), inbound_htlc_minimum_msat, inbound_htlc_maximum_msat, feerate_sat_per_1000_weight, channel_shutdown_state, }) } } impl_writeable_tlv_based!(PhantomRouteHints, { (2, channels, required_vec), (4, phantom_scid, required), (6, real_node_pubkey, required), }); impl_writeable_tlv_based_enum!(PendingHTLCRouting, (0, Forward) => { (0, onion_packet, required), (2, short_channel_id, required), }, (1, Receive) => { (0, payment_data, required), (1, phantom_shared_secret, option), (2, incoming_cltv_expiry, required), (3, payment_metadata, option), }, (2, ReceiveKeysend) => { (0, payment_preimage, required), (2, incoming_cltv_expiry, required), (3, payment_metadata, option), (4, payment_data, option), // Added in 0.0.116 }, ;); impl_writeable_tlv_based!(PendingHTLCInfo, { (0, routing, required), (2, incoming_shared_secret, required), (4, payment_hash, required), (6, outgoing_amt_msat, required), (8, outgoing_cltv_value, required), (9, incoming_amt_msat, option), (10, skimmed_fee_msat, option), }); impl Writeable for HTLCFailureMsg { fn write(&self, writer: &mut W) -> Result<(), io::Error> { match self { HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => { 0u8.write(writer)?; channel_id.write(writer)?; htlc_id.write(writer)?; reason.write(writer)?; }, HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id, htlc_id, sha256_of_onion, failure_code }) => { 1u8.write(writer)?; channel_id.write(writer)?; htlc_id.write(writer)?; sha256_of_onion.write(writer)?; failure_code.write(writer)?; }, } Ok(()) } } impl Readable for HTLCFailureMsg { fn read(reader: &mut R) -> Result { let id: u8 = Readable::read(reader)?; match id { 0 => { Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: Readable::read(reader)?, htlc_id: Readable::read(reader)?, reason: Readable::read(reader)?, })) }, 1 => { Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: Readable::read(reader)?, htlc_id: Readable::read(reader)?, sha256_of_onion: Readable::read(reader)?, failure_code: Readable::read(reader)?, })) }, // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network // messages contained in the variants. // In version 0.0.101, support for reading the variants with these types was added, and // we should migrate to writing these variants when UpdateFailHTLC or // UpdateFailMalformedHTLC get TLV fields. 2 => { let length: BigSize = Readable::read(reader)?; let mut s = FixedLengthReader::new(reader, length.0); let res = Readable::read(&mut s)?; s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes Ok(HTLCFailureMsg::Relay(res)) }, 3 => { let length: BigSize = Readable::read(reader)?; let mut s = FixedLengthReader::new(reader, length.0); let res = Readable::read(&mut s)?; s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes Ok(HTLCFailureMsg::Malformed(res)) }, _ => Err(DecodeError::UnknownRequiredFeature), } } } impl_writeable_tlv_based_enum!(PendingHTLCStatus, ; (0, Forward), (1, Fail), ); impl_writeable_tlv_based!(HTLCPreviousHopData, { (0, short_channel_id, required), (1, phantom_shared_secret, option), (2, outpoint, required), (4, htlc_id, required), (6, incoming_packet_shared_secret, required) }); impl Writeable for ClaimableHTLC { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let (payment_data, keysend_preimage) = match &self.onion_payload { OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None), OnionPayload::Spontaneous(preimage) => (None, Some(preimage)), }; write_tlv_fields!(writer, { (0, self.prev_hop, required), (1, self.total_msat, required), (2, self.value, required), (3, self.sender_intended_value, required), (4, payment_data, option), (5, self.total_value_received, option), (6, self.cltv_expiry, required), (8, keysend_preimage, option), (10, self.counterparty_skimmed_fee_msat, option), }); Ok(()) } } impl Readable for ClaimableHTLC { fn read(reader: &mut R) -> Result { _init_and_read_tlv_fields!(reader, { (0, prev_hop, required), (1, total_msat, option), (2, value_ser, required), (3, sender_intended_value, option), (4, payment_data_opt, option), (5, total_value_received, option), (6, cltv_expiry, required), (8, keysend_preimage, option), (10, counterparty_skimmed_fee_msat, option), }); let payment_data: Option = payment_data_opt; let value = value_ser.0.unwrap(); let onion_payload = match keysend_preimage { Some(p) => { if payment_data.is_some() { return Err(DecodeError::InvalidValue) } if total_msat.is_none() { total_msat = Some(value); } OnionPayload::Spontaneous(p) }, None => { if total_msat.is_none() { if payment_data.is_none() { return Err(DecodeError::InvalidValue) } total_msat = Some(payment_data.as_ref().unwrap().total_msat); } OnionPayload::Invoice { _legacy_hop_data: payment_data } }, }; Ok(Self { prev_hop: prev_hop.0.unwrap(), timer_ticks: 0, value, sender_intended_value: sender_intended_value.unwrap_or(value), total_value_received, total_msat: total_msat.unwrap(), onion_payload, cltv_expiry: cltv_expiry.0.unwrap(), counterparty_skimmed_fee_msat, }) } } impl Readable for HTLCSource { fn read(reader: &mut R) -> Result { let id: u8 = Readable::read(reader)?; match id { 0 => { let mut session_priv: crate::util::ser::RequiredWrapper = crate::util::ser::RequiredWrapper(None); let mut first_hop_htlc_msat: u64 = 0; let mut path_hops = Vec::new(); let mut payment_id = None; let mut payment_params: Option = None; let mut blinded_tail: Option = None; read_tlv_fields!(reader, { (0, session_priv, required), (1, payment_id, option), (2, first_hop_htlc_msat, required), (4, path_hops, required_vec), (5, payment_params, (option: ReadableArgs, 0)), (6, blinded_tail, option), }); if payment_id.is_none() { // For backwards compat, if there was no payment_id written, use the session_priv bytes // instead. payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref())); } let path = Path { hops: path_hops, blinded_tail }; if path.hops.len() == 0 { return Err(DecodeError::InvalidValue); } if let Some(params) = payment_params.as_mut() { if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee { if final_cltv_expiry_delta == &0 { *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?; } } } Ok(HTLCSource::OutboundRoute { session_priv: session_priv.0.unwrap(), first_hop_htlc_msat, path, payment_id: payment_id.unwrap(), }) } 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)), _ => Err(DecodeError::UnknownRequiredFeature), } } } impl Writeable for HTLCSource { fn write(&self, writer: &mut W) -> Result<(), crate::io::Error> { match self { HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => { 0u8.write(writer)?; let payment_id_opt = Some(payment_id); write_tlv_fields!(writer, { (0, session_priv, required), (1, payment_id_opt, option), (2, first_hop_htlc_msat, required), // 3 was previously used to write a PaymentSecret for the payment. (4, path.hops, required_vec), (5, None::, option), // payment_params in LDK versions prior to 0.0.115 (6, path.blinded_tail, option), }); } HTLCSource::PreviousHopData(ref field) => { 1u8.write(writer)?; field.write(writer)?; } } Ok(()) } } impl_writeable_tlv_based!(PendingAddHTLCInfo, { (0, forward_info, required), (1, prev_user_channel_id, (default_value, 0)), (2, prev_short_channel_id, required), (4, prev_htlc_id, required), (6, prev_funding_outpoint, required), }); impl_writeable_tlv_based_enum!(HTLCForwardInfo, (1, FailHTLC) => { (0, htlc_id, required), (2, err_packet, required), }; (0, AddHTLC) ); impl_writeable_tlv_based!(PendingInboundPayment, { (0, payment_secret, required), (2, expiry_time, required), (4, user_payment_id, required), (6, payment_preimage, required), (8, min_value_msat, required), }); impl Writeable for ChannelManager where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let _consistency_lock = self.total_consistency_lock.write().unwrap(); write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION); self.genesis_hash.write(writer)?; { let best_block = self.best_block.read().unwrap(); best_block.height().write(writer)?; best_block.block_hash().write(writer)?; } let mut serializable_peer_count: u64 = 0; { let per_peer_state = self.per_peer_state.read().unwrap(); let mut unfunded_channels = 0; let mut number_of_channels = 0; for (_, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; if !peer_state.ok_to_remove(false) { serializable_peer_count += 1; } number_of_channels += peer_state.channel_by_id.len(); for (_, channel) in peer_state.channel_by_id.iter() { if !channel.context.is_funding_initiated() { unfunded_channels += 1; } } } ((number_of_channels - unfunded_channels) as u64).write(writer)?; for (_, peer_state_mutex) in per_peer_state.iter() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (_, channel) in peer_state.channel_by_id.iter() { if channel.context.is_funding_initiated() { channel.write(writer)?; } } } } { let forward_htlcs = self.forward_htlcs.lock().unwrap(); (forward_htlcs.len() as u64).write(writer)?; for (short_channel_id, pending_forwards) in forward_htlcs.iter() { short_channel_id.write(writer)?; (pending_forwards.len() as u64).write(writer)?; for forward in pending_forwards { forward.write(writer)?; } } } let per_peer_state = self.per_peer_state.write().unwrap(); let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap(); let claimable_payments = self.claimable_payments.lock().unwrap(); let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap(); let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new(); let mut htlc_onion_fields: Vec<&_> = Vec::new(); (claimable_payments.claimable_payments.len() as u64).write(writer)?; for (payment_hash, payment) in claimable_payments.claimable_payments.iter() { payment_hash.write(writer)?; (payment.htlcs.len() as u64).write(writer)?; for htlc in payment.htlcs.iter() { htlc.write(writer)?; } htlc_purposes.push(&payment.purpose); htlc_onion_fields.push(&payment.onion_fields); } let mut monitor_update_blocked_actions_per_peer = None; let mut peer_states = Vec::new(); for (_, peer_state_mutex) in per_peer_state.iter() { // Because we're holding the owning `per_peer_state` write lock here there's no chance // of a lockorder violation deadlock - no other thread can be holding any // per_peer_state lock at all. peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self()); } (serializable_peer_count).write(writer)?; for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) { // Peers which we have no channels to should be dropped once disconnected. As we // disconnect all peers when shutting down and serializing the ChannelManager, we // consider all peers as disconnected here. There's therefore no need write peers with // no channels. if !peer_state.ok_to_remove(false) { peer_pubkey.write(writer)?; peer_state.latest_features.write(writer)?; if !peer_state.monitor_update_blocked_actions.is_empty() { monitor_update_blocked_actions_per_peer .get_or_insert_with(Vec::new) .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions)); } } } let events = self.pending_events.lock().unwrap(); // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will // refuse to read the new ChannelManager. let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some()); if events_not_backwards_compatible { // If we're gonna write a even TLV that will overwrite our events anyway we might as // well save the space and not write any events here. 0u64.write(writer)?; } else { (events.len() as u64).write(writer)?; for (event, _) in events.iter() { event.write(writer)?; } } // LDK versions prior to 0.0.116 wrote the `pending_background_events` // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so - // the closing monitor updates were always effectively replayed on startup (either directly // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during // deserialization or, in 0.0.115, by regenerating the monitor update itself). 0u64.write(writer)?; // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is // likely to be identical. (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?; (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?; (pending_inbound_payments.len() as u64).write(writer)?; for (hash, pending_payment) in pending_inbound_payments.iter() { hash.write(writer)?; pending_payment.write(writer)?; } // For backwards compat, write the session privs and their total length. let mut num_pending_outbounds_compat: u64 = 0; for (_, outbound) in pending_outbound_payments.iter() { if !outbound.is_fulfilled() && !outbound.abandoned() { num_pending_outbounds_compat += outbound.remaining_parts() as u64; } } num_pending_outbounds_compat.write(writer)?; for (_, outbound) in pending_outbound_payments.iter() { match outbound { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } => { for session_priv in session_privs.iter() { session_priv.write(writer)?; } } PendingOutboundPayment::Fulfilled { .. } => {}, PendingOutboundPayment::Abandoned { .. } => {}, } } // Encode without retry info for 0.0.101 compatibility. let mut pending_outbound_payments_no_retry: HashMap> = HashMap::new(); for (id, outbound) in pending_outbound_payments.iter() { match outbound { PendingOutboundPayment::Legacy { session_privs } | PendingOutboundPayment::Retryable { session_privs, .. } => { pending_outbound_payments_no_retry.insert(*id, session_privs.clone()); }, _ => {}, } } let mut pending_intercepted_htlcs = None; let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap(); if our_pending_intercepts.len() != 0 { pending_intercepted_htlcs = Some(our_pending_intercepts); } let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments); if pending_claiming_payments.as_ref().unwrap().is_empty() { // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments // map. Thus, if there are no entries we skip writing a TLV for it. pending_claiming_payments = None; } let mut in_flight_monitor_updates: Option>> = None; for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) { for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() { if !updates.is_empty() { if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); } in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates); } } } write_tlv_fields!(writer, { (1, pending_outbound_payments_no_retry, required), (2, pending_intercepted_htlcs, option), (3, pending_outbound_payments, required), (4, pending_claiming_payments, option), (5, self.our_network_pubkey, required), (6, monitor_update_blocked_actions_per_peer, option), (7, self.fake_scid_rand_bytes, required), (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option), (9, htlc_purposes, required_vec), (10, in_flight_monitor_updates, option), (11, self.probing_cookie_secret, required), (13, htlc_onion_fields, optional_vec), }); Ok(()) } } impl Writeable for VecDeque<(Event, Option)> { fn write(&self, w: &mut W) -> Result<(), io::Error> { (self.len() as u64).write(w)?; for (event, action) in self.iter() { event.write(w)?; action.write(w)?; #[cfg(debug_assertions)] { // Events are MaybeReadable, in some cases indicating that they shouldn't actually // be persisted and are regenerated on restart. However, if such an event has a // post-event-handling action we'll write nothing for the event and would have to // either forget the action or fail on deserialization (which we do below). Thus, // check that the event is sane here. let event_encoded = event.encode(); let event_read: Option = MaybeReadable::read(&mut &event_encoded[..]).unwrap(); if action.is_some() { assert!(event_read.is_some()); } } } Ok(()) } } impl Readable for VecDeque<(Event, Option)> { fn read(reader: &mut R) -> Result { let len: u64 = Readable::read(reader)?; const MAX_ALLOC_SIZE: u64 = 1024 * 16; let mut events: Self = VecDeque::with_capacity(cmp::min( MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option)>() as u64, len) as usize); for _ in 0..len { let ev_opt = MaybeReadable::read(reader)?; let action = Readable::read(reader)?; if let Some(ev) = ev_opt { events.push_back((ev, action)); } else if action.is_some() { return Err(DecodeError::InvalidValue); } } Ok(events) } } impl_writeable_tlv_based_enum!(ChannelShutdownState, (0, NotShuttingDown) => {}, (2, ShutdownInitiated) => {}, (4, ResolvingHTLCs) => {}, (6, NegotiatingClosingFee) => {}, (8, ShutdownComplete) => {}, ; ); /// Arguments for the creation of a ChannelManager that are not deserialized. /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: /// 1) Deserialize all stored [`ChannelMonitor`]s. /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling: /// `<(BlockHash, ChannelManager)>::read(reader, args)` /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted. /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the /// same way you would handle a [`chain::Filter`] call using /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`]. /// 4) Reconnect blocks on your [`ChannelMonitor`]s. /// 5) Disconnect/connect blocks on the [`ChannelManager`]. /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk. /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in /// the next step. /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`]. /// /// Note that the ordering of #4-7 is not of importance, however all four must occur before you /// call any other methods on the newly-deserialized [`ChannelManager`]. /// /// Note that because some channels may be closed during deserialization, it is critical that you /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will /// not force-close the same channels but consider them live), you may end up revoking a state for /// which you've already broadcasted the transaction. /// /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// A cryptographically secure source of entropy. pub entropy_source: ES, /// A signer that is able to perform node-scoped cryptographic operations. pub node_signer: NS, /// The keys provider which will give us relevant keys. Some keys will be loaded during /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel /// signing data. pub signer_provider: SP, /// The fee_estimator for use in the ChannelManager in the future. /// /// No calls to the FeeEstimator will be made during deserialization. pub fee_estimator: F, /// The chain::Watch for use in the ChannelManager in the future. /// /// No calls to the chain::Watch will be made during deserialization. It is assumed that /// you have deserialized ChannelMonitors separately and will add them to your /// chain::Watch after deserializing this ChannelManager. pub chain_monitor: M, /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be /// used to broadcast the latest local commitment transactions of channels which must be /// force-closed during deserialization. pub tx_broadcaster: T, /// The router which will be used in the ChannelManager in the future for finding routes /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding. /// /// No calls to the router will be made during deserialization. pub router: R, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: L, /// Default settings used for new channels. Any existing channels will continue to use the /// runtime settings which were stored when the ChannelManager was serialized. pub default_config: UserConfig, /// A map from channel funding outpoints to ChannelMonitors for those channels (ie /// value.context.get_funding_txo() should be the key). /// /// If a monitor is inconsistent with the channel state during deserialization the channel will /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This /// is true for missing channels as well. If there is a monitor missing for which we find /// channel data Err(DecodeError::InvalidValue) will be returned. /// /// In such cases the latest local transactions will be sent to the tx_broadcaster included in /// this struct. /// /// This is not exported to bindings users because we have no HashMap bindings pub channel_monitors: HashMap::Signer>>, } impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L> where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor /// HashMap for you. This is primarily useful for C bindings where it is not practical to /// populate a HashMap directly from C. pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig, mut channel_monitors: Vec<&'a mut ChannelMonitor<::Signer>>) -> Self { Self { entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config, channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect() } } } // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the // SipmleArcChannelManager type: impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ReadableArgs> for (BlockHash, Arc>) where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn read(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result { let (blockhash, chan_manager) = <(BlockHash, ChannelManager)>::read(reader, args)?; Ok((blockhash, Arc::new(chan_manager))) } } impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ReadableArgs> for (BlockHash, ChannelManager) where M::Target: chain::Watch<::Signer>, T::Target: BroadcasterInterface, ES::Target: EntropySource, NS::Target: NodeSigner, SP::Target: SignerProvider, F::Target: FeeEstimator, R::Target: Router, L::Target: Logger, { fn read(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result { let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION); let genesis_hash: BlockHash = Readable::read(reader)?; let best_block_height: u32 = Readable::read(reader)?; let best_block_hash: BlockHash = Readable::read(reader)?; let mut failed_htlcs = Vec::new(); let channel_count: u64 = Readable::read(reader)?; let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128)); let mut peer_channels: HashMap::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut channel_closures = VecDeque::new(); let mut close_background_events = Vec::new(); for _ in 0..channel_count { let mut channel: Channel<::Signer> = Channel::read(reader, ( &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config) ))?; let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?; funding_txo_set.insert(funding_txo.clone()); if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) { if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() || channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() || channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() || channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() { // But if the channel is behind of the monitor, close the channel: log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!"); log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast."); log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.", log_bytes!(channel.context.channel_id()), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id()); let (monitor_update, mut new_failed_htlcs) = channel.context.force_shutdown(true); if let Some((counterparty_node_id, funding_txo, update)) = monitor_update { close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update }); } failed_htlcs.append(&mut new_failed_htlcs); channel_closures.push_back((events::Event::ChannelClosed { channel_id: channel.context.channel_id(), user_channel_id: channel.context.get_user_id(), reason: ClosureReason::OutdatedChannelManager }, None)); for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() { let mut found_htlc = false; for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() { if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; } } if !found_htlc { // If we have some HTLCs in the channel which are not present in the newer // ChannelMonitor, they have been removed and should be failed back to // ensure we don't forget them entirely. Note that if the missing HTLC(s) // were actually claimed we'd have generated and ensured the previous-hop // claim update ChannelMonitor updates were persisted prior to persising // the ChannelMonitor update for the forward leg, so attempting to fail the // backwards leg of the HTLC will simply be rejected. log_info!(args.logger, "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager", log_bytes!(channel.context.channel_id()), log_bytes!(payment_hash.0)); failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id())); } } } else { log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}", log_bytes!(channel.context.channel_id()), channel.context.get_latest_monitor_update_id(), monitor.get_latest_update_id()); if let Some(short_channel_id) = channel.context.get_short_channel_id() { short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id())); } if channel.context.is_funding_initiated() { id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id()); } match peer_channels.entry(channel.context.get_counterparty_node_id()) { hash_map::Entry::Occupied(mut entry) => { let by_id_map = entry.get_mut(); by_id_map.insert(channel.context.channel_id(), channel); }, hash_map::Entry::Vacant(entry) => { let mut by_id_map = HashMap::new(); by_id_map.insert(channel.context.channel_id(), channel); entry.insert(by_id_map); } } } } else if channel.is_awaiting_initial_mon_persist() { // If we were persisted and shut down while the initial ChannelMonitor persistence // was in-progress, we never broadcasted the funding transaction and can still // safely discard the channel. let _ = channel.context.force_shutdown(false); channel_closures.push_back((events::Event::ChannelClosed { channel_id: channel.context.channel_id(), user_channel_id: channel.context.get_user_id(), reason: ClosureReason::DisconnectedPeer, }, None)); } else { log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.context.channel_id())); log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,"); log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!"); log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds."); log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning"); return Err(DecodeError::InvalidValue); } } for (funding_txo, _) in args.channel_monitors.iter() { if !funding_txo_set.contains(funding_txo) { log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed", log_bytes!(funding_txo.to_channel_id())); let monitor_update = ChannelMonitorUpdate { update_id: CLOSED_CHANNEL_UPDATE_ID, updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }], }; close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update))); } } const MAX_ALLOC_SIZE: usize = 1024 * 64; let forward_htlcs_count: u64 = Readable::read(reader)?; let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128)); for _ in 0..forward_htlcs_count { let short_channel_id = Readable::read(reader)?; let pending_forwards_count: u64 = Readable::read(reader)?; let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..pending_forwards_count { pending_forwards.push(Readable::read(reader)?); } forward_htlcs.insert(short_channel_id, pending_forwards); } let claimable_htlcs_count: u64 = Readable::read(reader)?; let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128)); for _ in 0..claimable_htlcs_count { let payment_hash = Readable::read(reader)?; let previous_hops_len: u64 = Readable::read(reader)?; let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..previous_hops_len { previous_hops.push(::read(reader)?); } claimable_htlcs_list.push((payment_hash, previous_hops)); } let peer_state_from_chans = |channel_by_id| { PeerState { channel_by_id, outbound_v1_channel_by_id: HashMap::new(), inbound_v1_channel_by_id: HashMap::new(), latest_features: InitFeatures::empty(), pending_msg_events: Vec::new(), in_flight_monitor_updates: BTreeMap::new(), monitor_update_blocked_actions: BTreeMap::new(), actions_blocking_raa_monitor_updates: BTreeMap::new(), is_connected: false, } }; let peer_count: u64 = Readable::read(reader)?; let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex::Signer>>)>())); for _ in 0..peer_count { let peer_pubkey = Readable::read(reader)?; let peer_chans = peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()); let mut peer_state = peer_state_from_chans(peer_chans); peer_state.latest_features = Readable::read(reader)?; per_peer_state.insert(peer_pubkey, Mutex::new(peer_state)); } let event_count: u64 = Readable::read(reader)?; let mut pending_events_read: VecDeque<(events::Event, Option)> = VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option)>())); for _ in 0..event_count { match MaybeReadable::read(reader)? { Some(event) => pending_events_read.push_back((event, None)), None => continue, } } let background_event_count: u64 = Readable::read(reader)?; for _ in 0..background_event_count { match ::read(reader)? { 0 => { // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here, // however we really don't (and never did) need them - we regenerate all // on-startup monitor updates. let _: OutPoint = Readable::read(reader)?; let _: ChannelMonitorUpdate = Readable::read(reader)?; } _ => return Err(DecodeError::InvalidValue), } } let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111 let highest_seen_timestamp: u32 = Readable::read(reader)?; let pending_inbound_payment_count: u64 = Readable::read(reader)?; let mut pending_inbound_payments: HashMap = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32))); for _ in 0..pending_inbound_payment_count { if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() { return Err(DecodeError::InvalidValue); } } let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?; let mut pending_outbound_payments_compat: HashMap = HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32)); for _ in 0..pending_outbound_payments_count_compat { let session_priv = Readable::read(reader)?; let payment = PendingOutboundPayment::Legacy { session_privs: [session_priv].iter().cloned().collect() }; if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() { return Err(DecodeError::InvalidValue) }; } // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients. let mut pending_outbound_payments_no_retry: Option>> = None; let mut pending_outbound_payments = None; let mut pending_intercepted_htlcs: Option> = Some(HashMap::new()); let mut received_network_pubkey: Option = None; let mut fake_scid_rand_bytes: Option<[u8; 32]> = None; let mut probing_cookie_secret: Option<[u8; 32]> = None; let mut claimable_htlc_purposes = None; let mut claimable_htlc_onion_fields = None; let mut pending_claiming_payments = Some(HashMap::new()); let mut monitor_update_blocked_actions_per_peer: Option>)>> = Some(Vec::new()); let mut events_override = None; let mut in_flight_monitor_updates: Option>> = None; read_tlv_fields!(reader, { (1, pending_outbound_payments_no_retry, option), (2, pending_intercepted_htlcs, option), (3, pending_outbound_payments, option), (4, pending_claiming_payments, option), (5, received_network_pubkey, option), (6, monitor_update_blocked_actions_per_peer, option), (7, fake_scid_rand_bytes, option), (8, events_override, option), (9, claimable_htlc_purposes, optional_vec), (10, in_flight_monitor_updates, option), (11, probing_cookie_secret, option), (13, claimable_htlc_onion_fields, optional_vec), }); if fake_scid_rand_bytes.is_none() { fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes()); } if probing_cookie_secret.is_none() { probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes()); } if let Some(events) = events_override { pending_events_read = events; } if !channel_closures.is_empty() { pending_events_read.append(&mut channel_closures); } if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() { pending_outbound_payments = Some(pending_outbound_payments_compat); } else if pending_outbound_payments.is_none() { let mut outbounds = HashMap::new(); for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() { outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs }); } pending_outbound_payments = Some(outbounds); } let pending_outbounds = OutboundPayments { pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()), retry_lock: Mutex::new(()) }; // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`) // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we // replayed, and for each monitor update we have to replay we have to ensure there's a // `ChannelMonitor` for it. // // In order to do so we first walk all of our live channels (so that we can check their // state immediately after doing the update replays, when we have the `update_id`s // available) and then walk any remaining in-flight updates. // // Because the actual handling of the in-flight updates is the same, it's macro'ized here: let mut pending_background_events = Vec::new(); macro_rules! handle_in_flight_updates { ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr, $monitor: expr, $peer_state: expr, $channel_info_log: expr ) => { { let mut max_in_flight_update_id = 0; $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id()); for update in $chan_in_flight_upds.iter() { log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}", update.update_id, $channel_info_log, log_bytes!($funding_txo.to_channel_id())); max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id); pending_background_events.push( BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id: $counterparty_node_id, funding_txo: $funding_txo, update: update.clone(), }); } if $chan_in_flight_upds.is_empty() { // We had some updates to apply, but it turns out they had completed before we // were serialized, we just weren't notified of that. Thus, we may have to run // the completion actions for any monitor updates, but otherwise are done. pending_background_events.push( BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id: $counterparty_node_id, channel_id: $funding_txo.to_channel_id(), }); } if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() { log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!"); return Err(DecodeError::InvalidValue); } max_in_flight_update_id } } } for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() { let mut peer_state_lock = peer_state_mtx.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (_, chan) in peer_state.channel_by_id.iter() { // Channels that were persisted have to be funded, otherwise they should have been // discarded. let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?; let monitor = args.channel_monitors.get(&funding_txo) .expect("We already checked for monitor presence when loading channels"); let mut max_in_flight_update_id = monitor.get_latest_update_id(); if let Some(in_flight_upds) = &mut in_flight_monitor_updates { if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) { max_in_flight_update_id = cmp::max(max_in_flight_update_id, handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds, funding_txo, monitor, peer_state, "")); } } if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id { // If the channel is ahead of the monitor, return InvalidValue: log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!"); log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight", log_bytes!(chan.context.channel_id()), monitor.get_latest_update_id(), max_in_flight_update_id); log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id()); log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,"); log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!"); log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds."); log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning"); return Err(DecodeError::InvalidValue); } } } if let Some(in_flight_upds) = in_flight_monitor_updates { for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds { if let Some(monitor) = args.channel_monitors.get(&funding_txo) { // Now that we've removed all the in-flight monitor updates for channels that are // still open, we need to replay any monitor updates that are for closed channels, // creating the neccessary peer_state entries as we go. let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| { Mutex::new(peer_state_from_chans(HashMap::new())) }); let mut peer_state = peer_state_mutex.lock().unwrap(); handle_in_flight_updates!(counterparty_id, chan_in_flight_updates, funding_txo, monitor, peer_state, "closed "); } else { log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!"); log_error!(args.logger, " The ChannelMonitor for channel {} is missing.", log_bytes!(funding_txo.to_channel_id())); log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,"); log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!"); log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds."); log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning"); return Err(DecodeError::InvalidValue); } } } // Note that we have to do the above replays before we push new monitor updates. pending_background_events.append(&mut close_background_events); // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we // should ensure we try them again on the inbound edge. We put them here and do so after we // have a fully-constructed `ChannelManager` at the end. let mut pending_claims_to_replay = Vec::new(); { // If we're tracking pending payments, ensure we haven't lost any by looking at the // ChannelMonitor data for any channels for which we do not have authorative state // (i.e. those for which we just force-closed above or we otherwise don't have a // corresponding `Channel` at all). // This avoids several edge-cases where we would otherwise "forget" about pending // payments which are still in-flight via their on-chain state. // We only rebuild the pending payments map if we were most recently serialized by // 0.0.102+ for (_, monitor) in args.channel_monitors.iter() { let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()); if counterparty_opt.is_none() { for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() { if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source { if path.hops.is_empty() { log_error!(args.logger, "Got an empty path for a pending payment"); return Err(DecodeError::InvalidValue); } let path_amt = path.final_value_msat(); let mut session_priv_bytes = [0; 32]; session_priv_bytes[..].copy_from_slice(&session_priv[..]); match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) { hash_map::Entry::Occupied(mut entry) => { let newly_added = entry.get_mut().insert(session_priv_bytes, &path); log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}", if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0)); }, hash_map::Entry::Vacant(entry) => { let path_fee = path.fee_msat(); entry.insert(PendingOutboundPayment::Retryable { retry_strategy: None, attempts: PaymentAttempts::new(), payment_params: None, session_privs: [session_priv_bytes].iter().map(|a| *a).collect(), payment_hash: htlc.payment_hash, payment_secret: None, // only used for retries, and we'll never retry on startup payment_metadata: None, // only used for retries, and we'll never retry on startup keysend_preimage: None, // only used for retries, and we'll never retry on startup pending_amt_msat: path_amt, pending_fee_msat: Some(path_fee), total_msat: path_amt, starting_block_height: best_block_height, }); log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}", path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes)); } } } } for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() { match htlc_source { HTLCSource::PreviousHopData(prev_hop_data) => { let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| { info.prev_funding_outpoint == prev_hop_data.outpoint && info.prev_htlc_id == prev_hop_data.htlc_id }; // The ChannelMonitor is now responsible for this HTLC's // failure/success and will let us know what its outcome is. If we // still have an entry for this HTLC in `forward_htlcs` or // `pending_intercepted_htlcs`, we were apparently not persisted after // the monitor was when forwarding the payment. forward_htlcs.retain(|_, forwards| { forwards.retain(|forward| { if let HTLCForwardInfo::AddHTLC(htlc_info) = forward { if pending_forward_matches_htlc(&htlc_info) { log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}", log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id())); false } else { true } } else { true } }); !forwards.is_empty() }); pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| { if pending_forward_matches_htlc(&htlc_info) { log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}", log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id())); pending_events_read.retain(|(event, _)| { if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event { intercepted_id != ev_id } else { true } }); false } else { true } }); }, HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => { if let Some(preimage) = preimage_opt { let pending_events = Mutex::new(pending_events_read); // Note that we set `from_onchain` to "false" here, // deliberately keeping the pending payment around forever. // Given it should only occur when we have a channel we're // force-closing for being stale that's okay. // The alternative would be to wipe the state when claiming, // generating a `PaymentPathSuccessful` event but regenerating // it and the `PaymentSent` on every restart until the // `ChannelMonitor` is removed. pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger); pending_events_read = pending_events.into_inner().unwrap(); } }, } } } // Whether the downstream channel was closed or not, try to re-apply any payment // preimages from it which may be needed in upstream channels for forwarded // payments. let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs() .into_iter() .filter_map(|(htlc_source, (htlc, preimage_opt))| { if let HTLCSource::PreviousHopData(_) = htlc_source { if let Some(payment_preimage) = preimage_opt { Some((htlc_source, payment_preimage, htlc.amount_msat, // Check if `counterparty_opt.is_none()` to see if the // downstream chan is closed (because we don't have a // channel_id -> peer map entry). counterparty_opt.is_none(), monitor.get_funding_txo().0.to_channel_id())) } else { None } } else { // If it was an outbound payment, we've handled it above - if a preimage // came in and we persisted the `ChannelManager` we either handled it and // are good to go or the channel force-closed - we don't have to handle the // channel still live case here. None } }); for tuple in outbound_claimed_htlcs_iter { pending_claims_to_replay.push(tuple); } } } if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() { // If we have pending HTLCs to forward, assume we either dropped a // `PendingHTLCsForwardable` or the user received it but never processed it as they // shut down before the timer hit. Either way, set the time_forwardable to a small // constant as enough time has likely passed that we should simply handle the forwards // now, or at least after the user gets a chance to reconnect to our peers. pending_events_read.push_back((events::Event::PendingHTLCsForwardable { time_forwardable: Duration::from_secs(2), }, None)); } let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material(); let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material); let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len()); if let Some(purposes) = claimable_htlc_purposes { if purposes.len() != claimable_htlcs_list.len() { return Err(DecodeError::InvalidValue); } if let Some(onion_fields) = claimable_htlc_onion_fields { if onion_fields.len() != claimable_htlcs_list.len() { return Err(DecodeError::InvalidValue); } for (purpose, (onion, (payment_hash, htlcs))) in purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter())) { let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment { purpose, htlcs, onion_fields: onion, }); if existing_payment.is_some() { return Err(DecodeError::InvalidValue); } } } else { for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) { let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment { purpose, htlcs, onion_fields: None, }); if existing_payment.is_some() { return Err(DecodeError::InvalidValue); } } } } else { // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do // include a `_legacy_hop_data` in the `OnionPayload`. for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) { if htlcs.is_empty() { return Err(DecodeError::InvalidValue); } let purpose = match &htlcs[0].onion_payload { OnionPayload::Invoice { _legacy_hop_data } => { if let Some(hop_data) = _legacy_hop_data { events::PaymentPurpose::InvoicePayment { payment_preimage: match pending_inbound_payments.get(&payment_hash) { Some(inbound_payment) => inbound_payment.payment_preimage, None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) { Ok((payment_preimage, _)) => payment_preimage, Err(()) => { log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0)); return Err(DecodeError::InvalidValue); } } }, payment_secret: hop_data.payment_secret, } } else { return Err(DecodeError::InvalidValue); } }, OnionPayload::Spontaneous(payment_preimage) => events::PaymentPurpose::SpontaneousPayment(*payment_preimage), }; claimable_payments.insert(payment_hash, ClaimablePayment { purpose, htlcs, onion_fields: None, }); } } let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes()); let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) { Ok(key) => key, Err(()) => return Err(DecodeError::InvalidValue) }; if let Some(network_pubkey) = received_network_pubkey { if network_pubkey != our_network_pubkey { log_error!(args.logger, "Key that was generated does not match the existing key."); return Err(DecodeError::InvalidValue); } } let mut outbound_scid_aliases = HashSet::new(); for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() { let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; for (chan_id, chan) in peer_state.channel_by_id.iter_mut() { if chan.context.outbound_scid_alias() == 0 { let mut outbound_scid_alias; loop { outbound_scid_alias = fake_scid::Namespace::OutboundAlias .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source); if outbound_scid_aliases.insert(outbound_scid_alias) { break; } } chan.context.set_outbound_scid_alias(outbound_scid_alias); } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) { // Note that in rare cases its possible to hit this while reading an older // channel if we just happened to pick a colliding outbound alias above. log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias()); return Err(DecodeError::InvalidValue); } if chan.context.is_usable() { if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() { // Note that in rare cases its possible to hit this while reading an older // channel if we just happened to pick a colliding outbound alias above. log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias()); return Err(DecodeError::InvalidValue); } } } } let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator); for (_, monitor) in args.channel_monitors.iter() { for (payment_hash, payment_preimage) in monitor.get_stored_preimages() { if let Some(payment) = claimable_payments.remove(&payment_hash) { log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0)); let mut claimable_amt_msat = 0; let mut receiver_node_id = Some(our_network_pubkey); let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret; if phantom_shared_secret.is_some() { let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode) .expect("Failed to get node_id for phantom node recipient"); receiver_node_id = Some(phantom_pubkey) } for claimable_htlc in payment.htlcs { claimable_amt_msat += claimable_htlc.value; // Add a holding-cell claim of the payment to the Channel, which should be // applied ~immediately on peer reconnection. Because it won't generate a // new commitment transaction we can just provide the payment preimage to // the corresponding ChannelMonitor and nothing else. // // We do so directly instead of via the normal ChannelMonitor update // procedure as the ChainMonitor hasn't yet been initialized, implying // we're not allowed to call it directly yet. Further, we do the update // without incrementing the ChannelMonitor update ID as there isn't any // reason to. // If we were to generate a new ChannelMonitor update ID here and then // crash before the user finishes block connect we'd end up force-closing // this channel as well. On the flip side, there's no harm in restarting // without the new monitor persisted - we'll end up right back here on // restart. let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id(); if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){ let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap(); let mut peer_state_lock = peer_state_mutex.lock().unwrap(); let peer_state = &mut *peer_state_lock; if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) { channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger); } } if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) { previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger); } } pending_events_read.push_back((events::Event::PaymentClaimed { receiver_node_id, payment_hash, purpose: payment.purpose, amount_msat: claimable_amt_msat, }, None)); } } } for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() { if let Some(peer_state) = per_peer_state.get(&node_id) { for (_, actions) in monitor_update_blocked_actions.iter() { for action in actions.iter() { if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel { downstream_counterparty_and_funding_outpoint: Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), .. } = action { if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) { blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates .entry(blocked_channel_outpoint.to_channel_id()) .or_insert_with(Vec::new).push(blocking_action.clone()); } else { // If the channel we were blocking has closed, we don't need to // worry about it - the blocked monitor update should never have // been released from the `Channel` object so it can't have // completed, and if the channel closed there's no reason to bother // anymore. } } } } peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions; } else { log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id); return Err(DecodeError::InvalidValue); } } let channel_manager = ChannelManager { genesis_hash, fee_estimator: bounded_fee_estimator, chain_monitor: args.chain_monitor, tx_broadcaster: args.tx_broadcaster, router: args.router, best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)), inbound_payment_key: expanded_inbound_key, pending_inbound_payments: Mutex::new(pending_inbound_payments), pending_outbound_payments: pending_outbounds, pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()), forward_htlcs: Mutex::new(forward_htlcs), claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }), outbound_scid_aliases: Mutex::new(outbound_scid_aliases), id_to_peer: Mutex::new(id_to_peer), short_to_chan_info: FairRwLock::new(short_to_chan_info), fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(), probing_cookie_secret: probing_cookie_secret.unwrap(), our_network_pubkey, secp_ctx, highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize), per_peer_state: FairRwLock::new(per_peer_state), pending_events: Mutex::new(pending_events_read), pending_events_processor: AtomicBool::new(false), pending_background_events: Mutex::new(pending_background_events), total_consistency_lock: RwLock::new(()), background_events_processed_since_startup: AtomicBool::new(false), persistence_notifier: Notifier::new(), entropy_source: args.entropy_source, node_signer: args.node_signer, signer_provider: args.signer_provider, logger: args.logger, default_configuration: args.default_config, }; for htlc_source in failed_htlcs.drain(..) { let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source; let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id }; let reason = HTLCFailReason::from_failure_code(0x4000 | 8); channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver); } for (source, preimage, downstream_value, downstream_closed, downstream_chan_id) in pending_claims_to_replay { // We use `downstream_closed` in place of `from_onchain` here just as a guess - we // don't remember in the `ChannelMonitor` where we got a preimage from, but if the // channel is closed we just assume that it probably came from an on-chain claim. channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), downstream_closed, downstream_chan_id); } //TODO: Broadcast channel update for closed channels, but only after we've made a //connection or two. Ok((best_block_hash.clone(), channel_manager)) } } #[cfg(test)] mod tests { use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey}; use core::sync::atomic::Ordering; use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason}; use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret}; use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId}; use crate::ln::functional_test_utils::*; use crate::ln::msgs::{self, ErrorAction}; use crate::ln::msgs::ChannelMessageHandler; use crate::routing::router::{PaymentParameters, RouteParameters, find_route}; use crate::util::errors::APIError; use crate::util::test_utils; use crate::util::config::{ChannelConfig, ChannelConfigUpdate}; use crate::sign::EntropySource; #[test] fn test_notify_limits() { // Check that a few cases which don't require the persistence of a new ChannelManager, // indeed, do not cause the persistence of a new ChannelManager. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // All nodes start with a persistable update pending as `create_network` connects each node // with all other nodes to make most tests simpler. assert!(nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(nodes[1].node.get_persistable_update_future().poll_is_complete()); assert!(nodes[2].node.get_persistable_update_future().poll_is_complete()); let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1); // We check that the channel info nodes have doesn't change too early, even though we try // to connect messages with new values chan.0.contents.fee_base_msat *= 2; chan.1.contents.fee_base_msat *= 2; let node_a_chan_info = nodes[0].node.list_channels_with_counterparty( &nodes[1].node.get_our_node_id()).pop().unwrap(); let node_b_chan_info = nodes[1].node.list_channels_with_counterparty( &nodes[0].node.get_our_node_id()).pop().unwrap(); // The first two nodes (which opened a channel) should now require fresh persistence assert!(nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(nodes[1].node.get_persistable_update_future().poll_is_complete()); // ... but the last node should not. assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete()); // After persisting the first two nodes they should no longer need fresh persistence. assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete()); // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update // about the channel. nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0); nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1); assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete()); // The nodes which are a party to the channel should also ignore messages from unrelated // parties. nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0); nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1); nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0); nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1); assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete()); // At this point the channel info given by peers should still be the same. assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info); // An earlier version of handle_channel_update didn't check the directionality of the // update message and would always update the local fee info, even if our peer was // (spuriously) forwarding us our own channel_update. let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..]; let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 }; let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 }; // First deliver each peers' own message, checking that the node doesn't need to be // persisted and that its channel info remains the same. nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update); nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update); assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete()); assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info); // Finally, deliver the other peers' message, ensuring each node needs to be persisted and // the channel info has updated. nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update); nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update); assert!(nodes[0].node.get_persistable_update_future().poll_is_complete()); assert!(nodes[1].node.get_persistable_update_future().poll_is_complete()); assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info); assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info); } #[test] fn test_keysend_dup_hash_partial_mpp() { // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as // expected. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1); // First, send a partial MPP payment. let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000); let mut mpp_route = route.clone(); mpp_route.paths.push(mpp_route.paths[0].clone()); let payment_id = PaymentId([42; 32]); // Use the utility function send_payment_along_path to send the payment with MPP data which // indicates there are more HTLCs coming. let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match. let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap(); nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash, RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None); // Next, send a keysend payment with the same payment_hash and make sure it fails. nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], our_payment_hash, true); // Send the second half of the original MPP payment. nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash, RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None); // Claim the full MPP payment. Note that we can't use a test utility like // claim_funds_along_route because the ordering of the messages causes the second half of the // payment to be put in the holding cell, which confuses the test utilities. So we exchange the // lightning messages manually. nodes[1].node.claim_funds(payment_preimage); expect_payment_claimed!(nodes[1], our_payment_hash, 200_000); check_added_monitors!(nodes[1], 2); let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa); check_added_monitors!(nodes[1], 1); let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs); check_added_monitors!(nodes[1], 1); let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa); let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed); check_added_monitors!(nodes[1], 1); let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa); check_added_monitors!(nodes[0], 1); // Note that successful MPP payments will generate a single PaymentSent event upon the first // path's success and a PaymentPathSuccessful event for each path's success. let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 3); match events[0] { Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => { assert_eq!(Some(payment_id), *id); assert_eq!(payment_preimage, *preimage); assert_eq!(our_payment_hash, *hash); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => { assert_eq!(payment_id, *actual_payment_id); assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap()); assert_eq!(route.paths[0], *path); }, _ => panic!("Unexpected event"), } match events[2] { Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => { assert_eq!(payment_id, *actual_payment_id); assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap()); assert_eq!(route.paths[0], *path); }, _ => panic!("Unexpected event"), } } #[test] fn test_keysend_dup_payment_hash() { do_test_keysend_dup_payment_hash(false); do_test_keysend_dup_payment_hash(true); } fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) { // (1): Test that a keysend payment with a duplicate payment hash to an existing pending // outbound regular payment fails as expected. // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment // fails as expected. // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we // reject MPP keysend payments, since in this case where the payment has no payment // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with // payment secrets and reject otherwise. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let mut mpp_keysend_cfg = test_default_channel_config(); mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend; let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1); let scorer = test_utils::TestScorer::new(); let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes(); // To start (1), send a regular payment but don't claim it. let expected_route = [&nodes[1]]; let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000); // Next, attempt a keysend payment and make sure it fails. let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false), final_value_msat: 100_000, }; let route = find_route( &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph, None, nodes[0].logger, &scorer, &(), &random_seed_bytes ).unwrap(); nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // We have to forward pending HTLCs twice - once tries to forward the payment forward (and // fails), the second will process the resulting failure and fail the HTLC backward expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], payment_hash, true); // Finally, claim the original payment. claim_payment(&nodes[0], &expected_route, payment_preimage); // To start (2), send a keysend payment but don't claim it. let payment_preimage = PaymentPreimage([42; 32]); let route = find_route( &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph, None, nodes[0].logger, &scorer, &(), &random_seed_bytes ).unwrap(); let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let event = events.pop().unwrap(); let path = vec![&nodes[1]]; pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage)); // Next, attempt a regular payment and make sure it fails. let payment_secret = PaymentSecret([43; 32]); nodes[0].node.send_payment_with_route(&route, payment_hash, RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], payment_hash, true); // Finally, succeed the keysend payment. claim_payment(&nodes[0], &expected_route, payment_preimage); // To start (3), send a keysend payment but don't claim it. let payment_id_1 = PaymentId([44; 32]); let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let event = events.pop().unwrap(); let path = vec![&nodes[1]]; pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage)); // Next, attempt a keysend payment and make sure it fails. let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false), final_value_msat: 100_000, }; let route = find_route( &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph, None, nodes[0].logger, &scorer, &(), &random_seed_bytes ).unwrap(); let payment_id_2 = PaymentId([45; 32]); nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let ev = events.drain(..).next().unwrap(); let payment_event = SendEvent::from_event(ev); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed!(nodes[0], payment_hash, true); // Finally, claim the original payment. claim_payment(&nodes[0], &expected_route, payment_preimage); } #[test] fn test_keysend_hash_mismatch() { // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend // preimage doesn't match the msg's payment hash. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]); let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false), final_value_msat: 10_000, }; let network_graph = nodes[0].network_graph.clone(); let first_hops = nodes[0].node.list_usable_channels(); let scorer = test_utils::TestScorer::new(); let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes(); let route = find_route( &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::>()), nodes[0].logger, &scorer, &(), &random_seed_bytes ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let mismatch_payment_hash = PaymentHash([43; 32]); let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap(); nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1); } #[test] fn test_keysend_msg_with_secret_err() { // Test that we error as expected if we receive a keysend payment that includes a payment // secret when we don't support MPP keysend. let mut reject_mpp_keysend_cfg = test_default_channel_config(); reject_mpp_keysend_cfg.accept_mpp_keysend = false; let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]); let route_params = RouteParameters { payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false), final_value_msat: 10_000, }; let network_graph = nodes[0].network_graph.clone(); let first_hops = nodes[0].node.list_usable_channels(); let scorer = test_utils::TestScorer::new(); let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes(); let route = find_route( &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::>()), nodes[0].logger, &scorer, &(), &random_seed_bytes ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let test_secret = PaymentSecret([43; 32]); let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner()); let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap(); nodes[0].node.test_send_payment_internal(&route, payment_hash, RecipientOnionFields::secret_only(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1); } #[test] fn test_multi_hop_missing_secret() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id; // Marshall an MPP route. let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0].hops[0].short_channel_id = chan_1_id; route.paths[0].hops[1].short_channel_id = chan_3_id; route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1].hops[0].short_channel_id = chan_2_id; route.paths[1].hops[1].short_channel_id = chan_4_id; match nodes[0].node.send_payment_with_route(&route, payment_hash, RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0)) .unwrap_err() { PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => { assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) }, _ => panic!("unexpected error") } } #[test] fn test_drop_disconnected_peers_when_removing_channels() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap(); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); { // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been // disconnected and the channel between has been force closed. let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap(); // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed. assert_eq!(nodes_0_per_peer_state.len(), 1); assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some()); } nodes[0].node.timer_tick_occurred(); { // Assert that nodes[1] has now been removed. assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0); } } #[test] fn bad_inbound_payment_hash() { // Add coverage for checking that a user-provided payment hash matches the payment secret. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]); let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat: 100_000, }; // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original, // payment verification fails as expected. let mut bad_payment_hash = payment_hash.clone(); bad_payment_hash.0[0] += 1; match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) { Ok(_) => panic!("Unexpected ok"), Err(()) => { nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1); } } // Check that using the original payment hash succeeds. assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok()); } #[test] fn test_id_to_peer_coverage() { // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned // a `channel_id` (i.e. have had the funding tx created), and that they are removed once // the channel is successfully closed. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap(); let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel); let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel); let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42); let channel_id = &tx.txid().into_inner(); { // Ensure that the `id_to_peer` map is empty until either party has received the // funding transaction, and have the real `channel_id`. assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0); assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0); } nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap(); { // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as // as it has the funding transaction. let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_0_lock.len(), 1); assert!(nodes_0_lock.contains_key(channel_id)); } assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0); let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id()); nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg); { let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_0_lock.len(), 1); assert!(nodes_0_lock.contains_key(channel_id)); } expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id()); { // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as // as it has the funding transaction. let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_1_lock.len(), 1); assert!(nodes_1_lock.contains_key(channel_id)); } check_added_monitors!(nodes[1], 1); let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id()); nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed); check_added_monitors!(nodes[0], 1); expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id()); let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready); update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update); nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap(); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id())); let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown); let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0); { // Assert that the channel is kept in the `id_to_peer` map for both nodes until the // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the // fee for the closing transaction has been negotiated and the parties has the other // party's signature for the fee negotiated closing transaction.) let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_0_lock.len(), 1); assert!(nodes_0_lock.contains_key(channel_id)); } { // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature // from `nodes[0]` for the closing transaction with the proposed fee, the channel is // kept in the `nodes[1]`'s `id_to_peer` map. let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_1_lock.len(), 1); assert!(nodes_1_lock.contains_key(channel_id)); } nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id())); { // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and // therefore has all it needs to fully close the channel (both signatures for the // closing transaction). // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be // fully closed by `nodes[0]`. assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0); // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]` // doesn't have `nodes[0]`'s signature for the closing transaction yet. let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap(); assert_eq!(nodes_1_lock.len(), 1); assert!(nodes_1_lock.contains_key(channel_id)); } let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap()); { // Assert that the channel has now been removed from both parties `id_to_peer` map once // they both have everything required to fully close the channel. assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0); } let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); } fn check_not_connected_to_peer_error(res_err: Result, expected_public_key: PublicKey) { let expected_message = format!("Not connected to node: {}", expected_public_key); check_api_error_message(expected_message, res_err) } fn check_unkown_peer_error(res_err: Result, expected_public_key: PublicKey) { let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key); check_api_error_message(expected_message, res_err) } fn check_api_error_message(expected_err_message: String, res_err: Result) { match res_err { Err(APIError::APIMisuseError { err }) => { assert_eq!(err, expected_err_message); }, Err(APIError::ChannelUnavailable { err }) => { assert_eq!(err, expected_err_message); }, Ok(_) => panic!("Unexpected Ok"), Err(_) => panic!("Unexpected Error"), } } #[test] fn test_api_calls_with_unkown_counterparty_node() { // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as // expected if the `counterparty_node_id` is an unkown peer in the // `ChannelManager::per_peer_state` map. let chanmon_cfg = create_chanmon_cfgs(2); let node_cfg = create_node_cfgs(2, &chanmon_cfg); let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]); let nodes = create_network(2, &node_cfg, &node_chanmgr); // Dummy values let channel_id = [4; 32]; let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap()); let intercept_id = InterceptId([0; 32]); // Test the API functions. check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key); check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key); check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key); check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key); check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key); check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key); check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key); } #[test] fn test_connection_limiting() { // Test that we limit un-channel'd peers and un-funded channels properly. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Note that create_network connects the nodes together for us nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); let mut funding_tx = None; for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER { nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); if idx == 0 { nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel); let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42); funding_tx = Some(tx.clone()); nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap(); let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id()); nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg); check_added_monitors!(nodes[1], 1); expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id()); let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id()); nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed); check_added_monitors!(nodes[0], 1); expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id()); } open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes(); } // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes(); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id, open_channel_msg.temporary_channel_id); // Further, because all of our channels with nodes[0] are inbound, and none of them funded, // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS // limit. let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS); for _ in 1..super::MAX_NO_CHANNEL_PEERS { let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx, &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap()); peer_pks.push(random_pk); nodes[1].node.peer_connected(&random_pk, &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap(); } let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx, &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap()); nodes[1].node.peer_connected(&last_random_pk, &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap_err(); // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from // them if we have too many un-channel'd peers. nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); let chan_closed_events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1); for ev in chan_closed_events { if let Event::ChannelClosed { .. } = ev { } else { panic!(); } } nodes[1].node.peer_connected(&last_random_pk, &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap(); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap_err(); // but of course if the connection is outbound its allowed... nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, false).unwrap(); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around. // Even though we accept one more connection from new peers, we won't actually let them // open channels. assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1); for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 { nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg); get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]); open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes(); } nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg); assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id, open_channel_msg.temporary_channel_id); // Of course, however, outbound channels are always allowed nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap(); get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk); // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now // "protected" and can connect again. mine_transaction(&nodes[1], funding_tx.as_ref().unwrap()); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap(); get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); // Further, because the first channel was funded, we can open another channel with // last_random_pk. nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg); get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk); } #[test] fn test_outbound_chans_unlimited() { // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Note that create_network connects the nodes together for us nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER { nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes(); } // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be // rejected. nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id, open_channel_msg.temporary_channel_id); // but we can still open an outbound channel. nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id()); // but even with such an outbound channel, additional inbound channels will still fail. nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id, open_channel_msg.temporary_channel_id); } #[test] fn test_0conf_limiting() { // Tests that we properly limit inbound channels when we have the manual-channel-acceptance // flag set and (sometimes) accept channels as 0conf. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let mut settings = test_default_channel_config(); settings.manually_accept_inbound_channels = true; let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Note that create_network connects the nodes together for us nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 { let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx, &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap()); nodes[1].node.peer_connected(&random_pk, &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap(); nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg); let events = nodes[1].node.get_and_clear_pending_events(); match events[0] { Event::OpenChannelRequest { temporary_channel_id, .. } => { nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap(); } _ => panic!("Unexpected event"), } get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk); open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes(); } // If we try to accept a channel from another peer non-0conf it will fail. let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx, &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap()); nodes[1].node.peer_connected(&last_random_pk, &msgs::Init { features: nodes[0].node.init_features(), networks: None, remote_network_address: None }, true).unwrap(); nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg); let events = nodes[1].node.get_and_clear_pending_events(); match events[0] { Event::OpenChannelRequest { temporary_channel_id, .. } => { match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) { Err(APIError::APIMisuseError { err }) => assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"), _ => panic!(), } } _ => panic!("Unexpected event"), } assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id, open_channel_msg.temporary_channel_id); // ...however if we accept the same channel 0conf it should work just fine. nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg); let events = nodes[1].node.get_and_clear_pending_events(); match events[0] { Event::OpenChannelRequest { temporary_channel_id, .. } => { nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap(); } _ => panic!("Unexpected event"), } get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk); } #[test] fn reject_excessively_underpaying_htlcs() { let chanmon_cfg = create_chanmon_cfgs(1); let node_cfg = create_node_cfgs(1, &chanmon_cfg); let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]); let node = create_network(1, &node_cfg, &node_chanmgr); let sender_intended_amt_msat = 100; let extra_fee_msat = 10; let hop_data = msgs::OnionHopData { amt_to_forward: 100, outgoing_cltv_value: 42, format: msgs::OnionHopDataFormat::FinalNode { keysend_preimage: None, payment_metadata: None, payment_data: Some(msgs::FinalOnionHopData { payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat, }), } }; // Check that if the amount we received + the penultimate hop extra fee is less than the sender // intended amount, we fail the payment. if let Err(crate::ln::channelmanager::ReceiveError { err_code, .. }) = node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]), sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat)) { assert_eq!(err_code, 19); } else { panic!(); } // If amt_received + extra_fee is equal to the sender intended amount, we're fine. let hop_data = msgs::OnionHopData { // This is the same hop_data as above, OnionHopData doesn't implement Clone amt_to_forward: 100, outgoing_cltv_value: 42, format: msgs::OnionHopDataFormat::FinalNode { keysend_preimage: None, payment_metadata: None, payment_data: Some(msgs::FinalOnionHopData { payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat, }), } }; assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]), sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok()); } #[test] fn test_inbound_anchors_manual_acceptance() { // Tests that we properly limit inbound channels when we have the manual-channel-acceptance // flag set and (sometimes) accept channels as 0conf. let mut anchors_cfg = test_default_channel_config(); anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true; let mut anchors_manual_accept_cfg = anchors_cfg.clone(); anchors_manual_accept_cfg.manually_accept_inbound_channels = true; let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); let msg_events = nodes[1].node.get_and_clear_pending_msg_events(); match &msg_events[0] { MessageSendEvent::HandleError { node_id, action } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); match action { ErrorAction::SendErrorMessage { msg } => assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()), _ => panic!("Unexpected error action"), } } _ => panic!("Unexpected event"), } nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); let events = nodes[2].node.get_and_clear_pending_events(); match events[0] { Event::OpenChannelRequest { temporary_channel_id, .. } => nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(), _ => panic!("Unexpected event"), } get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); } #[test] fn test_anchors_zero_fee_htlc_tx_fallback() { // Tests that if both nodes support anchors, but the remote node does not want to accept // anchor channels at the moment, an error it sent to the local node such that it can retry // the channel without the anchors feature. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let mut anchors_config = test_default_channel_config(); anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true; anchors_config.manually_accept_inbound_channels = true; let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap(); let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg); let events = nodes[1].node.get_and_clear_pending_events(); match events[0] { Event::OpenChannelRequest { temporary_channel_id, .. } => { nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap(); } _ => panic!("Unexpected event"), } let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()); nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg); let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx()); check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed); } #[test] fn test_update_channel_config() { let chanmon_cfg = create_chanmon_cfgs(2); let node_cfg = create_node_cfgs(2, &chanmon_cfg); let mut user_config = test_default_channel_config(); let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]); let nodes = create_network(2, &node_cfg, &node_chanmgr); let _ = create_announced_chan_between_nodes(&nodes, 0, 1); let channel = &nodes[0].node.list_channels()[0]; nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap(); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 0); user_config.channel_config.forwarding_fee_base_msat += 10; nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap(); assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("expected BroadcastChannelUpdate event"), } nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap(); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 0); let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6; nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate { cltv_expiry_delta: Some(new_cltv_expiry_delta), ..Default::default() }).unwrap(); assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("expected BroadcastChannelUpdate event"), } let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100; nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate { forwarding_fee_proportional_millionths: Some(new_fee), ..Default::default() }).unwrap(); assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta); assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("expected BroadcastChannelUpdate event"), } } } #[cfg(ldk_bench)] pub mod bench { use crate::chain::Listen; use crate::chain::chainmonitor::{ChainMonitor, Persist}; use crate::sign::{KeysManager, InMemorySigner}; use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider}; use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry}; use crate::ln::functional_test_utils::*; use crate::ln::msgs::{ChannelMessageHandler, Init}; use crate::routing::gossip::NetworkGraph; use crate::routing::router::{PaymentParameters, RouteParameters}; use crate::util::test_utils; use crate::util::config::{UserConfig, MaxDustHTLCExposure}; use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut}; use crate::sync::{Arc, Mutex}; use criterion::Criterion; type Manager<'a, P> = ChannelManager< &'a ChainMonitor, &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager, &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>, &'a test_utils::TestLogger>; struct ANodeHolder<'a, P: Persist> { node: &'a Manager<'a, P>, } impl<'a, P: Persist> NodeHolder for ANodeHolder<'a, P> { type CM = Manager<'a, P>; #[inline] fn node(&self) -> &Manager<'a, P> { self.node } #[inline] fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None } } pub fn bench_sends(bench: &mut Criterion) { bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new()); } pub fn bench_two_sends>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) { // Do a simple benchmark of sending a payment back and forth between two nodes. // Note that this is unrealistic as each payment send will require at least two fsync // calls per node. let network = bitcoin::Network::Testnet; let genesis_block = bitcoin::blockdata::constants::genesis_block(network); let tx_broadcaster = test_utils::TestBroadcaster::new(network); let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; let logger_a = test_utils::TestLogger::with_id("node a".to_owned()); let scorer = Mutex::new(test_utils::TestScorer::new()); let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer); let mut config: UserConfig = Default::default(); config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253); config.channel_handshake_config.minimum_depth = 1; let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a); let seed_a = [1u8; 32]; let keys_manager_a = KeysManager::new(&seed_a, 42, 42); let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters { network, best_block: BestBlock::from_network(network), }, genesis_block.header.time); let node_a_holder = ANodeHolder { node: &node_a }; let logger_b = test_utils::TestLogger::with_id("node a".to_owned()); let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b); let seed_b = [2u8; 32]; let keys_manager_b = KeysManager::new(&seed_b, 42, 42); let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters { network, best_block: BestBlock::from_network(network), }, genesis_block.header.time); let node_b_holder = ANodeHolder { node: &node_b }; node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), networks: None, remote_network_address: None }, true).unwrap(); node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), networks: None, remote_network_address: None }, false).unwrap(); node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap(); node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id())); node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id())); let tx; if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) { tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut { value: 8_000_000, script_pubkey: output_script, }]}; node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap(); } else { panic!(); } node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id())); let events_b = node_b.get_and_clear_pending_events(); assert_eq!(events_b.len(), 1); match events_b[0] { Event::ChannelPending{ ref counterparty_node_id, .. } => { assert_eq!(*counterparty_node_id, node_a.get_our_node_id()); }, _ => panic!("Unexpected event"), } node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id())); let events_a = node_a.get_and_clear_pending_events(); assert_eq!(events_a.len(), 1); match events_a[0] { Event::ChannelPending{ ref counterparty_node_id, .. } => { assert_eq!(*counterparty_node_id, node_b.get_our_node_id()); }, _ => panic!("Unexpected event"), } assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]); let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]); Listen::block_connected(&node_a, &block, 1); Listen::block_connected(&node_b, &block, 1); node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id())); let msg_events = node_a.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 2); match msg_events[0] { MessageSendEvent::SendChannelReady { ref msg, .. } => { node_b.handle_channel_ready(&node_a.get_our_node_id(), msg); get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id()); }, _ => panic!(), } match msg_events[1] { MessageSendEvent::SendChannelUpdate { .. } => {}, _ => panic!(), } let events_a = node_a.get_and_clear_pending_events(); assert_eq!(events_a.len(), 1); match events_a[0] { Event::ChannelReady{ ref counterparty_node_id, .. } => { assert_eq!(*counterparty_node_id, node_b.get_our_node_id()); }, _ => panic!("Unexpected event"), } let events_b = node_b.get_and_clear_pending_events(); assert_eq!(events_b.len(), 1); match events_b[0] { Event::ChannelReady{ ref counterparty_node_id, .. } => { assert_eq!(*counterparty_node_id, node_a.get_our_node_id()); }, _ => panic!("Unexpected event"), } let mut payment_count: u64 = 0; macro_rules! send_payment { ($node_a: expr, $node_b: expr) => { let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV) .with_bolt11_features($node_b.invoice_features()).unwrap(); let mut payment_preimage = PaymentPreimage([0; 32]); payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes()); payment_count += 1; let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()); let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap(); $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0), RouteParameters { payment_params, final_value_msat: 10_000, }, Retry::Attempts(0)).unwrap(); let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap()); $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg); let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id()); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id())); expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b }); expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000); $node_b.claim_funds(payment_preimage); expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000); match $node_b.get_and_clear_pending_msg_events().pop().unwrap() { MessageSendEvent::UpdateHTLCs { node_id, updates } => { assert_eq!(node_id, $node_a.get_our_node_id()); $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed); }, _ => panic!("Failed to generate claim event"), } let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id()); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id())); expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage); } } bench.bench_function(bench_name, |b| b.iter(|| { send_payment!(node_a, node_b); send_payment!(node_b, node_a); })); } }