//! Utilities that take care of tasks that (1) need to happen periodically to keep Rust-Lightning //! running properly, and (2) either can or should be run in the background. See docs for //! [`BackgroundProcessor`] for more details on the nitty-gritty. #![deny(broken_intra_doc_links)] #![deny(missing_docs)] #![deny(unsafe_code)] #![cfg_attr(docsrs, feature(doc_auto_cfg))] #[macro_use] extern crate lightning; extern crate lightning_rapid_gossip_sync; use lightning::chain; use lightning::chain::chaininterface::{BroadcasterInterface, FeeEstimator}; use lightning::chain::chainmonitor::{ChainMonitor, Persist}; use lightning::chain::keysinterface::{Sign, KeysInterface}; use lightning::ln::channelmanager::ChannelManager; use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler}; use lightning::ln::peer_handler::{CustomMessageHandler, PeerManager, SocketDescriptor}; use lightning::routing::network_graph::{NetworkGraph, P2PGossipSync}; use lightning::routing::scoring::WriteableScore; use lightning::util::events::{Event, EventHandler, EventsProvider}; use lightning::util::logger::Logger; use lightning::util::persist::Persister; use lightning_rapid_gossip_sync::RapidGossipSync; use std::sync::Arc; use std::sync::atomic::{AtomicBool, Ordering}; use std::thread; use std::thread::JoinHandle; use std::time::{Duration, Instant}; use std::ops::Deref; /// `BackgroundProcessor` takes care of tasks that (1) need to happen periodically to keep /// Rust-Lightning running properly, and (2) either can or should be run in the background. Its /// responsibilities are: /// * Processing [`Event`]s with a user-provided [`EventHandler`]. /// * Monitoring whether the [`ChannelManager`] needs to be re-persisted to disk, and if so, /// writing it to disk/backups by invoking the callback given to it at startup. /// [`ChannelManager`] persistence should be done in the background. /// * Calling [`ChannelManager::timer_tick_occurred`] and [`PeerManager::timer_tick_occurred`] /// at the appropriate intervals. /// * Calling [`NetworkGraph::remove_stale_channels`] (if a [`P2PGossipSync`] is provided to /// [`BackgroundProcessor::start`]). /// /// It will also call [`PeerManager::process_events`] periodically though this shouldn't be relied /// upon as doing so may result in high latency. /// /// # Note /// /// If [`ChannelManager`] persistence fails and the persisted manager becomes out-of-date, then /// there is a risk of channels force-closing on startup when the manager realizes it's outdated. /// However, as long as [`ChannelMonitor`] backups are sound, no funds besides those used for /// unilateral chain closure fees are at risk. /// /// [`ChannelMonitor`]: lightning::chain::channelmonitor::ChannelMonitor /// [`Event`]: lightning::util::events::Event #[must_use = "BackgroundProcessor will immediately stop on drop. It should be stored until shutdown."] pub struct BackgroundProcessor { stop_thread: Arc, thread_handle: Option>>, } #[cfg(not(test))] const FRESHNESS_TIMER: u64 = 60; #[cfg(test)] const FRESHNESS_TIMER: u64 = 1; #[cfg(all(not(test), not(debug_assertions)))] const PING_TIMER: u64 = 10; /// Signature operations take a lot longer without compiler optimisations. /// Increasing the ping timer allows for this but slower devices will be disconnected if the /// timeout is reached. #[cfg(all(not(test), debug_assertions))] const PING_TIMER: u64 = 30; #[cfg(test)] const PING_TIMER: u64 = 1; /// Prune the network graph of stale entries hourly. const NETWORK_PRUNE_TIMER: u64 = 60 * 60; #[cfg(all(not(test), debug_assertions))] const SCORER_PERSIST_TIMER: u64 = 30; #[cfg(test)] const SCORER_PERSIST_TIMER: u64 = 1; #[cfg(not(test))] const FIRST_NETWORK_PRUNE_TIMER: u64 = 60; #[cfg(test)] const FIRST_NETWORK_PRUNE_TIMER: u64 = 1; /// Decorates an [`EventHandler`] with common functionality provided by standard [`EventHandler`]s. struct DecoratingEventHandler< E: EventHandler, P: Deref>, G: Deref, A: Deref, L: Deref, > where A::Target: chain::Access, L::Target: Logger { event_handler: E, p2p_gossip_sync: Option

, } impl< E: EventHandler, P: Deref>, G: Deref, A: Deref, L: Deref, > EventHandler for DecoratingEventHandler where A::Target: chain::Access, L::Target: Logger { fn handle_event(&self, event: &Event) { if let Some(event_handler) = &self.p2p_gossip_sync { event_handler.handle_event(event); } self.event_handler.handle_event(event); } } impl BackgroundProcessor { /// Start a background thread that takes care of responsibilities enumerated in the [top-level /// documentation]. /// /// The thread runs indefinitely unless the object is dropped, [`stop`] is called, or /// [`Persister::persist_manager`] returns an error. In case of an error, the error is retrieved by calling /// either [`join`] or [`stop`]. /// /// # Data Persistence /// /// [`Persister::persist_manager`] is responsible for writing out the [`ChannelManager`] to disk, and/or /// uploading to one or more backup services. See [`ChannelManager::write`] for writing out a /// [`ChannelManager`]. See the `lightning-persister` crate for LDK's /// provided implementation. /// /// [`Persister::persist_graph`] is responsible for writing out the [`NetworkGraph`] to disk. See /// [`NetworkGraph::write`] for writing out a [`NetworkGraph`]. See the `lightning-persister` crate /// for LDK's provided implementation. /// /// Typically, users should either implement [`Persister::persist_manager`] to never return an /// error or call [`join`] and handle any error that may arise. For the latter case, /// `BackgroundProcessor` must be restarted by calling `start` again after handling the error. /// /// # Event Handling /// /// `event_handler` is responsible for handling events that users should be notified of (e.g., /// payment failed). [`BackgroundProcessor`] may decorate the given [`EventHandler`] with common /// functionality implemented by other handlers. /// * [`P2PGossipSync`] if given will update the [`NetworkGraph`] based on payment failures. /// /// # Rapid Gossip Sync /// /// If rapid gossip sync is meant to run at startup, pass an optional [`RapidGossipSync`] /// to `rapid_gossip_sync` to indicate to [`BackgroundProcessor`] not to prune the /// [`NetworkGraph`] instance until the [`RapidGossipSync`] instance completes its first sync. /// /// [top-level documentation]: BackgroundProcessor /// [`join`]: Self::join /// [`stop`]: Self::stop /// [`ChannelManager`]: lightning::ln::channelmanager::ChannelManager /// [`ChannelManager::write`]: lightning::ln::channelmanager::ChannelManager#impl-Writeable /// [`Persister::persist_manager`]: lightning::util::persist::Persister::persist_manager /// [`Persister::persist_graph`]: lightning::util::persist::Persister::persist_graph /// [`NetworkGraph`]: lightning::routing::network_graph::NetworkGraph /// [`NetworkGraph::write`]: lightning::routing::network_graph::NetworkGraph#impl-Writeable pub fn start< 'a, Signer: 'static + Sign, CA: 'static + Deref + Send + Sync, CF: 'static + Deref + Send + Sync, CW: 'static + Deref + Send + Sync, T: 'static + Deref + Send + Sync, K: 'static + Deref + Send + Sync, F: 'static + Deref + Send + Sync, G: 'static + Deref + Send + Sync, L: 'static + Deref + Send + Sync, P: 'static + Deref + Send + Sync, Descriptor: 'static + SocketDescriptor + Send + Sync, CMH: 'static + Deref + Send + Sync, RMH: 'static + Deref + Send + Sync, EH: 'static + EventHandler + Send, PS: 'static + Deref + Send, M: 'static + Deref> + Send + Sync, CM: 'static + Deref> + Send + Sync, PGS: 'static + Deref> + Send + Sync, UMH: 'static + Deref + Send + Sync, PM: 'static + Deref> + Send + Sync, S: 'static + Deref + Send + Sync, SC: WriteableScore<'a>, RGS: 'static + Deref> + Send >( persister: PS, event_handler: EH, chain_monitor: M, channel_manager: CM, p2p_gossip_sync: Option, peer_manager: PM, logger: L, scorer: Option, rapid_gossip_sync: Option ) -> Self where CA::Target: 'static + chain::Access, CF::Target: 'static + chain::Filter, CW::Target: 'static + chain::Watch, T::Target: 'static + BroadcasterInterface, K::Target: 'static + KeysInterface, F::Target: 'static + FeeEstimator, L::Target: 'static + Logger, P::Target: 'static + Persist, CMH::Target: 'static + ChannelMessageHandler, RMH::Target: 'static + RoutingMessageHandler, UMH::Target: 'static + CustomMessageHandler, PS::Target: 'static + Persister<'a, Signer, CW, T, K, F, L, SC>, { let stop_thread = Arc::new(AtomicBool::new(false)); let stop_thread_clone = stop_thread.clone(); let handle = thread::spawn(move || -> Result<(), std::io::Error> { let event_handler = DecoratingEventHandler { event_handler, p2p_gossip_sync: p2p_gossip_sync.as_ref().map(|t| t.deref()) }; log_trace!(logger, "Calling ChannelManager's timer_tick_occurred on startup"); channel_manager.timer_tick_occurred(); let mut last_freshness_call = Instant::now(); let mut last_ping_call = Instant::now(); let mut last_prune_call = Instant::now(); let mut last_scorer_persist_call = Instant::now(); let mut have_pruned = false; loop { channel_manager.process_pending_events(&event_handler); chain_monitor.process_pending_events(&event_handler); // Note that the PeerManager::process_events may block on ChannelManager's locks, // hence it comes last here. When the ChannelManager finishes whatever it's doing, // we want to ensure we get into `persist_manager` as quickly as we can, especially // without running the normal event processing above and handing events to users. // // Specifically, on an *extremely* slow machine, we may see ChannelManager start // processing a message effectively at any point during this loop. In order to // minimize the time between such processing completing and persisting the updated // ChannelManager, we want to minimize methods blocking on a ChannelManager // generally, and as a fallback place such blocking only immediately before // persistence. peer_manager.process_events(); // We wait up to 100ms, but track how long it takes to detect being put to sleep, // see `await_start`'s use below. let await_start = Instant::now(); let updates_available = channel_manager.await_persistable_update_timeout(Duration::from_millis(100)); let await_time = await_start.elapsed(); if updates_available { log_trace!(logger, "Persisting ChannelManager..."); persister.persist_manager(&*channel_manager)?; log_trace!(logger, "Done persisting ChannelManager."); } // Exit the loop if the background processor was requested to stop. if stop_thread.load(Ordering::Acquire) == true { log_trace!(logger, "Terminating background processor."); break; } if last_freshness_call.elapsed().as_secs() > FRESHNESS_TIMER { log_trace!(logger, "Calling ChannelManager's timer_tick_occurred"); channel_manager.timer_tick_occurred(); last_freshness_call = Instant::now(); } if await_time > Duration::from_secs(1) { // On various platforms, we may be starved of CPU cycles for several reasons. // E.g. on iOS, if we've been in the background, we will be entirely paused. // Similarly, if we're on a desktop platform and the device has been asleep, we // may not get any cycles. // We detect this by checking if our max-100ms-sleep, above, ran longer than a // full second, at which point we assume sockets may have been killed (they // appear to be at least on some platforms, even if it has only been a second). // Note that we have to take care to not get here just because user event // processing was slow at the top of the loop. For example, the sample client // may call Bitcoin Core RPCs during event handling, which very often takes // more than a handful of seconds to complete, and shouldn't disconnect all our // peers. log_trace!(logger, "100ms sleep took more than a second, disconnecting peers."); peer_manager.disconnect_all_peers(); last_ping_call = Instant::now(); } else if last_ping_call.elapsed().as_secs() > PING_TIMER { log_trace!(logger, "Calling PeerManager's timer_tick_occurred"); peer_manager.timer_tick_occurred(); last_ping_call = Instant::now(); } // Note that we want to run a graph prune once not long after startup before // falling back to our usual hourly prunes. This avoids short-lived clients never // pruning their network graph. We run once 60 seconds after startup before // continuing our normal cadence. if last_prune_call.elapsed().as_secs() > if have_pruned { NETWORK_PRUNE_TIMER } else { FIRST_NETWORK_PRUNE_TIMER } { // The network graph must not be pruned while rapid sync completion is pending log_trace!(logger, "Assessing prunability of network graph"); let graph_to_prune = match rapid_gossip_sync.as_ref() { Some(rapid_sync) => { if rapid_sync.is_initial_sync_complete() { Some(rapid_sync.network_graph()) } else { None } }, None => p2p_gossip_sync.as_ref().map(|sync| sync.network_graph()) }; if let Some(network_graph_reference) = graph_to_prune { network_graph_reference.remove_stale_channels(); if let Err(e) = persister.persist_graph(network_graph_reference) { log_error!(logger, "Error: Failed to persist network graph, check your disk and permissions {}", e) } last_prune_call = Instant::now(); have_pruned = true; } else { log_trace!(logger, "Not pruning network graph, either due to pending rapid gossip sync or absence of a prunable graph."); } } if last_scorer_persist_call.elapsed().as_secs() > SCORER_PERSIST_TIMER { if let Some(ref scorer) = scorer { log_trace!(logger, "Persisting scorer"); if let Err(e) = persister.persist_scorer(&scorer) { log_error!(logger, "Error: Failed to persist scorer, check your disk and permissions {}", e) } } last_scorer_persist_call = Instant::now(); } } // After we exit, ensure we persist the ChannelManager one final time - this avoids // some races where users quit while channel updates were in-flight, with // ChannelMonitor update(s) persisted without a corresponding ChannelManager update. persister.persist_manager(&*channel_manager)?; // Persist Scorer on exit if let Some(ref scorer) = scorer { persister.persist_scorer(&scorer)?; } // Persist NetworkGraph on exit if let Some(ref gossip_sync) = p2p_gossip_sync { persister.persist_graph(gossip_sync.network_graph())?; } Ok(()) }); Self { stop_thread: stop_thread_clone, thread_handle: Some(handle) } } /// Join `BackgroundProcessor`'s thread, returning any error that occurred while persisting /// [`ChannelManager`]. /// /// # Panics /// /// This function panics if the background thread has panicked such as while persisting or /// handling events. /// /// [`ChannelManager`]: lightning::ln::channelmanager::ChannelManager pub fn join(mut self) -> Result<(), std::io::Error> { assert!(self.thread_handle.is_some()); self.join_thread() } /// Stop `BackgroundProcessor`'s thread, returning any error that occurred while persisting /// [`ChannelManager`]. /// /// # Panics /// /// This function panics if the background thread has panicked such as while persisting or /// handling events. /// /// [`ChannelManager`]: lightning::ln::channelmanager::ChannelManager pub fn stop(mut self) -> Result<(), std::io::Error> { assert!(self.thread_handle.is_some()); self.stop_and_join_thread() } fn stop_and_join_thread(&mut self) -> Result<(), std::io::Error> { self.stop_thread.store(true, Ordering::Release); self.join_thread() } fn join_thread(&mut self) -> Result<(), std::io::Error> { match self.thread_handle.take() { Some(handle) => handle.join().unwrap(), None => Ok(()), } } } impl Drop for BackgroundProcessor { fn drop(&mut self) { self.stop_and_join_thread().unwrap(); } } #[cfg(test)] mod tests { use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::transaction::{Transaction, TxOut}; use bitcoin::network::constants::Network; use lightning::chain::{BestBlock, Confirm, chainmonitor}; use lightning::chain::channelmonitor::ANTI_REORG_DELAY; use lightning::chain::keysinterface::{InMemorySigner, Recipient, KeysInterface, KeysManager}; use lightning::chain::transaction::OutPoint; use lightning::get_event_msg; use lightning::ln::channelmanager::{BREAKDOWN_TIMEOUT, ChainParameters, ChannelManager, SimpleArcChannelManager}; use lightning::ln::features::{ChannelFeatures, InitFeatures}; use lightning::ln::msgs::{ChannelMessageHandler, Init}; use lightning::ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler}; use lightning::routing::network_graph::{NetworkGraph, P2PGossipSync}; use lightning::util::config::UserConfig; use lightning::util::events::{Event, MessageSendEventsProvider, MessageSendEvent}; use lightning::util::ser::Writeable; use lightning::util::test_utils; use lightning::util::persist::KVStorePersister; use lightning_invoice::payment::{InvoicePayer, Retry}; use lightning_invoice::utils::DefaultRouter; use lightning_persister::FilesystemPersister; use std::fs; use std::path::PathBuf; use std::sync::{Arc, Mutex}; use std::sync::mpsc::SyncSender; use std::time::Duration; use lightning::routing::scoring::{FixedPenaltyScorer}; use lightning_rapid_gossip_sync::RapidGossipSync; use super::{BackgroundProcessor, FRESHNESS_TIMER}; const EVENT_DEADLINE: u64 = 5 * FRESHNESS_TIMER; #[derive(Clone, Eq, Hash, PartialEq)] struct TestDescriptor{} impl SocketDescriptor for TestDescriptor { fn send_data(&mut self, _data: &[u8], _resume_read: bool) -> usize { 0 } fn disconnect_socket(&mut self) {} } type ChainMonitor = chainmonitor::ChainMonitor, Arc, Arc, Arc, Arc>; struct Node { node: Arc>, p2p_gossip_sync: Option, Arc, Arc>>>, peer_manager: Arc, Arc, Arc, IgnoringMessageHandler>>, chain_monitor: Arc, persister: Arc, tx_broadcaster: Arc, network_graph: Arc, logger: Arc, best_block: BestBlock, scorer: Arc>, rapid_gossip_sync: Option>>> } impl Drop for Node { fn drop(&mut self) { let data_dir = self.persister.get_data_dir(); match fs::remove_dir_all(data_dir.clone()) { Err(e) => println!("Failed to remove test persister directory {}: {}", data_dir, e), _ => {} } } } struct Persister { graph_error: Option<(std::io::ErrorKind, &'static str)>, graph_persistence_notifier: Option>, manager_error: Option<(std::io::ErrorKind, &'static str)>, scorer_error: Option<(std::io::ErrorKind, &'static str)>, filesystem_persister: FilesystemPersister, } impl Persister { fn new(data_dir: String) -> Self { let filesystem_persister = FilesystemPersister::new(data_dir.clone()); Self { graph_error: None, graph_persistence_notifier: None, manager_error: None, scorer_error: None, filesystem_persister } } fn with_graph_error(self, error: std::io::ErrorKind, message: &'static str) -> Self { Self { graph_error: Some((error, message)), ..self } } fn with_graph_persistence_notifier(self, sender: SyncSender<()>) -> Self { Self { graph_persistence_notifier: Some(sender), ..self } } fn with_manager_error(self, error: std::io::ErrorKind, message: &'static str) -> Self { Self { manager_error: Some((error, message)), ..self } } fn with_scorer_error(self, error: std::io::ErrorKind, message: &'static str) -> Self { Self { scorer_error: Some((error, message)), ..self } } } impl KVStorePersister for Persister { fn persist(&self, key: &str, object: &W) -> std::io::Result<()> { if key == "manager" { if let Some((error, message)) = self.manager_error { return Err(std::io::Error::new(error, message)) } } if key == "network_graph" { if let Some(sender) = &self.graph_persistence_notifier { sender.send(()).unwrap(); }; if let Some((error, message)) = self.graph_error { return Err(std::io::Error::new(error, message)) } } if key == "scorer" { if let Some((error, message)) = self.scorer_error { return Err(std::io::Error::new(error, message)) } } self.filesystem_persister.persist(key, object) } } fn get_full_filepath(filepath: String, filename: String) -> String { let mut path = PathBuf::from(filepath); path.push(filename); path.to_str().unwrap().to_string() } fn create_nodes(num_nodes: usize, persist_dir: String) -> Vec { let mut nodes = Vec::new(); for i in 0..num_nodes { let tx_broadcaster = Arc::new(test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))}); let fee_estimator = Arc::new(test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }); let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); let logger = Arc::new(test_utils::TestLogger::with_id(format!("node {}", i))); let persister = Arc::new(FilesystemPersister::new(format!("{}_persister_{}", persist_dir, i))); let seed = [i as u8; 32]; let network = Network::Testnet; let genesis_block = genesis_block(network); let now = Duration::from_secs(genesis_block.header.time as u64); let keys_manager = Arc::new(KeysManager::new(&seed, now.as_secs(), now.subsec_nanos())); let chain_monitor = Arc::new(chainmonitor::ChainMonitor::new(Some(chain_source.clone()), tx_broadcaster.clone(), logger.clone(), fee_estimator.clone(), persister.clone())); let best_block = BestBlock::from_genesis(network); let params = ChainParameters { network, best_block }; let manager = Arc::new(ChannelManager::new(fee_estimator.clone(), chain_monitor.clone(), tx_broadcaster.clone(), logger.clone(), keys_manager.clone(), UserConfig::default(), params)); let network_graph = Arc::new(NetworkGraph::new(genesis_block.header.block_hash())); let p2p_gossip_sync = Some(Arc::new(P2PGossipSync::new(network_graph.clone(), Some(chain_source.clone()), logger.clone()))); let msg_handler = MessageHandler { chan_handler: Arc::new(test_utils::TestChannelMessageHandler::new()), route_handler: Arc::new(test_utils::TestRoutingMessageHandler::new() )}; let peer_manager = Arc::new(PeerManager::new(msg_handler, keys_manager.get_node_secret(Recipient::Node).unwrap(), &seed, logger.clone(), IgnoringMessageHandler{})); let scorer = Arc::new(Mutex::new(test_utils::TestScorer::with_penalty(0))); let rapid_gossip_sync = None; let node = Node { node: manager, p2p_gossip_sync, peer_manager, chain_monitor, persister, tx_broadcaster, network_graph, logger, best_block, scorer, rapid_gossip_sync }; nodes.push(node); } for i in 0..num_nodes { for j in (i+1)..num_nodes { nodes[i].node.peer_connected(&nodes[j].node.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); nodes[j].node.peer_connected(&nodes[i].node.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); } } nodes } macro_rules! open_channel { ($node_a: expr, $node_b: expr, $channel_value: expr) => {{ begin_open_channel!($node_a, $node_b, $channel_value); let events = $node_a.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); let (temporary_channel_id, tx) = handle_funding_generation_ready!(&events[0], $channel_value); end_open_channel!($node_a, $node_b, temporary_channel_id, tx); tx }} } macro_rules! begin_open_channel { ($node_a: expr, $node_b: expr, $channel_value: expr) => {{ $node_a.node.create_channel($node_b.node.get_our_node_id(), $channel_value, 100, 42, None).unwrap(); $node_b.node.handle_open_channel(&$node_a.node.get_our_node_id(), InitFeatures::known(), &get_event_msg!($node_a, MessageSendEvent::SendOpenChannel, $node_b.node.get_our_node_id())); $node_a.node.handle_accept_channel(&$node_b.node.get_our_node_id(), InitFeatures::known(), &get_event_msg!($node_b, MessageSendEvent::SendAcceptChannel, $node_a.node.get_our_node_id())); }} } macro_rules! handle_funding_generation_ready { ($event: expr, $channel_value: expr) => {{ match $event { &Event::FundingGenerationReady { temporary_channel_id, channel_value_satoshis, ref output_script, user_channel_id, .. } => { assert_eq!(channel_value_satoshis, $channel_value); assert_eq!(user_channel_id, 42); let tx = Transaction { version: 1 as i32, lock_time: 0, input: Vec::new(), output: vec![TxOut { value: channel_value_satoshis, script_pubkey: output_script.clone(), }]}; (temporary_channel_id, tx) }, _ => panic!("Unexpected event"), } }} } macro_rules! end_open_channel { ($node_a: expr, $node_b: expr, $temporary_channel_id: expr, $tx: expr) => {{ $node_a.node.funding_transaction_generated(&$temporary_channel_id, &$node_b.node.get_our_node_id(), $tx.clone()).unwrap(); $node_b.node.handle_funding_created(&$node_a.node.get_our_node_id(), &get_event_msg!($node_a, MessageSendEvent::SendFundingCreated, $node_b.node.get_our_node_id())); $node_a.node.handle_funding_signed(&$node_b.node.get_our_node_id(), &get_event_msg!($node_b, MessageSendEvent::SendFundingSigned, $node_a.node.get_our_node_id())); }} } fn confirm_transaction_depth(node: &mut Node, tx: &Transaction, depth: u32) { for i in 1..=depth { let prev_blockhash = node.best_block.block_hash(); let height = node.best_block.height() + 1; let header = BlockHeader { version: 0x20000000, prev_blockhash, merkle_root: Default::default(), time: height, bits: 42, nonce: 42 }; let txdata = vec![(0, tx)]; node.best_block = BestBlock::new(header.block_hash(), height); match i { 1 => { node.node.transactions_confirmed(&header, &txdata, height); node.chain_monitor.transactions_confirmed(&header, &txdata, height); }, x if x == depth => { node.node.best_block_updated(&header, height); node.chain_monitor.best_block_updated(&header, height); }, _ => {}, } } } fn confirm_transaction(node: &mut Node, tx: &Transaction) { confirm_transaction_depth(node, tx, ANTI_REORG_DELAY); } #[test] fn test_background_processor() { // Test that when a new channel is created, the ChannelManager needs to be re-persisted with // updates. Also test that when new updates are available, the manager signals that it needs // re-persistence and is successfully re-persisted. let nodes = create_nodes(2, "test_background_processor".to_string()); // Go through the channel creation process so that each node has something to persist. Since // open_channel consumes events, it must complete before starting BackgroundProcessor to // avoid a race with processing events. let tx = open_channel!(nodes[0], nodes[1], 100000); // Initiate the background processors to watch each node. let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir)); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); macro_rules! check_persisted_data { ($node: expr, $filepath: expr) => { let mut expected_bytes = Vec::new(); loop { expected_bytes.clear(); match $node.write(&mut expected_bytes) { Ok(()) => { match std::fs::read($filepath) { Ok(bytes) => { if bytes == expected_bytes { break } else { continue } }, Err(_) => continue } }, Err(e) => panic!("Unexpected error: {}", e) } } } } // Check that the initial channel manager data is persisted as expected. let filepath = get_full_filepath("test_background_processor_persister_0".to_string(), "manager".to_string()); check_persisted_data!(nodes[0].node, filepath.clone()); loop { if !nodes[0].node.get_persistence_condvar_value() { break } } // Force-close the channel. nodes[0].node.force_close_channel(&OutPoint { txid: tx.txid(), index: 0 }.to_channel_id(), &nodes[1].node.get_our_node_id()).unwrap(); // Check that the force-close updates are persisted. check_persisted_data!(nodes[0].node, filepath.clone()); loop { if !nodes[0].node.get_persistence_condvar_value() { break } } // Check network graph is persisted let filepath = get_full_filepath("test_background_processor_persister_0".to_string(), "network_graph".to_string()); if let Some(ref handler) = nodes[0].p2p_gossip_sync { let network_graph = handler.network_graph(); check_persisted_data!(network_graph, filepath.clone()); } // Check scorer is persisted let filepath = get_full_filepath("test_background_processor_persister_0".to_string(), "scorer".to_string()); check_persisted_data!(nodes[0].scorer, filepath.clone()); assert!(bg_processor.stop().is_ok()); } #[test] fn test_timer_tick_called() { // Test that ChannelManager's and PeerManager's `timer_tick_occurred` is called every // `FRESHNESS_TIMER`. let nodes = create_nodes(1, "test_timer_tick_called".to_string()); let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir)); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); loop { let log_entries = nodes[0].logger.lines.lock().unwrap(); let desired_log = "Calling ChannelManager's timer_tick_occurred".to_string(); let second_desired_log = "Calling PeerManager's timer_tick_occurred".to_string(); if log_entries.get(&("lightning_background_processor".to_string(), desired_log)).is_some() && log_entries.get(&("lightning_background_processor".to_string(), second_desired_log)).is_some() { break } } assert!(bg_processor.stop().is_ok()); } #[test] fn test_channel_manager_persist_error() { // Test that if we encounter an error during manager persistence, the thread panics. let nodes = create_nodes(2, "test_persist_error".to_string()); open_channel!(nodes[0], nodes[1], 100000); let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir).with_manager_error(std::io::ErrorKind::Other, "test")); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); match bg_processor.join() { Ok(_) => panic!("Expected error persisting manager"), Err(e) => { assert_eq!(e.kind(), std::io::ErrorKind::Other); assert_eq!(e.get_ref().unwrap().to_string(), "test"); }, } } #[test] fn test_network_graph_persist_error() { // Test that if we encounter an error during network graph persistence, an error gets returned. let nodes = create_nodes(2, "test_persist_network_graph_error".to_string()); let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir).with_graph_error(std::io::ErrorKind::Other, "test")); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); match bg_processor.stop() { Ok(_) => panic!("Expected error persisting network graph"), Err(e) => { assert_eq!(e.kind(), std::io::ErrorKind::Other); assert_eq!(e.get_ref().unwrap().to_string(), "test"); }, } } #[test] fn test_scorer_persist_error() { // Test that if we encounter an error during scorer persistence, an error gets returned. let nodes = create_nodes(2, "test_persist_scorer_error".to_string()); let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir).with_scorer_error(std::io::ErrorKind::Other, "test")); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); match bg_processor.stop() { Ok(_) => panic!("Expected error persisting scorer"), Err(e) => { assert_eq!(e.kind(), std::io::ErrorKind::Other); assert_eq!(e.get_ref().unwrap().to_string(), "test"); }, } } #[test] fn test_background_event_handling() { let mut nodes = create_nodes(2, "test_background_event_handling".to_string()); let channel_value = 100000; let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir.clone())); // Set up a background event handler for FundingGenerationReady events. let (sender, receiver) = std::sync::mpsc::sync_channel(1); let event_handler = move |event: &Event| { sender.send(handle_funding_generation_ready!(event, channel_value)).unwrap(); }; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); // Open a channel and check that the FundingGenerationReady event was handled. begin_open_channel!(nodes[0], nodes[1], channel_value); let (temporary_channel_id, funding_tx) = receiver .recv_timeout(Duration::from_secs(EVENT_DEADLINE)) .expect("FundingGenerationReady not handled within deadline"); end_open_channel!(nodes[0], nodes[1], temporary_channel_id, funding_tx); // Confirm the funding transaction. confirm_transaction(&mut nodes[0], &funding_tx); let as_funding = get_event_msg!(nodes[0], MessageSendEvent::SendChannelReady, nodes[1].node.get_our_node_id()); confirm_transaction(&mut nodes[1], &funding_tx); let bs_funding = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReady, nodes[0].node.get_our_node_id()); nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_funding); let _as_channel_update = get_event_msg!(nodes[0], MessageSendEvent::SendChannelUpdate, nodes[1].node.get_our_node_id()); nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_funding); let _bs_channel_update = get_event_msg!(nodes[1], MessageSendEvent::SendChannelUpdate, nodes[0].node.get_our_node_id()); assert!(bg_processor.stop().is_ok()); // Set up a background event handler for SpendableOutputs events. let (sender, receiver) = std::sync::mpsc::sync_channel(1); let event_handler = move |event: &Event| sender.send(event.clone()).unwrap(); let persister = Arc::new(Persister::new(data_dir)); let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); // Force close the channel and check that the SpendableOutputs event was handled. nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap(); let commitment_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().pop().unwrap(); confirm_transaction_depth(&mut nodes[0], &commitment_tx, BREAKDOWN_TIMEOUT as u32); let event = receiver .recv_timeout(Duration::from_secs(EVENT_DEADLINE)) .expect("SpendableOutputs not handled within deadline"); match event { Event::SpendableOutputs { .. } => {}, Event::ChannelClosed { .. } => {}, _ => panic!("Unexpected event: {:?}", event), } assert!(bg_processor.stop().is_ok()); } #[test] fn test_scorer_persistence() { let nodes = create_nodes(2, "test_scorer_persistence".to_string()); let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir)); let event_handler = |_: &_| {}; let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); loop { let log_entries = nodes[0].logger.lines.lock().unwrap(); let expected_log = "Persisting scorer".to_string(); if log_entries.get(&("lightning_background_processor".to_string(), expected_log)).is_some() { break } } assert!(bg_processor.stop().is_ok()); } #[test] fn test_not_pruning_network_graph_until_graph_sync_completion() { let nodes = create_nodes(2, "test_not_pruning_network_graph_until_graph_sync_completion".to_string()); let data_dir = nodes[0].persister.get_data_dir(); let (sender, receiver) = std::sync::mpsc::sync_channel(1); let persister = Arc::new(Persister::new(data_dir.clone()).with_graph_persistence_notifier(sender)); let network_graph = nodes[0].network_graph.clone(); let rapid_sync = Arc::new(RapidGossipSync::new(network_graph.clone())); let features = ChannelFeatures::empty(); network_graph.add_channel_from_partial_announcement(42, 53, features, nodes[0].node.get_our_node_id(), nodes[1].node.get_our_node_id()) .expect("Failed to update channel from partial announcement"); let original_graph_description = network_graph.to_string(); assert!(original_graph_description.contains("42: features: 0000, node_one:")); assert_eq!(network_graph.read_only().channels().len(), 1); let event_handler = |_: &_| {}; let background_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), Some(rapid_sync.clone())); loop { let log_entries = nodes[0].logger.lines.lock().unwrap(); let expected_log_a = "Assessing prunability of network graph".to_string(); let expected_log_b = "Not pruning network graph, either due to pending rapid gossip sync or absence of a prunable graph.".to_string(); if log_entries.get(&("lightning_background_processor".to_string(), expected_log_a)).is_some() && log_entries.get(&("lightning_background_processor".to_string(), expected_log_b)).is_some() { break } } let initialization_input = vec![ 76, 68, 75, 1, 111, 226, 140, 10, 182, 241, 179, 114, 193, 166, 162, 70, 174, 99, 247, 79, 147, 30, 131, 101, 225, 90, 8, 156, 104, 214, 25, 0, 0, 0, 0, 0, 97, 227, 98, 218, 0, 0, 0, 4, 2, 22, 7, 207, 206, 25, 164, 197, 231, 230, 231, 56, 102, 61, 250, 251, 187, 172, 38, 46, 79, 247, 108, 44, 155, 48, 219, 238, 252, 53, 192, 6, 67, 2, 36, 125, 157, 176, 223, 175, 234, 116, 94, 248, 201, 225, 97, 235, 50, 47, 115, 172, 63, 136, 88, 216, 115, 11, 111, 217, 114, 84, 116, 124, 231, 107, 2, 158, 1, 242, 121, 152, 106, 204, 131, 186, 35, 93, 70, 216, 10, 237, 224, 183, 89, 95, 65, 3, 83, 185, 58, 138, 181, 64, 187, 103, 127, 68, 50, 2, 201, 19, 17, 138, 136, 149, 185, 226, 156, 137, 175, 110, 32, 237, 0, 217, 90, 31, 100, 228, 149, 46, 219, 175, 168, 77, 4, 143, 38, 128, 76, 97, 0, 0, 0, 2, 0, 0, 255, 8, 153, 192, 0, 2, 27, 0, 0, 0, 1, 0, 0, 255, 2, 68, 226, 0, 6, 11, 0, 1, 2, 3, 0, 0, 0, 2, 0, 40, 0, 0, 0, 0, 0, 0, 3, 232, 0, 0, 3, 232, 0, 0, 0, 1, 0, 0, 0, 0, 58, 85, 116, 216, 255, 8, 153, 192, 0, 2, 27, 0, 0, 25, 0, 0, 0, 1, 0, 0, 0, 125, 255, 2, 68, 226, 0, 6, 11, 0, 1, 5, 0, 0, 0, 0, 29, 129, 25, 192, ]; rapid_sync.update_network_graph(&initialization_input[..]).unwrap(); // this should have added two channels assert_eq!(network_graph.read_only().channels().len(), 3); let _ = receiver .recv_timeout(Duration::from_secs(super::FIRST_NETWORK_PRUNE_TIMER * 5)) .expect("Network graph not pruned within deadline"); background_processor.stop().unwrap(); // all channels should now be pruned assert_eq!(network_graph.read_only().channels().len(), 0); } #[test] fn test_invoice_payer() { let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet); let random_seed_bytes = keys_manager.get_secure_random_bytes(); let nodes = create_nodes(2, "test_invoice_payer".to_string()); // Initiate the background processors to watch each node. let data_dir = nodes[0].persister.get_data_dir(); let persister = Arc::new(Persister::new(data_dir)); let router = DefaultRouter::new(Arc::clone(&nodes[0].network_graph), Arc::clone(&nodes[0].logger), random_seed_bytes); let invoice_payer = Arc::new(InvoicePayer::new(Arc::clone(&nodes[0].node), router, Arc::clone(&nodes[0].scorer), Arc::clone(&nodes[0].logger), |_: &_| {}, Retry::Attempts(2))); let event_handler = Arc::clone(&invoice_payer); let bg_processor = BackgroundProcessor::start(persister, event_handler, nodes[0].chain_monitor.clone(), nodes[0].node.clone(), nodes[0].p2p_gossip_sync.clone(), nodes[0].peer_manager.clone(), nodes[0].logger.clone(), Some(nodes[0].scorer.clone()), nodes[0].rapid_gossip_sync.clone()); assert!(bg_processor.stop().is_ok()); } }