// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Various utilities for building scripts and deriving keys related to channels. These are //! largely of interest for those implementing the traits on [`crate::sign`] by hand. use bitcoin::blockdata::script::{Script,Builder}; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, EcdsaSighashType}; use bitcoin::util::sighash; use bitcoin::util::address::Payload; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::ripemd160::Hash as Ripemd160; use bitcoin::hash_types::{Txid, PubkeyHash}; use crate::sign::EntropySource; use crate::ln::{PaymentHash, PaymentPreimage}; use crate::ln::msgs::DecodeError; use crate::util::ser::{Readable, RequiredWrapper, Writeable, Writer}; use crate::util::transaction_utils; use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar}; use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Message}; use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness}; use bitcoin::PublicKey as BitcoinPublicKey; use crate::io; use crate::prelude::*; use core::cmp; use crate::ln::chan_utils; use crate::util::transaction_utils::sort_outputs; use crate::ln::channel::{INITIAL_COMMITMENT_NUMBER, ANCHOR_OUTPUT_VALUE_SATOSHI}; use core::ops::Deref; use crate::chain; use crate::ln::features::ChannelTypeFeatures; use crate::util::crypto::{sign, sign_with_aux_rand}; /// Maximum number of one-way in-flight HTLC (protocol-level value). pub const MAX_HTLCS: u16 = 483; /// The weight of a BIP141 witnessScript for a BOLT3's "offered HTLC output" on a commitment transaction, non-anchor variant. pub const OFFERED_HTLC_SCRIPT_WEIGHT: usize = 133; /// The weight of a BIP141 witnessScript for a BOLT3's "offered HTLC output" on a commitment transaction, anchor variant. pub const OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS: usize = 136; /// The weight of a BIP141 witnessScript for a BOLT3's "received HTLC output" can vary in function of its CLTV argument value. /// We define a range that encompasses both its non-anchors and anchors variants. pub(crate) const MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT: usize = 136; /// The weight of a BIP141 witnessScript for a BOLT3's "received HTLC output" can vary in function of its CLTV argument value. /// We define a range that encompasses both its non-anchors and anchors variants. /// This is the maximum post-anchor value. pub const MAX_ACCEPTED_HTLC_SCRIPT_WEIGHT: usize = 143; /// The upper bound weight of an anchor input. pub const ANCHOR_INPUT_WITNESS_WEIGHT: u64 = 116; /// The upper bound weight of an HTLC timeout input from a commitment transaction with anchor /// outputs. pub const HTLC_TIMEOUT_INPUT_ANCHOR_WITNESS_WEIGHT: u64 = 288; /// The upper bound weight of an HTLC success input from a commitment transaction with anchor /// outputs. pub const HTLC_SUCCESS_INPUT_ANCHOR_WITNESS_WEIGHT: u64 = 327; /// Gets the weight for an HTLC-Success transaction. #[inline] pub fn htlc_success_tx_weight(channel_type_features: &ChannelTypeFeatures) -> u64 { const HTLC_SUCCESS_TX_WEIGHT: u64 = 703; const HTLC_SUCCESS_ANCHOR_TX_WEIGHT: u64 = 706; if channel_type_features.supports_anchors_zero_fee_htlc_tx() { HTLC_SUCCESS_ANCHOR_TX_WEIGHT } else { HTLC_SUCCESS_TX_WEIGHT } } /// Gets the weight for an HTLC-Timeout transaction. #[inline] pub fn htlc_timeout_tx_weight(channel_type_features: &ChannelTypeFeatures) -> u64 { const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663; const HTLC_TIMEOUT_ANCHOR_TX_WEIGHT: u64 = 666; if channel_type_features.supports_anchors_zero_fee_htlc_tx() { HTLC_TIMEOUT_ANCHOR_TX_WEIGHT } else { HTLC_TIMEOUT_TX_WEIGHT } } /// Describes the type of HTLC claim as determined by analyzing the witness. #[derive(PartialEq, Eq)] pub enum HTLCClaim { /// Claims an offered output on a commitment transaction through the timeout path. OfferedTimeout, /// Claims an offered output on a commitment transaction through the success path. OfferedPreimage, /// Claims an accepted output on a commitment transaction through the timeout path. AcceptedTimeout, /// Claims an accepted output on a commitment transaction through the success path. AcceptedPreimage, /// Claims an offered/accepted output on a commitment transaction through the revocation path. Revocation, } impl HTLCClaim { /// Check if a given input witness attempts to claim a HTLC. pub fn from_witness(witness: &Witness) -> Option { debug_assert_eq!(OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS, MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT); if witness.len() < 2 { return None; } let witness_script = witness.last().unwrap(); let second_to_last = witness.second_to_last().unwrap(); if witness_script.len() == OFFERED_HTLC_SCRIPT_WEIGHT { if witness.len() == 3 && second_to_last.len() == 33 { // Some(Self::Revocation) } else if witness.len() == 3 && second_to_last.len() == 32 { // Some(Self::OfferedPreimage) } else if witness.len() == 5 && second_to_last.len() == 0 { // 0 <> Some(Self::OfferedTimeout) } else { None } } else if witness_script.len() == OFFERED_HTLC_SCRIPT_WEIGHT_ANCHORS { // It's possible for the weight of `offered_htlc_script` and `accepted_htlc_script` to // match so we check for both here. if witness.len() == 3 && second_to_last.len() == 33 { // Some(Self::Revocation) } else if witness.len() == 3 && second_to_last.len() == 32 { // Some(Self::OfferedPreimage) } else if witness.len() == 5 && second_to_last.len() == 0 { // 0 <> Some(Self::OfferedTimeout) } else if witness.len() == 3 && second_to_last.len() == 0 { // <> Some(Self::AcceptedTimeout) } else if witness.len() == 5 && second_to_last.len() == 32 { // 0 Some(Self::AcceptedPreimage) } else { None } } else if witness_script.len() > MIN_ACCEPTED_HTLC_SCRIPT_WEIGHT && witness_script.len() <= MAX_ACCEPTED_HTLC_SCRIPT_WEIGHT { // Handle remaining range of ACCEPTED_HTLC_SCRIPT_WEIGHT. if witness.len() == 3 && second_to_last.len() == 33 { // Some(Self::Revocation) } else if witness.len() == 3 && second_to_last.len() == 0 { // <> Some(Self::AcceptedTimeout) } else if witness.len() == 5 && second_to_last.len() == 32 { // 0 Some(Self::AcceptedPreimage) } else { None } } else { None } } } // Various functions for key derivation and transaction creation for use within channels. Primarily // used in Channel and ChannelMonitor. /// Build the commitment secret from the seed and the commitment number pub fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] { let mut res: [u8; 32] = commitment_seed.clone(); for i in 0..48 { let bitpos = 47 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[bitpos / 8] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } /// Build a closing transaction pub fn build_closing_transaction(to_holder_value_sat: u64, to_counterparty_value_sat: u64, to_holder_script: Script, to_counterparty_script: Script, funding_outpoint: OutPoint) -> Transaction { let txins = { let mut ins: Vec = Vec::new(); ins.push(TxIn { previous_output: funding_outpoint, script_sig: Script::new(), sequence: Sequence::MAX, witness: Witness::new(), }); ins }; let mut txouts: Vec<(TxOut, ())> = Vec::new(); if to_counterparty_value_sat > 0 { txouts.push((TxOut { script_pubkey: to_counterparty_script, value: to_counterparty_value_sat }, ())); } if to_holder_value_sat > 0 { txouts.push((TxOut { script_pubkey: to_holder_script, value: to_holder_value_sat }, ())); } transaction_utils::sort_outputs(&mut txouts, |_, _| { cmp::Ordering::Equal }); // Ordering doesnt matter if they used our pubkey... let mut outputs: Vec = Vec::new(); for out in txouts.drain(..) { outputs.push(out.0); } Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: txins, output: outputs, } } /// Implements the per-commitment secret storage scheme from /// [BOLT 3](https://github.com/lightning/bolts/blob/dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.md#efficient-per-commitment-secret-storage). /// /// Allows us to keep track of all of the revocation secrets of our counterparty in just 50*32 bytes /// or so. #[derive(Clone)] pub struct CounterpartyCommitmentSecrets { old_secrets: [([u8; 32], u64); 49], } impl Eq for CounterpartyCommitmentSecrets {} impl PartialEq for CounterpartyCommitmentSecrets { fn eq(&self, other: &Self) -> bool { for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) { if secret != o_secret || idx != o_idx { return false } } true } } impl CounterpartyCommitmentSecrets { /// Creates a new empty `CounterpartyCommitmentSecrets` structure. pub fn new() -> Self { Self { old_secrets: [([0; 32], 1 << 48); 49], } } #[inline] fn place_secret(idx: u64) -> u8 { for i in 0..48 { if idx & (1 << i) == (1 << i) { return i } } 48 } /// Returns the minimum index of all stored secrets. Note that indexes start /// at 1 << 48 and get decremented by one for each new secret. pub fn get_min_seen_secret(&self) -> u64 { //TODO This can be optimized? let mut min = 1 << 48; for &(_, idx) in self.old_secrets.iter() { if idx < min { min = idx; } } min } #[inline] fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] { let mut res: [u8; 32] = secret; for i in 0..bits { let bitpos = bits - 1 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } /// Inserts the `secret` at `idx`. Returns `Ok(())` if the secret /// was generated in accordance with BOLT 3 and is consistent with previous secrets. pub fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), ()> { let pos = Self::place_secret(idx); for i in 0..pos { let (old_secret, old_idx) = self.old_secrets[i as usize]; if Self::derive_secret(secret, pos, old_idx) != old_secret { return Err(()); } } if self.get_min_seen_secret() <= idx { return Ok(()); } self.old_secrets[pos as usize] = (secret, idx); Ok(()) } /// Returns the secret at `idx`. /// Returns `None` if `idx` is < [`CounterpartyCommitmentSecrets::get_min_seen_secret`]. pub fn get_secret(&self, idx: u64) -> Option<[u8; 32]> { for i in 0..self.old_secrets.len() { if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 { return Some(Self::derive_secret(self.old_secrets[i].0, i as u8, idx)) } } assert!(idx < self.get_min_seen_secret()); None } } impl Writeable for CounterpartyCommitmentSecrets { fn write(&self, writer: &mut W) -> Result<(), io::Error> { for &(ref secret, ref idx) in self.old_secrets.iter() { writer.write_all(secret)?; writer.write_all(&idx.to_be_bytes())?; } write_tlv_fields!(writer, {}); Ok(()) } } impl Readable for CounterpartyCommitmentSecrets { fn read(reader: &mut R) -> Result { let mut old_secrets = [([0; 32], 1 << 48); 49]; for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() { *secret = Readable::read(reader)?; *idx = Readable::read(reader)?; } read_tlv_fields!(reader, {}); Ok(Self { old_secrets }) } } /// Derives a per-commitment-transaction private key (eg an htlc key or delayed_payment key) /// from the base secret and the per_commitment_point. pub fn derive_private_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> SecretKey { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize()); let res = Sha256::from_engine(sha).into_inner(); base_secret.clone().add_tweak(&Scalar::from_be_bytes(res).unwrap()) .expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak contains the hash of the key.") } /// Derives a per-commitment-transaction public key (eg an htlc key or a delayed_payment key) /// from the base point and the per_commitment_key. This is the public equivalent of /// derive_private_key - using only public keys to derive a public key instead of private keys. pub fn derive_public_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_point: &PublicKey) -> PublicKey { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&base_point.serialize()); let res = Sha256::from_engine(sha).into_inner(); let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res).expect("Hashes should always be valid keys unless SHA-256 is broken")); base_point.combine(&hashkey) .expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak contains the hash of the key.") } /// Derives a per-commitment-transaction revocation key from its constituent parts. /// /// Only the cheating participant owns a valid witness to propagate a revoked /// commitment transaction, thus per_commitment_secret always come from cheater /// and revocation_base_secret always come from punisher, which is the broadcaster /// of the transaction spending with this key knowledge. pub fn derive_private_revocation_key(secp_ctx: &Secp256k1, per_commitment_secret: &SecretKey, countersignatory_revocation_base_secret: &SecretKey) -> SecretKey { let countersignatory_revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &countersignatory_revocation_base_secret); let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret); let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&countersignatory_revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&countersignatory_revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let countersignatory_contrib = countersignatory_revocation_base_secret.clone().mul_tweak(&Scalar::from_be_bytes(rev_append_commit_hash_key).unwrap()) .expect("Multiplying a secret key by a hash is expected to never fail per secp256k1 docs"); let broadcaster_contrib = per_commitment_secret.clone().mul_tweak(&Scalar::from_be_bytes(commit_append_rev_hash_key).unwrap()) .expect("Multiplying a secret key by a hash is expected to never fail per secp256k1 docs"); countersignatory_contrib.add_tweak(&Scalar::from_be_bytes(broadcaster_contrib.secret_bytes()).unwrap()) .expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak commits to the key.") } /// Derives a per-commitment-transaction revocation public key from its constituent parts. This is /// the public equivalend of derive_private_revocation_key - using only public keys to derive a /// public key instead of private keys. /// /// Only the cheating participant owns a valid witness to propagate a revoked /// commitment transaction, thus per_commitment_point always come from cheater /// and revocation_base_point always come from punisher, which is the broadcaster /// of the transaction spending with this key knowledge. /// /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub fn derive_public_revocation_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, countersignatory_revocation_base_point: &PublicKey) -> PublicKey { let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&countersignatory_revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&countersignatory_revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let countersignatory_contrib = countersignatory_revocation_base_point.clone().mul_tweak(&secp_ctx, &Scalar::from_be_bytes(rev_append_commit_hash_key).unwrap()) .expect("Multiplying a valid public key by a hash is expected to never fail per secp256k1 docs"); let broadcaster_contrib = per_commitment_point.clone().mul_tweak(&secp_ctx, &Scalar::from_be_bytes(commit_append_rev_hash_key).unwrap()) .expect("Multiplying a valid public key by a hash is expected to never fail per secp256k1 docs"); countersignatory_contrib.combine(&broadcaster_contrib) .expect("Addition only fails if the tweak is the inverse of the key. This is not possible when the tweak commits to the key.") } /// The set of public keys which are used in the creation of one commitment transaction. /// These are derived from the channel base keys and per-commitment data. /// /// A broadcaster key is provided from potential broadcaster of the computed transaction. /// A countersignatory key is coming from a protocol participant unable to broadcast the /// transaction. /// /// These keys are assumed to be good, either because the code derived them from /// channel basepoints via the new function, or they were obtained via /// CommitmentTransaction.trust().keys() because we trusted the source of the /// pre-calculated keys. #[derive(PartialEq, Eq, Clone)] pub struct TxCreationKeys { /// The broadcaster's per-commitment public key which was used to derive the other keys. pub per_commitment_point: PublicKey, /// The revocation key which is used to allow the broadcaster of the commitment /// transaction to provide their counterparty the ability to punish them if they broadcast /// an old state. pub revocation_key: PublicKey, /// Broadcaster's HTLC Key pub broadcaster_htlc_key: PublicKey, /// Countersignatory's HTLC Key pub countersignatory_htlc_key: PublicKey, /// Broadcaster's Payment Key (which isn't allowed to be spent from for some delay) pub broadcaster_delayed_payment_key: PublicKey, } impl_writeable_tlv_based!(TxCreationKeys, { (0, per_commitment_point, required), (2, revocation_key, required), (4, broadcaster_htlc_key, required), (6, countersignatory_htlc_key, required), (8, broadcaster_delayed_payment_key, required), }); /// One counterparty's public keys which do not change over the life of a channel. #[derive(Clone, Debug, PartialEq, Eq)] pub struct ChannelPublicKeys { /// The public key which is used to sign all commitment transactions, as it appears in the /// on-chain channel lock-in 2-of-2 multisig output. pub funding_pubkey: PublicKey, /// The base point which is used (with derive_public_revocation_key) to derive per-commitment /// revocation keys. This is combined with the per-commitment-secret generated by the /// counterparty to create a secret which the counterparty can reveal to revoke previous /// states. pub revocation_basepoint: PublicKey, /// The public key on which the non-broadcaster (ie the countersignatory) receives an immediately /// spendable primary channel balance on the broadcaster's commitment transaction. This key is /// static across every commitment transaction. pub payment_point: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment payment /// public key which receives non-HTLC-encumbered funds which are only available for spending /// after some delay (or can be claimed via the revocation path). pub delayed_payment_basepoint: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment public key /// which is used to encumber HTLC-in-flight outputs. pub htlc_basepoint: PublicKey, } impl_writeable_tlv_based!(ChannelPublicKeys, { (0, funding_pubkey, required), (2, revocation_basepoint, required), (4, payment_point, required), (6, delayed_payment_basepoint, required), (8, htlc_basepoint, required), }); impl TxCreationKeys { /// Create per-state keys from channel base points and the per-commitment point. /// Key set is asymmetric and can't be used as part of counter-signatory set of transactions. pub fn derive_new(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, broadcaster_delayed_payment_base: &PublicKey, broadcaster_htlc_base: &PublicKey, countersignatory_revocation_base: &PublicKey, countersignatory_htlc_base: &PublicKey) -> TxCreationKeys { TxCreationKeys { per_commitment_point: per_commitment_point.clone(), revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &countersignatory_revocation_base), broadcaster_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_htlc_base), countersignatory_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &countersignatory_htlc_base), broadcaster_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &broadcaster_delayed_payment_base), } } /// Generate per-state keys from channel static keys. /// Key set is asymmetric and can't be used as part of counter-signatory set of transactions. pub fn from_channel_static_keys(per_commitment_point: &PublicKey, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1) -> TxCreationKeys { TxCreationKeys::derive_new( &secp_ctx, &per_commitment_point, &broadcaster_keys.delayed_payment_basepoint, &broadcaster_keys.htlc_basepoint, &countersignatory_keys.revocation_basepoint, &countersignatory_keys.htlc_basepoint, ) } } /// The maximum length of a script returned by get_revokeable_redeemscript. // Calculated as 6 bytes of opcodes, 1 byte push plus 2 bytes for contest_delay, and two public // keys of 33 bytes (+ 1 push). pub const REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH: usize = 6 + 3 + 34*2; /// A script either spendable by the revocation /// key or the broadcaster_delayed_payment_key and satisfying the relative-locktime OP_CSV constrain. /// Encumbering a `to_holder` output on a commitment transaction or 2nd-stage HTLC transactions. pub fn get_revokeable_redeemscript(revocation_key: &PublicKey, contest_delay: u16, broadcaster_delayed_payment_key: &PublicKey) -> Script { let res = Builder::new().push_opcode(opcodes::all::OP_IF) .push_slice(&revocation_key.serialize()) .push_opcode(opcodes::all::OP_ELSE) .push_int(contest_delay as i64) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_DROP) .push_slice(&broadcaster_delayed_payment_key.serialize()) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_CHECKSIG) .into_script(); debug_assert!(res.len() <= REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH); res } /// Information about an HTLC as it appears in a commitment transaction #[derive(Clone, Debug, PartialEq, Eq)] pub struct HTLCOutputInCommitment { /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction). /// Note that this is not the same as whether it is ountbound *from us*. To determine that you /// need to compare this value to whether the commitment transaction in question is that of /// the counterparty or our own. pub offered: bool, /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is /// this divided by 1000. pub amount_msat: u64, /// The CLTV lock-time at which this HTLC expires. pub cltv_expiry: u32, /// The hash of the preimage which unlocks this HTLC. pub payment_hash: PaymentHash, /// The position within the commitment transactions' outputs. This may be None if the value is /// below the dust limit (in which case no output appears in the commitment transaction and the /// value is spent to additional transaction fees). pub transaction_output_index: Option, } impl_writeable_tlv_based!(HTLCOutputInCommitment, { (0, offered, required), (2, amount_msat, required), (4, cltv_expiry, required), (6, payment_hash, required), (8, transaction_output_index, option), }); #[inline] pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_htlc_key: &PublicKey, countersignatory_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script { let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner(); if htlc.offered { let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&countersignatory_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_NOTIF) .push_opcode(opcodes::all::OP_DROP) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&broadcaster_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF); if channel_type_features.supports_anchors_zero_fee_htlc_tx() { bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_DROP); } bldr.push_opcode(opcodes::all::OP_ENDIF) .into_script() } else { let mut bldr = Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&countersignatory_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&broadcaster_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_DROP) .push_int(htlc.cltv_expiry as i64) .push_opcode(opcodes::all::OP_CLTV) .push_opcode(opcodes::all::OP_DROP) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF); if channel_type_features.supports_anchors_zero_fee_htlc_tx() { bldr = bldr.push_opcode(opcodes::all::OP_PUSHNUM_1) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_DROP); } bldr.push_opcode(opcodes::all::OP_ENDIF) .into_script() } } /// Gets the witness redeemscript for an HTLC output in a commitment transaction. Note that htlc /// does not need to have its previous_output_index filled. #[inline] pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, keys: &TxCreationKeys) -> Script { get_htlc_redeemscript_with_explicit_keys(htlc, channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key) } /// Gets the redeemscript for a funding output from the two funding public keys. /// Note that the order of funding public keys does not matter. pub fn make_funding_redeemscript(broadcaster: &PublicKey, countersignatory: &PublicKey) -> Script { let broadcaster_funding_key = broadcaster.serialize(); let countersignatory_funding_key = countersignatory.serialize(); make_funding_redeemscript_from_slices(&broadcaster_funding_key, &countersignatory_funding_key) } pub(crate) fn make_funding_redeemscript_from_slices(broadcaster_funding_key: &[u8], countersignatory_funding_key: &[u8]) -> Script { let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2); if broadcaster_funding_key[..] < countersignatory_funding_key[..] { builder.push_slice(broadcaster_funding_key) .push_slice(countersignatory_funding_key) } else { builder.push_slice(countersignatory_funding_key) .push_slice(broadcaster_funding_key) }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script() } /// Builds an unsigned HTLC-Success or HTLC-Timeout transaction from the given channel and HTLC /// parameters. This is used by [`TrustedCommitmentTransaction::get_htlc_sigs`] to fetch the /// transaction which needs signing, and can be used to construct an HTLC transaction which is /// broadcastable given a counterparty HTLC signature. /// /// Panics if htlc.transaction_output_index.is_none() (as such HTLCs do not appear in the /// commitment transaction). pub fn build_htlc_transaction(commitment_txid: &Txid, feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction { let mut txins: Vec = Vec::new(); txins.push(build_htlc_input(commitment_txid, htlc, channel_type_features)); let mut txouts: Vec = Vec::new(); txouts.push(build_htlc_output( feerate_per_kw, contest_delay, htlc, channel_type_features, broadcaster_delayed_payment_key, revocation_key )); Transaction { version: 2, lock_time: PackedLockTime(if htlc.offered { htlc.cltv_expiry } else { 0 }), input: txins, output: txouts, } } pub(crate) fn build_htlc_input(commitment_txid: &Txid, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures) -> TxIn { TxIn { previous_output: OutPoint { txid: commitment_txid.clone(), vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"), }, script_sig: Script::new(), sequence: Sequence(if channel_type_features.supports_anchors_zero_fee_htlc_tx() { 1 } else { 0 }), witness: Witness::new(), } } pub(crate) fn build_htlc_output( feerate_per_kw: u32, contest_delay: u16, htlc: &HTLCOutputInCommitment, channel_type_features: &ChannelTypeFeatures, broadcaster_delayed_payment_key: &PublicKey, revocation_key: &PublicKey ) -> TxOut { let weight = if htlc.offered { htlc_timeout_tx_weight(channel_type_features) } else { htlc_success_tx_weight(channel_type_features) }; let output_value = if channel_type_features.supports_anchors_zero_fee_htlc_tx() && !channel_type_features.supports_anchors_nonzero_fee_htlc_tx() { htlc.amount_msat / 1000 } else { let total_fee = feerate_per_kw as u64 * weight / 1000; htlc.amount_msat / 1000 - total_fee }; TxOut { script_pubkey: get_revokeable_redeemscript(revocation_key, contest_delay, broadcaster_delayed_payment_key).to_v0_p2wsh(), value: output_value, } } /// Returns the witness required to satisfy and spend a HTLC input. pub fn build_htlc_input_witness( local_sig: &Signature, remote_sig: &Signature, preimage: &Option, redeem_script: &Script, channel_type_features: &ChannelTypeFeatures, ) -> Witness { let remote_sighash_type = if channel_type_features.supports_anchors_zero_fee_htlc_tx() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All }; let mut witness = Witness::new(); // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. witness.push(vec![]); witness.push_bitcoin_signature(&remote_sig.serialize_der(), remote_sighash_type); witness.push_bitcoin_signature(&local_sig.serialize_der(), EcdsaSighashType::All); if let Some(preimage) = preimage { witness.push(preimage.0.to_vec()); } else { // Due to BIP146 (MINIMALIF) this must be a zero-length element to relay. witness.push(vec![]); } witness.push(redeem_script.to_bytes()); witness } /// Pre-anchors channel type features did not use to get serialized in the following six structs: /// — [`ChannelTransactionParameters`] /// — [`CommitmentTransaction`] /// — [`CounterpartyOfferedHTLCOutput`] /// — [`CounterpartyReceivedHTLCOutput`] /// — [`HolderHTLCOutput`] /// — [`HolderFundingOutput`] /// /// To ensure a forwards-compatible serialization, we use odd TLV fields. However, if new features /// are used that could break security, where old signers should be prevented from handling the /// serialized data, an optional even-field TLV will be used as a stand-in to break compatibility. /// /// This method determines whether or not that option needs to be set based on the chanenl type /// features, and returns it. /// /// [`CounterpartyOfferedHTLCOutput`]: crate::chain::package::CounterpartyOfferedHTLCOutput /// [`CounterpartyReceivedHTLCOutput`]: crate::chain::package::CounterpartyReceivedHTLCOutput /// [`HolderHTLCOutput`]: crate::chain::package::HolderHTLCOutput /// [`HolderFundingOutput`]: crate::chain::package::HolderFundingOutput pub(crate) fn legacy_deserialization_prevention_marker_for_channel_type_features(features: &ChannelTypeFeatures) -> Option<()> { let mut legacy_version_bit_set = ChannelTypeFeatures::only_static_remote_key(); legacy_version_bit_set.set_scid_privacy_required(); legacy_version_bit_set.set_zero_conf_required(); if features.is_subset(&legacy_version_bit_set) { None } else { Some(()) } } /// Gets the witnessScript for the to_remote output when anchors are enabled. #[inline] pub fn get_to_countersignatory_with_anchors_redeemscript(payment_point: &PublicKey) -> Script { Builder::new() .push_slice(&payment_point.serialize()[..]) .push_opcode(opcodes::all::OP_CHECKSIGVERIFY) .push_int(1) .push_opcode(opcodes::all::OP_CSV) .into_script() } /// Gets the witnessScript for an anchor output from the funding public key. /// The witness in the spending input must be: /// /// After 16 blocks of confirmation, an alternative satisfying witness could be: /// <> /// (empty vector required to satisfy compliance with MINIMALIF-standard rule) #[inline] pub fn get_anchor_redeemscript(funding_pubkey: &PublicKey) -> Script { Builder::new().push_slice(&funding_pubkey.serialize()[..]) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_IFDUP) .push_opcode(opcodes::all::OP_NOTIF) .push_int(16) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_ENDIF) .into_script() } /// Locates the output with an anchor script paying to `funding_pubkey` within `commitment_tx`. pub(crate) fn get_anchor_output<'a>(commitment_tx: &'a Transaction, funding_pubkey: &PublicKey) -> Option<(u32, &'a TxOut)> { let anchor_script = chan_utils::get_anchor_redeemscript(funding_pubkey).to_v0_p2wsh(); commitment_tx.output.iter().enumerate() .find(|(_, txout)| txout.script_pubkey == anchor_script) .map(|(idx, txout)| (idx as u32, txout)) } /// Returns the witness required to satisfy and spend an anchor input. pub fn build_anchor_input_witness(funding_key: &PublicKey, funding_sig: &Signature) -> Witness { let anchor_redeem_script = chan_utils::get_anchor_redeemscript(funding_key); let mut ret = Witness::new(); ret.push_bitcoin_signature(&funding_sig.serialize_der(), EcdsaSighashType::All); ret.push(anchor_redeem_script.as_bytes()); ret } /// Per-channel data used to build transactions in conjunction with the per-commitment data (CommitmentTransaction). /// The fields are organized by holder/counterparty. /// /// Normally, this is converted to the broadcaster/countersignatory-organized DirectedChannelTransactionParameters /// before use, via the as_holder_broadcastable and as_counterparty_broadcastable functions. #[derive(Clone, Debug, PartialEq, Eq)] pub struct ChannelTransactionParameters { /// Holder public keys pub holder_pubkeys: ChannelPublicKeys, /// The contest delay selected by the holder, which applies to counterparty-broadcast transactions pub holder_selected_contest_delay: u16, /// Whether the holder is the initiator of this channel. /// This is an input to the commitment number obscure factor computation. pub is_outbound_from_holder: bool, /// The late-bound counterparty channel transaction parameters. /// These parameters are populated at the point in the protocol where the counterparty provides them. pub counterparty_parameters: Option, /// The late-bound funding outpoint pub funding_outpoint: Option, /// This channel's type, as negotiated during channel open. For old objects where this field /// wasn't serialized, it will default to static_remote_key at deserialization. pub channel_type_features: ChannelTypeFeatures } /// Late-bound per-channel counterparty data used to build transactions. #[derive(Clone, Debug, PartialEq, Eq)] pub struct CounterpartyChannelTransactionParameters { /// Counter-party public keys pub pubkeys: ChannelPublicKeys, /// The contest delay selected by the counterparty, which applies to holder-broadcast transactions pub selected_contest_delay: u16, } impl ChannelTransactionParameters { /// Whether the late bound parameters are populated. pub fn is_populated(&self) -> bool { self.counterparty_parameters.is_some() && self.funding_outpoint.is_some() } /// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters, /// given that the holder is the broadcaster. /// /// self.is_populated() must be true before calling this function. pub fn as_holder_broadcastable(&self) -> DirectedChannelTransactionParameters { assert!(self.is_populated(), "self.late_parameters must be set before using as_holder_broadcastable"); DirectedChannelTransactionParameters { inner: self, holder_is_broadcaster: true } } /// Convert the holder/counterparty parameters to broadcaster/countersignatory-organized parameters, /// given that the counterparty is the broadcaster. /// /// self.is_populated() must be true before calling this function. pub fn as_counterparty_broadcastable(&self) -> DirectedChannelTransactionParameters { assert!(self.is_populated(), "self.late_parameters must be set before using as_counterparty_broadcastable"); DirectedChannelTransactionParameters { inner: self, holder_is_broadcaster: false } } } impl_writeable_tlv_based!(CounterpartyChannelTransactionParameters, { (0, pubkeys, required), (2, selected_contest_delay, required), }); impl Writeable for ChannelTransactionParameters { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let legacy_deserialization_prevention_marker = legacy_deserialization_prevention_marker_for_channel_type_features(&self.channel_type_features); write_tlv_fields!(writer, { (0, self.holder_pubkeys, required), (2, self.holder_selected_contest_delay, required), (4, self.is_outbound_from_holder, required), (6, self.counterparty_parameters, option), (8, self.funding_outpoint, option), (10, legacy_deserialization_prevention_marker, option), (11, self.channel_type_features, required), }); Ok(()) } } impl Readable for ChannelTransactionParameters { fn read(reader: &mut R) -> Result { let mut holder_pubkeys = RequiredWrapper(None); let mut holder_selected_contest_delay = RequiredWrapper(None); let mut is_outbound_from_holder = RequiredWrapper(None); let mut counterparty_parameters = None; let mut funding_outpoint = None; let mut legacy_deserialization_prevention_marker: Option<()> = None; let mut channel_type_features = None; read_tlv_fields!(reader, { (0, holder_pubkeys, required), (2, holder_selected_contest_delay, required), (4, is_outbound_from_holder, required), (6, counterparty_parameters, option), (8, funding_outpoint, option), (10, legacy_deserialization_prevention_marker, option), (11, channel_type_features, option), }); let mut additional_features = ChannelTypeFeatures::empty(); additional_features.set_anchors_nonzero_fee_htlc_tx_required(); chain::package::verify_channel_type_features(&channel_type_features, Some(&additional_features))?; Ok(Self { holder_pubkeys: holder_pubkeys.0.unwrap(), holder_selected_contest_delay: holder_selected_contest_delay.0.unwrap(), is_outbound_from_holder: is_outbound_from_holder.0.unwrap(), counterparty_parameters, funding_outpoint, channel_type_features: channel_type_features.unwrap_or(ChannelTypeFeatures::only_static_remote_key()) }) } } /// Static channel fields used to build transactions given per-commitment fields, organized by /// broadcaster/countersignatory. /// /// This is derived from the holder/counterparty-organized ChannelTransactionParameters via the /// as_holder_broadcastable and as_counterparty_broadcastable functions. pub struct DirectedChannelTransactionParameters<'a> { /// The holder's channel static parameters inner: &'a ChannelTransactionParameters, /// Whether the holder is the broadcaster holder_is_broadcaster: bool, } impl<'a> DirectedChannelTransactionParameters<'a> { /// Get the channel pubkeys for the broadcaster pub fn broadcaster_pubkeys(&self) -> &ChannelPublicKeys { if self.holder_is_broadcaster { &self.inner.holder_pubkeys } else { &self.inner.counterparty_parameters.as_ref().unwrap().pubkeys } } /// Get the channel pubkeys for the countersignatory pub fn countersignatory_pubkeys(&self) -> &ChannelPublicKeys { if self.holder_is_broadcaster { &self.inner.counterparty_parameters.as_ref().unwrap().pubkeys } else { &self.inner.holder_pubkeys } } /// Get the contest delay applicable to the transactions. /// Note that the contest delay was selected by the countersignatory. pub fn contest_delay(&self) -> u16 { let counterparty_parameters = self.inner.counterparty_parameters.as_ref().unwrap(); if self.holder_is_broadcaster { counterparty_parameters.selected_contest_delay } else { self.inner.holder_selected_contest_delay } } /// Whether the channel is outbound from the broadcaster. /// /// The boolean representing the side that initiated the channel is /// an input to the commitment number obscure factor computation. pub fn is_outbound(&self) -> bool { if self.holder_is_broadcaster { self.inner.is_outbound_from_holder } else { !self.inner.is_outbound_from_holder } } /// The funding outpoint pub fn funding_outpoint(&self) -> OutPoint { self.inner.funding_outpoint.unwrap().into_bitcoin_outpoint() } /// Whether to use anchors for this channel pub fn channel_type_features(&self) -> &ChannelTypeFeatures { &self.inner.channel_type_features } } /// Information needed to build and sign a holder's commitment transaction. /// /// The transaction is only signed once we are ready to broadcast. #[derive(Clone)] pub struct HolderCommitmentTransaction { inner: CommitmentTransaction, /// Our counterparty's signature for the transaction pub counterparty_sig: Signature, /// All non-dust counterparty HTLC signatures, in the order they appear in the transaction pub counterparty_htlc_sigs: Vec, // Which order the signatures should go in when constructing the final commitment tx witness. // The user should be able to reconstruct this themselves, so we don't bother to expose it. holder_sig_first: bool, } impl Deref for HolderCommitmentTransaction { type Target = CommitmentTransaction; fn deref(&self) -> &Self::Target { &self.inner } } impl Eq for HolderCommitmentTransaction {} impl PartialEq for HolderCommitmentTransaction { // We dont care whether we are signed in equality comparison fn eq(&self, o: &Self) -> bool { self.inner == o.inner } } impl_writeable_tlv_based!(HolderCommitmentTransaction, { (0, inner, required), (2, counterparty_sig, required), (4, holder_sig_first, required), (6, counterparty_htlc_sigs, vec_type), }); impl HolderCommitmentTransaction { #[cfg(test)] pub fn dummy(htlcs: &mut Vec<(HTLCOutputInCommitment, ())>) -> Self { let secp_ctx = Secp256k1::new(); let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()); let dummy_sig = sign(&secp_ctx, &secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap()); let keys = TxCreationKeys { per_commitment_point: dummy_key.clone(), revocation_key: dummy_key.clone(), broadcaster_htlc_key: dummy_key.clone(), countersignatory_htlc_key: dummy_key.clone(), broadcaster_delayed_payment_key: dummy_key.clone(), }; let channel_pubkeys = ChannelPublicKeys { funding_pubkey: dummy_key.clone(), revocation_basepoint: dummy_key.clone(), payment_point: dummy_key.clone(), delayed_payment_basepoint: dummy_key.clone(), htlc_basepoint: dummy_key.clone() }; let channel_parameters = ChannelTransactionParameters { holder_pubkeys: channel_pubkeys.clone(), holder_selected_contest_delay: 0, is_outbound_from_holder: false, counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: channel_pubkeys.clone(), selected_contest_delay: 0 }), funding_outpoint: Some(chain::transaction::OutPoint { txid: Txid::all_zeros(), index: 0 }), channel_type_features: ChannelTypeFeatures::only_static_remote_key(), }; let mut counterparty_htlc_sigs = Vec::new(); for _ in 0..htlcs.len() { counterparty_htlc_sigs.push(dummy_sig); } let inner = CommitmentTransaction::new_with_auxiliary_htlc_data(0, 0, 0, dummy_key.clone(), dummy_key.clone(), keys, 0, htlcs, &channel_parameters.as_counterparty_broadcastable()); htlcs.sort_by_key(|htlc| htlc.0.transaction_output_index); HolderCommitmentTransaction { inner, counterparty_sig: dummy_sig, counterparty_htlc_sigs, holder_sig_first: false } } /// Create a new holder transaction with the given counterparty signatures. /// The funding keys are used to figure out which signature should go first when building the transaction for broadcast. pub fn new(commitment_tx: CommitmentTransaction, counterparty_sig: Signature, counterparty_htlc_sigs: Vec, holder_funding_key: &PublicKey, counterparty_funding_key: &PublicKey) -> Self { Self { inner: commitment_tx, counterparty_sig, counterparty_htlc_sigs, holder_sig_first: holder_funding_key.serialize()[..] < counterparty_funding_key.serialize()[..], } } pub(crate) fn add_holder_sig(&self, funding_redeemscript: &Script, holder_sig: Signature) -> Transaction { // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. let mut tx = self.inner.built.transaction.clone(); tx.input[0].witness.push(Vec::new()); if self.holder_sig_first { tx.input[0].witness.push_bitcoin_signature(&holder_sig.serialize_der(), EcdsaSighashType::All); tx.input[0].witness.push_bitcoin_signature(&self.counterparty_sig.serialize_der(), EcdsaSighashType::All); } else { tx.input[0].witness.push_bitcoin_signature(&self.counterparty_sig.serialize_der(), EcdsaSighashType::All); tx.input[0].witness.push_bitcoin_signature(&holder_sig.serialize_der(), EcdsaSighashType::All); } tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); tx } } /// A pre-built Bitcoin commitment transaction and its txid. #[derive(Clone)] pub struct BuiltCommitmentTransaction { /// The commitment transaction pub transaction: Transaction, /// The txid for the commitment transaction. /// /// This is provided as a performance optimization, instead of calling transaction.txid() /// multiple times. pub txid: Txid, } impl_writeable_tlv_based!(BuiltCommitmentTransaction, { (0, transaction, required), (2, txid, required), }); impl BuiltCommitmentTransaction { /// Get the SIGHASH_ALL sighash value of the transaction. /// /// This can be used to verify a signature. pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message { let sighash = &sighash::SighashCache::new(&self.transaction).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..]; hash_to_message!(sighash) } /// Signs the counterparty's commitment transaction. pub fn sign_counterparty_commitment(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) -> Signature { let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis); sign(secp_ctx, &sighash, funding_key) } /// Signs the holder commitment transaction because we are about to broadcast it. pub fn sign_holder_commitment( &self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, entropy_source: &ES, secp_ctx: &Secp256k1 ) -> Signature where ES::Target: EntropySource { let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis); sign_with_aux_rand(secp_ctx, &sighash, funding_key, entropy_source) } } /// This class tracks the per-transaction information needed to build a closing transaction and will /// actually build it and sign. /// /// This class can be used inside a signer implementation to generate a signature given the relevant /// secret key. #[derive(Clone, Hash, PartialEq, Eq)] pub struct ClosingTransaction { to_holder_value_sat: u64, to_counterparty_value_sat: u64, to_holder_script: Script, to_counterparty_script: Script, built: Transaction, } impl ClosingTransaction { /// Construct an object of the class pub fn new( to_holder_value_sat: u64, to_counterparty_value_sat: u64, to_holder_script: Script, to_counterparty_script: Script, funding_outpoint: OutPoint, ) -> Self { let built = build_closing_transaction( to_holder_value_sat, to_counterparty_value_sat, to_holder_script.clone(), to_counterparty_script.clone(), funding_outpoint ); ClosingTransaction { to_holder_value_sat, to_counterparty_value_sat, to_holder_script, to_counterparty_script, built } } /// Trust our pre-built transaction. /// /// Applies a wrapper which allows access to the transaction. /// /// This should only be used if you fully trust the builder of this object. It should not /// be used by an external signer - instead use the verify function. pub fn trust(&self) -> TrustedClosingTransaction { TrustedClosingTransaction { inner: self } } /// Verify our pre-built transaction. /// /// Applies a wrapper which allows access to the transaction. /// /// An external validating signer must call this method before signing /// or using the built transaction. pub fn verify(&self, funding_outpoint: OutPoint) -> Result { let built = build_closing_transaction( self.to_holder_value_sat, self.to_counterparty_value_sat, self.to_holder_script.clone(), self.to_counterparty_script.clone(), funding_outpoint ); if self.built != built { return Err(()) } Ok(TrustedClosingTransaction { inner: self }) } /// The value to be sent to the holder, or zero if the output will be omitted pub fn to_holder_value_sat(&self) -> u64 { self.to_holder_value_sat } /// The value to be sent to the counterparty, or zero if the output will be omitted pub fn to_counterparty_value_sat(&self) -> u64 { self.to_counterparty_value_sat } /// The destination of the holder's output pub fn to_holder_script(&self) -> &Script { &self.to_holder_script } /// The destination of the counterparty's output pub fn to_counterparty_script(&self) -> &Script { &self.to_counterparty_script } } /// A wrapper on ClosingTransaction indicating that the built bitcoin /// transaction is trusted. /// /// See trust() and verify() functions on CommitmentTransaction. /// /// This structure implements Deref. pub struct TrustedClosingTransaction<'a> { inner: &'a ClosingTransaction, } impl<'a> Deref for TrustedClosingTransaction<'a> { type Target = ClosingTransaction; fn deref(&self) -> &Self::Target { self.inner } } impl<'a> TrustedClosingTransaction<'a> { /// The pre-built Bitcoin commitment transaction pub fn built_transaction(&self) -> &Transaction { &self.inner.built } /// Get the SIGHASH_ALL sighash value of the transaction. /// /// This can be used to verify a signature. pub fn get_sighash_all(&self, funding_redeemscript: &Script, channel_value_satoshis: u64) -> Message { let sighash = &sighash::SighashCache::new(&self.inner.built).segwit_signature_hash(0, funding_redeemscript, channel_value_satoshis, EcdsaSighashType::All).unwrap()[..]; hash_to_message!(sighash) } /// Sign a transaction, either because we are counter-signing the counterparty's transaction or /// because we are about to broadcast a holder transaction. pub fn sign(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) -> Signature { let sighash = self.get_sighash_all(funding_redeemscript, channel_value_satoshis); sign(secp_ctx, &sighash, funding_key) } } /// This class tracks the per-transaction information needed to build a commitment transaction and will /// actually build it and sign. It is used for holder transactions that we sign only when needed /// and for transactions we sign for the counterparty. /// /// This class can be used inside a signer implementation to generate a signature given the relevant /// secret key. #[derive(Clone)] pub struct CommitmentTransaction { commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, feerate_per_kw: u32, htlcs: Vec, // Note that on upgrades, some features of existing outputs may be missed. channel_type_features: ChannelTypeFeatures, // A cache of the parties' pubkeys required to construct the transaction, see doc for trust() keys: TxCreationKeys, // For access to the pre-built transaction, see doc for trust() built: BuiltCommitmentTransaction, } impl Eq for CommitmentTransaction {} impl PartialEq for CommitmentTransaction { fn eq(&self, o: &Self) -> bool { let eq = self.commitment_number == o.commitment_number && self.to_broadcaster_value_sat == o.to_broadcaster_value_sat && self.to_countersignatory_value_sat == o.to_countersignatory_value_sat && self.feerate_per_kw == o.feerate_per_kw && self.htlcs == o.htlcs && self.channel_type_features == o.channel_type_features && self.keys == o.keys; if eq { debug_assert_eq!(self.built.transaction, o.built.transaction); debug_assert_eq!(self.built.txid, o.built.txid); } eq } } impl Writeable for CommitmentTransaction { fn write(&self, writer: &mut W) -> Result<(), io::Error> { let legacy_deserialization_prevention_marker = legacy_deserialization_prevention_marker_for_channel_type_features(&self.channel_type_features); write_tlv_fields!(writer, { (0, self.commitment_number, required), (2, self.to_broadcaster_value_sat, required), (4, self.to_countersignatory_value_sat, required), (6, self.feerate_per_kw, required), (8, self.keys, required), (10, self.built, required), (12, self.htlcs, vec_type), (14, legacy_deserialization_prevention_marker, option), (15, self.channel_type_features, required), }); Ok(()) } } impl Readable for CommitmentTransaction { fn read(reader: &mut R) -> Result { let mut commitment_number = RequiredWrapper(None); let mut to_broadcaster_value_sat = RequiredWrapper(None); let mut to_countersignatory_value_sat = RequiredWrapper(None); let mut feerate_per_kw = RequiredWrapper(None); let mut keys = RequiredWrapper(None); let mut built = RequiredWrapper(None); _init_tlv_field_var!(htlcs, vec_type); let mut legacy_deserialization_prevention_marker: Option<()> = None; let mut channel_type_features = None; read_tlv_fields!(reader, { (0, commitment_number, required), (2, to_broadcaster_value_sat, required), (4, to_countersignatory_value_sat, required), (6, feerate_per_kw, required), (8, keys, required), (10, built, required), (12, htlcs, vec_type), (14, legacy_deserialization_prevention_marker, option), (15, channel_type_features, option), }); let mut additional_features = ChannelTypeFeatures::empty(); additional_features.set_anchors_nonzero_fee_htlc_tx_required(); chain::package::verify_channel_type_features(&channel_type_features, Some(&additional_features))?; Ok(Self { commitment_number: commitment_number.0.unwrap(), to_broadcaster_value_sat: to_broadcaster_value_sat.0.unwrap(), to_countersignatory_value_sat: to_countersignatory_value_sat.0.unwrap(), feerate_per_kw: feerate_per_kw.0.unwrap(), keys: keys.0.unwrap(), built: built.0.unwrap(), htlcs: _init_tlv_based_struct_field!(htlcs, vec_type), channel_type_features: channel_type_features.unwrap_or(ChannelTypeFeatures::only_static_remote_key()) }) } } impl CommitmentTransaction { /// Construct an object of the class while assigning transaction output indices to HTLCs. /// /// Populates HTLCOutputInCommitment.transaction_output_index in htlcs_with_aux. /// /// The generic T allows the caller to match the HTLC output index with auxiliary data. /// This auxiliary data is not stored in this object. /// /// Only include HTLCs that are above the dust limit for the channel. /// /// This is not exported to bindings users due to the generic though we likely should expose a version without pub fn new_with_auxiliary_htlc_data(commitment_number: u64, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, broadcaster_funding_key: PublicKey, countersignatory_funding_key: PublicKey, keys: TxCreationKeys, feerate_per_kw: u32, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters) -> CommitmentTransaction { // Sort outputs and populate output indices while keeping track of the auxiliary data let (outputs, htlcs) = Self::internal_build_outputs(&keys, to_broadcaster_value_sat, to_countersignatory_value_sat, htlcs_with_aux, channel_parameters, &broadcaster_funding_key, &countersignatory_funding_key).unwrap(); let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(commitment_number, channel_parameters); let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs); let txid = transaction.txid(); CommitmentTransaction { commitment_number, to_broadcaster_value_sat, to_countersignatory_value_sat, feerate_per_kw, htlcs, channel_type_features: channel_parameters.channel_type_features().clone(), keys, built: BuiltCommitmentTransaction { transaction, txid }, } } /// Use non-zero fee anchors /// /// This is not exported to bindings users due to move, and also not likely to be useful for binding users pub fn with_non_zero_fee_anchors(mut self) -> Self { self.channel_type_features.set_anchors_nonzero_fee_htlc_tx_required(); self } fn internal_rebuild_transaction(&self, keys: &TxCreationKeys, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result { let (obscured_commitment_transaction_number, txins) = Self::internal_build_inputs(self.commitment_number, channel_parameters); let mut htlcs_with_aux = self.htlcs.iter().map(|h| (h.clone(), ())).collect(); let (outputs, _) = Self::internal_build_outputs(keys, self.to_broadcaster_value_sat, self.to_countersignatory_value_sat, &mut htlcs_with_aux, channel_parameters, broadcaster_funding_key, countersignatory_funding_key)?; let transaction = Self::make_transaction(obscured_commitment_transaction_number, txins, outputs); let txid = transaction.txid(); let built_transaction = BuiltCommitmentTransaction { transaction, txid }; Ok(built_transaction) } fn make_transaction(obscured_commitment_transaction_number: u64, txins: Vec, outputs: Vec) -> Transaction { Transaction { version: 2, lock_time: PackedLockTime(((0x20 as u32) << 8 * 3) | ((obscured_commitment_transaction_number & 0xffffffu64) as u32)), input: txins, output: outputs, } } // This is used in two cases: // - initial sorting of outputs / HTLCs in the constructor, in which case T is auxiliary data the // caller needs to have sorted together with the HTLCs so it can keep track of the output index // - building of a bitcoin transaction during a verify() call, in which case T is just () fn internal_build_outputs(keys: &TxCreationKeys, to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, htlcs_with_aux: &mut Vec<(HTLCOutputInCommitment, T)>, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_funding_key: &PublicKey, countersignatory_funding_key: &PublicKey) -> Result<(Vec, Vec), ()> { let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys(); let contest_delay = channel_parameters.contest_delay(); let mut txouts: Vec<(TxOut, Option<&mut HTLCOutputInCommitment>)> = Vec::new(); if to_countersignatory_value_sat > 0 { let script = if channel_parameters.channel_type_features().supports_anchors_zero_fee_htlc_tx() { get_to_countersignatory_with_anchors_redeemscript(&countersignatory_pubkeys.payment_point).to_v0_p2wsh() } else { Payload::p2wpkh(&BitcoinPublicKey::new(countersignatory_pubkeys.payment_point)).unwrap().script_pubkey() }; txouts.push(( TxOut { script_pubkey: script.clone(), value: to_countersignatory_value_sat, }, None, )) } if to_broadcaster_value_sat > 0 { let redeem_script = get_revokeable_redeemscript( &keys.revocation_key, contest_delay, &keys.broadcaster_delayed_payment_key, ); txouts.push(( TxOut { script_pubkey: redeem_script.to_v0_p2wsh(), value: to_broadcaster_value_sat, }, None, )); } if channel_parameters.channel_type_features().supports_anchors_zero_fee_htlc_tx() { if to_broadcaster_value_sat > 0 || !htlcs_with_aux.is_empty() { let anchor_script = get_anchor_redeemscript(broadcaster_funding_key); txouts.push(( TxOut { script_pubkey: anchor_script.to_v0_p2wsh(), value: ANCHOR_OUTPUT_VALUE_SATOSHI, }, None, )); } if to_countersignatory_value_sat > 0 || !htlcs_with_aux.is_empty() { let anchor_script = get_anchor_redeemscript(countersignatory_funding_key); txouts.push(( TxOut { script_pubkey: anchor_script.to_v0_p2wsh(), value: ANCHOR_OUTPUT_VALUE_SATOSHI, }, None, )); } } let mut htlcs = Vec::with_capacity(htlcs_with_aux.len()); for (htlc, _) in htlcs_with_aux { let script = chan_utils::get_htlc_redeemscript(&htlc, &channel_parameters.channel_type_features(), &keys); let txout = TxOut { script_pubkey: script.to_v0_p2wsh(), value: htlc.amount_msat / 1000, }; txouts.push((txout, Some(htlc))); } // Sort output in BIP-69 order (amount, scriptPubkey). Tie-breaks based on HTLC // CLTV expiration height. sort_outputs(&mut txouts, |a, b| { if let &Some(ref a_htlcout) = a { if let &Some(ref b_htlcout) = b { a_htlcout.cltv_expiry.cmp(&b_htlcout.cltv_expiry) // Note that due to hash collisions, we have to have a fallback comparison // here for fuzzing mode (otherwise at least chanmon_fail_consistency // may fail)! .then(a_htlcout.payment_hash.0.cmp(&b_htlcout.payment_hash.0)) // For non-HTLC outputs, if they're copying our SPK we don't really care if we // close the channel due to mismatches - they're doing something dumb: } else { cmp::Ordering::Equal } } else { cmp::Ordering::Equal } }); let mut outputs = Vec::with_capacity(txouts.len()); for (idx, out) in txouts.drain(..).enumerate() { if let Some(htlc) = out.1 { htlc.transaction_output_index = Some(idx as u32); htlcs.push(htlc.clone()); } outputs.push(out.0); } Ok((outputs, htlcs)) } fn internal_build_inputs(commitment_number: u64, channel_parameters: &DirectedChannelTransactionParameters) -> (u64, Vec) { let broadcaster_pubkeys = channel_parameters.broadcaster_pubkeys(); let countersignatory_pubkeys = channel_parameters.countersignatory_pubkeys(); let commitment_transaction_number_obscure_factor = get_commitment_transaction_number_obscure_factor( &broadcaster_pubkeys.payment_point, &countersignatory_pubkeys.payment_point, channel_parameters.is_outbound(), ); let obscured_commitment_transaction_number = commitment_transaction_number_obscure_factor ^ (INITIAL_COMMITMENT_NUMBER - commitment_number); let txins = { let mut ins: Vec = Vec::new(); ins.push(TxIn { previous_output: channel_parameters.funding_outpoint(), script_sig: Script::new(), sequence: Sequence(((0x80 as u32) << 8 * 3) | ((obscured_commitment_transaction_number >> 3 * 8) as u32)), witness: Witness::new(), }); ins }; (obscured_commitment_transaction_number, txins) } /// The backwards-counting commitment number pub fn commitment_number(&self) -> u64 { self.commitment_number } /// The value to be sent to the broadcaster pub fn to_broadcaster_value_sat(&self) -> u64 { self.to_broadcaster_value_sat } /// The value to be sent to the counterparty pub fn to_countersignatory_value_sat(&self) -> u64 { self.to_countersignatory_value_sat } /// The feerate paid per 1000-weight-unit in this commitment transaction. pub fn feerate_per_kw(&self) -> u32 { self.feerate_per_kw } /// The non-dust HTLCs (direction, amt, height expiration, hash, transaction output index) /// which were included in this commitment transaction in output order. /// The transaction index is always populated. /// /// This is not exported to bindings users as we cannot currently convert Vec references to/from C, though we should /// expose a less effecient version which creates a Vec of references in the future. pub fn htlcs(&self) -> &Vec { &self.htlcs } /// Trust our pre-built transaction and derived transaction creation public keys. /// /// Applies a wrapper which allows access to these fields. /// /// This should only be used if you fully trust the builder of this object. It should not /// be used by an external signer - instead use the verify function. pub fn trust(&self) -> TrustedCommitmentTransaction { TrustedCommitmentTransaction { inner: self } } /// Verify our pre-built transaction and derived transaction creation public keys. /// /// Applies a wrapper which allows access to these fields. /// /// An external validating signer must call this method before signing /// or using the built transaction. pub fn verify(&self, channel_parameters: &DirectedChannelTransactionParameters, broadcaster_keys: &ChannelPublicKeys, countersignatory_keys: &ChannelPublicKeys, secp_ctx: &Secp256k1) -> Result { // This is the only field of the key cache that we trust let per_commitment_point = self.keys.per_commitment_point; let keys = TxCreationKeys::from_channel_static_keys(&per_commitment_point, broadcaster_keys, countersignatory_keys, secp_ctx); if keys != self.keys { return Err(()); } let tx = self.internal_rebuild_transaction(&keys, channel_parameters, &broadcaster_keys.funding_pubkey, &countersignatory_keys.funding_pubkey)?; if self.built.transaction != tx.transaction || self.built.txid != tx.txid { return Err(()); } Ok(TrustedCommitmentTransaction { inner: self }) } } /// A wrapper on CommitmentTransaction indicating that the derived fields (the built bitcoin /// transaction and the transaction creation keys) are trusted. /// /// See trust() and verify() functions on CommitmentTransaction. /// /// This structure implements Deref. pub struct TrustedCommitmentTransaction<'a> { inner: &'a CommitmentTransaction, } impl<'a> Deref for TrustedCommitmentTransaction<'a> { type Target = CommitmentTransaction; fn deref(&self) -> &Self::Target { self.inner } } impl<'a> TrustedCommitmentTransaction<'a> { /// The transaction ID of the built Bitcoin transaction pub fn txid(&self) -> Txid { self.inner.built.txid } /// The pre-built Bitcoin commitment transaction pub fn built_transaction(&self) -> &BuiltCommitmentTransaction { &self.inner.built } /// The pre-calculated transaction creation public keys. pub fn keys(&self) -> &TxCreationKeys { &self.inner.keys } /// Should anchors be used. pub fn channel_type_features(&self) -> &ChannelTypeFeatures { &self.inner.channel_type_features } /// Get a signature for each HTLC which was included in the commitment transaction (ie for /// which HTLCOutputInCommitment::transaction_output_index.is_some()). /// /// The returned Vec has one entry for each HTLC, and in the same order. /// /// This function is only valid in the holder commitment context, it always uses EcdsaSighashType::All. pub fn get_htlc_sigs( &self, htlc_base_key: &SecretKey, channel_parameters: &DirectedChannelTransactionParameters, entropy_source: &ES, secp_ctx: &Secp256k1, ) -> Result, ()> where ES::Target: EntropySource { let inner = self.inner; let keys = &inner.keys; let txid = inner.built.txid; let mut ret = Vec::with_capacity(inner.htlcs.len()); let holder_htlc_key = derive_private_key(secp_ctx, &inner.keys.per_commitment_point, htlc_base_key); for this_htlc in inner.htlcs.iter() { assert!(this_htlc.transaction_output_index.is_some()); let htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &self.channel_type_features, &keys.broadcaster_delayed_payment_key, &keys.revocation_key); let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &self.channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key); let sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, this_htlc.amount_msat / 1000, EcdsaSighashType::All).unwrap()[..]); ret.push(sign_with_aux_rand(secp_ctx, &sighash, &holder_htlc_key, entropy_source)); } Ok(ret) } /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the holder HTLC transaction signature. pub(crate) fn get_signed_htlc_tx(&self, channel_parameters: &DirectedChannelTransactionParameters, htlc_index: usize, counterparty_signature: &Signature, signature: &Signature, preimage: &Option) -> Transaction { let inner = self.inner; let keys = &inner.keys; let txid = inner.built.txid; let this_htlc = &inner.htlcs[htlc_index]; assert!(this_htlc.transaction_output_index.is_some()); // if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction. if !this_htlc.offered && preimage.is_none() { unreachable!(); } // Further, we should never be provided the preimage for an HTLC-Timeout transaction. if this_htlc.offered && preimage.is_some() { unreachable!(); } let mut htlc_tx = build_htlc_transaction(&txid, inner.feerate_per_kw, channel_parameters.contest_delay(), &this_htlc, &self.channel_type_features, &keys.broadcaster_delayed_payment_key, &keys.revocation_key); let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc, &self.channel_type_features, &keys.broadcaster_htlc_key, &keys.countersignatory_htlc_key, &keys.revocation_key); htlc_tx.input[0].witness = chan_utils::build_htlc_input_witness( signature, counterparty_signature, preimage, &htlc_redeemscript, &self.channel_type_features, ); htlc_tx } } /// Commitment transaction numbers which appear in the transactions themselves are XOR'd with a /// shared secret first. This prevents on-chain observers from discovering how many commitment /// transactions occurred in a channel before it was closed. /// /// This function gets the shared secret from relevant channel public keys and can be used to /// "decrypt" the commitment transaction number given a commitment transaction on-chain. pub fn get_commitment_transaction_number_obscure_factor( broadcaster_payment_basepoint: &PublicKey, countersignatory_payment_basepoint: &PublicKey, outbound_from_broadcaster: bool, ) -> u64 { let mut sha = Sha256::engine(); if outbound_from_broadcaster { sha.input(&broadcaster_payment_basepoint.serialize()); sha.input(&countersignatory_payment_basepoint.serialize()); } else { sha.input(&countersignatory_payment_basepoint.serialize()); sha.input(&broadcaster_payment_basepoint.serialize()); } let res = Sha256::from_engine(sha).into_inner(); ((res[26] as u64) << 5 * 8) | ((res[27] as u64) << 4 * 8) | ((res[28] as u64) << 3 * 8) | ((res[29] as u64) << 2 * 8) | ((res[30] as u64) << 1 * 8) | ((res[31] as u64) << 0 * 8) } #[cfg(test)] mod tests { use super::CounterpartyCommitmentSecrets; use crate::{hex, chain}; use crate::prelude::*; use crate::ln::chan_utils::{get_htlc_redeemscript, get_to_countersignatory_with_anchors_redeemscript, CommitmentTransaction, TxCreationKeys, ChannelTransactionParameters, CounterpartyChannelTransactionParameters, HTLCOutputInCommitment}; use bitcoin::secp256k1::{PublicKey, SecretKey, Secp256k1}; use crate::util::test_utils; use crate::sign::{ChannelSigner, SignerProvider}; use bitcoin::{Network, Txid}; use bitcoin::hashes::Hash; use crate::ln::PaymentHash; use bitcoin::hashes::hex::ToHex; use bitcoin::util::address::Payload; use bitcoin::PublicKey as BitcoinPublicKey; use crate::ln::features::ChannelTypeFeatures; #[test] fn test_anchors() { let secp_ctx = Secp256k1::new(); let seed = [42; 32]; let network = Network::Testnet; let keys_provider = test_utils::TestKeysInterface::new(&seed, network); let signer = keys_provider.derive_channel_signer(3000, keys_provider.generate_channel_keys_id(false, 1_000_000, 0)); let counterparty_signer = keys_provider.derive_channel_signer(3000, keys_provider.generate_channel_keys_id(true, 1_000_000, 1)); let delayed_payment_base = &signer.pubkeys().delayed_payment_basepoint; let per_commitment_secret = SecretKey::from_slice(&hex::decode("1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100").unwrap()[..]).unwrap(); let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret); let htlc_basepoint = &signer.pubkeys().htlc_basepoint; let holder_pubkeys = signer.pubkeys(); let counterparty_pubkeys = counterparty_signer.pubkeys(); let keys = TxCreationKeys::derive_new(&secp_ctx, &per_commitment_point, delayed_payment_base, htlc_basepoint, &counterparty_pubkeys.revocation_basepoint, &counterparty_pubkeys.htlc_basepoint); let mut channel_parameters = ChannelTransactionParameters { holder_pubkeys: holder_pubkeys.clone(), holder_selected_contest_delay: 0, is_outbound_from_holder: false, counterparty_parameters: Some(CounterpartyChannelTransactionParameters { pubkeys: counterparty_pubkeys.clone(), selected_contest_delay: 0 }), funding_outpoint: Some(chain::transaction::OutPoint { txid: Txid::all_zeros(), index: 0 }), channel_type_features: ChannelTypeFeatures::only_static_remote_key(), }; let mut htlcs_with_aux: Vec<(_, ())> = Vec::new(); // Generate broadcaster and counterparty outputs let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 1000, 2000, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 2); assert_eq!(tx.built.transaction.output[1].script_pubkey, Payload::p2wpkh(&BitcoinPublicKey::new(counterparty_pubkeys.payment_point)).unwrap().script_pubkey()); // Generate broadcaster and counterparty outputs as well as two anchors channel_parameters.channel_type_features = ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(); let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 1000, 2000, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 4); assert_eq!(tx.built.transaction.output[3].script_pubkey, get_to_countersignatory_with_anchors_redeemscript(&counterparty_pubkeys.payment_point).to_v0_p2wsh()); // Generate broadcaster output and anchor let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 3000, 0, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 2); // Generate counterparty output and anchor let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 0, 3000, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut htlcs_with_aux, &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 2); let received_htlc = HTLCOutputInCommitment { offered: false, amount_msat: 400000, cltv_expiry: 100, payment_hash: PaymentHash([42; 32]), transaction_output_index: None, }; let offered_htlc = HTLCOutputInCommitment { offered: true, amount_msat: 600000, cltv_expiry: 100, payment_hash: PaymentHash([43; 32]), transaction_output_index: None, }; // Generate broadcaster output and received and offered HTLC outputs, w/o anchors channel_parameters.channel_type_features = ChannelTypeFeatures::only_static_remote_key(); let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 3000, 0, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())], &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 3); assert_eq!(tx.built.transaction.output[0].script_pubkey, get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh()); assert_eq!(tx.built.transaction.output[1].script_pubkey, get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh()); assert_eq!(get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh().to_hex(), "0020e43a7c068553003fe68fcae424fb7b28ec5ce48cd8b6744b3945631389bad2fb"); assert_eq!(get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::only_static_remote_key(), &keys).to_v0_p2wsh().to_hex(), "0020215d61bba56b19e9eadb6107f5a85d7f99c40f65992443f69229c290165bc00d"); // Generate broadcaster output and received and offered HTLC outputs, with anchors channel_parameters.channel_type_features = ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(); let tx = CommitmentTransaction::new_with_auxiliary_htlc_data( 0, 3000, 0, holder_pubkeys.funding_pubkey, counterparty_pubkeys.funding_pubkey, keys.clone(), 1, &mut vec![(received_htlc.clone(), ()), (offered_htlc.clone(), ())], &channel_parameters.as_holder_broadcastable() ); assert_eq!(tx.built.transaction.output.len(), 5); assert_eq!(tx.built.transaction.output[2].script_pubkey, get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh()); assert_eq!(tx.built.transaction.output[3].script_pubkey, get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh()); assert_eq!(get_htlc_redeemscript(&received_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh().to_hex(), "0020b70d0649c72b38756885c7a30908d912a7898dd5d79457a7280b8e9a20f3f2bc"); assert_eq!(get_htlc_redeemscript(&offered_htlc, &ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies(), &keys).to_v0_p2wsh().to_hex(), "002087a3faeb1950a469c0e2db4a79b093a41b9526e5a6fc6ef5cb949bde3be379c7"); } #[test] fn test_per_commitment_storage() { // Test vectors from BOLT 3: let mut secrets: Vec<[u8; 32]> = Vec::new(); let mut monitor; macro_rules! test_secrets { () => { let mut idx = 281474976710655; for secret in secrets.iter() { assert_eq!(monitor.get_secret(idx).unwrap(), *secret); idx -= 1; } assert_eq!(monitor.get_min_seen_secret(), idx + 1); assert!(monitor.get_secret(idx).is_none()); }; } { // insert_secret correct sequence monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); } { // insert_secret #1 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); assert!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #2 incorrect (#1 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #3 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #4 incorrect (1,2,3 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #5 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); assert!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #6 incorrect (5 derived from incorrect) monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #7 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } { // insert_secret #8 incorrect monitor = CounterpartyCommitmentSecrets::new(); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap()); assert!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).is_err()); } } }