// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Various utilities for building scripts and deriving keys related to channels. These are //! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing //! by hand. use bitcoin::blockdata::script::{Script,Builder}; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType}; use bitcoin::util::bip143; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::ripemd160::Hash as Ripemd160; use bitcoin::hash_types::{Txid, PubkeyHash}; use ln::channelmanager::{PaymentHash, PaymentPreimage}; use ln::msgs::DecodeError; use util::ser::{Readable, Writeable, Writer, MAX_BUF_SIZE}; use util::byte_utils; use bitcoin::hash_types::WPubkeyHash; use bitcoin::secp256k1::key::{SecretKey, PublicKey}; use bitcoin::secp256k1::{Secp256k1, Signature, Message}; use bitcoin::secp256k1::Error as SecpError; use bitcoin::secp256k1; use std::cmp; use ln::chan_utils; use util::transaction_utils::sort_outputs; use ln::channel::INITIAL_COMMITMENT_NUMBER; use std::io::Read; use std::ops::Deref; use chain; const HTLC_OUTPUT_IN_COMMITMENT_SIZE: usize = 1 + 8 + 4 + 32 + 5; pub(crate) const MAX_HTLCS: u16 = 483; // This checks that the buffer size is greater than the maximum possible size for serialized HTLCS const _EXCESS_BUFFER_SIZE: usize = MAX_BUF_SIZE - MAX_HTLCS as usize * HTLC_OUTPUT_IN_COMMITMENT_SIZE; pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703; pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663; #[derive(PartialEq)] pub(crate) enum HTLCType { AcceptedHTLC, OfferedHTLC } impl HTLCType { /// Check if a given tx witnessScript len matchs one of a pre-signed HTLC pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) -> Option { if witness_script_len == 133 { Some(HTLCType::OfferedHTLC) } else if witness_script_len >= 136 && witness_script_len <= 139 { Some(HTLCType::AcceptedHTLC) } else { None } } } // Various functions for key derivation and transaction creation for use within channels. Primarily // used in Channel and ChannelMonitor. /// Build the commitment secret from the seed and the commitment number pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] { let mut res: [u8; 32] = commitment_seed.clone(); for i in 0..48 { let bitpos = 47 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[bitpos / 8] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } /// Implements the per-commitment secret storage scheme from /// [BOLT 3](https://github.com/lightningnetwork/lightning-rfc/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md#efficient-per-commitment-secret-storage). /// /// Allows us to keep track of all of the revocation secrets of counterarties in just 50*32 bytes /// or so. #[derive(Clone)] pub(crate) struct CounterpartyCommitmentSecrets { old_secrets: [([u8; 32], u64); 49], } impl PartialEq for CounterpartyCommitmentSecrets { fn eq(&self, other: &Self) -> bool { for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) { if secret != o_secret || idx != o_idx { return false } } true } } impl CounterpartyCommitmentSecrets { pub(crate) fn new() -> Self { Self { old_secrets: [([0; 32], 1 << 48); 49], } } #[inline] fn place_secret(idx: u64) -> u8 { for i in 0..48 { if idx & (1 << i) == (1 << i) { return i } } 48 } pub(crate) fn get_min_seen_secret(&self) -> u64 { //TODO This can be optimized? let mut min = 1 << 48; for &(_, idx) in self.old_secrets.iter() { if idx < min { min = idx; } } min } #[inline] fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] { let mut res: [u8; 32] = secret; for i in 0..bits { let bitpos = bits - 1 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } pub(crate) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> { let pos = Self::place_secret(idx); for i in 0..pos { let (old_secret, old_idx) = self.old_secrets[i as usize]; if Self::derive_secret(secret, pos, old_idx) != old_secret { return Err(()); } } if self.get_min_seen_secret() <= idx { return Ok(()); } self.old_secrets[pos as usize] = (secret, idx); Ok(()) } /// Can only fail if idx is < get_min_seen_secret pub(crate) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> { for i in 0..self.old_secrets.len() { if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 { return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx)) } } assert!(idx < self.get_min_seen_secret()); None } } impl Writeable for CounterpartyCommitmentSecrets { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { for &(ref secret, ref idx) in self.old_secrets.iter() { writer.write_all(secret)?; writer.write_all(&byte_utils::be64_to_array(*idx))?; } Ok(()) } } impl Readable for CounterpartyCommitmentSecrets { fn read(reader: &mut R) -> Result { let mut old_secrets = [([0; 32], 1 << 48); 49]; for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() { *secret = Readable::read(reader)?; *idx = Readable::read(reader)?; } Ok(Self { old_secrets }) } } /// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key) /// from the base secret and the per_commitment_point. /// /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub fn derive_private_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize()); let res = Sha256::from_engine(sha).into_inner(); let mut key = base_secret.clone(); key.add_assign(&res)?; Ok(key) } /// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key) /// from the base point and the per_commitment_key. This is the public equivalent of /// derive_private_key - using only public keys to derive a public key instead of private keys. /// /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub fn derive_public_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&base_point.serialize()); let res = Sha256::from_engine(sha).into_inner(); let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?); base_point.combine(&hashkey) } /// Derives a per-commitment-transaction revocation key from its constituent parts. /// /// Only the cheating participant owns a valid witness to propagate a revoked /// commitment transaction, thus per_commitment_secret always come from cheater /// and revocation_base_secret always come from punisher, which is the broadcaster /// of the transaction spending with this key knowledge. /// /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub fn derive_private_revocation_key(secp_ctx: &Secp256k1, per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey) -> Result { let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret); let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret); let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&countersignatory_revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&countersignatory_revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let mut countersignatory_contrib = countersignatory_revocation_base_secret.clone(); countersignatory_contrib.mul_assign(&rev_append_commit_hash_key)?; let mut broadcaster_contrib = per_commitment_secret.clone(); broadcaster_contrib.mul_assign(&commit_append_rev_hash_key)?; countersignatory_contrib.add_assign(&broadcaster_contrib[..])?; Ok(countersignatory_contrib) } /// Derives a per-commitment-transaction revocation public key from its constituent parts. This is /// the public equivalend of derive_private_revocation_key - using only public keys to derive a /// public key instead of private keys. /// /// Only the cheating participant owns a valid witness to propagate a revoked /// commitment transaction, thus per_commitment_point always come from cheater /// and revocation_base_point always come from punisher, which is the broadcaster /// of the transaction spending with this key knowledge. /// /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub fn derive_public_revocation_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey) -> Result { let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&countersignatory_revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&countersignatory_revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let mut countersignatory_contrib = countersignatory_revocation_base_point.clone(); countersignatory_contrib.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?; let mut broadcaster_contrib = per_commitment_point.clone(); broadcaster_contrib.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?; countersignatory_contrib.combine(&broadcaster_contrib) } /// The set of public keys which are used in the creation of one commitment transaction. /// These are derived from the channel base keys and per-commitment data. /// /// A broadcaster key is provided from potential broadcaster of the computed transaction. /// A countersignatory key is coming from a protocol participant unable to broadcast the /// transaction. /// /// These keys are assumed to be good, either because the code derived them from /// channel basepoints via the new function, or they were obtained via /// CommitmentTransaction.trust().keys() because we trusted the source of the /// pre-calculated keys. #[derive(PartialEq, Clone)] pub struct TxCreationKeys { /// The broadcaster's per-commitment public key which was used to derive the other keys. pub per_commitment_point: PublicKey, /// The revocation key which is used to allow the broadcaster of the commitment /// transaction to provide their counterparty the ability to punish them if they broadcast /// an old state. pub revocation_key: PublicKey, /// Broadcaster's HTLC Key pub broadcaster_htlc_key: PublicKey, /// Countersignatory's HTLC Key pub countersignatory_htlc_key: PublicKey, /// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay) pub broadcaster_delayed_payment_key: PublicKey, } impl_writeable!(TxCreationKeys, 33*6, { per_commitment_point, revocation_key, broadcaster_htlc_key, countersignatory_htlc_key, broadcaster_delayed_payment_key }); /// One counterparty's public keys which do not change over the life of a channel. #[derive(Clone, PartialEq)] pub struct ChannelPublicKeys { /// The public key which is used to sign all commitment transactions, as it appears in the /// on-chain channel lock-in 2-of-2 multisig output. pub funding_pubkey: PublicKey, /// The base point which is used (with derive_public_revocation_key) to derive per-commitment /// revocation keys. This is combined with the per-commitment-secret generated by the /// counterparty to create a secret which the counterparty can reveal to revoke previous /// states. pub revocation_basepoint: PublicKey, /// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately /// spendable primary channel balance on the broadcaster's commitment transaction. This key is /// static across every commitment transaction. pub payment_point: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment payment /// public key which receives non-HTLC-encumbered funds which are only available for spending /// after some delay (or can be claimed via the revocation path). pub delayed_payment_basepoint: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment public key /// which is used to encumber HTLC-in-flight outputs. pub htlc_basepoint: PublicKey, } impl_writeable!(ChannelPublicKeys, 33*5, { funding_pubkey, revocation_basepoint, payment_point, delayed_payment_basepoint, htlc_basepoint }); impl TxCreationKeys { /// Create per-state keys from channel base points and the per-commitment point. /// Key set is asymmetric and can't be used as part of counter-signatory set of transactions. pub fn derive_new(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> Result { Ok(TxCreationKeys { per_commitment_point: per_commitment_point.clone(), revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base)?, broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base)?, countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base)?, broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base)?, }) } /// Generate per-state keys from channel static keys. /// Key set is asymmetric and can't be used as part of counter-signatory set of transactions. pub fn from_channel_static_keys(per_commitment_point: &PublicKey, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1) -> Result { TxCreationKeys::derive_new( &secp_ctx, &per_commitment_point, &broadcaster_keys.delayed_payment_basepoint, &broadcaster_keys.htlc_basepoint, &countersignatory_keys.revocation_basepoint, &countersignatory_keys.htlc_basepoint, ) } } /// A script either spendable by the revocation /// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain. /// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions. pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script { Builder::new().push_opcode(opcodes::all::OP_IF) .push_slice(&revocation_key.serialize()) .push_opcode(opcodes::all::OP_ELSE) .push_int(contest_delay as i64) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_DROP) .push_slice(&broadcaster_delayed_payment_key.serialize()) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_CHECKSIG) .into_script() } #[derive(Clone, PartialEq)] /// Information about an HTLC as it appears in a commitment transaction pub struct HTLCOutputInCommitment { /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction). /// Note that this is not the same as whether it is ountbound *from us*. To determine that you /// need to compare this value to whether the commitment transaction in question is that of /// the counterparty or our own. pub offered: bool, /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is /// this divided by 1000. pub amount_msat: u64, /// The CLTV lock-time at which this HTLC expires. pub cltv_expiry: u32, /// The hash of the preimage which unlocks this HTLC. pub payment_hash: PaymentHash, /// The position within the commitment transactions' outputs. This may be None if the value is /// below the dust limit (in which case no output appears in the commitment transaction and the /// value is spent to additional transaction fees). pub transaction_output_index: Option, } impl_writeable!(HTLCOutputInCommitment, HTLC_OUTPUT_IN_COMMITMENT_SIZE, { offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index }); #[inline] pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script { let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner(); if htlc.offered { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&countersignatory_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_NOTIF) .push_opcode(opcodes::all::OP_DROP) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&broadcaster_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_ENDIF) .into_script() } else { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&countersignatory_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&broadcaster_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_DROP) .push_int(htlc.cltv_expiry as i64) .push_opcode(opcodes::all::OP_CLTV) .push_opcode(opcodes::all::OP_DROP) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_ENDIF) .into_script() } } /// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc /// does not need to have its previous_output_index filled. #[inline] pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script { get_htlc_redeemscript_with_explicit_keys(htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key) } /// Gets the redeemscript for a funding output from the two funding public keys. /// Note that the order of funding public keys does not matter. pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script { let broadcaster_funding_key = broadcaster.serialize(); let countersignatory_funding_key = countersignatory.serialize(); let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2); if broadcaster_funding_key[..] < countersignatory_funding_key[..] { builder.push_slice(&broadcaster_funding_key) .push_slice(&countersignatory_funding_key) } else { builder.push_slice(&countersignatory_funding_key) .push_slice(&broadcaster_funding_key) }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script() } /// panics if htlc.transaction_output_index.is_none()! pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction { let mut txins: Vec = Vec::new(); txins.push(TxIn { previous_output: OutPoint { txid: prev_hash.clone(), vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"), }, script_sig: Script::new(), sequence: 0, witness: Vec::new(), }); let total_fee = if htlc.offered { feerate_per_kw as u64 * HTLC_TIMEOUT_TX_WEIGHT / 1000 } else { feerate_per_kw as u64 * HTLC_SUCCESS_TX_WEIGHT / 1000 }; let mut txouts: Vec = Vec::new(); txouts.push(TxOut { script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(), value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here) }); Transaction { version: 2, lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 }, input: txins, output: txouts, } } /// Per-channel data used to build transactions in conjunction with the per-commitment data (CommitmentTransaction). /// The fields are organized by holder/counterparty. /// /// Normally, this is converted to the broadcaster/countersignatory-organized DirectedChannelTransactionParameters /// before use, via the as_holder_broadcastable and as_counterparty_broadcastable functions. #[derive(Clone)] pub struct ChannelTransactionParameters { /// Holder public keys pub holder_pubkeys: ChannelPublicKeys, /// The contest delay selected by the holder, which applies to counterparty-broadcast transactions pub holder_selected_contest_delay: u16, /// Whether the holder is the initiator of this channel. /// This is an input to the commitment number obscure factor computation. pub is_outbound_from_holder: bool, /// The late-bound counterparty channel transaction parameters. /// These parameters are populated at the point in the protocol where the counterparty provides them. pub counterparty_parameters: Option, /// The late-bound funding outpoint pub funding_outpoint: Option, } /// Late-bound per-channel counterparty data used to build transactions. #[derive(Clone)] pub struct CounterpartyChannelTransactionParameters { /// Counter-party public keys pub pubkeys: ChannelPublicKeys, /// The contest delay selected by the counterparty, which applies to holder-broadcast transactions pub selected_contest_delay: u16, } impl ChannelTransactionParameters { /// Whether the late bound parameters are populated. pub fn is_populated(&self) -> bool { self.counterparty_parameters.is_some() && self.funding_outpoint.is_some() } /// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters, /// given that the holder is the broadcaster. /// /// self.is_populated() must be true before calling this function. pub fn as_holder_broadcastable(&self) -> DirectedChannelTransactionParameters { assert!(self.is_populated(), "self.late_parameters must be set before using as_holder_broadcastable"); DirectedChannelTransactionParameters { inner: self, holder_is_broadcaster: true } } /// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters, /// given that the counterparty is the broadcaster. /// /// self.is_populated() must be true before calling this function. pub fn as_counterparty_broadcastable(&self) -> DirectedChannelTransactionParameters { assert!(self.is_populated(), "self.late_parameters must be set before using as_counterparty_broadcastable"); DirectedChannelTransactionParameters { inner: self, holder_is_broadcaster: false } } } impl_writeable!(CounterpartyChannelTransactionParameters, 0, { pubkeys, selected_contest_delay }); impl_writeable!(ChannelTransactionParameters, 0, { holder_pubkeys, holder_selected_contest_delay, is_outbound_from_holder, counterparty_parameters, funding_outpoint }); /// Static channel fields used to build transactions given per-commitment fields, organized by /// broadcaster/countersignatory. /// /// This is derived from the holder/counterparty-organized ChannelTransactionParameters via the /// as_holder_broadcastable and as_counterparty_broadcastable functions. pub struct DirectedChannelTransactionParameters<'a> { /// The holder's channel static parameters inner: &'a ChannelTransactionParameters, /// Whether the holder is the broadcaster holder_is_broadcaster: bool, } impl<'a> DirectedChannelTransactionParameters<'a> { /// Get the channel pubkeys for the broadcaster pub fn broadcaster_pubkeys(&self) -> &ChannelPublicKeys { if self.holder_is_broadcaster { &self.inner.holder_pubkeys } else { &self.inner.counterparty_parameters.as_ref().unwrap().pubkeys } } /// Get the channel pubkeys for the countersignatory pub fn countersignatory_pubkeys(&self) -> &ChannelPublicKeys { if self.holder_is_broadcaster { &self.inner.counterparty_parameters.as_ref().unwrap().pubkeys } else { &self.inner.holder_pubkeys } } /// Get the contest delay applicable to the transactions. /// Note that the contest delay was selected by the countersignatory. pub fn contest_delay(&self) -> u16 { let counterparty_parameters = self.inner.counterparty_parameters.as_ref().unwrap(); if self.holder_is_broadcaster { counterparty_parameters.selected_contest_delay } else { self.inner.holder_selected_contest_delay } } /// Whether the channel is outbound from the broadcaster. /// /// The boolean representing the side that initiated the channel is /// an input to the commitment number obscure factor computation. pub fn is_outbound(&self) -> bool { if self.holder_is_broadcaster { self.inner.is_outbound_from_holder } else { !self.inner.is_outbound_from_holder } } /// The funding outpoint pub fn funding_outpoint(&self) -> OutPoint { self.inner.funding_outpoint.unwrap().into_bitcoin_outpoint() } } /// Information needed to build and sign a holder's commitment transaction. /// /// The transaction is only signed once we are ready to broadcast. #[derive(Clone)] pub struct HolderCommitmentTransaction { inner: CommitmentTransaction, /// Our counterparty's signature for the transaction pub counterparty_sig: Signature, /// All non-dust counterparty HTLC signatures, in the order they appear in the transaction pub counterparty_htlc_sigs: Vec, // Which order the signatures should go in when constructing the final commitment tx witness. // The user should be able to reconstruct this themselves, so we don't bother to expose it. holder_sig_first: bool, } impl Deref for HolderCommitmentTransaction { type Target = CommitmentTransaction; fn deref(&self) -> &Self::Target { &self.inner } } impl PartialEq for HolderCommitmentTransaction { // We dont care whether we are signed in equality comparison fn eq(&self, o: &Self) -> bool { self.inner == o.inner } } impl_writeable!(HolderCommitmentTransaction, 0, { inner, counterparty_sig, counterparty_htlc_sigs, holder_sig_first }); impl HolderCommitmentTransaction { #[cfg(test)] pub fn dummy() -> Self { let secp_ctx = Secp256k1::new(); let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()); let dummy_sig = secp_ctx.sign(&secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap()); let keys = TxCreationKeys { per_commitment_point: dummy_key.clone(), revocation_key: dummy_key.clone(), broadcaster_htlc_key: dummy_key.clone(), countersignatory_htlc_key: dummy_key.clone(), broadcaster_delayed_payment_key: dummy_key.clone(), }; let channel_pubkeys = ChannelPublicKeys { funding_pubkey: dummy_key.clone(), revocation_basepoint: dummy_key.clone(), payment_point: dummy_key.clone(), delayed_payment_basepoint: dummy_key.clone(), htlc_basepoint: dummy_key.clone() }; let channel_parameters = ChannelTransactionParameters { holder_pubkeys: channel_pubkeys.clone(), holder_selected_contest_delay: 0, is_outbound_from_holder: false, counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: channel_pubkeys.clone(), selected_contest_delay: 0 }), funding_outpoint: Some(chain::transaction::OutPoint { txid: Default::default(), index: 0 }) }; let mut htlcs_with_aux: Vec<(_, ())> = Vec::new(); let inner = CommitmentTransaction::new_with_auxiliary_htlc_data(0, 0, 0, keys, 0, &mut htlcs_with_aux, &channel_parameters.as_counterparty_broadcastable()); HolderCommitmentTransaction { inner, counterparty_sig: dummy_sig, counterparty_htlc_sigs: Vec::new(), holder_sig_first: false } } /// Create a new holder transaction with the given counterparty signatures. /// The funding keys are used to figure out which signature should go first when building the transaction for broadcast. pub fn new(commitment_tx: CommitmentTransaction, counterparty_sig: Signature, counterparty_htlc_sigs: Vec, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey) -> Self { Self { inner: commitment_tx, counterparty_sig, counterparty_htlc_sigs, holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..], } } pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction { // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. let mut tx = self.inner.built.transaction.clone(); tx.input[0].witness.push(Vec::new()); if self.holder_sig_first { tx.input[0].witness.push(holder_sig.serialize_der().to_vec()); tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec()); } else { tx.input[0].witness.push(self.counterparty_sig.serialize_der().to_vec()); tx.input[0].witness.push(holder_sig.serialize_der().to_vec()); } tx.input[0].witness[1].push(SigHashType::All as u8); tx.input[0].witness[2].push(SigHashType::All as u8); tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); tx } } /// A pre-built Bitcoin commitment transaction and its txid. #[derive(Clone)] pub struct BuiltCommitmentTransaction { /// The commitment transaction pub transaction: Transaction, /// The txid for the commitment transaction. /// /// This is provided as a performance optimization, instead of calling transaction.txid() /// multiple times. pub txid: Txid, } impl_writeable!(BuiltCommitmentTransaction, 0, { transaction, txid }); impl BuiltCommitmentTransaction { /// Get the SIGHASH_ALL sighash value of the transaction. /// /// This can be used to verify a signature. pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message { let sighash = &bip143::SigHashCache::new(&self.transaction).signature_hash(0, funding_redeemscript, channel_value_satoshis, SigHashType::All)[..]; hash_to_message!(sighash) } /// Sign a transaction, either because we are counter-signing the counterparty's transaction or /// because we are about to broadcast a holder transaction. pub fn sign(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) -> Signature { let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis); secp_ctx.sign(&sighash, funding_key) } } /// This class tracks the per-transaction information needed to build a commitment transaction and to /// actually build it and sign. It is used for holder transactions that we sign only when needed /// and for transactions we sign for the counterparty. /// /// This class can be used inside a signer implementation to generate a signature given the relevant /// secret key. #[derive(Clone)] pub struct CommitmentTransaction { commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, feerate_per_kw: u32, htlcs: Vec, // A cache of the parties' pubkeys required to construct the transaction, see doc for trust() keys: TxCreationKeys, // For access to the pre-built transaction, see doc for trust() built: BuiltCommitmentTransaction, } impl PartialEq for CommitmentTransaction { fn eq(&self, o: &Self) -> bool { let eq = self.commitment_number == o.commitment_number && self.to_broadcaster_value_sat == o.to_broadcaster_value_sat && self.to_countersignatory_value_sat == o.to_countersignatory_value_sat && self.feerate_per_kw == o.feerate_per_kw && self.htlcs == o.htlcs && self.keys == o.keys; if eq { debug_assert_eq!(self.built.transaction, o.built.transaction); debug_assert_eq!(self.built.txid, o.built.txid); } eq } } impl Writeable for Vec { #[inline] fn write(&self, w: &mut W) -> Result<(), ::std::io::Error> { (self.len() as u16).write(w)?; for e in self.iter() { e.write(w)?; } Ok(()) } } impl Readable for Vec { #[inline] fn read(r: &mut R) -> Result { let len: u16 = Readable::read(r)?; let byte_size = (len as usize) .checked_mul(HTLC_OUTPUT_IN_COMMITMENT_SIZE) .ok_or(DecodeError::BadLengthDescriptor)?; if byte_size > MAX_BUF_SIZE { return Err(DecodeError::BadLengthDescriptor); } let mut ret = Vec::with_capacity(len as usize); for _ in 0..len { ret.push(HTLCOutputInCommitment::read(r)?); } Ok(ret) } } impl_writeable!(CommitmentTransaction, 0, { commitment_number, to_broadcaster_value_sat, to_countersignatory_value_sat, feerate_per_kw, htlcs, keys, built }); impl CommitmentTransaction { /// Construct an object of the class while assigning transaction output indices to HTLCs. /// /// Populates HTLCOutputInCommitment.transaction_output_index in htlcs_with_aux. /// /// The generic T allows the caller to match the HTLC output index with auxiliary data. /// This auxiliary data is not stored in this object. /// /// Only include HTLCs that are above the dust limit for the channel. pub fn new_with_auxiliary_htlc_data(commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, keys: TxCreationKeys, feerate_per_kw: u32, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> CommitmentTransaction { // Sort outputs and populate output indices while keeping track of the auxiliary data let (outputs, htlcs) = Self::internal_build_outputs(&keys, to_broadcaster_value_sat, to_countersignatory_value_sat, htlcs_with_aux, channel_parameters).unwrap(); let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(commitment_number, channel_parameters); let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs); let txid = transaction.txid(); CommitmentTransaction { commitment_number, to_broadcaster_value_sat, to_countersignatory_value_sat, feerate_per_kw, htlcs, keys, built: BuiltCommitmentTransaction { transaction, txid }, } } fn internal_rebuild_transaction(&self, keys: &TxCreationKeys, channel_parameters: &DirectedChannelTransactionParameters) -> Result { let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(self.commitment_number, channel_parameters); let mut htlcs_with_aux = self.htlcs.iter().map(|h| (h.clone(), ())).collect(); let (outputs, _) = Self::internal_build_outputs(keys, self.to_broadcaster_value_sat, self.to_countersignatory_value_sat, &mut htlcs_with_aux, channel_parameters)?; let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs); let txid = transaction.txid(); let built_transaction = BuiltCommitmentTransaction { transaction, txid }; Ok(built_transaction) } fn make_transaction(obscured_commitment_transaction_number: u64, txins: Vec, outputs: Vec) -> Transaction { Transaction { version: 2, lock_time: ((0x20 as u32) << 8 * 3) | ((obscured_commitment_transaction_number & 0xffffffu64) as u32), input: txins, output: outputs, } } // This is used in two cases: // - initial sorting of outputs / HTLCs in the constructor, in which case T is auxiliary data the // caller needs to have sorted together with the HTLCs so it can keep track of the output index // - building of a bitcoin transaction during a verify() call, in which case T is just () fn internal_build_outputs(keys: &TxCreationKeys, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> Result<(Vec, Vec), ()> { let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys(); let contest_delay = channel_parameters.contest_delay(); let mut txouts: Vec<(TxOut, Option<&mut HTLCOutputInCommitment>)> = Vec::new(); if to_countersignatory_value_sat > 0 { let script = script_for_p2wpkh(&countersignatory_pubkeys.payment_point); txouts.push(( TxOut { script_pubkey: script.clone(), value: to_countersignatory_value_sat, }, None, )) } if to_broadcaster_value_sat > 0 { let redeem_script = get_revokeable_redeemscript( &keys.revocation_key, contest_delay, &keys.broadcaster_delayed_payment_key, ); txouts.push(( TxOut { script_pubkey: redeem_script.to_v0_p2wsh(), value: to_broadcaster_value_sat, }, None, )); } let mut htlcs = Vec::with_capacity(htlcs_with_aux.len()); for (htlc, _) in htlcs_with_aux { let script = chan_utils::get_htlc_redeemscript(&htlc, &keys); let txout = TxOut { script_pubkey: script.to_v0_p2wsh(), value: htlc.amount_msat / 1000, }; txouts.push((txout, Some(htlc))); } // Sort output in BIP-69 order (amount, scriptPubkey). Tie-breaks based on HTLC // CLTV expiration height. sort_outputs(&mut txouts, |a, b| { if let &Some(ref a_htlcout) = a { if let &Some(ref b_htlcout) = b { a_htlcout.cltv_expiry.cmp(&b_htlcout.cltv_expiry) // Note that due to hash collisions, we have to have a fallback comparison // here for fuzztarget mode (otherwise at least chanmon_fail_consistency // may fail)! .then(a_htlcout.payment_hash.0.cmp(&b_htlcout.payment_hash.0)) // For non-HTLC outputs, if they're copying our SPK we don't really care if we // close the channel due to mismatches - they're doing something dumb: } else { cmp::Ordering::Equal } } else { cmp::Ordering::Equal } }); let mut outputs = Vec::with_capacity(txouts.len()); for (idx, out) in txouts.drain(..).enumerate() { if let Some(htlc) = out.1 { htlc.transaction_output_index = Some(idx as u32); htlcs.push(htlc.clone()); } outputs.push(out.0); } Ok((outputs, htlcs)) } fn internal_build_inputs(commitment_number: u64, channel_parameters: &DirectedChannelTransactionParameters) -> (u64, Vec) { let broadcaster_pubkeys = channel_parameters.broadcaster_pubkeys(); let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys(); let commitment_transaction_number_obscure_factor = get_commitment_transaction_number_obscure_factor( &broadcaster_pubkeys.payment_point, &countersignatory_pubkeys.payment_point, channel_parameters.is_outbound(), ); let obscured_commitment_transaction_number = commitment_transaction_number_obscure_factor ^ (INITIAL_COMMITMENT_NUMBER - commitment_number); let txins = { let mut ins: Vec = Vec::new(); ins.push(TxIn { previous_output: channel_parameters.funding_outpoint(), script_sig: Script::new(), sequence: ((0x80 as u32) << 8 * 3) | ((obscured_commitment_transaction_number >> 3 * 8) as u32), witness: Vec::new(), }); ins }; (obscured_commitment_transaction_number, txins) } /// The backwards-counting commitment number pub fn commitment_number(&self) -> u64 { self.commitment_number } /// The value to be sent to the broadcaster pub fn to_broadcaster_value_sat(&self) -> u64 { self.to_broadcaster_value_sat } /// The value to be sent to the counterparty pub fn to_countersignatory_value_sat(&self) -> u64 { self.to_countersignatory_value_sat } /// The feerate paid per 1000-weight-unit in this commitment transaction. pub fn feerate_per_kw(&self) -> u32 { self.feerate_per_kw } /// The non-dust HTLCs (direction, amt, height expiration, hash, transaction output index) /// which were included in this commitment transaction in output order. /// The transaction index is always populated. pub fn htlcs(&self) -> &Vec { &self.htlcs } /// Trust our pre-built transaction and derived transaction creation public keys. /// /// Applies a wrapper which allows access to these fields. /// /// This should only be used if you fully trust the builder of this object. It should not /// be used by an external signer - instead use the verify function. pub fn trust(&self) -> TrustedCommitmentTransaction { TrustedCommitmentTransaction { inner: self } } /// Verify our pre-built transaction and derived transaction creation public keys. /// /// Applies a wrapper which allows access to these fields. /// /// An external validating signer must call this method before signing /// or using the built transaction. pub fn verify(&self, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1) -> Result { // This is the only field of the key cache that we trust let per_commitment_point = self.keys.per_commitment_point; let keys = TxCreationKeys::from_channel_static_keys(&per_commitment_point, broadcaster_keys, countersignatory_keys, secp_ctx).unwrap(); if keys != self.keys { return Err(()); } let tx = self.internal_rebuild_transaction(&keys, channel_parameters)?; if self.built.transaction != tx.transaction || self.built.txid != tx.txid { return Err(()); } Ok(TrustedCommitmentTransaction { inner: self }) } } /// A wrapper on CommitmentTransaction indicating that the derived fields (the built bitcoin /// transaction and the transaction creation keys) are trusted. /// /// See trust() and verify() functions on CommitmentTransaction. /// /// This structure implements Deref. pub struct TrustedCommitmentTransaction<'a> { inner: &'a CommitmentTransaction, } impl<'a> Deref for TrustedCommitmentTransaction<'a> { type Target = CommitmentTransaction; fn deref(&self) -> &Self::Target { self.inner } } impl<'a> TrustedCommitmentTransaction<'a> { /// The transaction ID of the built Bitcoin transaction pub fn txid(&self) -> Txid { self.inner.built.txid } /// The pre-built Bitcoin commitment transaction pub fn built_transaction(&self) -> &BuiltCommitmentTransaction { &self.inner.built } /// The pre-calculated transaction creation public keys. pub fn keys(&self) -> &TxCreationKeys { &self.inner.keys } /// Get a signature for each HTLC which was included in the commitment transaction (ie for /// which HTLCOutputInCommitment::transaction_output_index.is_some()). /// /// The returned Vec has one entry for each HTLC, and in the same order. pub fn get_htlc_sigs(&self, htlc_base_key: &SecretKey, channel_parameters: &DirectedChannelTransactionParameters, secp_ctx: &Secp256k1) -> Result, ()> { let inner = self.inner; let keys = &inner.keys; let txid = inner.built.txid; let mut ret = Vec::with_capacity(inner.htlcs.len()); let holder_htlc_key = derive_private_key(secp_ctx, &inner.keys.per_commitment_point, htlc_base_key).map_err(|_| ())?; for this_htlc in inner.htlcs.iter() { assert!(this_htlc.transaction_output_index.is_some()); let htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key); let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key); let sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, this_htlc.amount_msat / 1000, SigHashType::All)[..]); ret.push(secp_ctx.sign(&sighash, &holder_htlc_key)); } Ok(ret) } /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature. pub(crate) fn get_signed_htlc_tx(&self, channel_parameters: &DirectedChannelTransactionParameters, htlc_index: usize, counterparty_signature: &Signature, signature: &Signature, preimage: &Option) -> Transaction { let inner = self.inner; let keys = &inner.keys; let txid = inner.built.txid; let this_htlc = &inner.htlcs[htlc_index]; assert!(this_htlc.transaction_output_index.is_some()); // if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction. if !this_htlc.offered && preimage.is_none() { unreachable!(); } // Further, we should never be provided the preimage for an HTLC-Timeout transaction. if this_htlc.offered && preimage.is_some() { unreachable!(); } let mut htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key); let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key); // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. htlc_tx.input[0].witness.push(Vec::new()); htlc_tx.input[0].witness.push(counterparty_signature.serialize_der().to_vec()); htlc_tx.input[0].witness.push(signature.serialize_der().to_vec()); htlc_tx.input[0].witness[1].push(SigHashType::All as u8); htlc_tx.input[0].witness[2].push(SigHashType::All as u8); if this_htlc.offered { // Due to BIP146 (MINIMALIF) this must be a zero-length element to relay. htlc_tx.input[0].witness.push(Vec::new()); } else { htlc_tx.input[0].witness.push(preimage.unwrap().0.to_vec()); } htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec()); htlc_tx } } /// Get the transaction number obscure factor pub fn get_commitment_transaction_number_obscure_factor( broadcaster_payment_basepoint: &PublicKey, countersignatory_payment_basepoint: &PublicKey, outbound_from_broadcaster: bool, ) -> u64 { let mut sha = Sha256::engine(); if outbound_from_broadcaster { sha.input(&broadcaster_payment_basepoint.serialize()); sha.input(&countersignatory_payment_basepoint.serialize()); } else { sha.input(&countersignatory_payment_basepoint.serialize()); sha.input(&broadcaster_payment_basepoint.serialize()); } let res = Sha256::from_engine(sha).into_inner(); ((res[26] as u64) << 5 * 8) | ((res[27] as u64) << 4 * 8) | ((res[28] as u64) << 3 * 8) | ((res[29] as u64) << 2 * 8) | ((res[30] as u64) << 1 * 8) | ((res[31] as u64) << 0 * 8) } fn script_for_p2wpkh(key: &PublicKey) -> Script { Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0) .push_slice(&WPubkeyHash::hash(&key.serialize())[..]) .into_script() } #[cfg(test)] mod tests { use super::CounterpartyCommitmentSecrets; use hex; #[test] fn test_per_commitment_storage() { // Test vectors from BOLT 3: let mut secrets: Vec<[u8; 32]> = Vec::new(); let mut monitor; macro_rules! test_secrets { () => { let mut idx = 281474976710655; for secret in secrets.iter() { assert_eq!(monitor.get_secret(idx).unwrap(), *secret); idx -= 1; } assert_eq!(monitor.get_min_seen_secret(), idx + 1); assert!(monitor.get_secret(idx).is_none()); }; } { // insert_secret correct sequence monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); } { // insert_secret #1 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); assert!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #2 incorrect (#1 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #3 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #4 incorrect (1,2,3 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #5 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); assert!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #6 incorrect (5 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #7 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #8 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } } }