//! The top-level network map tracking logic lives here. use bitcoin::secp256k1::key::PublicKey; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::Hash; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use chain::chaininterface::{ChainError, ChainWatchInterface}; use ln::features::{ChannelFeatures, NodeFeatures}; use ln::msgs::{DecodeError,ErrorAction,LightningError,RoutingMessageHandler,NetAddress}; use ln::msgs; use util::ser::{Writeable, Readable, Writer}; use util::logger::Logger; use std::{cmp, fmt}; use std::sync::RwLock; use std::sync::atomic::{AtomicUsize, Ordering}; use std::collections::BTreeMap; use std::collections::btree_map::Entry as BtreeEntry; use std::ops::Deref; use bitcoin::hashes::hex::ToHex; /// Receives and validates network updates from peers, /// stores authentic and relevant data as a network graph. /// This network graph is then used for routing payments. /// Provides interface to help with initial routing sync by /// serving historical announcements. pub struct NetGraphMsgHandler where C::Target: ChainWatchInterface, L::Target: Logger { secp_ctx: Secp256k1, /// Representation of the payment channel network pub network_graph: RwLock, chain_monitor: C, full_syncs_requested: AtomicUsize, logger: L, } impl NetGraphMsgHandler where C::Target: ChainWatchInterface, L::Target: Logger { /// Creates a new tracker of the actual state of the network of channels and nodes, /// assuming a fresh network graph. /// Chain monitor is used to make sure announced channels exist on-chain, /// channel data is correct, and that the announcement is signed with /// channel owners' keys. pub fn new(chain_monitor: C, logger: L) -> Self { NetGraphMsgHandler { secp_ctx: Secp256k1::verification_only(), network_graph: RwLock::new(NetworkGraph { channels: BTreeMap::new(), nodes: BTreeMap::new(), }), full_syncs_requested: AtomicUsize::new(0), chain_monitor, logger, } } /// Creates a new tracker of the actual state of the network of channels and nodes, /// assuming an existing Network Graph. pub fn from_net_graph(chain_monitor: C, logger: L, network_graph: NetworkGraph) -> Self { NetGraphMsgHandler { secp_ctx: Secp256k1::verification_only(), network_graph: RwLock::new(network_graph), full_syncs_requested: AtomicUsize::new(0), chain_monitor, logger, } } } macro_rules! secp_verify_sig { ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => { match $secp_ctx.verify($msg, $sig, $pubkey) { Ok(_) => {}, Err(_) => return Err(LightningError{err: "Invalid signature from remote node".to_owned(), action: ErrorAction::IgnoreError}), } }; } impl RoutingMessageHandler for NetGraphMsgHandler where C::Target: ChainWatchInterface, L::Target: Logger { fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result { self.network_graph.write().unwrap().update_node_from_announcement(msg, Some(&self.secp_ctx)) } fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result { if msg.contents.node_id_1 == msg.contents.node_id_2 || msg.contents.bitcoin_key_1 == msg.contents.bitcoin_key_2 { return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError}); } let checked_utxo = match self.chain_monitor.get_chain_utxo(msg.contents.chain_hash, msg.contents.short_channel_id) { Ok((script_pubkey, _value)) => { let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&msg.contents.bitcoin_key_1.serialize()) .push_slice(&msg.contents.bitcoin_key_2.serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh(); if script_pubkey != expected_script { return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError}); } //TODO: Check if value is worth storing, use it to inform routing, and compare it //to the new HTLC max field in channel_update true }, Err(ChainError::NotSupported) => { // Tentatively accept, potentially exposing us to DoS attacks false }, Err(ChainError::NotWatched) => { return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.contents.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError}); }, Err(ChainError::UnknownTx) => { return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError}); }, }; let result = self.network_graph.write().unwrap().update_channel_from_announcement(msg, checked_utxo, Some(&self.secp_ctx)); log_trace!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" }); result } fn handle_htlc_fail_channel_update(&self, update: &msgs::HTLCFailChannelUpdate) { match update { &msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { ref msg } => { let _ = self.network_graph.write().unwrap().update_channel(msg, Some(&self.secp_ctx)); }, &msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id, is_permanent } => { self.network_graph.write().unwrap().close_channel_from_update(short_channel_id, is_permanent); }, &msgs::HTLCFailChannelUpdate::NodeFailure { ref node_id, is_permanent } => { self.network_graph.write().unwrap().fail_node(node_id, is_permanent); }, } } fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result { self.network_graph.write().unwrap().update_channel(msg, Some(&self.secp_ctx)) } fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(msgs::ChannelAnnouncement, Option, Option)> { let network_graph = self.network_graph.read().unwrap(); let mut result = Vec::with_capacity(batch_amount as usize); let mut iter = network_graph.get_channels().range(starting_point..); while result.len() < batch_amount as usize { if let Some((_, ref chan)) = iter.next() { if chan.announcement_message.is_some() { let chan_announcement = chan.announcement_message.clone().unwrap(); let mut one_to_two_announcement: Option = None; let mut two_to_one_announcement: Option = None; if let Some(one_to_two) = chan.one_to_two.as_ref() { one_to_two_announcement = one_to_two.last_update_message.clone(); } if let Some(two_to_one) = chan.two_to_one.as_ref() { two_to_one_announcement = two_to_one.last_update_message.clone(); } result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement)); } else { // TODO: We may end up sending un-announced channel_updates if we are sending // initial sync data while receiving announce/updates for this channel. } } else { return result; } } result } fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec { let network_graph = self.network_graph.read().unwrap(); let mut result = Vec::with_capacity(batch_amount as usize); let mut iter = if let Some(pubkey) = starting_point { let mut iter = network_graph.get_nodes().range((*pubkey)..); iter.next(); iter } else { network_graph.get_nodes().range(..) }; while result.len() < batch_amount as usize { if let Some((_, ref node)) = iter.next() { if let Some(node_info) = node.announcement_info.as_ref() { if node_info.announcement_message.is_some() { result.push(node_info.announcement_message.clone().unwrap()); } } } else { return result; } } result } fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { //TODO: Determine whether to request a full sync based on the network map. const FULL_SYNCS_TO_REQUEST: usize = 5; if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST { self.full_syncs_requested.fetch_add(1, Ordering::AcqRel); true } else { false } } } #[derive(PartialEq, Debug)] /// Details about one direction of a channel. Received /// within a channel update. pub struct DirectionalChannelInfo { /// When the last update to the channel direction was issued. /// Value is opaque, as set in the announcement. pub last_update: u32, /// Whether the channel can be currently used for payments (in this one direction). pub enabled: bool, /// The difference in CLTV values that you must have when routing through this channel. pub cltv_expiry_delta: u16, /// The minimum value, which must be relayed to the next hop via the channel pub htlc_minimum_msat: u64, /// Fees charged when the channel is used for routing pub fees: RoutingFees, /// Most recent update for the channel received from the network /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub last_update_message: Option, } impl fmt::Display for DirectionalChannelInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?; Ok(()) } } impl_writeable!(DirectionalChannelInfo, 0, { last_update, enabled, cltv_expiry_delta, htlc_minimum_msat, fees, last_update_message }); #[derive(PartialEq)] /// Details about a channel (both directions). /// Received within a channel announcement. pub struct ChannelInfo { /// Protocol features of a channel communicated during its announcement pub features: ChannelFeatures, /// Source node of the first direction of a channel pub node_one: PublicKey, /// Details about the first direction of a channel pub one_to_two: Option, /// Source node of the second direction of a channel pub node_two: PublicKey, /// Details about the second direction of a channel pub two_to_one: Option, /// An initial announcement of the channel /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub announcement_message: Option, } impl fmt::Display for ChannelInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}", log_bytes!(self.features.encode()), log_pubkey!(self.node_one), self.one_to_two, log_pubkey!(self.node_two), self.two_to_one)?; Ok(()) } } impl_writeable!(ChannelInfo, 0, { features, node_one, one_to_two, node_two, two_to_one, announcement_message }); /// Fees for routing via a given channel or a node #[derive(Eq, PartialEq, Copy, Clone, Debug)] pub struct RoutingFees { /// Flat routing fee in satoshis pub base_msat: u32, /// Liquidity-based routing fee in millionths of a routed amount. /// In other words, 10000 is 1%. pub proportional_millionths: u32, } impl Readable for RoutingFees{ fn read(reader: &mut R) -> Result { let base_msat: u32 = Readable::read(reader)?; let proportional_millionths: u32 = Readable::read(reader)?; Ok(RoutingFees { base_msat, proportional_millionths, }) } } impl Writeable for RoutingFees { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { self.base_msat.write(writer)?; self.proportional_millionths.write(writer)?; Ok(()) } } #[derive(PartialEq, Debug)] /// Information received in the latest node_announcement from this node. pub struct NodeAnnouncementInfo { /// Protocol features the node announced support for pub features: NodeFeatures, /// When the last known update to the node state was issued. /// Value is opaque, as set in the announcement. pub last_update: u32, /// Color assigned to the node pub rgb: [u8; 3], /// Moniker assigned to the node. /// May be invalid or malicious (eg control chars), /// should not be exposed to the user. pub alias: [u8; 32], /// Internet-level addresses via which one can connect to the node pub addresses: Vec, /// An initial announcement of the node /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub announcement_message: Option } impl Writeable for NodeAnnouncementInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { self.features.write(writer)?; self.last_update.write(writer)?; self.rgb.write(writer)?; self.alias.write(writer)?; (self.addresses.len() as u64).write(writer)?; for ref addr in &self.addresses { addr.write(writer)?; } self.announcement_message.write(writer)?; Ok(()) } } impl Readable for NodeAnnouncementInfo { fn read(reader: &mut R) -> Result { let features = Readable::read(reader)?; let last_update = Readable::read(reader)?; let rgb = Readable::read(reader)?; let alias = Readable::read(reader)?; let addresses_count: u64 = Readable::read(reader)?; let mut addresses = Vec::with_capacity(cmp::min(addresses_count, MAX_ALLOC_SIZE / 40) as usize); for _ in 0..addresses_count { match Readable::read(reader) { Ok(Ok(addr)) => { addresses.push(addr); }, Ok(Err(_)) => return Err(DecodeError::InvalidValue), Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor), _ => unreachable!(), } } let announcement_message = Readable::read(reader)?; Ok(NodeAnnouncementInfo { features, last_update, rgb, alias, addresses, announcement_message }) } } #[derive(PartialEq)] /// Details about a node in the network, known from the network announcement. pub struct NodeInfo { /// All valid channels a node has announced pub channels: Vec, /// Lowest fees enabling routing via any of the enabled, known channels to a node. /// The two fields (flat and proportional fee) are independent, /// meaning they don't have to refer to the same channel. pub lowest_inbound_channel_fees: Option, /// More information about a node from node_announcement. /// Optional because we store a Node entry after learning about it from /// a channel announcement, but before receiving a node announcement. pub announcement_info: Option } impl fmt::Display for NodeInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}", self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?; Ok(()) } } impl Writeable for NodeInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.channels.len() as u64).write(writer)?; for ref chan in self.channels.iter() { chan.write(writer)?; } self.lowest_inbound_channel_fees.write(writer)?; self.announcement_info.write(writer)?; Ok(()) } } const MAX_ALLOC_SIZE: u64 = 64*1024; impl Readable for NodeInfo { fn read(reader: &mut R) -> Result { let channels_count: u64 = Readable::read(reader)?; let mut channels = Vec::with_capacity(cmp::min(channels_count, MAX_ALLOC_SIZE / 8) as usize); for _ in 0..channels_count { channels.push(Readable::read(reader)?); } let lowest_inbound_channel_fees = Readable::read(reader)?; let announcement_info = Readable::read(reader)?; Ok(NodeInfo { channels, lowest_inbound_channel_fees, announcement_info, }) } } /// Represents the network as nodes and channels between them #[derive(PartialEq)] pub struct NetworkGraph { channels: BTreeMap, nodes: BTreeMap, } impl Writeable for NetworkGraph { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.channels.len() as u64).write(writer)?; for (ref chan_id, ref chan_info) in self.channels.iter() { (*chan_id).write(writer)?; chan_info.write(writer)?; } (self.nodes.len() as u64).write(writer)?; for (ref node_id, ref node_info) in self.nodes.iter() { node_id.write(writer)?; node_info.write(writer)?; } Ok(()) } } impl Readable for NetworkGraph { fn read(reader: &mut R) -> Result { let channels_count: u64 = Readable::read(reader)?; let mut channels = BTreeMap::new(); for _ in 0..channels_count { let chan_id: u64 = Readable::read(reader)?; let chan_info = Readable::read(reader)?; channels.insert(chan_id, chan_info); } let nodes_count: u64 = Readable::read(reader)?; let mut nodes = BTreeMap::new(); for _ in 0..nodes_count { let node_id = Readable::read(reader)?; let node_info = Readable::read(reader)?; nodes.insert(node_id, node_info); } Ok(NetworkGraph { channels, nodes, }) } } impl fmt::Display for NetworkGraph { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "Network map\n[Channels]\n")?; for (key, val) in self.channels.iter() { write!(f, " {}: {}\n", key, val)?; } write!(f, "[Nodes]\n")?; for (key, val) in self.nodes.iter() { write!(f, " {}: {}\n", log_pubkey!(key), val)?; } Ok(()) } } impl NetworkGraph { /// Returns all known valid channels' short ids along with announced channel info. pub fn get_channels<'a>(&'a self) -> &'a BTreeMap { &self.channels } /// Returns all known nodes' public keys along with announced node info. pub fn get_nodes<'a>(&'a self) -> &'a BTreeMap { &self.nodes } /// Get network addresses by node id. /// Returns None if the requested node is completely unknown, /// or if node announcement for the node was never received. pub fn get_addresses<'a>(&'a self, pubkey: &PublicKey) -> Option<&'a Vec> { if let Some(node) = self.nodes.get(pubkey) { if let Some(node_info) = node.announcement_info.as_ref() { return Some(&node_info.addresses) } } None } /// Creates a new, empty, network graph. pub fn new() -> NetworkGraph { Self { channels: BTreeMap::new(), nodes: BTreeMap::new(), } } /// For an already known node (from channel announcements), update its stored properties from a given node announcement /// Announcement signatures are checked here only if Secp256k1 object is provided. fn update_node_from_announcement(&mut self, msg: &msgs::NodeAnnouncement, secp_ctx: Option<&Secp256k1>) -> Result { if let Some(sig_verifier) = secp_ctx { let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(sig_verifier, &msg_hash, &msg.signature, &msg.contents.node_id); } match self.nodes.get_mut(&msg.contents.node_id) { None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}), Some(node) => { if let Some(node_info) = node.announcement_info.as_ref() { if node_info.last_update >= msg.contents.timestamp { return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreError}); } } let should_relay = msg.contents.excess_data.is_empty() && msg.contents.excess_address_data.is_empty(); node.announcement_info = Some(NodeAnnouncementInfo { features: msg.contents.features.clone(), last_update: msg.contents.timestamp, rgb: msg.contents.rgb, alias: msg.contents.alias, addresses: msg.contents.addresses.clone(), announcement_message: if should_relay { Some(msg.clone()) } else { None }, }); Ok(should_relay) } } } /// For a new or already known (from previous announcement) channel, store or update channel info. /// Also store nodes (if not stored yet) the channel is between, and make node aware of this channel. /// Checking utxo on-chain is useful if we receive an update for already known channel id, /// which is probably result of a reorg. In that case, we update channel info only if the /// utxo was checked, otherwise stick to the existing update, to prevent DoS risks. /// Announcement signatures are checked here only if Secp256k1 object is provided. fn update_channel_from_announcement(&mut self, msg: &msgs::ChannelAnnouncement, checked_utxo: bool, secp_ctx: Option<&Secp256k1>) -> Result { if let Some(sig_verifier) = secp_ctx { let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(sig_verifier, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1); secp_verify_sig!(sig_verifier, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2); secp_verify_sig!(sig_verifier, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1); secp_verify_sig!(sig_verifier, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2); } let should_relay = msg.contents.excess_data.is_empty(); let chan_info = ChannelInfo { features: msg.contents.features.clone(), node_one: msg.contents.node_id_1.clone(), one_to_two: None, node_two: msg.contents.node_id_2.clone(), two_to_one: None, announcement_message: if should_relay { Some(msg.clone()) } else { None }, }; match self.channels.entry(msg.contents.short_channel_id) { BtreeEntry::Occupied(mut entry) => { //TODO: because asking the blockchain if short_channel_id is valid is only optional //in the blockchain API, we need to handle it smartly here, though it's unclear //exactly how... if checked_utxo { // Either our UTXO provider is busted, there was a reorg, or the UTXO provider // only sometimes returns results. In any case remove the previous entry. Note // that the spec expects us to "blacklist" the node_ids involved, but we can't // do that because // a) we don't *require* a UTXO provider that always returns results. // b) we don't track UTXOs of channels we know about and remove them if they // get reorg'd out. // c) it's unclear how to do so without exposing ourselves to massive DoS risk. Self::remove_channel_in_nodes(&mut self.nodes, &entry.get(), msg.contents.short_channel_id); *entry.get_mut() = chan_info; } else { return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreError}) } }, BtreeEntry::Vacant(entry) => { entry.insert(chan_info); } }; macro_rules! add_channel_to_node { ( $node_id: expr ) => { match self.nodes.entry($node_id) { BtreeEntry::Occupied(node_entry) => { node_entry.into_mut().channels.push(msg.contents.short_channel_id); }, BtreeEntry::Vacant(node_entry) => { node_entry.insert(NodeInfo { channels: vec!(msg.contents.short_channel_id), lowest_inbound_channel_fees: None, announcement_info: None, }); } } }; } add_channel_to_node!(msg.contents.node_id_1); add_channel_to_node!(msg.contents.node_id_2); Ok(should_relay) } /// Close a channel if a corresponding HTLC fail was sent. /// If permanent, removes a channel from the local storage. /// May cause the removal of nodes too, if this was their last channel. /// If not permanent, makes channels unavailable for routing. pub fn close_channel_from_update(&mut self, short_channel_id: u64, is_permanent: bool) { if is_permanent { if let Some(chan) = self.channels.remove(&short_channel_id) { Self::remove_channel_in_nodes(&mut self.nodes, &chan, short_channel_id); } } else { if let Some(chan) = self.channels.get_mut(&short_channel_id) { if let Some(one_to_two) = chan.one_to_two.as_mut() { one_to_two.enabled = false; } if let Some(two_to_one) = chan.two_to_one.as_mut() { two_to_one.enabled = false; } } } } fn fail_node(&mut self, _node_id: &PublicKey, is_permanent: bool) { if is_permanent { // TODO: Wholly remove the node } else { // TODO: downgrade the node } } /// For an already known (from announcement) channel, update info about one of the directions of a channel. /// Announcement signatures are checked here only if Secp256k1 object is provided. fn update_channel(&mut self, msg: &msgs::ChannelUpdate, secp_ctx: Option<&Secp256k1>) -> Result { let dest_node_id; let chan_enabled = msg.contents.flags & (1 << 1) != (1 << 1); let chan_was_enabled; match self.channels.get_mut(&msg.contents.short_channel_id) { None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}), Some(channel) => { macro_rules! maybe_update_channel_info { ( $target: expr, $src_node: expr) => { if let Some(existing_chan_info) = $target.as_ref() { if existing_chan_info.last_update >= msg.contents.timestamp { return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreError}); } chan_was_enabled = existing_chan_info.enabled; } else { chan_was_enabled = false; } let last_update_message = if msg.contents.excess_data.is_empty() { Some(msg.clone()) } else { None }; let updated_channel_dir_info = DirectionalChannelInfo { enabled: chan_enabled, last_update: msg.contents.timestamp, cltv_expiry_delta: msg.contents.cltv_expiry_delta, htlc_minimum_msat: msg.contents.htlc_minimum_msat, fees: RoutingFees { base_msat: msg.contents.fee_base_msat, proportional_millionths: msg.contents.fee_proportional_millionths, }, last_update_message }; $target = Some(updated_channel_dir_info); } } let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); if msg.contents.flags & 1 == 1 { dest_node_id = channel.node_one.clone(); if let Some(sig_verifier) = secp_ctx { secp_verify_sig!(sig_verifier, &msg_hash, &msg.signature, &channel.node_two); } maybe_update_channel_info!(channel.two_to_one, channel.node_two); } else { dest_node_id = channel.node_two.clone(); if let Some(sig_verifier) = secp_ctx { secp_verify_sig!(sig_verifier, &msg_hash, &msg.signature, &channel.node_one); } maybe_update_channel_info!(channel.one_to_two, channel.node_one); } } } if chan_enabled { let node = self.nodes.get_mut(&dest_node_id).unwrap(); let mut base_msat = msg.contents.fee_base_msat; let mut proportional_millionths = msg.contents.fee_proportional_millionths; if let Some(fees) = node.lowest_inbound_channel_fees { base_msat = cmp::min(base_msat, fees.base_msat); proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths); } node.lowest_inbound_channel_fees = Some(RoutingFees { base_msat, proportional_millionths }); } else if chan_was_enabled { let node = self.nodes.get_mut(&dest_node_id).unwrap(); let mut lowest_inbound_channel_fees = None; for chan_id in node.channels.iter() { let chan = self.channels.get(chan_id).unwrap(); let chan_info_opt; if chan.node_one == dest_node_id { chan_info_opt = chan.two_to_one.as_ref(); } else { chan_info_opt = chan.one_to_two.as_ref(); } if let Some(chan_info) = chan_info_opt { if chan_info.enabled { let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees { base_msat: u32::max_value(), proportional_millionths: u32::max_value() }); fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat); fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths); } } } node.lowest_inbound_channel_fees = lowest_inbound_channel_fees; } Ok(msg.contents.excess_data.is_empty()) } fn remove_channel_in_nodes(nodes: &mut BTreeMap, chan: &ChannelInfo, short_channel_id: u64) { macro_rules! remove_from_node { ($node_id: expr) => { if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) { entry.get_mut().channels.retain(|chan_id| { short_channel_id != *chan_id }); if entry.get().channels.is_empty() { entry.remove_entry(); } } else { panic!("Had channel that pointed to unknown node (ie inconsistent network map)!"); } } } remove_from_node!(chan.node_one); remove_from_node!(chan.node_two); } } #[cfg(test)] mod tests { use chain::chaininterface; use ln::features::{ChannelFeatures, NodeFeatures}; use routing::network_graph::{NetGraphMsgHandler, NetworkGraph}; use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement, UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate, HTLCFailChannelUpdate}; use util::test_utils; use util::logger::Logger; use util::ser::{Readable, Writeable}; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::Hash; use bitcoin::network::constants::Network; use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use bitcoin::util::hash::BitcoinHash; use hex; use bitcoin::secp256k1::key::{PublicKey, SecretKey}; use bitcoin::secp256k1::{All, Secp256k1}; use std::sync::Arc; fn create_net_graph_msg_handler() -> (Secp256k1, NetGraphMsgHandler, Arc>) { let secp_ctx = Secp256k1::new(); let logger = Arc::new(test_utils::TestLogger::new()); let chain_monitor = Arc::new(chaininterface::ChainWatchInterfaceUtil::new(Network::Testnet)); let net_graph_msg_handler = NetGraphMsgHandler::new(chain_monitor, Arc::clone(&logger)); (secp_ctx, net_graph_msg_handler) } #[test] fn request_full_sync_finite_times() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap()); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(!net_graph_msg_handler.should_request_full_sync(&node_id)); } #[test] fn handling_node_announcements() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let zero_hash = Sha256dHash::hash(&[0; 32]); let first_announcement_time = 500; let mut unsigned_announcement = UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: first_announcement_time, node_id: node_id_1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: Vec::new(), }; let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!("No existing channels for node_announcement", e.err) }; { // Announce a channel to add a corresponding node. let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::known(), chain_hash: genesis_block(Network::Testnet).header.bitcoin_hash(), short_channel_id: 0, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; } match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(res) => assert!(res), Err(_) => panic!() }; let fake_msghash = hash_to_message!(&zero_hash); match net_graph_msg_handler.handle_node_announcement( &NodeAnnouncement { signature: secp_ctx.sign(&fake_msghash, node_1_privkey), contents: unsigned_announcement.clone() }) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature from remote node") }; unsigned_announcement.timestamp += 1000; unsigned_announcement.excess_data.push(1); msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let announcement_with_data = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_announcement.clone() }; // Return false because contains excess data. match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) { Ok(res) => assert!(!res), Err(_) => panic!() }; unsigned_announcement.excess_data = Vec::new(); // Even though previous announcement was not relayed further, we still accepted it, // so we now won't accept announcements before the previous one. unsigned_announcement.timestamp -= 10; msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let outdated_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Update older than last processed update") }; } #[test] fn handling_channel_announcements() { let secp_ctx = Secp256k1::new(); let logger: Arc = Arc::new(test_utils::TestLogger::new()); let chain_monitor = Arc::new(test_utils::TestChainWatcher::new()); let net_graph_msg_handler = NetGraphMsgHandler::new(chain_monitor.clone(), Arc::clone(&logger)); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize()) .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh(); let mut unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::known(), chain_hash: genesis_block(Network::Testnet).header.bitcoin_hash(), short_channel_id: 0, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; // Test if the UTXO lookups were not supported *chain_monitor.utxo_ret.lock().unwrap() = Err(chaininterface::ChainError::NotSupported); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&unsigned_announcement.short_channel_id) { None => panic!(), Some(_) => () } } // If we receive announcement for the same channel (with UTXO lookups disabled), // drop new one on the floor, since we can't see any changes. match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Already have knowledge of channel") }; // Test if an associated transaction were not on-chain (or not confirmed). *chain_monitor.utxo_ret.lock().unwrap() = Err(chaininterface::ChainError::UnknownTx); unsigned_announcement.short_channel_id += 1; msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry") }; // Now test if the transaction is found in the UTXO set and the script is correct. unsigned_announcement.short_channel_id += 1; *chain_monitor.utxo_ret.lock().unwrap() = Ok((good_script.clone(), 0)); msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&unsigned_announcement.short_channel_id) { None => panic!(), Some(_) => () } } // If we receive announcement for the same channel (but TX is not confirmed), // drop new one on the floor, since we can't see any changes. *chain_monitor.utxo_ret.lock().unwrap() = Err(chaininterface::ChainError::UnknownTx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry") }; // But if it is confirmed, replace the channel *chain_monitor.utxo_ret.lock().unwrap() = Ok((good_script, 0)); unsigned_announcement.features = ChannelFeatures::empty(); msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&unsigned_announcement.short_channel_id) { Some(channel_entry) => { assert_eq!(channel_entry.features, ChannelFeatures::empty()); }, _ => panic!() } } // Don't relay valid channels with excess data unsigned_announcement.short_channel_id += 1; unsigned_announcement.excess_data.push(1); msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(!res), _ => panic!() }; unsigned_announcement.excess_data = Vec::new(); let invalid_sig_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_1_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature from remote node") }; unsigned_announcement.node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let channel_to_itself_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_1_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself") }; } #[test] fn handling_channel_update() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let zero_hash = Sha256dHash::hash(&[0; 32]); let short_channel_id = 0; let chain_hash = genesis_block(Network::Testnet).header.bitcoin_hash(); { // Announce a channel we will update let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::empty(), chain_hash, short_channel_id, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_channel_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } let mut unsigned_channel_update = UnsignedChannelUpdate { chain_hash, short_channel_id, timestamp: 100, flags: 0, cltv_expiry_delta: 144, htlc_minimum_msat: 1000000, fee_base_msat: 10000, fee_proportional_millionths: 20, excess_data: Vec::new() }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(res), _ => panic!() }; { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144); assert!(channel_info.two_to_one.is_none()); } } } unsigned_channel_update.timestamp += 100; unsigned_channel_update.excess_data.push(1); let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; // Return false because contains excess data match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(!res), _ => panic!() }; unsigned_channel_update.timestamp += 10; unsigned_channel_update.short_channel_id += 1; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Couldn't find channel for update") }; unsigned_channel_update.short_channel_id = short_channel_id; // Even though previous update was not relayed further, we still accepted it, // so we now won't accept update before the previous one. unsigned_channel_update.timestamp -= 10; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Update older than last processed update") }; unsigned_channel_update.timestamp += 500; let fake_msghash = hash_to_message!(&zero_hash); let invalid_sig_channel_update = ChannelUpdate { signature: secp_ctx.sign(&fake_msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature from remote node") }; } #[test] fn handling_htlc_fail_channel_update() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let short_channel_id = 0; let chain_hash = genesis_block(Network::Testnet).header.bitcoin_hash(); { // There is no nodes in the table at the beginning. let network = net_graph_msg_handler.network_graph.read().unwrap(); assert_eq!(network.get_nodes().len(), 0); } { // Announce a channel we will update let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::empty(), chain_hash, short_channel_id, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_channel_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; let unsigned_channel_update = UnsignedChannelUpdate { chain_hash, short_channel_id, timestamp: 100, flags: 0, cltv_expiry_delta: 144, htlc_minimum_msat: 1000000, fee_base_msat: 10000, fee_proportional_millionths: 20, excess_data: Vec::new() }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(res), _ => panic!() }; } // Non-permanent closing just disables a channel { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert!(channel_info.one_to_two.is_some()); } } } let channel_close_msg = HTLCFailChannelUpdate::ChannelClosed { short_channel_id, is_permanent: false }; net_graph_msg_handler.handle_htlc_fail_channel_update(&channel_close_msg); // Non-permanent closing just disables a channel { let network = net_graph_msg_handler.network_graph.read().unwrap(); match network.get_channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert!(!channel_info.one_to_two.as_ref().unwrap().enabled); } } } let channel_close_msg = HTLCFailChannelUpdate::ChannelClosed { short_channel_id, is_permanent: true }; net_graph_msg_handler.handle_htlc_fail_channel_update(&channel_close_msg); // Permanent closing deletes a channel { let network = net_graph_msg_handler.network_graph.read().unwrap(); assert_eq!(network.get_channels().len(), 0); // Nodes are also deleted because there are no associated channels anymore assert_eq!(network.get_nodes().len(), 0); } // TODO: Test HTLCFailChannelUpdate::NodeFailure, which is not implemented yet. } #[test] fn getting_next_channel_announcements() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let short_channel_id = 1; let chain_hash = genesis_block(Network::Testnet).header.bitcoin_hash(); // Channels were not announced yet. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1); assert_eq!(channels_with_announcements.len(), 0); { // Announce a channel we will update let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::empty(), chain_hash, short_channel_id, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_channel_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } // Contains initial channel announcement now. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_eq!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } { // Valid channel update let unsigned_channel_update = UnsignedChannelUpdate { chain_hash, short_channel_id, timestamp: 101, flags: 0, cltv_expiry_delta: 144, htlc_minimum_msat: 1000000, fee_base_msat: 10000, fee_proportional_millionths: 20, excess_data: Vec::new() }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => (), Err(_) => panic!() }; } // Now contains an initial announcement and an update. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_ne!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } { // Channel update with excess data. let unsigned_channel_update = UnsignedChannelUpdate { chain_hash, short_channel_id, timestamp: 102, flags: 0, cltv_expiry_delta: 144, htlc_minimum_msat: 1000000, fee_base_msat: 10000, fee_proportional_millionths: 20, excess_data: [1; 3].to_vec() }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_channel_update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => (), Err(_) => panic!() }; } // Test that announcements with excess data won't be returned let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_eq!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } // Further starting point have no channels after it let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1); assert_eq!(channels_with_announcements.len(), 0); } #[test] fn getting_next_node_announcements() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let short_channel_id = 1; let chain_hash = genesis_block(Network::Testnet).header.bitcoin_hash(); // No nodes yet. let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10); assert_eq!(next_announcements.len(), 0); { // Announce a channel to add 2 nodes let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::empty(), chain_hash, short_channel_id, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_channel_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } // Nodes were never announced let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3); assert_eq!(next_announcements.len(), 0); { let mut unsigned_announcement = UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: 1000, node_id: node_id_1, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; unsigned_announcement.node_id = node_id_2; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_2_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; } let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3); assert_eq!(next_announcements.len(), 2); // Skip the first node. let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2); assert_eq!(next_announcements.len(), 1); { // Later announcement which should not be relayed (excess data) prevent us from sharing a node let unsigned_announcement = UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: 1010, node_id: node_id_2, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: [1; 3].to_vec(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_2_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(res) => assert!(!res), Err(_) => panic!() }; } let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2); assert_eq!(next_announcements.len(), 0); } #[test] fn network_graph_serialization() { let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); // Announce a channel to add a corresponding node. let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::known(), chain_hash: genesis_block(Network::Testnet).header.bitcoin_hash(), short_channel_id: 0, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; let node_id = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let unsigned_announcement = UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: 100, node_id, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_1_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; let network = net_graph_msg_handler.network_graph.write().unwrap(); let mut w = test_utils::TestVecWriter(Vec::new()); assert!(!network.get_nodes().is_empty()); assert!(!network.get_channels().is_empty()); network.write(&mut w).unwrap(); assert!(::read(&mut ::std::io::Cursor::new(&w.0)).unwrap() == *network); } }