use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys, ChannelPublicKeys, LocalCommitmentTransaction}; use ln::channelmanager::PaymentPreimage; use ln::msgs; use chain::keysinterface::{ChannelKeys, InMemoryChannelKeys}; use std::cmp; use std::sync::{Mutex, Arc}; use bitcoin::blockdata::transaction::Transaction; use secp256k1; use secp256k1::key::{SecretKey, PublicKey}; use secp256k1::{Secp256k1, Signature}; use util::ser::{Writeable, Writer, Readable}; use std::io::Error; use ln::msgs::DecodeError; /// Enforces some rules on ChannelKeys calls. Eventually we will probably want to expose a variant /// of this which would essentially be what you'd want to run on a hardware wallet. #[derive(Clone)] pub struct EnforcingChannelKeys { pub inner: InMemoryChannelKeys, commitment_number_obscure_and_last: Arc, u64)>>, } impl EnforcingChannelKeys { pub fn new(inner: InMemoryChannelKeys) -> Self { Self { inner, commitment_number_obscure_and_last: Arc::new(Mutex::new((None, 0))), } } } impl EnforcingChannelKeys { fn check_keys(&self, secp_ctx: &Secp256k1, keys: &TxCreationKeys) { let revocation_base = PublicKey::from_secret_key(secp_ctx, &self.inner.revocation_base_key()); let payment_base = PublicKey::from_secret_key(secp_ctx, &self.inner.payment_base_key()); let htlc_base = PublicKey::from_secret_key(secp_ctx, &self.inner.htlc_base_key()); let remote_points = self.inner.remote_channel_pubkeys.as_ref().unwrap(); let keys_expected = TxCreationKeys::new(secp_ctx, &keys.per_commitment_point, &remote_points.delayed_payment_basepoint, &remote_points.htlc_basepoint, &revocation_base, &payment_base, &htlc_base).unwrap(); if keys != &keys_expected { panic!("derived different per-tx keys") } } } impl ChannelKeys for EnforcingChannelKeys { fn funding_key(&self) -> &SecretKey { self.inner.funding_key() } fn revocation_base_key(&self) -> &SecretKey { self.inner.revocation_base_key() } fn payment_base_key(&self) -> &SecretKey { self.inner.payment_base_key() } fn delayed_payment_base_key(&self) -> &SecretKey { self.inner.delayed_payment_base_key() } fn htlc_base_key(&self) -> &SecretKey { self.inner.htlc_base_key() } fn commitment_seed(&self) -> &[u8; 32] { self.inner.commitment_seed() } fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { self.inner.pubkeys() } fn sign_remote_commitment(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { if commitment_tx.input.len() != 1 { panic!("lightning commitment transactions have a single input"); } self.check_keys(secp_ctx, keys); let obscured_commitment_transaction_number = (commitment_tx.lock_time & 0xffffff) as u64 | ((commitment_tx.input[0].sequence as u64 & 0xffffff) << 3*8); { let mut commitment_data = self.commitment_number_obscure_and_last.lock().unwrap(); if commitment_data.0.is_none() { commitment_data.0 = Some(obscured_commitment_transaction_number ^ commitment_data.1); } let commitment_number = obscured_commitment_transaction_number ^ commitment_data.0.unwrap(); assert!(commitment_number == commitment_data.1 || commitment_number == commitment_data.1 + 1); commitment_data.1 = cmp::max(commitment_number, commitment_data.1) } Ok(self.inner.sign_remote_commitment(feerate_per_kw, commitment_tx, keys, htlcs, to_self_delay, secp_ctx).unwrap()) } fn sign_local_commitment(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1) -> Result { self.inner.sign_local_commitment(local_commitment_tx, secp_ctx) } #[cfg(test)] fn unsafe_sign_local_commitment(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1) -> Result { self.inner.unsafe_sign_local_commitment(local_commitment_tx, secp_ctx) } fn sign_htlc_transaction(&self, local_commitment_tx: &mut LocalCommitmentTransaction, htlc_index: u32, preimage: Option, local_csv: u16, secp_ctx: &Secp256k1) { self.inner.sign_htlc_transaction(local_commitment_tx, htlc_index, preimage, local_csv, secp_ctx); } fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1) -> Result { Ok(self.inner.sign_closing_transaction(closing_tx, secp_ctx).unwrap()) } fn sign_channel_announcement(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) -> Result { self.inner.sign_channel_announcement(msg, secp_ctx) } fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) { self.inner.set_remote_channel_pubkeys(channel_pubkeys) } } impl Writeable for EnforcingChannelKeys { fn write(&self, writer: &mut W) -> Result<(), Error> { self.inner.write(writer)?; let (obscure, last) = *self.commitment_number_obscure_and_last.lock().unwrap(); obscure.write(writer)?; last.write(writer)?; Ok(()) } } impl Readable for EnforcingChannelKeys { fn read(reader: &mut R) -> Result { let inner = Readable::read(reader)?; let obscure_and_last = Readable::read(reader)?; Ok(EnforcingChannelKeys { inner: inner, commitment_number_obscure_and_last: Arc::new(Mutex::new(obscure_and_last)) }) } }