// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! The top-level network map tracking logic lives here. use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE; use bitcoin::secp256k1::key::PublicKey; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::Hash; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::transaction::TxOut; use bitcoin::blockdata::opcodes; use bitcoin::hash_types::BlockHash; use chain; use chain::Access; use ln::features::{ChannelFeatures, NodeFeatures}; use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT}; use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField}; use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd}; use ln::msgs; use util::ser::{Writeable, Readable, Writer}; use util::logger::{Logger, Level}; use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider}; use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK}; use io; use prelude::*; use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry}; use core::{cmp, fmt}; use sync::{RwLock, RwLockReadGuard}; use core::sync::atomic::{AtomicUsize, Ordering}; use sync::Mutex; use core::ops::Deref; use bitcoin::hashes::hex::ToHex; #[cfg(feature = "std")] use std::time::{SystemTime, UNIX_EPOCH}; /// We remove stale channel directional info two weeks after the last update, per BOLT 7's /// suggestion. const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14; /// The maximum number of extra bytes which we do not understand in a gossip message before we will /// refuse to relay the message. const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024; /// Maximum number of short_channel_ids that will be encoded in one gossip reply message. /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations. const MAX_SCIDS_PER_REPLY: usize = 8000; /// Represents the compressed public key of a node #[derive(Clone, Copy)] pub struct NodeId([u8; PUBLIC_KEY_SIZE]); impl NodeId { /// Create a new NodeId from a public key pub fn from_pubkey(pubkey: &PublicKey) -> Self { NodeId(pubkey.serialize()) } /// Get the public key slice from this NodeId pub fn as_slice(&self) -> &[u8] { &self.0 } } impl fmt::Debug for NodeId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "NodeId({})", log_bytes!(self.0)) } } impl core::hash::Hash for NodeId { fn hash(&self, hasher: &mut H) { self.0.hash(hasher); } } impl Eq for NodeId {} impl PartialEq for NodeId { fn eq(&self, other: &Self) -> bool { self.0[..] == other.0[..] } } impl cmp::PartialOrd for NodeId { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for NodeId { fn cmp(&self, other: &Self) -> cmp::Ordering { self.0[..].cmp(&other.0[..]) } } impl Writeable for NodeId { fn write(&self, writer: &mut W) -> Result<(), io::Error> { writer.write_all(&self.0)?; Ok(()) } } impl Readable for NodeId { fn read(reader: &mut R) -> Result { let mut buf = [0; PUBLIC_KEY_SIZE]; reader.read_exact(&mut buf)?; Ok(Self(buf)) } } /// Represents the network as nodes and channels between them pub struct NetworkGraph { genesis_hash: BlockHash, // Lock order: channels -> nodes channels: RwLock>, nodes: RwLock>, } impl Clone for NetworkGraph { fn clone(&self) -> Self { let channels = self.channels.read().unwrap(); let nodes = self.nodes.read().unwrap(); Self { genesis_hash: self.genesis_hash.clone(), channels: RwLock::new(channels.clone()), nodes: RwLock::new(nodes.clone()), } } } /// A read-only view of [`NetworkGraph`]. pub struct ReadOnlyNetworkGraph<'a> { channels: RwLockReadGuard<'a, BTreeMap>, nodes: RwLockReadGuard<'a, BTreeMap>, } /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion /// return packet by a node along the route. See [BOLT #4] for details. /// /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md #[derive(Clone, Debug, PartialEq)] pub enum NetworkUpdate { /// An error indicating a `channel_update` messages should be applied via /// [`NetworkGraph::update_channel`]. ChannelUpdateMessage { /// The update to apply via [`NetworkGraph::update_channel`]. msg: ChannelUpdate, }, /// An error indicating only that a channel has been closed, which should be applied via /// [`NetworkGraph::close_channel_from_update`]. ChannelClosed { /// The short channel id of the closed channel. short_channel_id: u64, /// Whether the channel should be permanently removed or temporarily disabled until a new /// `channel_update` message is received. is_permanent: bool, }, /// An error indicating only that a node has failed, which should be applied via /// [`NetworkGraph::fail_node`]. NodeFailure { /// The node id of the failed node. node_id: PublicKey, /// Whether the node should be permanently removed from consideration or can be restored /// when a new `channel_update` message is received. is_permanent: bool, } } impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate, (0, ChannelUpdateMessage) => { (0, msg, required), }, (2, ChannelClosed) => { (0, short_channel_id, required), (2, is_permanent, required), }, (4, NodeFailure) => { (0, node_id, required), (2, is_permanent, required), }, ); impl, C: Deref, L: Deref> EventHandler for NetGraphMsgHandler where C::Target: chain::Access, L::Target: Logger { fn handle_event(&self, event: &Event) { if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event { if let Some(network_update) = network_update { self.handle_network_update(network_update); } } } } /// Receives and validates network updates from peers, /// stores authentic and relevant data as a network graph. /// This network graph is then used for routing payments. /// Provides interface to help with initial routing sync by /// serving historical announcements. /// /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the /// [`NetworkGraph`]. pub struct NetGraphMsgHandler, C: Deref, L: Deref> where C::Target: chain::Access, L::Target: Logger { secp_ctx: Secp256k1, network_graph: G, chain_access: Option, full_syncs_requested: AtomicUsize, pending_events: Mutex>, logger: L, } impl, C: Deref, L: Deref> NetGraphMsgHandler where C::Target: chain::Access, L::Target: Logger { /// Creates a new tracker of the actual state of the network of channels and nodes, /// assuming an existing Network Graph. /// Chain monitor is used to make sure announced channels exist on-chain, /// channel data is correct, and that the announcement is signed with /// channel owners' keys. pub fn new(network_graph: G, chain_access: Option, logger: L) -> Self { NetGraphMsgHandler { secp_ctx: Secp256k1::verification_only(), network_graph, full_syncs_requested: AtomicUsize::new(0), chain_access, pending_events: Mutex::new(vec![]), logger, } } /// Adds a provider used to check new announcements. Does not affect /// existing announcements unless they are updated. /// Add, update or remove the provider would replace the current one. pub fn add_chain_access(&mut self, chain_access: Option) { self.chain_access = chain_access; } /// Gets a reference to the underlying [`NetworkGraph`] which was provided in /// [`NetGraphMsgHandler::new`]. /// /// (C-not exported) as bindings don't support a reference-to-a-reference yet pub fn network_graph(&self) -> &G { &self.network_graph } /// Returns true when a full routing table sync should be performed with a peer. fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { //TODO: Determine whether to request a full sync based on the network map. const FULL_SYNCS_TO_REQUEST: usize = 5; if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST { self.full_syncs_requested.fetch_add(1, Ordering::AcqRel); true } else { false } } /// Applies changes to the [`NetworkGraph`] from the given update. fn handle_network_update(&self, update: &NetworkUpdate) { match *update { NetworkUpdate::ChannelUpdateMessage { ref msg } => { let short_channel_id = msg.contents.short_channel_id; let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1); let status = if is_enabled { "enabled" } else { "disabled" }; log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status); let _ = self.network_graph.update_channel(msg, &self.secp_ctx); }, NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => { let action = if is_permanent { "Removing" } else { "Disabling" }; log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id); self.network_graph.close_channel_from_update(short_channel_id, is_permanent); }, NetworkUpdate::NodeFailure { ref node_id, is_permanent } => { let action = if is_permanent { "Removing" } else { "Disabling" }; log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id); self.network_graph.fail_node(node_id, is_permanent); }, } } } macro_rules! secp_verify_sig { ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => { match $secp_ctx.verify($msg, $sig, $pubkey) { Ok(_) => {}, Err(_) => { return Err(LightningError { err: format!("Invalid signature on {} message", $msg_type), action: ErrorAction::SendWarningMessage { msg: msgs::WarningMessage { channel_id: [0; 32], data: format!("Invalid signature on {} message", $msg_type), }, log_level: Level::Trace, }, }); }, } }; } impl, C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler where C::Target: chain::Access, L::Target: Logger { fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result { self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?; Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY && msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY && msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY) } fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result { self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?; log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" }); Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY) } fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result { self.network_graph.update_channel(msg, &self.secp_ctx)?; Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY) } fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option, Option)> { let mut result = Vec::with_capacity(batch_amount as usize); let channels = self.network_graph.channels.read().unwrap(); let mut iter = channels.range(starting_point..); while result.len() < batch_amount as usize { if let Some((_, ref chan)) = iter.next() { if chan.announcement_message.is_some() { let chan_announcement = chan.announcement_message.clone().unwrap(); let mut one_to_two_announcement: Option = None; let mut two_to_one_announcement: Option = None; if let Some(one_to_two) = chan.one_to_two.as_ref() { one_to_two_announcement = one_to_two.last_update_message.clone(); } if let Some(two_to_one) = chan.two_to_one.as_ref() { two_to_one_announcement = two_to_one.last_update_message.clone(); } result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement)); } else { // TODO: We may end up sending un-announced channel_updates if we are sending // initial sync data while receiving announce/updates for this channel. } } else { return result; } } result } fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec { let mut result = Vec::with_capacity(batch_amount as usize); let nodes = self.network_graph.nodes.read().unwrap(); let mut iter = if let Some(pubkey) = starting_point { let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..); iter.next(); iter } else { nodes.range::(..) }; while result.len() < batch_amount as usize { if let Some((_, ref node)) = iter.next() { if let Some(node_info) = node.announcement_info.as_ref() { if node_info.announcement_message.is_some() { result.push(node_info.announcement_message.clone().unwrap()); } } } else { return result; } } result } /// Initiates a stateless sync of routing gossip information with a peer /// using gossip_queries. The default strategy used by this implementation /// is to sync the full block range with several peers. /// /// We should expect one or more reply_channel_range messages in response /// to our query_channel_range. Each reply will enqueue a query_scid message /// to request gossip messages for each channel. The sync is considered complete /// when the final reply_scids_end message is received, though we are not /// tracking this directly. fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) { // We will only perform a sync with peers that support gossip_queries. if !init_msg.features.supports_gossip_queries() { return (); } // Check if we need to perform a full synchronization with this peer if !self.should_request_full_sync(&their_node_id) { return (); } let first_blocknum = 0; let number_of_blocks = 0xffffffff; log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks); let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(MessageSendEvent::SendChannelRangeQuery { node_id: their_node_id.clone(), msg: QueryChannelRange { chain_hash: self.network_graph.genesis_hash, first_blocknum, number_of_blocks, }, }); } /// Statelessly processes a reply to a channel range query by immediately /// sending an SCID query with SCIDs in the reply. To keep this handler /// stateless, it does not validate the sequencing of replies for multi- /// reply ranges. It does not validate whether the reply(ies) cover the /// queried range. It also does not filter SCIDs to only those in the /// original query range. We also do not validate that the chain_hash /// matches the chain_hash of the NetworkGraph. Any chan_ann message that /// does not match our chain_hash will be rejected when the announcement is /// processed. fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> { log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),); log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len()); let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(MessageSendEvent::SendShortIdsQuery { node_id: their_node_id.clone(), msg: QueryShortChannelIds { chain_hash: msg.chain_hash, short_channel_ids: msg.short_channel_ids, } }); Ok(()) } /// When an SCID query is initiated the remote peer will begin streaming /// gossip messages. In the event of a failure, we may have received /// some channel information. Before trying with another peer, the /// caller should update its set of SCIDs that need to be queried. fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information); // If the remote node does not have up-to-date information for the // chain_hash they will set full_information=false. We can fail // the result and try again with a different peer. if !msg.full_information { return Err(LightningError { err: String::from("Received reply_short_channel_ids_end with no information"), action: ErrorAction::IgnoreError }); } Ok(()) } /// Processes a query from a peer by finding announced/public channels whose funding UTXOs /// are in the specified block range. Due to message size limits, large range /// queries may result in several reply messages. This implementation enqueues /// all reply messages into pending events. Each message will allocate just under 65KiB. A full /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB. /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts /// memory constrained systems. fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> { log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks); let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0); // We might receive valid queries with end_blocknum that would overflow SCID conversion. // If so, we manually cap the ending block to avoid this overflow. let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0); // Per spec, we must reply to a query. Send an empty message when things are invalid. if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(MessageSendEvent::SendReplyChannelRange { node_id: their_node_id.clone(), msg: ReplyChannelRange { chain_hash: msg.chain_hash.clone(), first_blocknum: msg.first_blocknum, number_of_blocks: msg.number_of_blocks, sync_complete: true, short_channel_ids: vec![], } }); return Err(LightningError { err: String::from("query_channel_range could not be processed"), action: ErrorAction::IgnoreError, }); } // Creates channel batches. We are not checking if the channel is routable // (has at least one update). A peer may still want to know the channel // exists even if its not yet routable. let mut batches: Vec> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)]; let channels = self.network_graph.channels.read().unwrap(); for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) { if let Some(chan_announcement) = &chan.announcement_message { // Construct a new batch if last one is full if batches.last().unwrap().len() == batches.last().unwrap().capacity() { batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY)); } let batch = batches.last_mut().unwrap(); batch.push(chan_announcement.contents.short_channel_id); } } drop(channels); let mut pending_events = self.pending_events.lock().unwrap(); let batch_count = batches.len(); let mut prev_batch_endblock = msg.first_blocknum; for (batch_index, batch) in batches.into_iter().enumerate() { // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum` // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`. // // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each // reply is >= the previous reply's `first_blocknum` and either exactly the previous // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a // significant diversion from the requirements set by the spec, and, in case of blocks // with no channel opens (e.g. empty blocks), requires that we use the previous value // and *not* derive the first_blocknum from the actual first block of the reply. let first_blocknum = prev_batch_endblock; // Each message carries the number of blocks (from the `first_blocknum`) its contents // fit in. Though there is no requirement that we use exactly the number of blocks its // contents are from, except for the bogus requirements c-lightning enforces, above. // // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be // >= the query's end block. Thus, for the last reply, we calculate the difference // between the query's end block and the start of the reply. // // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and // first_blocknum will be either msg.first_blocknum or a higher block height. let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 { (true, msg.end_blocknum() - first_blocknum) } // Prior replies should use the number of blocks that fit into the reply. Overflow // safe since first_blocknum is always <= last SCID's block. else { (false, block_from_scid(batch.last().unwrap()) - first_blocknum) }; prev_batch_endblock = first_blocknum + number_of_blocks; pending_events.push(MessageSendEvent::SendReplyChannelRange { node_id: their_node_id.clone(), msg: ReplyChannelRange { chain_hash: msg.chain_hash.clone(), first_blocknum, number_of_blocks, sync_complete, short_channel_ids: batch, } }); } Ok(()) } fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { // TODO Err(LightningError { err: String::from("Not implemented"), action: ErrorAction::IgnoreError, }) } } impl, C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler where C::Target: chain::Access, L::Target: Logger, { fn get_and_clear_pending_msg_events(&self) -> Vec { let mut ret = Vec::new(); let mut pending_events = self.pending_events.lock().unwrap(); core::mem::swap(&mut ret, &mut pending_events); ret } } #[derive(Clone, Debug, PartialEq)] /// Details about one direction of a channel as received within a [`ChannelUpdate`]. pub struct ChannelUpdateInfo { /// When the last update to the channel direction was issued. /// Value is opaque, as set in the announcement. pub last_update: u32, /// Whether the channel can be currently used for payments (in this one direction). pub enabled: bool, /// The difference in CLTV values that you must have when routing through this channel. pub cltv_expiry_delta: u16, /// The minimum value, which must be relayed to the next hop via the channel pub htlc_minimum_msat: u64, /// The maximum value which may be relayed to the next hop via the channel. pub htlc_maximum_msat: Option, /// Fees charged when the channel is used for routing pub fees: RoutingFees, /// Most recent update for the channel received from the network /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub last_update_message: Option, } impl fmt::Display for ChannelUpdateInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?; Ok(()) } } impl_writeable_tlv_based!(ChannelUpdateInfo, { (0, last_update, required), (2, enabled, required), (4, cltv_expiry_delta, required), (6, htlc_minimum_msat, required), (8, htlc_maximum_msat, required), (10, fees, required), (12, last_update_message, required), }); #[derive(Clone, Debug, PartialEq)] /// Details about a channel (both directions). /// Received within a channel announcement. pub struct ChannelInfo { /// Protocol features of a channel communicated during its announcement pub features: ChannelFeatures, /// Source node of the first direction of a channel pub node_one: NodeId, /// Details about the first direction of a channel pub one_to_two: Option, /// Source node of the second direction of a channel pub node_two: NodeId, /// Details about the second direction of a channel pub two_to_one: Option, /// The channel capacity as seen on-chain, if chain lookup is available. pub capacity_sats: Option, /// An initial announcement of the channel /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub announcement_message: Option, /// The timestamp when we received the announcement, if we are running with feature = "std" /// (which we can probably assume we are - no-std environments probably won't have a full /// network graph in memory!). announcement_received_time: u64, } impl ChannelInfo { /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a /// returned `source`, or `None` if `target` is not one of the channel's counterparties. pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> { let (direction, source) = { if target == &self.node_one { (self.two_to_one.as_ref(), &self.node_two) } else if target == &self.node_two { (self.one_to_two.as_ref(), &self.node_one) } else { return None; } }; Some((DirectedChannelInfo { channel: self, direction }, source)) } } impl fmt::Display for ChannelInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}", log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?; Ok(()) } } impl_writeable_tlv_based!(ChannelInfo, { (0, features, required), (1, announcement_received_time, (default_value, 0)), (2, node_one, required), (4, one_to_two, required), (6, node_two, required), (8, two_to_one, required), (10, capacity_sats, required), (12, announcement_message, required), }); /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a /// source node to a target node. #[derive(Clone)] pub struct DirectedChannelInfo<'a> { channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>, } impl<'a> DirectedChannelInfo<'a> { /// Returns information for the channel. pub fn channel(&self) -> &'a ChannelInfo { self.channel } /// Returns information for the direction. pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction } /// Returns the [`EffectiveCapacity`] of the channel in the direction. /// /// This is either the total capacity from the funding transaction, if known, or the /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known, /// whichever is smaller. pub fn effective_capacity(&self) -> EffectiveCapacity { let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000); self.direction .and_then(|direction| direction.htlc_maximum_msat) .map(|max_htlc_msat| { let capacity_msat = capacity_msat.unwrap_or(u64::max_value()); if max_htlc_msat < capacity_msat { EffectiveCapacity::MaximumHTLC { amount_msat: max_htlc_msat } } else { EffectiveCapacity::Total { capacity_msat } } }) .or_else(|| capacity_msat.map(|capacity_msat| EffectiveCapacity::Total { capacity_msat })) .unwrap_or(EffectiveCapacity::Unknown) } /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction. pub(super) fn with_update(self) -> Option> { match self.direction { Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }), None => None, } } } impl<'a> fmt::Debug for DirectedChannelInfo<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { f.debug_struct("DirectedChannelInfo") .field("channel", &self.channel) .finish() } } /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction. #[derive(Clone)] pub(super) struct DirectedChannelInfoWithUpdate<'a> { inner: DirectedChannelInfo<'a>, } impl<'a> DirectedChannelInfoWithUpdate<'a> { /// Returns information for the channel. #[inline] pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel } /// Returns information for the direction. #[inline] pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() } /// Returns the [`EffectiveCapacity`] of the channel in the direction. #[inline] pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() } } impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { self.inner.fmt(f) } } /// The effective capacity of a channel for routing purposes. /// /// While this may be smaller than the actual channel capacity, amounts greater than /// [`Self::as_msat`] should not be routed through the channel. pub enum EffectiveCapacity { /// The available liquidity in the channel known from being a channel counterparty, and thus a /// direct hop. ExactLiquidity { /// Either the inbound or outbound liquidity depending on the direction, denominated in /// millisatoshi. liquidity_msat: u64, }, /// The maximum HTLC amount in one direction as advertised on the gossip network. MaximumHTLC { /// The maximum HTLC amount denominated in millisatoshi. amount_msat: u64, }, /// The total capacity of the channel as determined by the funding transaction. Total { /// The funding amount denominated in millisatoshi. capacity_msat: u64, }, /// A capacity sufficient to route any payment, typically used for private channels provided by /// an invoice. Infinite, /// A capacity that is unknown possibly because either the chain state is unavailable to know /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network. Unknown, } /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to /// use when making routing decisions. pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000; impl EffectiveCapacity { /// Returns the effective capacity denominated in millisatoshi. pub fn as_msat(&self) -> u64 { match self { EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat, EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat, EffectiveCapacity::Total { capacity_msat } => *capacity_msat, EffectiveCapacity::Infinite => u64::max_value(), EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT, } } } /// Fees for routing via a given channel or a node #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)] pub struct RoutingFees { /// Flat routing fee in satoshis pub base_msat: u32, /// Liquidity-based routing fee in millionths of a routed amount. /// In other words, 10000 is 1%. pub proportional_millionths: u32, } impl_writeable_tlv_based!(RoutingFees, { (0, base_msat, required), (2, proportional_millionths, required) }); #[derive(Clone, Debug, PartialEq)] /// Information received in the latest node_announcement from this node. pub struct NodeAnnouncementInfo { /// Protocol features the node announced support for pub features: NodeFeatures, /// When the last known update to the node state was issued. /// Value is opaque, as set in the announcement. pub last_update: u32, /// Color assigned to the node pub rgb: [u8; 3], /// Moniker assigned to the node. /// May be invalid or malicious (eg control chars), /// should not be exposed to the user. pub alias: [u8; 32], /// Internet-level addresses via which one can connect to the node pub addresses: Vec, /// An initial announcement of the node /// Mostly redundant with the data we store in fields explicitly. /// Everything else is useful only for sending out for initial routing sync. /// Not stored if contains excess data to prevent DoS. pub announcement_message: Option } impl_writeable_tlv_based!(NodeAnnouncementInfo, { (0, features, required), (2, last_update, required), (4, rgb, required), (6, alias, required), (8, announcement_message, option), (10, addresses, vec_type), }); #[derive(Clone, Debug, PartialEq)] /// Details about a node in the network, known from the network announcement. pub struct NodeInfo { /// All valid channels a node has announced pub channels: Vec, /// Lowest fees enabling routing via any of the enabled, known channels to a node. /// The two fields (flat and proportional fee) are independent, /// meaning they don't have to refer to the same channel. pub lowest_inbound_channel_fees: Option, /// More information about a node from node_announcement. /// Optional because we store a Node entry after learning about it from /// a channel announcement, but before receiving a node announcement. pub announcement_info: Option } impl fmt::Display for NodeInfo { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}", self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?; Ok(()) } } impl_writeable_tlv_based!(NodeInfo, { (0, lowest_inbound_channel_fees, option), (2, announcement_info, option), (4, channels, vec_type), }); const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl Writeable for NetworkGraph { fn write(&self, writer: &mut W) -> Result<(), io::Error> { write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION); self.genesis_hash.write(writer)?; let channels = self.channels.read().unwrap(); (channels.len() as u64).write(writer)?; for (ref chan_id, ref chan_info) in channels.iter() { (*chan_id).write(writer)?; chan_info.write(writer)?; } let nodes = self.nodes.read().unwrap(); (nodes.len() as u64).write(writer)?; for (ref node_id, ref node_info) in nodes.iter() { node_id.write(writer)?; node_info.write(writer)?; } write_tlv_fields!(writer, {}); Ok(()) } } impl Readable for NetworkGraph { fn read(reader: &mut R) -> Result { let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION); let genesis_hash: BlockHash = Readable::read(reader)?; let channels_count: u64 = Readable::read(reader)?; let mut channels = BTreeMap::new(); for _ in 0..channels_count { let chan_id: u64 = Readable::read(reader)?; let chan_info = Readable::read(reader)?; channels.insert(chan_id, chan_info); } let nodes_count: u64 = Readable::read(reader)?; let mut nodes = BTreeMap::new(); for _ in 0..nodes_count { let node_id = Readable::read(reader)?; let node_info = Readable::read(reader)?; nodes.insert(node_id, node_info); } read_tlv_fields!(reader, {}); Ok(NetworkGraph { genesis_hash, channels: RwLock::new(channels), nodes: RwLock::new(nodes), }) } } impl fmt::Display for NetworkGraph { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { writeln!(f, "Network map\n[Channels]")?; for (key, val) in self.channels.read().unwrap().iter() { writeln!(f, " {}: {}", key, val)?; } writeln!(f, "[Nodes]")?; for (&node_id, val) in self.nodes.read().unwrap().iter() { writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?; } Ok(()) } } impl PartialEq for NetworkGraph { fn eq(&self, other: &Self) -> bool { self.genesis_hash == other.genesis_hash && *self.channels.read().unwrap() == *other.channels.read().unwrap() && *self.nodes.read().unwrap() == *other.nodes.read().unwrap() } } impl NetworkGraph { /// Creates a new, empty, network graph. pub fn new(genesis_hash: BlockHash) -> NetworkGraph { Self { genesis_hash, channels: RwLock::new(BTreeMap::new()), nodes: RwLock::new(BTreeMap::new()), } } /// Returns a read-only view of the network graph. pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> { let channels = self.channels.read().unwrap(); let nodes = self.nodes.read().unwrap(); ReadOnlyNetworkGraph { channels, nodes, } } /// For an already known node (from channel announcements), update its stored properties from a /// given node announcement. /// /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept /// routing messages from a source using a protocol other than the lightning P2P protocol. pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1) -> Result<(), LightningError> { let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement"); self.update_node_from_announcement_intern(&msg.contents, Some(&msg)) } /// For an already known node (from channel announcements), update its stored properties from a /// given node announcement without verifying the associated signatures. Because we aren't /// given the associated signatures here we cannot relay the node announcement to any of our /// peers. pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> { self.update_node_from_announcement_intern(msg, None) } fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> { match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) { None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}), Some(node) => { if let Some(node_info) = node.announcement_info.as_ref() { // The timestamp field is somewhat of a misnomer - the BOLTs use it to order // updates to ensure you always have the latest one, only vaguely suggesting // that it be at least the current time. if node_info.last_update > msg.timestamp { return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)}); } else if node_info.last_update == msg.timestamp { return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip}); } } let should_relay = msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY && msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY && msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY; node.announcement_info = Some(NodeAnnouncementInfo { features: msg.features.clone(), last_update: msg.timestamp, rgb: msg.rgb, alias: msg.alias, addresses: msg.addresses.clone(), announcement_message: if should_relay { full_msg.cloned() } else { None }, }); Ok(()) } } } /// Store or update channel info from a channel announcement. /// /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept /// routing messages from a source using a protocol other than the lightning P2P protocol. /// /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify /// the corresponding UTXO exists on chain and is correctly-formatted. pub fn update_channel_from_announcement( &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option, secp_ctx: &Secp256k1 ) -> Result<(), LightningError> where C::Target: chain::Access, { let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]); secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement"); secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement"); secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement"); secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement"); self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access) } /// Store or update channel info from a channel announcement without verifying the associated /// signatures. Because we aren't given the associated signatures here we cannot relay the /// channel announcement to any of our peers. /// /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify /// the corresponding UTXO exists on chain and is correctly-formatted. pub fn update_channel_from_unsigned_announcement( &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option ) -> Result<(), LightningError> where C::Target: chain::Access, { self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access) } fn update_channel_from_unsigned_announcement_intern( &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option ) -> Result<(), LightningError> where C::Target: chain::Access, { if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 { return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError}); } let utxo_value = match &chain_access { &None => { // Tentatively accept, potentially exposing us to DoS attacks None }, &Some(ref chain_access) => { match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) { Ok(TxOut { value, script_pubkey }) => { let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&msg.bitcoin_key_1.serialize()) .push_slice(&msg.bitcoin_key_2.serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh(); if script_pubkey != expected_script { return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError}); } //TODO: Check if value is worth storing, use it to inform routing, and compare it //to the new HTLC max field in channel_update Some(value) }, Err(chain::AccessError::UnknownChain) => { return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError}); }, Err(chain::AccessError::UnknownTx) => { return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError}); }, } }, }; #[allow(unused_mut, unused_assignments)] let mut announcement_received_time = 0; #[cfg(feature = "std")] { announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs(); } let chan_info = ChannelInfo { features: msg.features.clone(), node_one: NodeId::from_pubkey(&msg.node_id_1), one_to_two: None, node_two: NodeId::from_pubkey(&msg.node_id_2), two_to_one: None, capacity_sats: utxo_value, announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY { full_msg.cloned() } else { None }, announcement_received_time, }; let mut channels = self.channels.write().unwrap(); let mut nodes = self.nodes.write().unwrap(); match channels.entry(msg.short_channel_id) { BtreeEntry::Occupied(mut entry) => { //TODO: because asking the blockchain if short_channel_id is valid is only optional //in the blockchain API, we need to handle it smartly here, though it's unclear //exactly how... if utxo_value.is_some() { // Either our UTXO provider is busted, there was a reorg, or the UTXO provider // only sometimes returns results. In any case remove the previous entry. Note // that the spec expects us to "blacklist" the node_ids involved, but we can't // do that because // a) we don't *require* a UTXO provider that always returns results. // b) we don't track UTXOs of channels we know about and remove them if they // get reorg'd out. // c) it's unclear how to do so without exposing ourselves to massive DoS risk. Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id); *entry.get_mut() = chan_info; } else { return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip}); } }, BtreeEntry::Vacant(entry) => { entry.insert(chan_info); } }; macro_rules! add_channel_to_node { ( $node_id: expr ) => { match nodes.entry($node_id) { BtreeEntry::Occupied(node_entry) => { node_entry.into_mut().channels.push(msg.short_channel_id); }, BtreeEntry::Vacant(node_entry) => { node_entry.insert(NodeInfo { channels: vec!(msg.short_channel_id), lowest_inbound_channel_fees: None, announcement_info: None, }); } } }; } add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_1)); add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_2)); Ok(()) } /// Close a channel if a corresponding HTLC fail was sent. /// If permanent, removes a channel from the local storage. /// May cause the removal of nodes too, if this was their last channel. /// If not permanent, makes channels unavailable for routing. pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) { let mut channels = self.channels.write().unwrap(); if is_permanent { if let Some(chan) = channels.remove(&short_channel_id) { let mut nodes = self.nodes.write().unwrap(); Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id); } } else { if let Some(chan) = channels.get_mut(&short_channel_id) { if let Some(one_to_two) = chan.one_to_two.as_mut() { one_to_two.enabled = false; } if let Some(two_to_one) = chan.two_to_one.as_mut() { two_to_one.enabled = false; } } } } /// Marks a node in the graph as failed. pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) { if is_permanent { // TODO: Wholly remove the node } else { // TODO: downgrade the node } } #[cfg(feature = "std")] /// Removes information about channels that we haven't heard any updates about in some time. /// This can be used regularly to prune the network graph of channels that likely no longer /// exist. /// /// While there is no formal requirement that nodes regularly re-broadcast their channel /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that /// pruning occur for updates which are at least two weeks old, which we implement here. /// /// Note that for users of the `lightning-background-processor` crate this method may be /// automatically called regularly for you. /// /// This method is only available with the `std` feature. See /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use. pub fn remove_stale_channels(&self) { let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs(); self.remove_stale_channels_with_time(time); } /// Removes information about channels that we haven't heard any updates about in some time. /// This can be used regularly to prune the network graph of channels that likely no longer /// exist. /// /// While there is no formal requirement that nodes regularly re-broadcast their channel /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that /// pruning occur for updates which are at least two weeks old, which we implement here. /// /// This function takes the current unix time as an argument. For users with the `std` feature /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable. pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) { let mut channels = self.channels.write().unwrap(); // Time out if we haven't received an update in at least 14 days. if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; } let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32; // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some // time. let mut scids_to_remove = Vec::new(); for (scid, info) in channels.iter_mut() { if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix { info.one_to_two = None; } if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix { info.two_to_one = None; } if info.one_to_two.is_none() && info.two_to_one.is_none() { // We check the announcement_received_time here to ensure we don't drop // announcements that we just received and are just waiting for our peer to send a // channel_update for. if info.announcement_received_time < min_time_unix as u64 { scids_to_remove.push(*scid); } } } if !scids_to_remove.is_empty() { let mut nodes = self.nodes.write().unwrap(); for scid in scids_to_remove { let info = channels.remove(&scid).expect("We just accessed this scid, it should be present"); Self::remove_channel_in_nodes(&mut nodes, &info, scid); } } } /// For an already known (from announcement) channel, update info about one of the directions /// of the channel. /// /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept /// routing messages from a source using a protocol other than the lightning P2P protocol. /// /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or /// materially in the future will be rejected. pub fn update_channel(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1) -> Result<(), LightningError> { self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx))) } /// For an already known (from announcement) channel, update info about one of the directions /// of the channel without verifying the associated signatures. Because we aren't given the /// associated signatures here we cannot relay the channel update to any of our peers. /// /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or /// materially in the future will be rejected. pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> { self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1)>) } fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1)>) -> Result<(), LightningError> { let dest_node_id; let chan_enabled = msg.flags & (1 << 1) != (1 << 1); let chan_was_enabled; #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))] { // Note that many tests rely on being able to set arbitrarily old timestamps, thus we // disable this check during tests! let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs(); if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)}); } if msg.timestamp as u64 > time + 60 * 60 * 24 { return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)}); } } let mut channels = self.channels.write().unwrap(); match channels.get_mut(&msg.short_channel_id) { None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}), Some(channel) => { if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat { if htlc_maximum_msat > MAX_VALUE_MSAT { return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError}); } if let Some(capacity_sats) = channel.capacity_sats { // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None). // Don't query UTXO set here to reduce DoS risks. if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 { return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError}); } } } macro_rules! maybe_update_channel_info { ( $target: expr, $src_node: expr) => { if let Some(existing_chan_info) = $target.as_ref() { // The timestamp field is somewhat of a misnomer - the BOLTs use it to // order updates to ensure you always have the latest one, only // suggesting that it be at least the current time. For // channel_updates specifically, the BOLTs discuss the possibility of // pruning based on the timestamp field being more than two weeks old, // but only in the non-normative section. if existing_chan_info.last_update > msg.timestamp { return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)}); } else if existing_chan_info.last_update == msg.timestamp { return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip}); } chan_was_enabled = existing_chan_info.enabled; } else { chan_was_enabled = false; } let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY { full_msg.cloned() } else { None }; let updated_channel_update_info = ChannelUpdateInfo { enabled: chan_enabled, last_update: msg.timestamp, cltv_expiry_delta: msg.cltv_expiry_delta, htlc_minimum_msat: msg.htlc_minimum_msat, htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None }, fees: RoutingFees { base_msat: msg.fee_base_msat, proportional_millionths: msg.fee_proportional_millionths, }, last_update_message }; $target = Some(updated_channel_update_info); } } let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]); if msg.flags & 1 == 1 { dest_node_id = channel.node_one.clone(); if let Some((sig, ctx)) = sig_info { secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{ err: "Couldn't parse source node pubkey".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Debug) })?, "channel_update"); } maybe_update_channel_info!(channel.two_to_one, channel.node_two); } else { dest_node_id = channel.node_two.clone(); if let Some((sig, ctx)) = sig_info { secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{ err: "Couldn't parse destination node pubkey".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Debug) })?, "channel_update"); } maybe_update_channel_info!(channel.one_to_two, channel.node_one); } } } let mut nodes = self.nodes.write().unwrap(); if chan_enabled { let node = nodes.get_mut(&dest_node_id).unwrap(); let mut base_msat = msg.fee_base_msat; let mut proportional_millionths = msg.fee_proportional_millionths; if let Some(fees) = node.lowest_inbound_channel_fees { base_msat = cmp::min(base_msat, fees.base_msat); proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths); } node.lowest_inbound_channel_fees = Some(RoutingFees { base_msat, proportional_millionths }); } else if chan_was_enabled { let node = nodes.get_mut(&dest_node_id).unwrap(); let mut lowest_inbound_channel_fees = None; for chan_id in node.channels.iter() { let chan = channels.get(chan_id).unwrap(); let chan_info_opt; if chan.node_one == dest_node_id { chan_info_opt = chan.two_to_one.as_ref(); } else { chan_info_opt = chan.one_to_two.as_ref(); } if let Some(chan_info) = chan_info_opt { if chan_info.enabled { let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees { base_msat: u32::max_value(), proportional_millionths: u32::max_value() }); fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat); fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths); } } } node.lowest_inbound_channel_fees = lowest_inbound_channel_fees; } Ok(()) } fn remove_channel_in_nodes(nodes: &mut BTreeMap, chan: &ChannelInfo, short_channel_id: u64) { macro_rules! remove_from_node { ($node_id: expr) => { if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) { entry.get_mut().channels.retain(|chan_id| { short_channel_id != *chan_id }); if entry.get().channels.is_empty() { entry.remove_entry(); } } else { panic!("Had channel that pointed to unknown node (ie inconsistent network map)!"); } } } remove_from_node!(chan.node_one); remove_from_node!(chan.node_two); } } impl ReadOnlyNetworkGraph<'_> { /// Returns all known valid channels' short ids along with announced channel info. /// /// (C-not exported) because we have no mapping for `BTreeMap`s pub fn channels(&self) -> &BTreeMap { &*self.channels } /// Returns all known nodes' public keys along with announced node info. /// /// (C-not exported) because we have no mapping for `BTreeMap`s pub fn nodes(&self) -> &BTreeMap { &*self.nodes } /// Get network addresses by node id. /// Returns None if the requested node is completely unknown, /// or if node announcement for the node was never received. pub fn get_addresses(&self, pubkey: &PublicKey) -> Option> { if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) { if let Some(node_info) = node.announcement_info.as_ref() { return Some(node_info.addresses.clone()) } } None } } #[cfg(test)] mod tests { use chain; use ln::PaymentHash; use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures}; use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY}; use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement, UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate, ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT}; use util::test_utils; use util::logger::Logger; use util::ser::{Readable, Writeable}; use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider}; use util::scid_utils::scid_from_parts; use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::Hash; use bitcoin::network::constants::Network; use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::script::{Builder, Script}; use bitcoin::blockdata::transaction::TxOut; use bitcoin::blockdata::opcodes; use hex; use bitcoin::secp256k1::key::{PublicKey, SecretKey}; use bitcoin::secp256k1::{All, Secp256k1}; use io; use prelude::*; use sync::Arc; fn create_network_graph() -> NetworkGraph { let genesis_hash = genesis_block(Network::Testnet).header.block_hash(); NetworkGraph::new(genesis_hash) } fn create_net_graph_msg_handler(network_graph: &NetworkGraph) -> ( Secp256k1, NetGraphMsgHandler<&NetworkGraph, Arc, Arc> ) { let secp_ctx = Secp256k1::new(); let logger = Arc::new(test_utils::TestLogger::new()); let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger)); (secp_ctx, net_graph_msg_handler) } #[test] fn request_full_sync_finite_times() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap()); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(net_graph_msg_handler.should_request_full_sync(&node_id)); assert!(!net_graph_msg_handler.should_request_full_sync(&node_id)); } fn get_signed_node_announcement(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1) -> NodeAnnouncement { let node_id = PublicKey::from_secret_key(&secp_ctx, node_key); let mut unsigned_announcement = UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: 100, node_id: node_id, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: Vec::new(), }; f(&mut unsigned_announcement); let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_key), contents: unsigned_announcement } } fn get_signed_channel_announcement(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1) -> ChannelAnnouncement { let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key); let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); let mut unsigned_announcement = UnsignedChannelAnnouncement { features: ChannelFeatures::known(), chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 0, node_id_1, node_id_2, bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey), bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey), excess_data: Vec::new(), }; f(&mut unsigned_announcement); let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_key), node_signature_2: secp_ctx.sign(&msghash, node_2_key), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey), contents: unsigned_announcement, } } fn get_channel_script(secp_ctx: &Secp256k1) -> Script { let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap(); let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap(); Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize()) .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script() .to_v0_p2wsh() } fn get_signed_channel_update(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1) -> ChannelUpdate { let mut unsigned_channel_update = UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 0, timestamp: 100, flags: 0, cltv_expiry_delta: 144, htlc_minimum_msat: 1_000_000, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 10_000, fee_proportional_millionths: 20, excess_data: Vec::new() }; f(&mut unsigned_channel_update); let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]); ChannelUpdate { signature: secp_ctx.sign(&msghash, node_key), contents: unsigned_channel_update } } #[test] fn handling_node_announcements() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let zero_hash = Sha256dHash::hash(&[0; 32]); let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!("No existing channels for node_announcement", e.err) }; { // Announce a channel to add a corresponding node. let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; } match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(res) => assert!(res), Err(_) => panic!() }; let fake_msghash = hash_to_message!(&zero_hash); match net_graph_msg_handler.handle_node_announcement( &NodeAnnouncement { signature: secp_ctx.sign(&fake_msghash, node_1_privkey), contents: valid_announcement.contents.clone() }) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message") }; let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| { unsigned_announcement.timestamp += 1000; unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0); }, node_1_privkey, &secp_ctx); // Return false because contains excess data. match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) { Ok(res) => assert!(!res), Err(_) => panic!() }; // Even though previous announcement was not relayed further, we still accepted it, // so we now won't accept announcements before the previous one. let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| { unsigned_announcement.timestamp += 1000 - 10; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Update older than last processed update") }; } #[test] fn handling_channel_announcements() { let secp_ctx = Secp256k1::new(); let logger: Arc = Arc::new(test_utils::TestLogger::new()); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let good_script = get_channel_script(&secp_ctx); let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); // Test if the UTXO lookups were not supported let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash()); let mut net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, None, Arc::clone(&logger)); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) { None => panic!(), Some(_) => () }; } // If we receive announcement for the same channel (with UTXO lookups disabled), // drop new one on the floor, since we can't see any changes. match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Already have knowledge of channel") }; // Test if an associated transaction were not on-chain (or not confirmed). let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx); let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash()); net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger)); let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| { unsigned_announcement.short_channel_id += 1; }, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry") }; // Now test if the transaction is found in the UTXO set and the script is correct. *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() }); let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| { unsigned_announcement.short_channel_id += 2; }, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) { None => panic!(), Some(_) => () }; } // If we receive announcement for the same channel (but TX is not confirmed), // drop new one on the floor, since we can't see any changes. *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry") }; // But if it is confirmed, replace the channel *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script }); let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| { unsigned_announcement.features = ChannelFeatures::empty(); unsigned_announcement.short_channel_id += 2; }, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; { match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) { Some(channel_entry) => { assert_eq!(channel_entry.features, ChannelFeatures::empty()); }, _ => panic!() }; } // Don't relay valid channels with excess data let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| { unsigned_announcement.short_channel_id += 3; unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0); }, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(!res), _ => panic!() }; let mut invalid_sig_announcement = valid_announcement.clone(); invalid_sig_announcement.contents.excess_data = Vec::new(); match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message") }; let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself") }; } #[test] fn handling_channel_update() { let secp_ctx = Secp256k1::new(); let logger: Arc = Arc::new(test_utils::TestLogger::new()); let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash()); let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger)); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let amount_sats = 1000_000; let short_channel_id; { // Announce a channel we will update let good_script = get_channel_script(&secp_ctx); *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }); let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); short_channel_id = valid_channel_announcement.contents.short_channel_id; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(res), _ => panic!() }; { match network_graph.read_only().channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144); assert!(channel_info.two_to_one.is_none()); } }; } let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp += 100; unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0); }, node_1_privkey, &secp_ctx); // Return false because contains excess data match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(!res), _ => panic!() }; let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp += 110; unsigned_channel_update.short_channel_id += 1; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Couldn't find channel for update") }; let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1); unsigned_channel_update.timestamp += 110; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats") }; let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1); unsigned_channel_update.timestamp += 110; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus") }; // Even though previous update was not relayed further, we still accepted it, // so we now won't accept update before the previous one. let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp += 100; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update") }; let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp += 500; }, node_1_privkey, &secp_ctx); let zero_hash = Sha256dHash::hash(&[0; 32]); let fake_msghash = hash_to_message!(&zero_hash); invalid_sig_channel_update.signature = secp_ctx.sign(&fake_msghash, node_1_privkey); match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) { Ok(_) => panic!(), Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message") }; } #[test] fn handling_network_update() { let logger = test_utils::TestLogger::new(); let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); let genesis_hash = genesis_block(Network::Testnet).header.block_hash(); let network_graph = NetworkGraph::new(genesis_hash); let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger); let secp_ctx = Secp256k1::new(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); { // There is no nodes in the table at the beginning. assert_eq!(network_graph.read_only().nodes().len(), 0); } let short_channel_id; { // Announce a channel we will update let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); short_channel_id = valid_channel_announcement.contents.short_channel_id; let chain_source: Option<&test_utils::TestChainSource> = None; assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok()); assert!(network_graph.read_only().channels().get(&short_channel_id).is_some()); let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx); assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none()); net_graph_msg_handler.handle_event(&Event::PaymentPathFailed { payment_id: None, payment_hash: PaymentHash([0; 32]), rejected_by_dest: false, all_paths_failed: true, path: vec![], network_update: Some(NetworkUpdate::ChannelUpdateMessage { msg: valid_channel_update, }), short_channel_id: None, retry: None, error_code: None, error_data: None, }); assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some()); } // Non-permanent closing just disables a channel { match network_graph.read_only().channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert!(channel_info.one_to_two.as_ref().unwrap().enabled); } }; net_graph_msg_handler.handle_event(&Event::PaymentPathFailed { payment_id: None, payment_hash: PaymentHash([0; 32]), rejected_by_dest: false, all_paths_failed: true, path: vec![], network_update: Some(NetworkUpdate::ChannelClosed { short_channel_id, is_permanent: false, }), short_channel_id: None, retry: None, error_code: None, error_data: None, }); match network_graph.read_only().channels().get(&short_channel_id) { None => panic!(), Some(channel_info) => { assert!(!channel_info.one_to_two.as_ref().unwrap().enabled); } }; } // Permanent closing deletes a channel net_graph_msg_handler.handle_event(&Event::PaymentPathFailed { payment_id: None, payment_hash: PaymentHash([0; 32]), rejected_by_dest: false, all_paths_failed: true, path: vec![], network_update: Some(NetworkUpdate::ChannelClosed { short_channel_id, is_permanent: true, }), short_channel_id: None, retry: None, error_code: None, error_data: None, }); assert_eq!(network_graph.read_only().channels().len(), 0); // Nodes are also deleted because there are no associated channels anymore assert_eq!(network_graph.read_only().nodes().len(), 0); // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet. } #[test] fn test_channel_timeouts() { // Test the removal of channels with `remove_stale_channels`. let logger = test_utils::TestLogger::new(); let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); let genesis_hash = genesis_block(Network::Testnet).header.block_hash(); let network_graph = NetworkGraph::new(genesis_hash); let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger); let secp_ctx = Secp256k1::new(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); let short_channel_id = valid_channel_announcement.contents.short_channel_id; let chain_source: Option<&test_utils::TestChainSource> = None; assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok()); assert!(network_graph.read_only().channels().get(&short_channel_id).is_some()); let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx); assert!(net_graph_msg_handler.handle_channel_update(&valid_channel_update).is_ok()); assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some()); network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS); assert_eq!(network_graph.read_only().channels().len(), 1); assert_eq!(network_graph.read_only().nodes().len(), 2); network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS); #[cfg(feature = "std")] { // In std mode, a further check is performed before fully removing the channel - // the channel_announcement must have been received at least two weeks ago. We // fudge that here by indicating the time has jumped two weeks. Note that the // directional channel information will have been removed already.. assert_eq!(network_graph.read_only().channels().len(), 1); assert_eq!(network_graph.read_only().nodes().len(), 2); assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none()); use std::time::{SystemTime, UNIX_EPOCH}; let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs(); network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS); } assert_eq!(network_graph.read_only().channels().len(), 0); assert_eq!(network_graph.read_only().nodes().len(), 0); } #[test] fn getting_next_channel_announcements() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); // Channels were not announced yet. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1); assert_eq!(channels_with_announcements.len(), 0); let short_channel_id; { // Announce a channel we will update let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); short_channel_id = valid_channel_announcement.contents.short_channel_id; match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } // Contains initial channel announcement now. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_eq!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } { // Valid channel update let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp = 101; }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => (), Err(_) => panic!() }; } // Now contains an initial announcement and an update. let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_ne!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } { // Channel update with excess data. let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| { unsigned_channel_update.timestamp = 102; unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec(); }, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(_) => (), Err(_) => panic!() }; } // Test that announcements with excess data won't be returned let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1); assert_eq!(channels_with_announcements.len(), 1); if let Some(channel_announcements) = channels_with_announcements.first() { let &(_, ref update_1, ref update_2) = channel_announcements; assert_eq!(update_1, &None); assert_eq!(update_2, &None); } else { panic!(); } // Further starting point have no channels after it let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1); assert_eq!(channels_with_announcements.len(), 0); } #[test] fn getting_next_node_announcements() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); // No nodes yet. let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10); assert_eq!(next_announcements.len(), 0); { // Announce a channel to add 2 nodes let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) { Ok(_) => (), Err(_) => panic!() }; } // Nodes were never announced let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3); assert_eq!(next_announcements.len(), 0); { let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; } let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3); assert_eq!(next_announcements.len(), 2); // Skip the first node. let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2); assert_eq!(next_announcements.len(), 1); { // Later announcement which should not be relayed (excess data) prevent us from sharing a node let valid_announcement = get_signed_node_announcement(|unsigned_announcement| { unsigned_announcement.timestamp += 10; unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec(); }, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(res) => assert!(!res), Err(_) => panic!() }; } let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2); assert_eq!(next_announcements.len(), 0); } #[test] fn network_graph_serialization() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); // Announce a channel to add a corresponding node. let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx); match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; let mut w = test_utils::TestVecWriter(Vec::new()); assert!(!network_graph.read_only().nodes().is_empty()); assert!(!network_graph.read_only().channels().is_empty()); network_graph.write(&mut w).unwrap(); assert!(::read(&mut io::Cursor::new(&w.0)).unwrap() == network_graph); } #[test] fn calling_sync_routing_table() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1); let chain_hash = genesis_block(Network::Testnet).header.block_hash(); let first_blocknum = 0; let number_of_blocks = 0xffff_ffff; // It should ignore if gossip_queries feature is not enabled { let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() }; net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg); let events = net_graph_msg_handler.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 0); } // It should send a query_channel_message with the correct information { let init_msg = Init { features: InitFeatures::known() }; net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg); let events = net_graph_msg_handler.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => { assert_eq!(node_id, &node_id_1); assert_eq!(msg.chain_hash, chain_hash); assert_eq!(msg.first_blocknum, first_blocknum); assert_eq!(msg.number_of_blocks, number_of_blocks); }, _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery") }; } // It should not enqueue a query when should_request_full_sync return false. // The initial implementation allows syncing with the first 5 peers after // which should_request_full_sync will return false { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let init_msg = Init { features: InitFeatures::known() }; for n in 1..7 { let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap(); let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey); net_graph_msg_handler.sync_routing_table(&node_id, &init_msg); let events = net_graph_msg_handler.get_and_clear_pending_msg_events(); if n <= 5 { assert_eq!(events.len(), 1); } else { assert_eq!(events.len(), 0); } } } } #[test] fn handling_reply_channel_range() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1); let chain_hash = genesis_block(Network::Testnet).header.block_hash(); // Test receipt of a single reply that should enqueue an SCID query // matching the SCIDs in the reply { let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange { chain_hash, sync_complete: true, first_blocknum: 0, number_of_blocks: 2000, short_channel_ids: vec![ 0x0003e0_000000_0000, // 992x0x0 0x0003e8_000000_0000, // 1000x0x0 0x0003e9_000000_0000, // 1001x0x0 0x0003f0_000000_0000, // 1008x0x0 0x00044c_000000_0000, // 1100x0x0 0x0006e0_000000_0000, // 1760x0x0 ], }); assert!(result.is_ok()); // We expect to emit a query_short_channel_ids message with the received scids let events = net_graph_msg_handler.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::SendShortIdsQuery { node_id, msg } => { assert_eq!(node_id, &node_id_1); assert_eq!(msg.chain_hash, chain_hash); assert_eq!(msg.short_channel_ids, vec![ 0x0003e0_000000_0000, // 992x0x0 0x0003e8_000000_0000, // 1000x0x0 0x0003e9_000000_0000, // 1001x0x0 0x0003f0_000000_0000, // 1008x0x0 0x00044c_000000_0000, // 1100x0x0 0x0006e0_000000_0000, // 1760x0x0 ]); }, _ => panic!("expected MessageSendEvent::SendShortIdsQuery"), } } } #[test] fn handling_reply_short_channel_ids() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey); let chain_hash = genesis_block(Network::Testnet).header.block_hash(); // Test receipt of a successful reply { let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd { chain_hash, full_information: true, }); assert!(result.is_ok()); } // Test receipt of a reply that indicates the peer does not maintain up-to-date information // for the chain_hash requested in the query. { let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd { chain_hash, full_information: false, }); assert!(result.is_err()); assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information"); } } #[test] fn handling_query_channel_range() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let chain_hash = genesis_block(Network::Testnet).header.block_hash(); let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap(); let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let mut scids: Vec = vec![ scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never ]; // used for testing multipart reply across blocks for block in 100000..=108001 { scids.push(scid_from_parts(block, 0, 0).unwrap()); } // used for testing resumption on same block scids.push(scid_from_parts(108001, 1, 0).unwrap()); for scid in scids { let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| { unsigned_announcement.short_channel_id = scid; }, node_1_privkey, node_2_privkey, &secp_ctx); match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(_) => (), _ => panic!() }; } // Error when number_of_blocks=0 do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0, number_of_blocks: 0, }, false, vec![ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0, number_of_blocks: 0, sync_complete: true, short_channel_ids: vec![] }] ); // Error when wrong chain do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: genesis_block(Network::Bitcoin).header.block_hash(), first_blocknum: 0, number_of_blocks: 0xffff_ffff, }, false, vec![ReplyChannelRange { chain_hash: genesis_block(Network::Bitcoin).header.block_hash(), first_blocknum: 0, number_of_blocks: 0xffff_ffff, sync_complete: true, short_channel_ids: vec![], }] ); // Error when first_blocknum > 0xffffff do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0x01000000, number_of_blocks: 0xffff_ffff, }, false, vec![ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0x01000000, number_of_blocks: 0xffff_ffff, sync_complete: true, short_channel_ids: vec![] }] ); // Empty reply when max valid SCID block num do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0xffffff, number_of_blocks: 1, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0xffffff, number_of_blocks: 1, sync_complete: true, short_channel_ids: vec![] }, ] ); // No results in valid query range do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 1000, number_of_blocks: 1000, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 1000, number_of_blocks: 1000, sync_complete: true, short_channel_ids: vec![], } ] ); // Overflow first_blocknum + number_of_blocks do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0xfe0000, number_of_blocks: 0xffffffff, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 0xfe0000, number_of_blocks: 0xffffffff - 0xfe0000, sync_complete: true, short_channel_ids: vec![ 0xfffffe_ffffff_ffff, // max ] } ] ); // Single block exactly full do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100000, number_of_blocks: 8000, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100000, number_of_blocks: 8000, sync_complete: true, short_channel_ids: (100000..=107999) .map(|block| scid_from_parts(block, 0, 0).unwrap()) .collect(), }, ] ); // Multiple split on new block do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100000, number_of_blocks: 8001, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100000, number_of_blocks: 7999, sync_complete: false, short_channel_ids: (100000..=107999) .map(|block| scid_from_parts(block, 0, 0).unwrap()) .collect(), }, ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 107999, number_of_blocks: 2, sync_complete: true, short_channel_ids: vec![ scid_from_parts(108000, 0, 0).unwrap(), ], } ] ); // Multiple split on same block do_handling_query_channel_range( &net_graph_msg_handler, &node_id_2, QueryChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100002, number_of_blocks: 8000, }, true, vec![ ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 100002, number_of_blocks: 7999, sync_complete: false, short_channel_ids: (100002..=108001) .map(|block| scid_from_parts(block, 0, 0).unwrap()) .collect(), }, ReplyChannelRange { chain_hash: chain_hash.clone(), first_blocknum: 108001, number_of_blocks: 1, sync_complete: true, short_channel_ids: vec![ scid_from_parts(108001, 1, 0).unwrap(), ], } ] ); } fn do_handling_query_channel_range( net_graph_msg_handler: &NetGraphMsgHandler<&NetworkGraph, Arc, Arc>, test_node_id: &PublicKey, msg: QueryChannelRange, expected_ok: bool, expected_replies: Vec ) { let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1); let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum; let query_end_blocknum = msg.end_blocknum(); let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg); if expected_ok { assert!(result.is_ok()); } else { assert!(result.is_err()); } let events = net_graph_msg_handler.get_and_clear_pending_msg_events(); assert_eq!(events.len(), expected_replies.len()); for i in 0..events.len() { let expected_reply = &expected_replies[i]; match &events[i] { MessageSendEvent::SendReplyChannelRange { node_id, msg } => { assert_eq!(node_id, test_node_id); assert_eq!(msg.chain_hash, expected_reply.chain_hash); assert_eq!(msg.first_blocknum, expected_reply.first_blocknum); assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks); assert_eq!(msg.sync_complete, expected_reply.sync_complete); assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids); // Enforce exactly the sequencing requirements present on c-lightning v0.9.3 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1)); assert!(msg.first_blocknum >= max_firstblocknum); max_firstblocknum = msg.first_blocknum; c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks); // Check that the last block count is >= the query's end_blocknum if i == events.len() - 1 { assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum); } }, _ => panic!("expected MessageSendEvent::SendReplyChannelRange"), } } } #[test] fn handling_query_short_channel_ids() { let network_graph = create_network_graph(); let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph); let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap(); let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey); let chain_hash = genesis_block(Network::Testnet).header.block_hash(); let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds { chain_hash, short_channel_ids: vec![0x0003e8_000000_0000], }); assert!(result.is_err()); } } #[cfg(all(test, feature = "unstable"))] mod benches { use super::*; use test::Bencher; use std::io::Read; #[bench] fn read_network_graph(bench: &mut Bencher) { let mut d = ::routing::router::test_utils::get_route_file().unwrap(); let mut v = Vec::new(); d.read_to_end(&mut v).unwrap(); bench.iter(|| { let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap(); }); } #[bench] fn write_network_graph(bench: &mut Bencher) { let mut d = ::routing::router::test_utils::get_route_file().unwrap(); let net_graph = NetworkGraph::read(&mut d).unwrap(); bench.iter(|| { let _ = net_graph.encode(); }); } }