//! The top-level routing/network map tracking logic lives here. //! //! You probably want to create a Router and use that as your RoutingMessageHandler and then //! interrogate it to get routes for your own payments. use secp256k1::key::PublicKey; use secp256k1::Secp256k1; use secp256k1; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use bitcoin_hashes::Hash; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use chain::chaininterface::{ChainError, ChainWatchInterface}; use ln::channelmanager; use ln::features::{ChannelFeatures, NodeFeatures}; use ln::msgs::{DecodeError,ErrorAction,LightningError,RoutingMessageHandler,NetAddress}; use ln::msgs; use util::ser::{Writeable, Readable, Writer, ReadableArgs}; use util::logger::Logger; use std::cmp; use std::sync::{RwLock,Arc}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::collections::{HashMap,BinaryHeap,BTreeMap}; use std::collections::btree_map::Entry as BtreeEntry; use std; /// A hop in a route #[derive(Clone, PartialEq)] pub struct RouteHop { /// The node_id of the node at this hop. pub pubkey: PublicKey, /// The node_announcement features of the node at this hop. For the last hop, these may be /// amended to match the features present in the invoice this node generated. pub node_features: NodeFeatures, /// The channel that should be used from the previous hop to reach this node. pub short_channel_id: u64, /// The channel_announcement features of the channel that should be used from the previous hop /// to reach this node. pub channel_features: ChannelFeatures, /// The fee taken on this hop. For the last hop, this should be the full value of the payment. pub fee_msat: u64, /// The CLTV delta added for this hop. For the last hop, this should be the full CLTV value /// expected at the destination, in excess of the current block height. pub cltv_expiry_delta: u32, } /// A route from us through the network to a destination #[derive(Clone, PartialEq)] pub struct Route { /// The list of hops, NOT INCLUDING our own, where the last hop is the destination. Thus, this /// must always be at least length one. By protocol rules, this may not currently exceed 20 in /// length. pub hops: Vec, } impl Writeable for Route { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.hops.len() as u8).write(writer)?; for hop in self.hops.iter() { hop.pubkey.write(writer)?; hop.node_features.write(writer)?; hop.short_channel_id.write(writer)?; hop.channel_features.write(writer)?; hop.fee_msat.write(writer)?; hop.cltv_expiry_delta.write(writer)?; } Ok(()) } } impl Readable for Route { fn read(reader: &mut R) -> Result { let hops_count: u8 = Readable::read(reader)?; let mut hops = Vec::with_capacity(hops_count as usize); for _ in 0..hops_count { hops.push(RouteHop { pubkey: Readable::read(reader)?, node_features: Readable::read(reader)?, short_channel_id: Readable::read(reader)?, channel_features: Readable::read(reader)?, fee_msat: Readable::read(reader)?, cltv_expiry_delta: Readable::read(reader)?, }); } Ok(Route { hops }) } } #[derive(PartialEq)] struct DirectionalChannelInfo { src_node_id: PublicKey, last_update: u32, enabled: bool, cltv_expiry_delta: u16, htlc_minimum_msat: u64, fee_base_msat: u32, fee_proportional_millionths: u32, last_update_message: Option, } impl std::fmt::Display for DirectionalChannelInfo { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { write!(f, "src_node_id {}, last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fee_base_msat {}, fee_proportional_millionths {}", log_pubkey!(self.src_node_id), self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fee_base_msat, self.fee_proportional_millionths)?; Ok(()) } } impl_writeable!(DirectionalChannelInfo, 0, { src_node_id, last_update, enabled, cltv_expiry_delta, htlc_minimum_msat, fee_base_msat, fee_proportional_millionths, last_update_message }); #[derive(PartialEq)] struct ChannelInfo { features: ChannelFeatures, one_to_two: DirectionalChannelInfo, two_to_one: DirectionalChannelInfo, //this is cached here so we can send out it later if required by route_init_sync //keep an eye on this to see if the extra memory is a problem announcement_message: Option, } impl std::fmt::Display for ChannelInfo { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { write!(f, "features: {}, one_to_two: {}, two_to_one: {}", log_bytes!(self.features.encode()), self.one_to_two, self.two_to_one)?; Ok(()) } } impl_writeable!(ChannelInfo, 0, { features, one_to_two, two_to_one, announcement_message }); #[derive(PartialEq)] struct NodeInfo { #[cfg(feature = "non_bitcoin_chain_hash_routing")] channels: Vec<(u64, Sha256dHash)>, #[cfg(not(feature = "non_bitcoin_chain_hash_routing"))] channels: Vec, lowest_inbound_channel_fee_base_msat: u32, lowest_inbound_channel_fee_proportional_millionths: u32, features: NodeFeatures, last_update: u32, rgb: [u8; 3], alias: [u8; 32], addresses: Vec, //this is cached here so we can send out it later if required by route_init_sync //keep an eye on this to see if the extra memory is a problem announcement_message: Option, } impl std::fmt::Display for NodeInfo { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { write!(f, "features: {}, last_update: {}, lowest_inbound_channel_fee_base_msat: {}, lowest_inbound_channel_fee_proportional_millionths: {}, channels: {:?}", log_bytes!(self.features.encode()), self.last_update, self.lowest_inbound_channel_fee_base_msat, self.lowest_inbound_channel_fee_proportional_millionths, &self.channels[..])?; Ok(()) } } impl Writeable for NodeInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.channels.len() as u64).write(writer)?; for ref chan in self.channels.iter() { chan.write(writer)?; } self.lowest_inbound_channel_fee_base_msat.write(writer)?; self.lowest_inbound_channel_fee_proportional_millionths.write(writer)?; self.features.write(writer)?; self.last_update.write(writer)?; self.rgb.write(writer)?; self.alias.write(writer)?; (self.addresses.len() as u64).write(writer)?; for ref addr in &self.addresses { addr.write(writer)?; } self.announcement_message.write(writer)?; Ok(()) } } const MAX_ALLOC_SIZE: u64 = 64*1024; impl Readable for NodeInfo { fn read(reader: &mut R) -> Result { let channels_count: u64 = Readable::read(reader)?; let mut channels = Vec::with_capacity(cmp::min(channels_count, MAX_ALLOC_SIZE / 8) as usize); for _ in 0..channels_count { channels.push(Readable::read(reader)?); } let lowest_inbound_channel_fee_base_msat = Readable::read(reader)?; let lowest_inbound_channel_fee_proportional_millionths = Readable::read(reader)?; let features = Readable::read(reader)?; let last_update = Readable::read(reader)?; let rgb = Readable::read(reader)?; let alias = Readable::read(reader)?; let addresses_count: u64 = Readable::read(reader)?; let mut addresses = Vec::with_capacity(cmp::min(addresses_count, MAX_ALLOC_SIZE / 40) as usize); for _ in 0..addresses_count { match Readable::read(reader) { Ok(Ok(addr)) => { addresses.push(addr); }, Ok(Err(_)) => return Err(DecodeError::InvalidValue), Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor), _ => unreachable!(), } } let announcement_message = Readable::read(reader)?; Ok(NodeInfo { channels, lowest_inbound_channel_fee_base_msat, lowest_inbound_channel_fee_proportional_millionths, features, last_update, rgb, alias, addresses, announcement_message }) } } #[derive(PartialEq)] struct NetworkMap { #[cfg(feature = "non_bitcoin_chain_hash_routing")] channels: BTreeMap<(u64, Sha256dHash), ChannelInfo>, #[cfg(not(feature = "non_bitcoin_chain_hash_routing"))] channels: BTreeMap, our_node_id: PublicKey, nodes: BTreeMap, } impl Writeable for NetworkMap { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.channels.len() as u64).write(writer)?; for (ref chan_id, ref chan_info) in self.channels.iter() { (*chan_id).write(writer)?; chan_info.write(writer)?; } self.our_node_id.write(writer)?; (self.nodes.len() as u64).write(writer)?; for (ref node_id, ref node_info) in self.nodes.iter() { node_id.write(writer)?; node_info.write(writer)?; } Ok(()) } } impl Readable for NetworkMap { fn read(reader: &mut R) -> Result { let channels_count: u64 = Readable::read(reader)?; let mut channels = BTreeMap::new(); for _ in 0..channels_count { let chan_id: u64 = Readable::read(reader)?; let chan_info = Readable::read(reader)?; channels.insert(chan_id, chan_info); } let our_node_id = Readable::read(reader)?; let nodes_count: u64 = Readable::read(reader)?; let mut nodes = BTreeMap::new(); for _ in 0..nodes_count { let node_id = Readable::read(reader)?; let node_info = Readable::read(reader)?; nodes.insert(node_id, node_info); } Ok(NetworkMap { channels, our_node_id, nodes, }) } } impl std::fmt::Display for NetworkMap { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { write!(f, "Node id {} network map\n[Channels]\n", log_pubkey!(self.our_node_id))?; for (key, val) in self.channels.iter() { write!(f, " {}: {}\n", key, val)?; } write!(f, "[Nodes]\n")?; for (key, val) in self.nodes.iter() { write!(f, " {}: {}\n", log_pubkey!(key), val)?; } Ok(()) } } impl NetworkMap { #[cfg(feature = "non_bitcoin_chain_hash_routing")] #[inline] fn get_key(short_channel_id: u64, chain_hash: Sha256dHash) -> (u64, Sha256dHash) { (short_channel_id, chain_hash) } #[cfg(not(feature = "non_bitcoin_chain_hash_routing"))] #[inline] fn get_key(short_channel_id: u64, _: Sha256dHash) -> u64 { short_channel_id } #[cfg(feature = "non_bitcoin_chain_hash_routing")] #[inline] fn get_short_id(id: &(u64, Sha256dHash)) -> &u64 { &id.0 } #[cfg(not(feature = "non_bitcoin_chain_hash_routing"))] #[inline] fn get_short_id(id: &u64) -> &u64 { id } } /// A channel descriptor which provides a last-hop route to get_route pub struct RouteHint { /// The node_id of the non-target end of the route pub src_node_id: PublicKey, /// The short_channel_id of this channel pub short_channel_id: u64, /// The static msat-denominated fee which must be paid to use this channel pub fee_base_msat: u32, /// The dynamic proportional fee which must be paid to use this channel, denominated in /// millionths of the value being forwarded to the next hop. pub fee_proportional_millionths: u32, /// The difference in CLTV values between this node and the next node. pub cltv_expiry_delta: u16, /// The minimum value, in msat, which must be relayed to the next hop. pub htlc_minimum_msat: u64, } /// Tracks a view of the network, receiving updates from peers and generating Routes to /// payment destinations. pub struct Router { secp_ctx: Secp256k1, network_map: RwLock, full_syncs_requested: AtomicUsize, chain_monitor: Arc, logger: Arc, } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl Writeable for Router { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { writer.write_all(&[SERIALIZATION_VERSION; 1])?; writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; let network = self.network_map.read().unwrap(); network.write(writer)?; Ok(()) } } /// Arguments for the creation of a Router that are not deserialized. /// At a high-level, the process for deserializing a Router and resuming normal operation is: /// 1) Deserialize the Router by filling in this struct and calling ::read(reaser, args). /// 2) Register the new Router with your ChainWatchInterface pub struct RouterReadArgs { /// The ChainWatchInterface for use in the Router in the future. /// /// No calls to the ChainWatchInterface will be made during deserialization. pub chain_monitor: Arc, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: Arc, } impl ReadableArgs for Router { fn read(reader: &mut R, args: RouterReadArgs) -> Result { let _ver: u8 = Readable::read(reader)?; let min_ver: u8 = Readable::read(reader)?; if min_ver > SERIALIZATION_VERSION { return Err(DecodeError::UnknownVersion); } let network_map = Readable::read(reader)?; Ok(Router { secp_ctx: Secp256k1::verification_only(), network_map: RwLock::new(network_map), full_syncs_requested: AtomicUsize::new(0), chain_monitor: args.chain_monitor, logger: args.logger, }) } } macro_rules! secp_verify_sig { ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => { match $secp_ctx.verify($msg, $sig, $pubkey) { Ok(_) => {}, Err(_) => return Err(LightningError{err: "Invalid signature from remote node", action: ErrorAction::IgnoreError}), } }; } impl RoutingMessageHandler for Router { fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result { let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id); let mut network = self.network_map.write().unwrap(); match network.nodes.get_mut(&msg.contents.node_id) { None => Err(LightningError{err: "No existing channels for node_announcement", action: ErrorAction::IgnoreError}), Some(node) => { if node.last_update >= msg.contents.timestamp { return Err(LightningError{err: "Update older than last processed update", action: ErrorAction::IgnoreError}); } node.features = msg.contents.features.clone(); node.last_update = msg.contents.timestamp; node.rgb = msg.contents.rgb; node.alias = msg.contents.alias; node.addresses = msg.contents.addresses.clone(); let should_relay = msg.contents.excess_data.is_empty() && msg.contents.excess_address_data.is_empty(); node.announcement_message = if should_relay { Some(msg.clone()) } else { None }; Ok(should_relay) } } } fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result { if msg.contents.node_id_1 == msg.contents.node_id_2 || msg.contents.bitcoin_key_1 == msg.contents.bitcoin_key_2 { return Err(LightningError{err: "Channel announcement node had a channel with itself", action: ErrorAction::IgnoreError}); } let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2); let checked_utxo = match self.chain_monitor.get_chain_utxo(msg.contents.chain_hash, msg.contents.short_channel_id) { Ok((script_pubkey, _value)) => { let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&msg.contents.bitcoin_key_1.serialize()) .push_slice(&msg.contents.bitcoin_key_2.serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh(); if script_pubkey != expected_script { return Err(LightningError{err: "Channel announcement keys didn't match on-chain script", action: ErrorAction::IgnoreError}); } //TODO: Check if value is worth storing, use it to inform routing, and compare it //to the new HTLC max field in channel_update true }, Err(ChainError::NotSupported) => { // Tentatively accept, potentially exposing us to DoS attacks false }, Err(ChainError::NotWatched) => { return Err(LightningError{err: "Channel announced on an unknown chain", action: ErrorAction::IgnoreError}); }, Err(ChainError::UnknownTx) => { return Err(LightningError{err: "Channel announced without corresponding UTXO entry", action: ErrorAction::IgnoreError}); }, }; let mut network_lock = self.network_map.write().unwrap(); let network = &mut *network_lock; let should_relay = msg.contents.excess_data.is_empty(); let chan_info = ChannelInfo { features: msg.contents.features.clone(), one_to_two: DirectionalChannelInfo { src_node_id: msg.contents.node_id_1.clone(), last_update: 0, enabled: false, cltv_expiry_delta: u16::max_value(), htlc_minimum_msat: u64::max_value(), fee_base_msat: u32::max_value(), fee_proportional_millionths: u32::max_value(), last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: msg.contents.node_id_2.clone(), last_update: 0, enabled: false, cltv_expiry_delta: u16::max_value(), htlc_minimum_msat: u64::max_value(), fee_base_msat: u32::max_value(), fee_proportional_millionths: u32::max_value(), last_update_message: None, }, announcement_message: if should_relay { Some(msg.clone()) } else { None }, }; match network.channels.entry(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)) { BtreeEntry::Occupied(mut entry) => { //TODO: because asking the blockchain if short_channel_id is valid is only optional //in the blockchain API, we need to handle it smartly here, though it's unclear //exactly how... if checked_utxo { // Either our UTXO provider is busted, there was a reorg, or the UTXO provider // only sometimes returns results. In any case remove the previous entry. Note // that the spec expects us to "blacklist" the node_ids involved, but we can't // do that because // a) we don't *require* a UTXO provider that always returns results. // b) we don't track UTXOs of channels we know about and remove them if they // get reorg'd out. // c) it's unclear how to do so without exposing ourselves to massive DoS risk. Self::remove_channel_in_nodes(&mut network.nodes, &entry.get(), msg.contents.short_channel_id); *entry.get_mut() = chan_info; } else { return Err(LightningError{err: "Already have knowledge of channel", action: ErrorAction::IgnoreError}) } }, BtreeEntry::Vacant(entry) => { entry.insert(chan_info); } }; macro_rules! add_channel_to_node { ( $node_id: expr ) => { match network.nodes.entry($node_id) { BtreeEntry::Occupied(node_entry) => { node_entry.into_mut().channels.push(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)); }, BtreeEntry::Vacant(node_entry) => { node_entry.insert(NodeInfo { channels: vec!(NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)), lowest_inbound_channel_fee_base_msat: u32::max_value(), lowest_inbound_channel_fee_proportional_millionths: u32::max_value(), features: NodeFeatures::empty(), last_update: 0, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); } } }; } add_channel_to_node!(msg.contents.node_id_1); add_channel_to_node!(msg.contents.node_id_2); Ok(should_relay) } fn handle_htlc_fail_channel_update(&self, update: &msgs::HTLCFailChannelUpdate) { match update { &msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { ref msg } => { let _ = self.handle_channel_update(msg); }, &msgs::HTLCFailChannelUpdate::ChannelClosed { ref short_channel_id, ref is_permanent } => { let mut network = self.network_map.write().unwrap(); if *is_permanent { if let Some(chan) = network.channels.remove(short_channel_id) { Self::remove_channel_in_nodes(&mut network.nodes, &chan, *short_channel_id); } } else { if let Some(chan) = network.channels.get_mut(short_channel_id) { chan.one_to_two.enabled = false; chan.two_to_one.enabled = false; } } }, &msgs::HTLCFailChannelUpdate::NodeFailure { ref node_id, ref is_permanent } => { if *is_permanent { //TODO: Wholly remove the node } else { self.mark_node_bad(node_id, false); } }, } } fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result { let mut network = self.network_map.write().unwrap(); let dest_node_id; let chan_enabled = msg.contents.flags & (1 << 1) != (1 << 1); let chan_was_enabled; match network.channels.get_mut(&NetworkMap::get_key(msg.contents.short_channel_id, msg.contents.chain_hash)) { None => return Err(LightningError{err: "Couldn't find channel for update", action: ErrorAction::IgnoreError}), Some(channel) => { macro_rules! maybe_update_channel_info { ( $target: expr) => { if $target.last_update >= msg.contents.timestamp { return Err(LightningError{err: "Update older than last processed update", action: ErrorAction::IgnoreError}); } chan_was_enabled = $target.enabled; $target.last_update = msg.contents.timestamp; $target.enabled = chan_enabled; $target.cltv_expiry_delta = msg.contents.cltv_expiry_delta; $target.htlc_minimum_msat = msg.contents.htlc_minimum_msat; $target.fee_base_msat = msg.contents.fee_base_msat; $target.fee_proportional_millionths = msg.contents.fee_proportional_millionths; $target.last_update_message = if msg.contents.excess_data.is_empty() { Some(msg.clone()) } else { None }; } } let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); if msg.contents.flags & 1 == 1 { dest_node_id = channel.one_to_two.src_node_id.clone(); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &channel.two_to_one.src_node_id); maybe_update_channel_info!(channel.two_to_one); } else { dest_node_id = channel.two_to_one.src_node_id.clone(); secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &channel.one_to_two.src_node_id); maybe_update_channel_info!(channel.one_to_two); } } } if chan_enabled { let node = network.nodes.get_mut(&dest_node_id).unwrap(); node.lowest_inbound_channel_fee_base_msat = cmp::min(node.lowest_inbound_channel_fee_base_msat, msg.contents.fee_base_msat); node.lowest_inbound_channel_fee_proportional_millionths = cmp::min(node.lowest_inbound_channel_fee_proportional_millionths, msg.contents.fee_proportional_millionths); } else if chan_was_enabled { let mut lowest_inbound_channel_fee_base_msat = u32::max_value(); let mut lowest_inbound_channel_fee_proportional_millionths = u32::max_value(); { let node = network.nodes.get(&dest_node_id).unwrap(); for chan_id in node.channels.iter() { let chan = network.channels.get(chan_id).unwrap(); if chan.one_to_two.src_node_id == dest_node_id { lowest_inbound_channel_fee_base_msat = cmp::min(lowest_inbound_channel_fee_base_msat, chan.two_to_one.fee_base_msat); lowest_inbound_channel_fee_proportional_millionths = cmp::min(lowest_inbound_channel_fee_proportional_millionths, chan.two_to_one.fee_proportional_millionths); } else { lowest_inbound_channel_fee_base_msat = cmp::min(lowest_inbound_channel_fee_base_msat, chan.one_to_two.fee_base_msat); lowest_inbound_channel_fee_proportional_millionths = cmp::min(lowest_inbound_channel_fee_proportional_millionths, chan.one_to_two.fee_proportional_millionths); } } } //TODO: satisfy the borrow-checker without a double-map-lookup :( let mut_node = network.nodes.get_mut(&dest_node_id).unwrap(); mut_node.lowest_inbound_channel_fee_base_msat = lowest_inbound_channel_fee_base_msat; mut_node.lowest_inbound_channel_fee_proportional_millionths = lowest_inbound_channel_fee_proportional_millionths; } Ok(msg.contents.excess_data.is_empty()) } fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(msgs::ChannelAnnouncement, msgs::ChannelUpdate,msgs::ChannelUpdate)> { let mut result = Vec::with_capacity(batch_amount as usize); let network = self.network_map.read().unwrap(); let mut iter = network.channels.range(starting_point..); while result.len() < batch_amount as usize { if let Some((_, ref chan)) = iter.next() { if chan.announcement_message.is_some() && chan.one_to_two.last_update_message.is_some() && chan.two_to_one.last_update_message.is_some() { result.push((chan.announcement_message.clone().unwrap(), chan.one_to_two.last_update_message.clone().unwrap(), chan.two_to_one.last_update_message.clone().unwrap())); } else { // TODO: We may end up sending un-announced channel_updates if we are sending // initial sync data while receiving announce/updates for this channel. } } else { return result; } } result } fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec { let mut result = Vec::with_capacity(batch_amount as usize); let network = self.network_map.read().unwrap(); let mut iter = if let Some(pubkey) = starting_point { let mut iter = network.nodes.range((*pubkey)..); iter.next(); iter } else { network.nodes.range(..) }; while result.len() < batch_amount as usize { if let Some((_, ref node)) = iter.next() { if node.announcement_message.is_some() { result.push(node.announcement_message.clone().unwrap()); } } else { return result; } } result } fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { //TODO: Determine whether to request a full sync based on the network map. const FULL_SYNCS_TO_REQUEST: usize = 5; if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST { self.full_syncs_requested.fetch_add(1, Ordering::AcqRel); true } else { false } } } #[derive(Eq, PartialEq)] struct RouteGraphNode { pubkey: PublicKey, lowest_fee_to_peer_through_node: u64, lowest_fee_to_node: u64, } impl cmp::Ord for RouteGraphNode { fn cmp(&self, other: &RouteGraphNode) -> cmp::Ordering { other.lowest_fee_to_peer_through_node.cmp(&self.lowest_fee_to_peer_through_node) .then_with(|| other.pubkey.serialize().cmp(&self.pubkey.serialize())) } } impl cmp::PartialOrd for RouteGraphNode { fn partial_cmp(&self, other: &RouteGraphNode) -> Option { Some(self.cmp(other)) } } struct DummyDirectionalChannelInfo { src_node_id: PublicKey, cltv_expiry_delta: u32, htlc_minimum_msat: u64, fee_base_msat: u32, fee_proportional_millionths: u32, } impl Router { /// Creates a new router with the given node_id to be used as the source for get_route() pub fn new(our_pubkey: PublicKey, chain_monitor: Arc, logger: Arc) -> Router { let mut nodes = BTreeMap::new(); nodes.insert(our_pubkey.clone(), NodeInfo { channels: Vec::new(), lowest_inbound_channel_fee_base_msat: u32::max_value(), lowest_inbound_channel_fee_proportional_millionths: u32::max_value(), features: NodeFeatures::empty(), last_update: 0, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); Router { secp_ctx: Secp256k1::verification_only(), network_map: RwLock::new(NetworkMap { channels: BTreeMap::new(), our_node_id: our_pubkey, nodes: nodes, }), full_syncs_requested: AtomicUsize::new(0), chain_monitor, logger, } } /// Dumps the entire network view of this Router to the logger provided in the constructor at /// level Trace pub fn trace_state(&self) { log_trace!(self, "{}", self.network_map.read().unwrap()); } /// Get network addresses by node id pub fn get_addresses(&self, pubkey: &PublicKey) -> Option> { let network = self.network_map.read().unwrap(); network.nodes.get(pubkey).map(|n| n.addresses.clone()) } /// Marks a node as having failed a route. This will avoid re-using the node in routes for now, /// with an exponential decay in node "badness". Note that there is deliberately no /// mark_channel_bad as a node may simply lie and suggest that an upstream channel from it is /// what failed the route and not the node itself. Instead, setting the blamed_upstream_node /// boolean will reduce the penalty, returning the node to usability faster. If the node is /// behaving correctly, it will disable the failing channel and we will use it again next time. pub fn mark_node_bad(&self, _node_id: &PublicKey, _blamed_upstream_node: bool) { unimplemented!(); } fn remove_channel_in_nodes(nodes: &mut BTreeMap, chan: &ChannelInfo, short_channel_id: u64) { macro_rules! remove_from_node { ($node_id: expr) => { if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) { entry.get_mut().channels.retain(|chan_id| { short_channel_id != *NetworkMap::get_short_id(chan_id) }); if entry.get().channels.is_empty() { entry.remove_entry(); } } else { panic!("Had channel that pointed to unknown node (ie inconsistent network map)!"); } } } remove_from_node!(chan.one_to_two.src_node_id); remove_from_node!(chan.two_to_one.src_node_id); } /// Gets a route from us to the given target node. /// /// Extra routing hops between known nodes and the target will be used if they are included in /// last_hops. /// /// If some channels aren't announced, it may be useful to fill in a first_hops with the /// results from a local ChannelManager::list_usable_channels() call. If it is filled in, our /// (this Router's) view of our local channels will be ignored, and only those in first_hops /// will be used. /// /// Panics if first_hops contains channels without short_channel_ids /// (ChannelManager::list_usable_channels will never include such channels). /// /// The fees on channels from us to next-hops are ignored (as they are assumed to all be /// equal), however the enabled/disabled bit on such channels as well as the htlc_minimum_msat /// *is* checked as they may change based on the receiving node. pub fn get_route(&self, target: &PublicKey, first_hops: Option<&[channelmanager::ChannelDetails]>, last_hops: &[RouteHint], final_value_msat: u64, final_cltv: u32) -> Result { // TODO: Obviously *only* using total fee cost sucks. We should consider weighting by // uptime/success in using a node in the past. let network = self.network_map.read().unwrap(); if *target == network.our_node_id { return Err(LightningError{err: "Cannot generate a route to ourselves", action: ErrorAction::IgnoreError}); } if final_value_msat > 21_000_000 * 1_0000_0000 * 1000 { return Err(LightningError{err: "Cannot generate a route of more value than all existing satoshis", action: ErrorAction::IgnoreError}); } // We do a dest-to-source Dijkstra's sorting by each node's distance from the destination // plus the minimum per-HTLC fee to get from it to another node (aka "shitty A*"). // TODO: There are a few tweaks we could do, including possibly pre-calculating more stuff // to use as the A* heuristic beyond just the cost to get one node further than the current // one. let dummy_directional_info = DummyDirectionalChannelInfo { // used for first_hops routes src_node_id: network.our_node_id.clone(), cltv_expiry_delta: 0, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, }; let mut targets = BinaryHeap::new(); //TODO: Do we care about switching to eg Fibbonaci heap? let mut dist = HashMap::with_capacity(network.nodes.len()); let mut first_hop_targets = HashMap::with_capacity(if first_hops.is_some() { first_hops.as_ref().unwrap().len() } else { 0 }); if let Some(hops) = first_hops { for chan in hops { let short_channel_id = chan.short_channel_id.expect("first_hops should be filled in with usable channels, not pending ones"); if chan.remote_network_id == *target { return Ok(Route { hops: vec![RouteHop { pubkey: chan.remote_network_id, node_features: NodeFeatures::with_known_relevant_init_flags(&chan.counterparty_features), short_channel_id, channel_features: ChannelFeatures::with_known_relevant_init_flags(&chan.counterparty_features), fee_msat: final_value_msat, cltv_expiry_delta: final_cltv, }], }); } first_hop_targets.insert(chan.remote_network_id, (short_channel_id, chan.counterparty_features.clone())); } if first_hop_targets.is_empty() { return Err(LightningError{err: "Cannot route when there are no outbound routes away from us", action: ErrorAction::IgnoreError}); } } macro_rules! add_entry { // Adds entry which goes from the node pointed to by $directional_info to // $dest_node_id over the channel with id $chan_id with fees described in // $directional_info. ( $chan_id: expr, $dest_node_id: expr, $directional_info: expr, $chan_features: expr, $starting_fee_msat: expr ) => { //TODO: Explore simply adding fee to hit htlc_minimum_msat if $starting_fee_msat as u64 + final_value_msat >= $directional_info.htlc_minimum_msat { let proportional_fee_millions = ($starting_fee_msat + final_value_msat).checked_mul($directional_info.fee_proportional_millionths as u64); if let Some(new_fee) = proportional_fee_millions.and_then(|part| { ($directional_info.fee_base_msat as u64).checked_add(part / 1000000) }) { let mut total_fee = $starting_fee_msat as u64; let hm_entry = dist.entry(&$directional_info.src_node_id); let old_entry = hm_entry.or_insert_with(|| { let node = network.nodes.get(&$directional_info.src_node_id).unwrap(); (u64::max_value(), node.lowest_inbound_channel_fee_base_msat, node.lowest_inbound_channel_fee_proportional_millionths, RouteHop { pubkey: $dest_node_id.clone(), node_features: NodeFeatures::empty(), short_channel_id: 0, channel_features: $chan_features.clone(), fee_msat: 0, cltv_expiry_delta: 0, }) }); if $directional_info.src_node_id != network.our_node_id { // Ignore new_fee for channel-from-us as we assume all channels-from-us // will have the same effective-fee total_fee += new_fee; if let Some(fee_inc) = final_value_msat.checked_add(total_fee).and_then(|inc| { (old_entry.2 as u64).checked_mul(inc) }) { total_fee += fee_inc / 1000000 + (old_entry.1 as u64); } else { // max_value means we'll always fail the old_entry.0 > total_fee check total_fee = u64::max_value(); } } let new_graph_node = RouteGraphNode { pubkey: $directional_info.src_node_id, lowest_fee_to_peer_through_node: total_fee, lowest_fee_to_node: $starting_fee_msat as u64 + new_fee, }; if old_entry.0 > total_fee { targets.push(new_graph_node); old_entry.0 = total_fee; old_entry.3 = RouteHop { pubkey: $dest_node_id.clone(), node_features: NodeFeatures::empty(), short_channel_id: $chan_id.clone(), channel_features: $chan_features.clone(), fee_msat: new_fee, // This field is ignored on the last-hop anyway cltv_expiry_delta: $directional_info.cltv_expiry_delta as u32, } } } } }; } macro_rules! add_entries_to_cheapest_to_target_node { ( $node: expr, $node_id: expr, $fee_to_target_msat: expr ) => { if first_hops.is_some() { if let Some(&(ref first_hop, ref features)) = first_hop_targets.get(&$node_id) { add_entry!(first_hop, $node_id, dummy_directional_info, ChannelFeatures::with_known_relevant_init_flags(&features), $fee_to_target_msat); } } if !$node.features.requires_unknown_bits() { for chan_id in $node.channels.iter() { let chan = network.channels.get(chan_id).unwrap(); if !chan.features.requires_unknown_bits() { if chan.one_to_two.src_node_id == *$node_id { // ie $node is one, ie next hop in A* is two, via the two_to_one channel if first_hops.is_none() || chan.two_to_one.src_node_id != network.our_node_id { if chan.two_to_one.enabled { add_entry!(chan_id, chan.one_to_two.src_node_id, chan.two_to_one, chan.features, $fee_to_target_msat); } } } else { if first_hops.is_none() || chan.one_to_two.src_node_id != network.our_node_id { if chan.one_to_two.enabled { add_entry!(chan_id, chan.two_to_one.src_node_id, chan.one_to_two, chan.features, $fee_to_target_msat); } } } } } } }; } match network.nodes.get(target) { None => {}, Some(node) => { add_entries_to_cheapest_to_target_node!(node, target, 0); }, } for hop in last_hops.iter() { if first_hops.is_none() || hop.src_node_id != network.our_node_id { // first_hop overrules last_hops if network.nodes.get(&hop.src_node_id).is_some() { if first_hops.is_some() { if let Some(&(ref first_hop, ref features)) = first_hop_targets.get(&hop.src_node_id) { // Currently there are no channel-context features defined, so we are a // bit lazy here. In the future, we should pull them out via our // ChannelManager, but there's no reason to waste the space until we // need them. add_entry!(first_hop, hop.src_node_id, dummy_directional_info, ChannelFeatures::with_known_relevant_init_flags(&features), 0); } } // BOLT 11 doesn't allow inclusion of features for the last hop hints, which // really sucks, cause we're gonna need that eventually. add_entry!(hop.short_channel_id, target, hop, ChannelFeatures::empty(), 0); } } } while let Some(RouteGraphNode { pubkey, lowest_fee_to_node, .. }) = targets.pop() { if pubkey == network.our_node_id { let mut res = vec!(dist.remove(&network.our_node_id).unwrap().3); loop { if let Some(&(_, ref features)) = first_hop_targets.get(&res.last().unwrap().pubkey) { res.last_mut().unwrap().node_features = NodeFeatures::with_known_relevant_init_flags(&features); } else if let Some(node) = network.nodes.get(&res.last().unwrap().pubkey) { res.last_mut().unwrap().node_features = node.features.clone(); } else { // We should be able to fill in features for everything except the last // hop, if the last hop was provided via a BOLT 11 invoice (though we // should be able to extend it further as BOLT 11 does have feature // flags for the last hop node itself). assert!(res.last().unwrap().pubkey == *target); } if res.last().unwrap().pubkey == *target { break; } let new_entry = match dist.remove(&res.last().unwrap().pubkey) { Some(hop) => hop.3, None => return Err(LightningError{err: "Failed to find a non-fee-overflowing path to the given destination", action: ErrorAction::IgnoreError}), }; res.last_mut().unwrap().fee_msat = new_entry.fee_msat; res.last_mut().unwrap().cltv_expiry_delta = new_entry.cltv_expiry_delta; res.push(new_entry); } res.last_mut().unwrap().fee_msat = final_value_msat; res.last_mut().unwrap().cltv_expiry_delta = final_cltv; let route = Route { hops: res }; log_trace!(self, "Got route: {}", log_route!(route)); return Ok(route); } match network.nodes.get(&pubkey) { None => {}, Some(node) => { add_entries_to_cheapest_to_target_node!(node, &pubkey, lowest_fee_to_node); }, } } Err(LightningError{err: "Failed to find a path to the given destination", action: ErrorAction::IgnoreError}) } } #[cfg(test)] mod tests { use chain::chaininterface; use ln::channelmanager; use ln::router::{Router,NodeInfo,NetworkMap,ChannelInfo,DirectionalChannelInfo,RouteHint}; use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures}; use ln::msgs::{ErrorAction, LightningError, RoutingMessageHandler}; use util::test_utils; use util::test_utils::TestVecWriter; use util::logger::Logger; use util::ser::{Writeable, Readable}; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use bitcoin_hashes::Hash; use bitcoin::network::constants::Network; use hex; use secp256k1::key::{PublicKey,SecretKey}; use secp256k1::All; use secp256k1::Secp256k1; use std::sync::Arc; fn create_router() -> (Secp256k1, PublicKey, Router) { let secp_ctx = Secp256k1::new(); let our_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap()); let logger: Arc = Arc::new(test_utils::TestLogger::new()); let chain_monitor = Arc::new(chaininterface::ChainWatchInterfaceUtil::new(Network::Testnet, Arc::clone(&logger))); let router = Router::new(our_id, chain_monitor, Arc::clone(&logger)); (secp_ctx, our_id, router) } #[test] fn route_test() { let (secp_ctx, our_id, router) = create_router(); // Build network from our_id to node8: // // -1(1)2- node1 -1(3)2- // / \ // our_id -1(12)2- node8 -1(13)2--- node3 // \ / // -1(2)2- node2 -1(4)2- // // // chan1 1-to-2: disabled // chan1 2-to-1: enabled, 0 fee // // chan2 1-to-2: enabled, ignored fee // chan2 2-to-1: enabled, 0 fee // // chan3 1-to-2: enabled, 0 fee // chan3 2-to-1: enabled, 100 msat fee // // chan4 1-to-2: enabled, 100% fee // chan4 2-to-1: enabled, 0 fee // // chan12 1-to-2: enabled, ignored fee // chan12 2-to-1: enabled, 0 fee // // chan13 1-to-2: enabled, 200% fee // chan13 2-to-1: enabled, 0 fee // // // -1(5)2- node4 -1(8)2-- // | 2 | // | (11) | // / 1 \ // node3--1(6)2- node5 -1(9)2--- node7 (not in global route map) // \ / // -1(7)2- node6 -1(10)2- // // chan5 1-to-2: enabled, 100 msat fee // chan5 2-to-1: enabled, 0 fee // // chan6 1-to-2: enabled, 0 fee // chan6 2-to-1: enabled, 0 fee // // chan7 1-to-2: enabled, 100% fee // chan7 2-to-1: enabled, 0 fee // // chan8 1-to-2: enabled, variable fee (0 then 1000 msat) // chan8 2-to-1: enabled, 0 fee // // chan9 1-to-2: enabled, 1001 msat fee // chan9 2-to-1: enabled, 0 fee // // chan10 1-to-2: enabled, 0 fee // chan10 2-to-1: enabled, 0 fee // // chan11 1-to-2: enabled, 0 fee // chan11 2-to-1: enabled, 0 fee let node1 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap()); let node2 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0303030303030303030303030303030303030303030303030303030303030303").unwrap()[..]).unwrap()); let node3 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0404040404040404040404040404040404040404040404040404040404040404").unwrap()[..]).unwrap()); let node4 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0505050505050505050505050505050505050505050505050505050505050505").unwrap()[..]).unwrap()); let node5 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0606060606060606060606060606060606060606060606060606060606060606").unwrap()[..]).unwrap()); let node6 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0707070707070707070707070707070707070707070707070707070707070707").unwrap()[..]).unwrap()); let node7 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0808080808080808080808080808080808080808080808080808080808080808").unwrap()[..]).unwrap()); let node8 = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0909090909090909090909090909090909090909090909090909090909090909").unwrap()[..]).unwrap()); let zero_hash = Sha256dHash::hash(&[0; 32]); macro_rules! id_to_feature_flags { // Set the feature flags to the id'th odd (ie non-required) feature bit so that we can // test for it later. ($id: expr) => { { let idx = ($id - 1) * 2 + 1; if idx > 8*3 { vec![1 << (idx - 8*3), 0, 0, 0] } else if idx > 8*2 { vec![1 << (idx - 8*2), 0, 0] } else if idx > 8*1 { vec![1 << (idx - 8*1), 0] } else { vec![1 << idx] } } } } { let mut network = router.network_map.write().unwrap(); network.nodes.insert(node1.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(1, zero_hash.clone()), NetworkMap::get_key(3, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 100, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(1)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(1, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(1)), one_to_two: DirectionalChannelInfo { src_node_id: our_id.clone(), last_update: 0, enabled: false, cltv_expiry_delta: u16::max_value(), // This value should be ignored htlc_minimum_msat: 0, fee_base_msat: u32::max_value(), // This value should be ignored fee_proportional_millionths: u32::max_value(), // This value should be ignored last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node1.clone(), last_update: 0, enabled: true, cltv_expiry_delta: 0, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node2.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(2, zero_hash.clone()), NetworkMap::get_key(4, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(2)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(2, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(2)), one_to_two: DirectionalChannelInfo { src_node_id: our_id.clone(), last_update: 0, enabled: true, cltv_expiry_delta: u16::max_value(), // This value should be ignored htlc_minimum_msat: 0, fee_base_msat: u32::max_value(), // This value should be ignored fee_proportional_millionths: u32::max_value(), // This value should be ignored last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node2.clone(), last_update: 0, enabled: true, cltv_expiry_delta: 0, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node8.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(12, zero_hash.clone()), NetworkMap::get_key(13, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(8)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(12, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(12)), one_to_two: DirectionalChannelInfo { src_node_id: our_id.clone(), last_update: 0, enabled: true, cltv_expiry_delta: u16::max_value(), // This value should be ignored htlc_minimum_msat: 0, fee_base_msat: u32::max_value(), // This value should be ignored fee_proportional_millionths: u32::max_value(), // This value should be ignored last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node8.clone(), last_update: 0, enabled: true, cltv_expiry_delta: 0, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node3.clone(), NodeInfo { channels: vec!( NetworkMap::get_key(3, zero_hash.clone()), NetworkMap::get_key(4, zero_hash.clone()), NetworkMap::get_key(13, zero_hash.clone()), NetworkMap::get_key(5, zero_hash.clone()), NetworkMap::get_key(6, zero_hash.clone()), NetworkMap::get_key(7, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(3)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(3, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(3)), one_to_two: DirectionalChannelInfo { src_node_id: node1.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (3 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (3 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 100, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.channels.insert(NetworkMap::get_key(4, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(4)), one_to_two: DirectionalChannelInfo { src_node_id: node2.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (4 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 1000000, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (4 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.channels.insert(NetworkMap::get_key(13, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(13)), one_to_two: DirectionalChannelInfo { src_node_id: node8.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (13 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 2000000, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (13 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node4.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(5, zero_hash.clone()), NetworkMap::get_key(11, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(4)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(5, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(5)), one_to_two: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (5 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 100, fee_proportional_millionths: 0, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node4.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (5 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node5.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(6, zero_hash.clone()), NetworkMap::get_key(11, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(5)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(6, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(6)), one_to_two: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (6 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node5.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (6 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.channels.insert(NetworkMap::get_key(11, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(11)), one_to_two: DirectionalChannelInfo { src_node_id: node5.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (11 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node4.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (11 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); network.nodes.insert(node6.clone(), NodeInfo { channels: vec!(NetworkMap::get_key(7, zero_hash.clone())), lowest_inbound_channel_fee_base_msat: 0, lowest_inbound_channel_fee_proportional_millionths: 0, features: NodeFeatures::from_le_bytes(id_to_feature_flags!(6)), last_update: 1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), announcement_message: None, }); network.channels.insert(NetworkMap::get_key(7, zero_hash.clone()), ChannelInfo { features: ChannelFeatures::from_le_bytes(id_to_feature_flags!(7)), one_to_two: DirectionalChannelInfo { src_node_id: node3.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (7 << 8) | 1, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 1000000, last_update_message: None, }, two_to_one: DirectionalChannelInfo { src_node_id: node6.clone(), last_update: 0, enabled: true, cltv_expiry_delta: (7 << 8) | 2, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, last_update_message: None, }, announcement_message: None, }); } { // Simple route to 3 via 2 let route = router.get_route(&node3, None, &Vec::new(), 100, 42).unwrap(); assert_eq!(route.hops.len(), 2); assert_eq!(route.hops[0].pubkey, node2); assert_eq!(route.hops[0].short_channel_id, 2); assert_eq!(route.hops[0].fee_msat, 100); assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[0].channel_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 4); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, 42); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(4)); } { // Disable channels 4 and 12 by requiring unknown feature bits let mut network = router.network_map.write().unwrap(); network.channels.get_mut(&NetworkMap::get_key(4, zero_hash.clone())).unwrap().features.set_require_unknown_bits(); network.channels.get_mut(&NetworkMap::get_key(12, zero_hash.clone())).unwrap().features.set_require_unknown_bits(); } { // If all the channels require some features we don't understand, route should fail if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = router.get_route(&node3, None, &Vec::new(), 100, 42) { assert_eq!(err, "Failed to find a path to the given destination"); } else { panic!(); } } { // If we specify a channel to node8, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], short_channel_id: Some(42), remote_network_id: node8.clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 0, inbound_capacity_msat: 0, is_live: true, }]; let route = router.get_route(&node3, Some(&our_chans), &Vec::new(), 100, 42).unwrap(); assert_eq!(route.hops.len(), 2); assert_eq!(route.hops[0].pubkey, node8); assert_eq!(route.hops[0].short_channel_id, 42); assert_eq!(route.hops[0].fee_msat, 200); assert_eq!(route.hops[0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features assert_eq!(route.hops[0].channel_features.le_flags(), &Vec::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 13); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, 42); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(13)); } { // Re-enable channels 4 and 12 by wiping the unknown feature bits let mut network = router.network_map.write().unwrap(); network.channels.get_mut(&NetworkMap::get_key(4, zero_hash.clone())).unwrap().features.clear_require_unknown_bits(); network.channels.get_mut(&NetworkMap::get_key(12, zero_hash.clone())).unwrap().features.clear_require_unknown_bits(); } { // Disable nodes 1, 2, and 8 by requiring unknown feature bits let mut network = router.network_map.write().unwrap(); network.nodes.get_mut(&node1).unwrap().features.set_require_unknown_bits(); network.nodes.get_mut(&node2).unwrap().features.set_require_unknown_bits(); network.nodes.get_mut(&node8).unwrap().features.set_require_unknown_bits(); } { // If all nodes require some features we don't understand, route should fail if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = router.get_route(&node3, None, &Vec::new(), 100, 42) { assert_eq!(err, "Failed to find a path to the given destination"); } else { panic!(); } } { // If we specify a channel to node8, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], short_channel_id: Some(42), remote_network_id: node8.clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 0, inbound_capacity_msat: 0, is_live: true, }]; let route = router.get_route(&node3, Some(&our_chans), &Vec::new(), 100, 42).unwrap(); assert_eq!(route.hops.len(), 2); assert_eq!(route.hops[0].pubkey, node8); assert_eq!(route.hops[0].short_channel_id, 42); assert_eq!(route.hops[0].fee_msat, 200); assert_eq!(route.hops[0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features assert_eq!(route.hops[0].channel_features.le_flags(), &Vec::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 13); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, 42); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(13)); } { // Re-enable nodes 1, 2, and 8 let mut network = router.network_map.write().unwrap(); network.nodes.get_mut(&node1).unwrap().features.clear_require_unknown_bits(); network.nodes.get_mut(&node2).unwrap().features.clear_require_unknown_bits(); network.nodes.get_mut(&node8).unwrap().features.clear_require_unknown_bits(); } // Note that we don't test disabling node 3 and failing to route to it, as we (somewhat // naively) assume that the user checked the feature bits on the invoice, which override // the node_announcement. { // Route to 1 via 2 and 3 because our channel to 1 is disabled let route = router.get_route(&node1, None, &Vec::new(), 100, 42).unwrap(); assert_eq!(route.hops.len(), 3); assert_eq!(route.hops[0].pubkey, node2); assert_eq!(route.hops[0].short_channel_id, 2); assert_eq!(route.hops[0].fee_msat, 200); assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[0].channel_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 4); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, (3 << 8) | 2); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[2].pubkey, node1); assert_eq!(route.hops[2].short_channel_id, 3); assert_eq!(route.hops[2].fee_msat, 100); assert_eq!(route.hops[2].cltv_expiry_delta, 42); assert_eq!(route.hops[2].node_features.le_flags(), &id_to_feature_flags!(1)); assert_eq!(route.hops[2].channel_features.le_flags(), &id_to_feature_flags!(3)); } { // If we specify a channel to node8, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], short_channel_id: Some(42), remote_network_id: node8.clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 0, inbound_capacity_msat: 0, is_live: true, }]; let route = router.get_route(&node3, Some(&our_chans), &Vec::new(), 100, 42).unwrap(); assert_eq!(route.hops.len(), 2); assert_eq!(route.hops[0].pubkey, node8); assert_eq!(route.hops[0].short_channel_id, 42); assert_eq!(route.hops[0].fee_msat, 200); assert_eq!(route.hops[0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &vec![0b11]); assert_eq!(route.hops[0].channel_features.le_flags(), &Vec::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 13); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, 42); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(13)); } let mut last_hops = vec!(RouteHint { src_node_id: node4.clone(), short_channel_id: 8, fee_base_msat: 0, fee_proportional_millionths: 0, cltv_expiry_delta: (8 << 8) | 1, htlc_minimum_msat: 0, }, RouteHint { src_node_id: node5.clone(), short_channel_id: 9, fee_base_msat: 1001, fee_proportional_millionths: 0, cltv_expiry_delta: (9 << 8) | 1, htlc_minimum_msat: 0, }, RouteHint { src_node_id: node6.clone(), short_channel_id: 10, fee_base_msat: 0, fee_proportional_millionths: 0, cltv_expiry_delta: (10 << 8) | 1, htlc_minimum_msat: 0, }); { // Simple test across 2, 3, 5, and 4 via a last_hop channel let route = router.get_route(&node7, None, &last_hops, 100, 42).unwrap(); assert_eq!(route.hops.len(), 5); assert_eq!(route.hops[0].pubkey, node2); assert_eq!(route.hops[0].short_channel_id, 2); assert_eq!(route.hops[0].fee_msat, 100); assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[0].channel_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 4); assert_eq!(route.hops[1].fee_msat, 0); assert_eq!(route.hops[1].cltv_expiry_delta, (6 << 8) | 1); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[2].pubkey, node5); assert_eq!(route.hops[2].short_channel_id, 6); assert_eq!(route.hops[2].fee_msat, 0); assert_eq!(route.hops[2].cltv_expiry_delta, (11 << 8) | 1); assert_eq!(route.hops[2].node_features.le_flags(), &id_to_feature_flags!(5)); assert_eq!(route.hops[2].channel_features.le_flags(), &id_to_feature_flags!(6)); assert_eq!(route.hops[3].pubkey, node4); assert_eq!(route.hops[3].short_channel_id, 11); assert_eq!(route.hops[3].fee_msat, 0); assert_eq!(route.hops[3].cltv_expiry_delta, (8 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.hops[3].node_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[3].channel_features.le_flags(), &id_to_feature_flags!(11)); assert_eq!(route.hops[4].pubkey, node7); assert_eq!(route.hops[4].short_channel_id, 8); assert_eq!(route.hops[4].fee_msat, 100); assert_eq!(route.hops[4].cltv_expiry_delta, 42); assert_eq!(route.hops[4].node_features.le_flags(), &Vec::new()); // We dont pass flags in from invoices yet assert_eq!(route.hops[4].channel_features.le_flags(), &Vec::new()); // We can't learn any flags from invoices, sadly } { // Simple test with outbound channel to 4 to test that last_hops and first_hops connect let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], short_channel_id: Some(42), remote_network_id: node4.clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 0, inbound_capacity_msat: 0, is_live: true, }]; let route = router.get_route(&node7, Some(&our_chans), &last_hops, 100, 42).unwrap(); assert_eq!(route.hops.len(), 2); assert_eq!(route.hops[0].pubkey, node4); assert_eq!(route.hops[0].short_channel_id, 42); assert_eq!(route.hops[0].fee_msat, 0); assert_eq!(route.hops[0].cltv_expiry_delta, (8 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &vec![0b11]); assert_eq!(route.hops[0].channel_features.le_flags(), &Vec::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.hops[1].pubkey, node7); assert_eq!(route.hops[1].short_channel_id, 8); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, 42); assert_eq!(route.hops[1].node_features.le_flags(), &Vec::new()); // We dont pass flags in from invoices yet assert_eq!(route.hops[1].channel_features.le_flags(), &Vec::new()); // We can't learn any flags from invoices, sadly } last_hops[0].fee_base_msat = 1000; { // Revert to via 6 as the fee on 8 goes up let route = router.get_route(&node7, None, &last_hops, 100, 42).unwrap(); assert_eq!(route.hops.len(), 4); assert_eq!(route.hops[0].pubkey, node2); assert_eq!(route.hops[0].short_channel_id, 2); assert_eq!(route.hops[0].fee_msat, 200); // fee increased as its % of value transferred across node assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[0].channel_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 4); assert_eq!(route.hops[1].fee_msat, 100); assert_eq!(route.hops[1].cltv_expiry_delta, (7 << 8) | 1); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[2].pubkey, node6); assert_eq!(route.hops[2].short_channel_id, 7); assert_eq!(route.hops[2].fee_msat, 0); assert_eq!(route.hops[2].cltv_expiry_delta, (10 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.hops[2].node_features.le_flags(), &id_to_feature_flags!(6)); assert_eq!(route.hops[2].channel_features.le_flags(), &id_to_feature_flags!(7)); assert_eq!(route.hops[3].pubkey, node7); assert_eq!(route.hops[3].short_channel_id, 10); assert_eq!(route.hops[3].fee_msat, 100); assert_eq!(route.hops[3].cltv_expiry_delta, 42); assert_eq!(route.hops[3].node_features.le_flags(), &Vec::new()); // We dont pass flags in from invoices yet assert_eq!(route.hops[3].channel_features.le_flags(), &Vec::new()); // We can't learn any flags from invoices, sadly } { // ...but still use 8 for larger payments as 6 has a variable feerate let route = router.get_route(&node7, None, &last_hops, 2000, 42).unwrap(); assert_eq!(route.hops.len(), 5); assert_eq!(route.hops[0].pubkey, node2); assert_eq!(route.hops[0].short_channel_id, 2); assert_eq!(route.hops[0].fee_msat, 3000); assert_eq!(route.hops[0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.hops[0].node_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[0].channel_features.le_flags(), &id_to_feature_flags!(2)); assert_eq!(route.hops[1].pubkey, node3); assert_eq!(route.hops[1].short_channel_id, 4); assert_eq!(route.hops[1].fee_msat, 0); assert_eq!(route.hops[1].cltv_expiry_delta, (6 << 8) | 1); assert_eq!(route.hops[1].node_features.le_flags(), &id_to_feature_flags!(3)); assert_eq!(route.hops[1].channel_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[2].pubkey, node5); assert_eq!(route.hops[2].short_channel_id, 6); assert_eq!(route.hops[2].fee_msat, 0); assert_eq!(route.hops[2].cltv_expiry_delta, (11 << 8) | 1); assert_eq!(route.hops[2].node_features.le_flags(), &id_to_feature_flags!(5)); assert_eq!(route.hops[2].channel_features.le_flags(), &id_to_feature_flags!(6)); assert_eq!(route.hops[3].pubkey, node4); assert_eq!(route.hops[3].short_channel_id, 11); assert_eq!(route.hops[3].fee_msat, 1000); assert_eq!(route.hops[3].cltv_expiry_delta, (8 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.hops[3].node_features.le_flags(), &id_to_feature_flags!(4)); assert_eq!(route.hops[3].channel_features.le_flags(), &id_to_feature_flags!(11)); assert_eq!(route.hops[4].pubkey, node7); assert_eq!(route.hops[4].short_channel_id, 8); assert_eq!(route.hops[4].fee_msat, 2000); assert_eq!(route.hops[4].cltv_expiry_delta, 42); assert_eq!(route.hops[4].node_features.le_flags(), &Vec::new()); // We dont pass flags in from invoices yet assert_eq!(route.hops[4].channel_features.le_flags(), &Vec::new()); // We can't learn any flags from invoices, sadly } { // Test Router serialization/deserialization let mut w = TestVecWriter(Vec::new()); let network = router.network_map.read().unwrap(); assert!(!network.channels.is_empty()); assert!(!network.nodes.is_empty()); network.write(&mut w).unwrap(); assert!(::read(&mut ::std::io::Cursor::new(&w.0)).unwrap() == *network); } } #[test] fn request_full_sync_finite_times() { let (secp_ctx, _, router) = create_router(); let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap()); assert!(router.should_request_full_sync(&node_id)); assert!(router.should_request_full_sync(&node_id)); assert!(router.should_request_full_sync(&node_id)); assert!(router.should_request_full_sync(&node_id)); assert!(router.should_request_full_sync(&node_id)); assert!(!router.should_request_full_sync(&node_id)); } }