// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Further functional tests which test blockchain reorganizations. use ln::channelmonitor::ANTI_REORG_DELAY; use ln::features::InitFeatures; use ln::msgs::{ChannelMessageHandler, ErrorAction, HTLCFailChannelUpdate}; use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider}; use bitcoin::blockdata::block::{Block, BlockHeader}; use std::default::Default; use ln::functional_test_utils::*; fn do_test_onchain_htlc_reorg(local_commitment: bool, claim: bool) { // Our on-chain HTLC-claim learning has a few properties worth testing: // * If an upstream HTLC is claimed with a preimage (both against our own commitment // transaction our counterparty's), we claim it backwards immediately. // * If an upstream HTLC is claimed with a timeout, we delay ANTI_REORG_DELAY before failing // it backwards to ensure our counterparty can't claim with a preimage in a reorg. // // Here we test both properties in any combination based on the two bools passed in as // arguments. // // If local_commitment is set, we first broadcast a local commitment containing an offered HTLC // and an HTLC-Timeout tx, otherwise we broadcast a remote commitment containing a received // HTLC and a local HTLC-Timeout tx spending it. // // We then either allow these transactions to confirm (if !claim) or we wait until one block // before they otherwise would and reorg them out, confirming an HTLC-Success tx instead. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (our_payment_preimage, our_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1000000); // Provide preimage to node 2 by claiming payment nodes[2].node.claim_funds(our_payment_preimage, &None, 1000000); check_added_monitors!(nodes[2], 1); get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); let mut headers = Vec::new(); let mut header = BlockHeader { version: 0x2000_0000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; let claim_txn = if local_commitment { // Broadcast node 1 commitment txn to broadcast the HTLC-Timeout let node_1_commitment_txn = get_local_commitment_txn!(nodes[1], chan_2.2); assert_eq!(node_1_commitment_txn.len(), 2); // 1 local commitment tx, 1 Outbound HTLC-Timeout assert_eq!(node_1_commitment_txn[0].output.len(), 2); // to-self and Offered HTLC (to-remote/to-node-3 is dust) check_spends!(node_1_commitment_txn[0], chan_2.3); check_spends!(node_1_commitment_txn[1], node_1_commitment_txn[0]); // Give node 2 node 1's transactions and get its response (claiming the HTLC instead). nodes[2].block_notifier.block_connected(&Block { header, txdata: node_1_commitment_txn.clone() }, CHAN_CONFIRM_DEPTH + 1); check_added_monitors!(nodes[2], 1); check_closed_broadcast!(nodes[2], false); // We should get a BroadcastChannelUpdate (and *only* a BroadcstChannelUpdate) let node_2_commitment_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_2_commitment_txn.len(), 3); // ChannelMonitor: 1 offered HTLC-Claim, ChannelManger: 1 local commitment tx, 1 Received HTLC-Claim assert_eq!(node_2_commitment_txn[1].output.len(), 2); // to-remote and Received HTLC (to-self is dust) check_spends!(node_2_commitment_txn[1], chan_2.3); check_spends!(node_2_commitment_txn[2], node_2_commitment_txn[1]); check_spends!(node_2_commitment_txn[0], node_1_commitment_txn[0]); // Confirm node 1's commitment txn (and HTLC-Timeout) on node 1 nodes[1].block_notifier.block_connected(&Block { header, txdata: node_1_commitment_txn.clone() }, CHAN_CONFIRM_DEPTH + 1); // ...but return node 1's commitment tx in case claim is set and we're preparing to reorg vec![node_1_commitment_txn[0].clone(), node_2_commitment_txn[0].clone()] } else { // Broadcast node 2 commitment txn let node_2_commitment_txn = get_local_commitment_txn!(nodes[2], chan_2.2); assert_eq!(node_2_commitment_txn.len(), 2); // 1 local commitment tx, 1 Received HTLC-Claim assert_eq!(node_2_commitment_txn[0].output.len(), 2); // to-remote and Received HTLC (to-self is dust) check_spends!(node_2_commitment_txn[0], chan_2.3); check_spends!(node_2_commitment_txn[1], node_2_commitment_txn[0]); // Give node 1 node 2's commitment transaction and get its response (timing the HTLC out) nodes[1].block_notifier.block_connected(&Block { header, txdata: vec![node_2_commitment_txn[0].clone()] }, CHAN_CONFIRM_DEPTH + 1); let node_1_commitment_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_1_commitment_txn.len(), 3); // ChannelMonitor: 1 offered HTLC-Timeout, ChannelManger: 1 local commitment tx, 1 Offered HTLC-Timeout assert_eq!(node_1_commitment_txn[1].output.len(), 2); // to-local and Offered HTLC (to-remote is dust) check_spends!(node_1_commitment_txn[1], chan_2.3); check_spends!(node_1_commitment_txn[2], node_1_commitment_txn[1]); check_spends!(node_1_commitment_txn[0], node_2_commitment_txn[0]); // Confirm node 2's commitment txn (and node 1's HTLC-Timeout) on node 1 nodes[1].block_notifier.block_connected(&Block { header, txdata: vec![node_2_commitment_txn[0].clone(), node_1_commitment_txn[0].clone()] }, CHAN_CONFIRM_DEPTH + 1); // ...but return node 2's commitment tx (and claim) in case claim is set and we're preparing to reorg node_2_commitment_txn }; check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], false); // We should get a BroadcastChannelUpdate (and *only* a BroadcstChannelUpdate) headers.push(header.clone()); // At CHAN_CONFIRM_DEPTH + 1 we have a confirmation count of 1, so CHAN_CONFIRM_DEPTH + // ANTI_REORG_DELAY - 1 will give us a confirmation count of ANTI_REORG_DELAY - 1. for i in CHAN_CONFIRM_DEPTH + 2..CHAN_CONFIRM_DEPTH + ANTI_REORG_DELAY - 1 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].block_notifier.block_connected_checked(&header, i, &vec![], &[0; 0]); headers.push(header.clone()); } check_added_monitors!(nodes[1], 0); assert_eq!(nodes[1].node.get_and_clear_pending_events().len(), 0); if claim { // Now reorg back to CHAN_CONFIRM_DEPTH and confirm node 2's broadcasted transactions: for (height, header) in (CHAN_CONFIRM_DEPTH + 1..CHAN_CONFIRM_DEPTH + ANTI_REORG_DELAY - 1).zip(headers.iter()).rev() { nodes[1].block_notifier.block_disconnected(&header, height); } header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].block_notifier.block_connected(&Block { header, txdata: claim_txn }, CHAN_CONFIRM_DEPTH + 1); // ChannelManager only polls ManyChannelMonitor::get_and_clear_pending_monitor_events when we // probe it for events, so we probe non-message events here (which should still end up empty): assert_eq!(nodes[1].node.get_and_clear_pending_events().len(), 0); } else { // Confirm the timeout tx and check that we fail the HTLC backwards header = BlockHeader { version: 0x20000000, prev_blockhash: header.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].block_notifier.block_connected_checked(&header, CHAN_CONFIRM_DEPTH + ANTI_REORG_DELAY, &vec![], &[0; 0]); expect_pending_htlcs_forwardable!(nodes[1]); } check_added_monitors!(nodes[1], 1); // Which should result in an immediate claim/fail of the HTLC: let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); if claim { assert_eq!(htlc_updates.update_fulfill_htlcs.len(), 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fulfill_htlcs[0]); } else { assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); } commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false, true); if claim { expect_payment_sent!(nodes[0], our_payment_preimage); } else { let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let MessageSendEvent::PaymentFailureNetworkUpdate { update: HTLCFailChannelUpdate::ChannelClosed { ref is_permanent, .. } } = events[0] { assert!(is_permanent); } else { panic!("Unexpected event!"); } expect_payment_failed!(nodes[0], our_payment_hash, false); } } #[test] fn test_onchain_htlc_claim_reorg_local_commitment() { do_test_onchain_htlc_reorg(true, true); } #[test] fn test_onchain_htlc_timeout_delay_local_commitment() { do_test_onchain_htlc_reorg(true, false); } #[test] fn test_onchain_htlc_claim_reorg_remote_commitment() { do_test_onchain_htlc_reorg(false, true); } #[test] fn test_onchain_htlc_timeout_delay_remote_commitment() { do_test_onchain_htlc_reorg(false, false); }