//! Tests that test standing up a network of ChannelManagers, creating channels, sending //! payments/messages between them, and often checking the resulting ChannelMonitors are able to //! claim outputs on-chain. use chain::transaction::OutPoint; use chain::chaininterface::{ChainListener, ChainWatchInterface}; use chain::keysinterface::{KeysInterface, SpendableOutputDescriptor}; use chain::keysinterface; use ln::channel::{COMMITMENT_TX_BASE_WEIGHT, COMMITMENT_TX_WEIGHT_PER_HTLC, BREAKDOWN_TIMEOUT}; use ln::channelmanager::{ChannelManager,ChannelManagerReadArgs,HTLCForwardInfo,RAACommitmentOrder, PaymentPreimage, PaymentHash}; use ln::channelmonitor::{ChannelMonitor, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS, ManyChannelMonitor, HTLC_FAIL_ANTI_REORG_DELAY}; use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT}; use ln::onion_utils; use ln::router::{Route, RouteHop}; use ln::msgs; use ln::msgs::{ChannelMessageHandler,RoutingMessageHandler,HTLCFailChannelUpdate}; use util::test_utils; use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider}; use util::errors::APIError; use util::ser::{Writeable, ReadableArgs}; use util::config::UserConfig; use util::rng; use bitcoin::util::hash::BitcoinHash; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use bitcoin::util::bip143; use bitcoin::util::address::Address; use bitcoin::util::bip32::{ChildNumber, ExtendedPubKey, ExtendedPrivKey}; use bitcoin::blockdata::block::{Block, BlockHeader}; use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, SigHashType}; use bitcoin::blockdata::script::{Builder, Script}; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin_hashes::sha256::Hash as Sha256; use bitcoin_hashes::Hash; use secp256k1::{Secp256k1, Message}; use secp256k1::key::{PublicKey,SecretKey}; use std::collections::{BTreeSet, HashMap, HashSet}; use std::default::Default; use std::sync::Arc; use std::sync::atomic::Ordering; use std::time::Instant; use std::mem; use ln::functional_test_utils::*; #[test] fn test_async_inbound_update_fee() { let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // A B // update_fee -> // send (1) commitment_signed -. // <- update_add_htlc/commitment_signed // send (2) RAA (awaiting remote revoke) -. // (1) commitment_signed is delivered -> // .- send (3) RAA (awaiting remote revoke) // (2) RAA is delivered -> // .- send (4) commitment_signed // <- (3) RAA is delivered // send (5) commitment_signed -. // <- (4) commitment_signed is delivered // send (6) RAA -. // (5) commitment_signed is delivered -> // <- RAA // (6) RAA is delivered -> // First nodes[0] generates an update_fee nodes[0].node.update_fee(channel_id, get_feerate!(nodes[0], channel_id) + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 40000, TEST_FINAL_CLTV).unwrap(), our_payment_hash).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); // (2) let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); // deliver(1), generate (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // nodes[1] is awaiting nodes[0] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); // deliver (2) let bs_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_update.update_add_htlcs.is_empty()); // (4) assert!(bs_update.update_fulfill_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_malformed_htlcs.is_empty()); // (4) assert!(bs_update.update_fee.is_none()); // (4) check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); // deliver (3) let as_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_update.update_add_htlcs.is_empty()); // (5) assert!(as_update.update_fulfill_htlcs.is_empty()); // (5) assert!(as_update.update_fail_htlcs.is_empty()); // (5) assert!(as_update.update_fail_malformed_htlcs.is_empty()); // (5) assert!(as_update.update_fee.is_none()); // (5) check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_update.commitment_signed).unwrap(); // deliver (4) let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // only (6) so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_update.commitment_signed).unwrap(); // deliver (5) let bs_second_revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke).unwrap(); check_added_monitors!(nodes[0], 1); let events_2 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PendingHTLCsForwardable {..} => {}, // If we actually processed we'd receive the payment _ => panic!("Unexpected event"), } nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke).unwrap(); // deliver (6) check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_unordered_raa() { // Just the intro to the previous test followed by an out-of-order RAA (which caused a // crash in an earlier version of the update_fee patch) let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // First nodes[0] generates an update_fee nodes[0].node.update_fee(channel_id, get_feerate!(nodes[0], channel_id) + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let update_msg = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, .. }, .. } => { update_fee.as_ref() }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 40000, TEST_FINAL_CLTV).unwrap(), our_payment_hash).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); // (2) let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg).unwrap(); // deliver (2) check_added_monitors!(nodes[1], 1); // We can't continue, sadly, because our (1) now has a bogus signature } #[test] fn test_multi_flight_update_fee() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; // A B // update_fee/commitment_signed -> // .- send (1) RAA and (2) commitment_signed // update_fee (never committed) -> // (3) update_fee -> // We have to manually generate the above update_fee, it is allowed by the protocol but we // don't track which updates correspond to which revoke_and_ack responses so we're in // AwaitingRAA mode and will not generate the update_fee yet. // <- (1) RAA delivered // (3) is generated and send (4) CS -. // Note that A cannot generate (4) prior to (1) being delivered as it otherwise doesn't // know the per_commitment_point to use for it. // <- (2) commitment_signed delivered // revoke_and_ack -> // B should send no response here // (4) commitment_signed delivered -> // <- RAA/commitment_signed delivered // revoke_and_ack -> // First nodes[0] generates an update_fee let initial_feerate = get_feerate!(nodes[0], channel_id); nodes[0].node.update_fee(channel_id, initial_feerate + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg_1, commitment_signed_1) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref().unwrap(), commitment_signed) }, _ => panic!("Unexpected event"), }; // Deliver first update_fee/commitment_signed pair, generating (1) and (2): nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg_1).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed_1).unwrap(); let (bs_revoke_msg, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // nodes[0] is awaiting a revoke from nodes[1] before it will create a new commitment // transaction: nodes[0].node.update_fee(channel_id, initial_feerate + 40).unwrap(); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Create the (3) update_fee message that nodes[0] will generate before it does... let mut update_msg_2 = msgs::UpdateFee { channel_id: update_msg_1.channel_id.clone(), feerate_per_kw: (initial_feerate + 30) as u32, }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2).unwrap(); update_msg_2.feerate_per_kw = (initial_feerate + 40) as u32; // Deliver (3) nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2).unwrap(); // Deliver (1), generating (3) and (4) nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_msg).unwrap(); let as_second_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); assert!(as_second_update.update_add_htlcs.is_empty()); assert!(as_second_update.update_fulfill_htlcs.is_empty()); assert!(as_second_update.update_fail_htlcs.is_empty()); assert!(as_second_update.update_fail_malformed_htlcs.is_empty()); // Check that the update_fee newly generated matches what we delivered: assert_eq!(as_second_update.update_fee.as_ref().unwrap().channel_id, update_msg_2.channel_id); assert_eq!(as_second_update.update_fee.as_ref().unwrap().feerate_per_kw, update_msg_2.feerate_per_kw); // Deliver (2) commitment_signed nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed).unwrap(); let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); // Delever (4) nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update.commitment_signed).unwrap(); let (bs_second_revoke, bs_second_commitment) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment).unwrap(); let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_vanilla() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; let feerate = get_feerate!(nodes[0], channel_id); nodes[0].node.update_fee(channel_id, feerate+25).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_that_funder_cannot_afford() { let nodes = create_network(2); let channel_value = 1888; let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, channel_value, 700000); let channel_id = chan.2; let feerate = 260; nodes[0].node.update_fee(channel_id, feerate).unwrap(); check_added_monitors!(nodes[0], 1); let update_msg = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg.update_fee.unwrap()).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], update_msg.commitment_signed, false); //Confirm that the new fee based on the last local commitment txn is what we expected based on the feerate of 260 set above. //This value results in a fee that is exactly what the funder can afford (277 sat + 1000 sat channel reserve) { let chan_lock = nodes[1].node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); //We made sure neither party's funds are below the dust limit so -2 non-HTLC txns from number of outputs let num_htlcs = chan.last_local_commitment_txn[0].output.len() - 2; let total_fee: u64 = feerate * (COMMITMENT_TX_BASE_WEIGHT + (num_htlcs as u64) * COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000; let mut actual_fee = chan.last_local_commitment_txn[0].output.iter().fold(0, |acc, output| acc + output.value); actual_fee = channel_value - actual_fee; assert_eq!(total_fee, actual_fee); } //drop the mutex //Add 2 to the previous fee rate to the final fee increases by 1 (with no HTLCs the fee is essentially //fee_rate*(724/1000) so the increment of 1*0.724 is rounded back down) nodes[0].node.update_fee(channel_id, feerate+2).unwrap(); check_added_monitors!(nodes[0], 1); let update2_msg = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update2_msg.update_fee.unwrap()).unwrap(); //While producing the commitment_signed response after handling a received update_fee request the //check to see if the funder, who sent the update_fee request, can afford the new fee (funder_balance >= fee+channel_reserve) //Should produce and error. let err = nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &update2_msg.commitment_signed).unwrap_err(); assert!(match err.err { "Funding remote cannot afford proposed new fee" => true, _ => false, }); //clear the message we could not handle nodes[1].node.get_and_clear_pending_msg_events(); } #[test] fn test_update_fee_with_fundee_update_add_htlc() { let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let feerate = get_feerate!(nodes[0], channel_id); nodes[0].node.update_fee(channel_id, feerate+20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); let route = nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 800000, TEST_FINAL_CLTV).unwrap(); let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(nodes[1]); // nothing happens since node[1] is in AwaitingRemoteRevoke nodes[1].node.send_payment(route, our_payment_hash).unwrap(); { let mut added_monitors = nodes[0].chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 0); added_monitors.clear(); } assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // node[1] has nothing to do nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); check_added_monitors!(nodes[1], 1); // AwaitingRemoteRevoke ends here let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(commitment_update.update_add_htlcs.len(), 1); assert_eq!(commitment_update.update_fulfill_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_malformed_htlcs.len(), 0); assert_eq!(commitment_update.update_fee.is_none(), true); nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &commitment_update.update_add_htlcs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let (revoke, commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke).unwrap(); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke).unwrap(); check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[0]); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { .. } => { }, _ => panic!("Unexpected event"), }; claim_payment(&nodes[1], &vec!(&nodes[0])[..], our_payment_preimage); send_payment(&nodes[1], &vec!(&nodes[0])[..], 800000); send_payment(&nodes[0], &vec!(&nodes[1])[..], 800000); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); } #[test] fn test_update_fee() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; // A B // (1) update_fee/commitment_signed -> // <- (2) revoke_and_ack // .- send (3) commitment_signed // (4) update_fee/commitment_signed -> // .- send (5) revoke_and_ack (no CS as we're awaiting a revoke) // <- (3) commitment_signed delivered // send (6) revoke_and_ack -. // <- (5) deliver revoke_and_ack // (6) deliver revoke_and_ack -> // .- send (7) commitment_signed in response to (4) // <- (7) deliver commitment_signed // revoke_and_ack -> // Create and deliver (1)... let feerate = get_feerate!(nodes[0], channel_id); nodes[0].node.update_fee(channel_id, feerate+20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // Generate (2) and (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed_0) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // Deliver (2): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Create and deliver (4)... nodes[0].node.update_fee(channel_id, feerate+30).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); // ... creating (5) let revoke_msg = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Handle (3), creating (6): nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed_0).unwrap(); check_added_monitors!(nodes[0], 1); let revoke_msg_0 = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Deliver (5): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Deliver (6), creating (7): nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg_0).unwrap(); let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(commitment_update.update_add_htlcs.is_empty()); assert!(commitment_update.update_fulfill_htlcs.is_empty()); assert!(commitment_update.update_fail_htlcs.is_empty()); assert!(commitment_update.update_fail_malformed_htlcs.is_empty()); assert!(commitment_update.update_fee.is_none()); check_added_monitors!(nodes[1], 1); // Deliver (7) nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(get_feerate!(nodes[0], channel_id), feerate + 30); assert_eq!(get_feerate!(nodes[1], channel_id), feerate + 30); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); } #[test] fn pre_funding_lock_shutdown_test() { // Test sending a shutdown prior to funding_locked after funding generation let nodes = create_network(2); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 8000000, 0); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_checked(&header, 1, &[&tx; 1], &[1; 1]); nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&tx; 1], &[1; 1]); nodes[0].node.close_channel(&OutPoint::new(tx.txid(), 0).to_channel_id()).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_shutdown).unwrap(); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_shutdown).unwrap(); let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed).unwrap(); let (_, node_1_closing_signed) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed.unwrap()).unwrap(); let (_, node_0_none) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); assert!(node_0_none.is_none()); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[1].node.list_channels().is_empty()); } #[test] fn updates_shutdown_wait() { // Test sending a shutdown with outstanding updates pending let mut nodes = create_network(3); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let route_1 = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let route_2 = nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let (our_payment_preimage, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 100000); nodes[0].node.close_channel(&chan_1.2).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_shutdown).unwrap(); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_shutdown).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); let (_, payment_hash) = get_payment_preimage_hash!(nodes[0]); if let Err(APIError::ChannelUnavailable {..}) = nodes[0].node.send_payment(route_1, payment_hash) {} else { panic!("New sends should fail!") }; if let Err(APIError::ChannelUnavailable {..}) = nodes[1].node.send_payment(route_2, payment_hash) {} else { panic!("New sends should fail!") }; assert!(nodes[2].node.claim_funds(our_payment_preimage)); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]).unwrap(); check_added_monitors!(nodes[1], 1); let updates_2 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, false); assert!(updates_2.update_add_htlcs.is_empty()); assert!(updates_2.update_fail_htlcs.is_empty()); assert!(updates_2.update_fail_malformed_htlcs.is_empty()); assert!(updates_2.update_fee.is_none()); assert_eq!(updates_2.update_fulfill_htlcs.len(), 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates_2.update_fulfill_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], updates_2.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(our_payment_preimage, *payment_preimage); }, _ => panic!("Unexpected event"), } let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed).unwrap(); let (_, node_1_closing_signed) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed.unwrap()).unwrap(); let (_, node_0_none) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); assert!(node_0_none.is_none()); assert!(nodes[0].node.list_channels().is_empty()); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, true); assert!(nodes[1].node.list_channels().is_empty()); assert!(nodes[2].node.list_channels().is_empty()); } #[test] fn htlc_fail_async_shutdown() { // Test HTLCs fail if shutdown starts even if messages are delivered out-of-order let mut nodes = create_network(3); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[1].node.close_channel(&chan_1.2).unwrap(); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_shutdown).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &updates.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_shutdown).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], (), false, true, false); let updates_2 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates_2.update_add_htlcs.is_empty()); assert!(updates_2.update_fulfill_htlcs.is_empty()); assert_eq!(updates_2.update_fail_htlcs.len(), 1); assert!(updates_2.update_fail_malformed_htlcs.is_empty()); assert!(updates_2.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates_2.update_fail_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], updates_2.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { ref payment_hash, ref rejected_by_dest, .. } => { assert_eq!(our_payment_hash, *payment_hash); assert!(!rejected_by_dest); }, _ => panic!("Unexpected event"), } let msg_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 2); let node_0_closing_signed = match msg_events[0] { MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); (*msg).clone() }, _ => panic!("Unexpected event"), }; match msg_events[1] { MessageSendEvent::PaymentFailureNetworkUpdate { update: msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { ref msg }} => { assert_eq!(msg.contents.short_channel_id, chan_1.0.contents.short_channel_id); }, _ => panic!("Unexpected event"), } assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed).unwrap(); let (_, node_1_closing_signed) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed.unwrap()).unwrap(); let (_, node_0_none) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); assert!(node_0_none.is_none()); assert!(nodes[0].node.list_channels().is_empty()); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, true); assert!(nodes[1].node.list_channels().is_empty()); assert!(nodes[2].node.list_channels().is_empty()); } fn do_test_shutdown_rebroadcast(recv_count: u8) { // Test that shutdown/closing_signed is re-sent on reconnect with a variable number of // messages delivered prior to disconnect let nodes = create_network(3); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let (our_payment_preimage, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 100000); nodes[1].node.close_channel(&chan_1.2).unwrap(); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); if recv_count > 0 { nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_shutdown).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); if recv_count > 1 { nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_shutdown).unwrap(); } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let node_0_reestablish = get_event_msg!(nodes[0], MessageSendEvent::SendChannelReestablish, nodes[1].node.get_our_node_id()); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let node_1_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &node_0_reestablish).unwrap(); let node_1_2nd_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); assert!(node_1_shutdown == node_1_2nd_shutdown); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &node_1_reestablish).unwrap(); let node_0_2nd_shutdown = if recv_count > 0 { let node_0_2nd_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_2nd_shutdown).unwrap(); node_0_2nd_shutdown } else { assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_2nd_shutdown).unwrap(); get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()) }; nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_2nd_shutdown).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[2].node.claim_funds(our_payment_preimage)); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]).unwrap(); check_added_monitors!(nodes[1], 1); let updates_2 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, false); assert!(updates_2.update_add_htlcs.is_empty()); assert!(updates_2.update_fail_htlcs.is_empty()); assert!(updates_2.update_fail_malformed_htlcs.is_empty()); assert!(updates_2.update_fee.is_none()); assert_eq!(updates_2.update_fulfill_htlcs.len(), 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates_2.update_fulfill_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], updates_2.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(our_payment_preimage, *payment_preimage); }, _ => panic!("Unexpected event"), } let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); if recv_count > 0 { nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed).unwrap(); let (_, node_1_closing_signed) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); assert!(node_1_closing_signed.is_some()); } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let node_0_2nd_reestablish = get_event_msg!(nodes[0], MessageSendEvent::SendChannelReestablish, nodes[1].node.get_our_node_id()); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); if recv_count == 0 { // If all closing_signeds weren't delivered we can just resume where we left off... let node_1_2nd_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &node_1_2nd_reestablish).unwrap(); let node_0_3rd_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); assert!(node_0_2nd_shutdown == node_0_3rd_shutdown); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &node_0_2nd_reestablish).unwrap(); let node_1_3rd_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); assert!(node_1_3rd_shutdown == node_1_2nd_shutdown); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_3rd_shutdown).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_3rd_shutdown).unwrap(); let node_0_2nd_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); assert!(node_0_closing_signed == node_0_2nd_closing_signed); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_2nd_closing_signed).unwrap(); let (_, node_1_closing_signed) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed.unwrap()).unwrap(); let (_, node_0_none) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); assert!(node_0_none.is_none()); } else { // If one node, however, received + responded with an identical closing_signed we end // up erroring and node[0] will try to broadcast its own latest commitment transaction. // There isn't really anything better we can do simply, but in the future we might // explore storing a set of recently-closed channels that got disconnected during // closing_signed and avoiding broadcasting local commitment txn for some timeout to // give our counterparty enough time to (potentially) broadcast a cooperative closing // transaction. assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); if let Err(msgs::HandleError{action: Some(msgs::ErrorAction::SendErrorMessage{msg}), ..}) = nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &node_0_2nd_reestablish) { nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &msg); let msgs::ErrorMessage {ref channel_id, ..} = msg; assert_eq!(*channel_id, chan_1.2); } else { panic!("Needed SendErrorMessage close"); } // get_closing_signed_broadcast usually eats the BroadcastChannelUpdate for us and // checks it, but in this case nodes[0] didn't ever get a chance to receive a // closing_signed so we do it ourselves check_closed_broadcast!(nodes[0]); } assert!(nodes[0].node.list_channels().is_empty()); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, true); assert!(nodes[1].node.list_channels().is_empty()); assert!(nodes[2].node.list_channels().is_empty()); } #[test] fn test_shutdown_rebroadcast() { do_test_shutdown_rebroadcast(0); do_test_shutdown_rebroadcast(1); do_test_shutdown_rebroadcast(2); } #[test] fn fake_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that payments get routed and transactions broadcast in semi-reasonable ways. let nodes = create_network(4); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); // Send some more payments send_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1], &nodes[0])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1])[..], 1000000); // Test failure packets let payment_hash_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], payment_hash_1); // Add a new channel that skips 3 let chan_4 = create_announced_chan_between_nodes(&nodes, 1, 3); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 1000000); send_payment(&nodes[2], &vec!(&nodes[3])[..], 1000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); // Do some rebalance loop payments, simultaneously let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), short_channel_id: chan_2.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_3.0.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), short_channel_id: chan_3.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_4.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), short_channel_id: chan_4.0.contents.short_channel_id, fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_4.1.contents.fee_base_msat as u64 + chan_4.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.0.contents.fee_base_msat as u64 + chan_3.0.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_preimage_1 = send_along_route(&nodes[1], Route { hops }, &vec!(&nodes[2], &nodes[3], &nodes[1])[..], 1000000).0; let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), short_channel_id: chan_4.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_3.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), short_channel_id: chan_3.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_2.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), short_channel_id: chan_2.0.contents.short_channel_id, fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_2.1.contents.fee_base_msat as u64 + chan_2.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.1.contents.fee_base_msat as u64 + chan_3.1.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_hash_2 = send_along_route(&nodes[1], Route { hops }, &vec!(&nodes[3], &nodes[2], &nodes[1])[..], 1000000).1; // Claim the rebalances... fail_payment(&nodes[1], &vec!(&nodes[3], &nodes[2], &nodes[1])[..], payment_hash_2); claim_payment(&nodes[1], &vec!(&nodes[2], &nodes[3], &nodes[1])[..], payment_preimage_1); // Add a duplicate new channel from 2 to 4 let chan_5 = create_announced_chan_between_nodes(&nodes, 1, 3); // Send some payments across both channels let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; route_over_limit(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000); //TODO: Test that routes work again here as we've been notified that the channel is full claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_3); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_4); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_5); // Close down the channels... close_channel(&nodes[0], &nodes[1], &chan_1.2, chan_1.3, true); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, false); close_channel(&nodes[2], &nodes[3], &chan_3.2, chan_3.3, true); close_channel(&nodes[1], &nodes[3], &chan_4.2, chan_4.3, false); close_channel(&nodes[1], &nodes[3], &chan_5.2, chan_5.3, false); } #[test] fn holding_cell_htlc_counting() { // Tests that HTLCs in the holding cell count towards the pending HTLC limits on outbound HTLCs // to ensure we don't end up with HTLCs sitting around in our holding cell for several // commitment dance rounds. let mut nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let mut payments = Vec::new(); for _ in 0..::ln::channel::OUR_MAX_HTLCS { let route = nodes[1].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 100000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage, payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(route, payment_hash).unwrap(); payments.push((payment_preimage, payment_hash)); } check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let initial_payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(initial_payment_event.node_id, nodes[2].node.get_our_node_id()); // There is now one HTLC in an outbound commitment transaction and (OUR_MAX_HTLCS - 1) HTLCs in // the holding cell waiting on B's RAA to send. At this point we should not be able to add // another HTLC. let route = nodes[1].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 100000, TEST_FINAL_CLTV).unwrap(); let (_, payment_hash_1) = get_payment_preimage_hash!(nodes[0]); if let APIError::ChannelUnavailable { err } = nodes[1].node.send_payment(route, payment_hash_1).unwrap_err() { assert_eq!(err, "Cannot push more than their max accepted HTLCs"); } else { panic!("Unexpected event"); } // This should also be true if we try to forward a payment. let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 100000, TEST_FINAL_CLTV).unwrap(); let (_, payment_hash_2) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, payment_hash_2).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // We have to forward pending HTLCs twice - once tries to forward the payment forward (and // fails), the second will process the resulting failure and fail the HTLC backward. expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::PaymentFailureNetworkUpdate { update: msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { ref msg }} => { assert_eq!(msg.contents.short_channel_id, chan_2.0.contents.short_channel_id); }, _ => panic!("Unexpected event"), } let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { payment_hash, rejected_by_dest, .. } => { assert_eq!(payment_hash, payment_hash_2); assert!(!rejected_by_dest); }, _ => panic!("Unexpected event"), } // Now forward all the pending HTLCs and claim them back nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &initial_payment_event.msgs[0]).unwrap(); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &initial_payment_event.commitment_msg).unwrap(); check_added_monitors!(nodes[2], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); check_added_monitors!(nodes[1], 1); let as_updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &bs_commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); for ref update in as_updates.update_add_htlcs.iter() { nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), update).unwrap(); } nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &as_updates.commitment_signed).unwrap(); check_added_monitors!(nodes[2], 1); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[2], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &bs_commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let as_final_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_final_raa).unwrap(); check_added_monitors!(nodes[2], 1); expect_pending_htlcs_forwardable!(nodes[2]); let events = nodes[2].node.get_and_clear_pending_events(); assert_eq!(events.len(), payments.len()); for (event, &(_, ref hash)) in events.iter().zip(payments.iter()) { match event { &Event::PaymentReceived { ref payment_hash, .. } => { assert_eq!(*payment_hash, *hash); }, _ => panic!("Unexpected event"), }; } for (preimage, _) in payments.drain(..) { claim_payment(&nodes[1], &[&nodes[2]], preimage); } send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1000000); } #[test] fn duplicate_htlc_test() { // Test that we accept duplicate payment_hash HTLCs across the network and that // claiming/failing them are all separate and don't affect each other let mut nodes = create_network(6); // Create some initial channels to route via 3 to 4/5 from 0/1/2 create_announced_chan_between_nodes(&nodes, 0, 3); create_announced_chan_between_nodes(&nodes, 1, 3); create_announced_chan_between_nodes(&nodes, 2, 3); create_announced_chan_between_nodes(&nodes, 3, 4); create_announced_chan_between_nodes(&nodes, 3, 5); let (payment_preimage, payment_hash) = route_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], 1000000); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[1], &vec!(&nodes[3])[..], 1000000).0, payment_preimage); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], 1000000).0, payment_preimage); claim_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], payment_preimage); fail_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], payment_hash); claim_payment(&nodes[1], &vec!(&nodes[3])[..], payment_preimage); } fn do_channel_reserve_test(test_recv: bool) { use util::rng; use std::sync::atomic::Ordering; use ln::msgs::HandleError; let mut nodes = create_network(3); let chan_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1900, 1001); let chan_2 = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 1900, 1001); let mut stat01 = get_channel_value_stat!(nodes[0], chan_1.2); let mut stat11 = get_channel_value_stat!(nodes[1], chan_1.2); let mut stat12 = get_channel_value_stat!(nodes[1], chan_2.2); let mut stat22 = get_channel_value_stat!(nodes[2], chan_2.2); macro_rules! get_route_and_payment_hash { ($recv_value: expr) => {{ let route = nodes[0].router.get_route(&nodes.last().unwrap().node.get_our_node_id(), None, &Vec::new(), $recv_value, TEST_FINAL_CLTV).unwrap(); let (payment_preimage, payment_hash) = get_payment_preimage_hash!(nodes[0]); (route, payment_hash, payment_preimage) }} }; macro_rules! expect_forward { ($node: expr) => {{ let mut events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); check_added_monitors!($node, 1); let payment_event = SendEvent::from_event(events.remove(0)); payment_event }} } let feemsat = 239; // somehow we know? let total_fee_msat = (nodes.len() - 2) as u64 * 239; let recv_value_0 = stat01.their_max_htlc_value_in_flight_msat - total_fee_msat; // attempt to send amt_msat > their_max_htlc_value_in_flight_msat { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_0 + 1); assert!(route.hops.iter().rev().skip(1).all(|h| h.fee_msat == feemsat)); let err = nodes[0].node.send_payment(route, our_payment_hash).err().unwrap(); match err { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over the max HTLC value in flight"), _ => panic!("Unknown error variants"), } } let mut htlc_id = 0; // channel reserve is bigger than their_max_htlc_value_in_flight_msat so loop to deplete // nodes[0]'s wealth loop { let amt_msat = recv_value_0 + total_fee_msat; if stat01.value_to_self_msat - amt_msat < stat01.channel_reserve_msat { break; } send_payment(&nodes[0], &vec![&nodes[1], &nodes[2]][..], recv_value_0); htlc_id += 1; let (stat01_, stat11_, stat12_, stat22_) = ( get_channel_value_stat!(nodes[0], chan_1.2), get_channel_value_stat!(nodes[1], chan_1.2), get_channel_value_stat!(nodes[1], chan_2.2), get_channel_value_stat!(nodes[2], chan_2.2), ); assert_eq!(stat01_.value_to_self_msat, stat01.value_to_self_msat - amt_msat); assert_eq!(stat11_.value_to_self_msat, stat11.value_to_self_msat + amt_msat); assert_eq!(stat12_.value_to_self_msat, stat12.value_to_self_msat - (amt_msat - feemsat)); assert_eq!(stat22_.value_to_self_msat, stat22.value_to_self_msat + (amt_msat - feemsat)); stat01 = stat01_; stat11 = stat11_; stat12 = stat12_; stat22 = stat22_; } { let recv_value = stat01.value_to_self_msat - stat01.channel_reserve_msat - total_fee_msat; // attempt to get channel_reserve violation let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value + 1); let err = nodes[0].node.send_payment(route.clone(), our_payment_hash).err().unwrap(); match err { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over the reserve value"), _ => panic!("Unknown error variants"), } } // adding pending output let recv_value_1 = (stat01.value_to_self_msat - stat01.channel_reserve_msat - total_fee_msat)/2; let amt_msat_1 = recv_value_1 + total_fee_msat; let (route_1, our_payment_hash_1, our_payment_preimage_1) = get_route_and_payment_hash!(recv_value_1); let payment_event_1 = { nodes[0].node.send_payment(route_1, our_payment_hash_1).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event_1.msgs[0]).unwrap(); // channel reserve test with htlc pending output > 0 let recv_value_2 = stat01.value_to_self_msat - amt_msat_1 - stat01.channel_reserve_msat - total_fee_msat; { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_2 + 1); match nodes[0].node.send_payment(route, our_payment_hash).err().unwrap() { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over the reserve value"), _ => panic!("Unknown error variants"), } } { // test channel_reserve test on nodes[1] side let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_2 + 1); // Need to manually create update_add_htlc message to go around the channel reserve check in send_htlc() let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&{ let mut session_key = [0; 32]; rng::fill_bytes(&mut session_key); session_key }).expect("RNG is bad!"); let cur_height = nodes[0].node.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = onion_utils::construct_onion_keys(&secp_ctx, &route, &session_priv).unwrap(); let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, &our_payment_hash); let msg = msgs::UpdateAddHTLC { channel_id: chan_1.2, htlc_id, amount_msat: htlc_msat, payment_hash: our_payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet, }; if test_recv { let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg).err().unwrap(); match err { HandleError{err, .. } => assert_eq!(err, "Remote HTLC add would put them over their reserve value"), } // If we send a garbage message, the channel should get closed, making the rest of this test case fail. assert_eq!(nodes[1].node.list_channels().len(), 1); assert_eq!(nodes[1].node.list_channels().len(), 1); check_closed_broadcast!(nodes[1]); return; } } // split the rest to test holding cell let recv_value_21 = recv_value_2/2; let recv_value_22 = recv_value_2 - recv_value_21 - total_fee_msat; { let stat = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat.value_to_self_msat - (stat.pending_outbound_htlcs_amount_msat + recv_value_21 + recv_value_22 + total_fee_msat + total_fee_msat), stat.channel_reserve_msat); } // now see if they go through on both sides let (route_21, our_payment_hash_21, our_payment_preimage_21) = get_route_and_payment_hash!(recv_value_21); // but this will stuck in the holding cell nodes[0].node.send_payment(route_21, our_payment_hash_21).unwrap(); check_added_monitors!(nodes[0], 0); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 0); // test with outbound holding cell amount > 0 { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_22+1); match nodes[0].node.send_payment(route, our_payment_hash).err().unwrap() { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over the reserve value"), _ => panic!("Unknown error variants"), } } let (route_22, our_payment_hash_22, our_payment_preimage_22) = get_route_and_payment_hash!(recv_value_22); // this will also stuck in the holding cell nodes[0].node.send_payment(route_22, our_payment_hash_22).unwrap(); check_added_monitors!(nodes[0], 0); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // flush the pending htlc nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event_1.commitment_msg).unwrap(); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); check_added_monitors!(nodes[0], 1); let commitment_update_2 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &as_commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_11 = expect_forward!(nodes[1]); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_11.msgs[0]).unwrap(); commitment_signed_dance!(nodes[2], nodes[1], payment_event_11.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); expect_payment_received!(nodes[2], our_payment_hash_1, recv_value_1); // flush the htlcs in the holding cell assert_eq!(commitment_update_2.update_add_htlcs.len(), 2); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[0]).unwrap(); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[1]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], &commitment_update_2.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_3 = expect_forward!(nodes[1]); assert_eq!(payment_event_3.msgs.len(), 2); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[0]).unwrap(); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[1]).unwrap(); commitment_signed_dance!(nodes[2], nodes[1], &payment_event_3.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); let events = nodes[2].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(our_payment_hash_21, *payment_hash); assert_eq!(recv_value_21, amt); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(our_payment_hash_22, *payment_hash); assert_eq!(recv_value_22, amt); }, _ => panic!("Unexpected event"), } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_1); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_21); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_22); let expected_value_to_self = stat01.value_to_self_msat - (recv_value_1 + total_fee_msat) - (recv_value_21 + total_fee_msat) - (recv_value_22 + total_fee_msat); let stat0 = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat0.value_to_self_msat, expected_value_to_self); assert_eq!(stat0.value_to_self_msat, stat0.channel_reserve_msat); let stat2 = get_channel_value_stat!(nodes[2], chan_2.2); assert_eq!(stat2.value_to_self_msat, stat22.value_to_self_msat + recv_value_1 + recv_value_21 + recv_value_22); } #[test] fn channel_reserve_test() { do_channel_reserve_test(false); do_channel_reserve_test(true); } #[test] fn channel_reserve_in_flight_removes() { // In cases where one side claims an HTLC, it thinks it has additional available funds that it // can send to its counterparty, but due to update ordering, the other side may not yet have // considered those HTLCs fully removed. // This tests that we don't count HTLCs which will not be included in the next remote // commitment transaction towards the reserve value (as it implies no commitment transaction // will be generated which violates the remote reserve value). // This was broken previously, and discovered by the chanmon_fail_consistency fuzz test. // To test this we: // * route two HTLCs from A to B (note that, at a high level, this test is checking that, when // you consider the values of both of these HTLCs, B may not send an HTLC back to A, but if // you only consider the value of the first HTLC, it may not), // * start routing a third HTLC from A to B, // * claim the first two HTLCs (though B will generate an update_fulfill for one, and put // the other claim in its holding cell, as it immediately goes into AwaitingRAA), // * deliver the first fulfill from B // * deliver the update_add and an RAA from A, resulting in B freeing the second holding cell // claim, // * deliver A's response CS and RAA. // This results in A having the second HTLC in AwaitingRemovedRemoteRevoke, but B having // removed it fully. B now has the push_msat plus the first two HTLCs in value. // * Now B happily sends another HTLC, potentially violating its reserve value from A's point // of view (if A counts the AwaitingRemovedRemoteRevoke HTLC). let mut nodes = create_network(2); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let b_chan_values = get_channel_value_stat!(nodes[1], chan_1.2); // Route the first two HTLCs. let (payment_preimage_1, _) = route_payment(&nodes[0], &[&nodes[1]], b_chan_values.channel_reserve_msat - b_chan_values.value_to_self_msat - 10000); let (payment_preimage_2, _) = route_payment(&nodes[0], &[&nodes[1]], 20000); // Start routing the third HTLC (this is just used to get everyone in the right state). let (payment_preimage_3, payment_hash_3) = get_payment_preimage_hash!(nodes[0]); let send_1 = { let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); nodes[0].node.send_payment(route, payment_hash_3).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; // Now claim both of the first two HTLCs on B's end, putting B in AwaitingRAA and generating an // initial fulfill/CS. assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let bs_removes = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); // This claim goes in B's holding cell, allowing us to have a pending B->A RAA which does not // remove the second HTLC when we send the HTLC back from B to A. assert!(nodes[1].node.claim_funds(payment_preimage_2)); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_removes.update_fulfill_htlcs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_removes.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); expect_payment_sent!(nodes[0], payment_preimage_1); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_1.msgs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &send_1.commitment_msg).unwrap(); check_added_monitors!(nodes[1], 1); // B is already AwaitingRAA, so cant generate a CS here let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[1], 1); let bs_cs = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa).unwrap(); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // The second HTLCis removed, but as A is in AwaitingRAA it can't generate a CS here, so the // RAA that B generated above doesn't fully resolve the second HTLC from A's point of view. // However, the RAA A generates here *does* fully resolve the HTLC from B's point of view (as A // can no longer broadcast a commitment transaction with it and B has the preimage so can go // on-chain as necessary). nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_cs.update_fulfill_htlcs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_cs.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); expect_payment_sent!(nodes[0], payment_preimage_2); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], payment_hash_3, 100000); // Note that as this RAA was generated before the delivery of the update_fulfill it shouldn't // resolve the second HTLC from A's point of view. nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa).unwrap(); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // Now that B doesn't have the second RAA anymore, but A still does, send a payment from B back // to A to ensure that A doesn't count the almost-removed HTLC in update_add processing. let (payment_preimage_4, payment_hash_4) = get_payment_preimage_hash!(nodes[1]); let send_2 = { let route = nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &[], 10000, TEST_FINAL_CLTV).unwrap(); nodes[1].node.send_payment(route, payment_hash_4).unwrap(); check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &send_2.msgs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &send_2.commitment_msg).unwrap(); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // Now just resolve all the outstanding messages/HTLCs for completeness... nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa).unwrap(); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa).unwrap(); check_added_monitors!(nodes[0], 1); expect_pending_htlcs_forwardable!(nodes[0]); expect_payment_received!(nodes[0], payment_hash_4, 10000); claim_payment(&nodes[1], &[&nodes[0]], payment_preimage_4); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_3); } #[test] fn channel_monitor_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that ChannelMonitor is able to recover from various states. let nodes = create_network(5); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3); let chan_4 = create_announced_chan_between_nodes(&nodes, 3, 4); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); // Simple case with no pending HTLCs: nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), true); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_1, None, HTLCType::NONE); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn.drain(..).next().unwrap()] }, 1); test_txn_broadcast(&nodes[0], &chan_1, None, HTLCType::NONE); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 1); // One pending HTLC is discarded by the force-close: let payment_preimage_1 = route_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 3000000).0; // Simple case of one pending HTLC to HTLC-Timeout nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), true); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_2, None, HTLCType::TIMEOUT); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn.drain(..).next().unwrap()] }, 1); test_txn_broadcast(&nodes[2], &chan_2, None, HTLCType::NONE); } get_announce_close_broadcast_events(&nodes, 1, 2); assert_eq!(nodes[1].node.list_channels().len(), 0); assert_eq!(nodes[2].node.list_channels().len(), 1); macro_rules! claim_funds { ($node: expr, $prev_node: expr, $preimage: expr) => { { assert!($node.node.claim_funds($preimage)); check_added_monitors!($node, 1); let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(*node_id, $prev_node.node.get_our_node_id()); }, _ => panic!("Unexpected event"), }; } } } // nodes[3] gets the preimage, but nodes[2] already disconnected, resulting in a nodes[2] // HTLC-Timeout and a nodes[3] claim against it (+ its own announces) nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), true); { let node_txn = test_txn_broadcast(&nodes[2], &chan_3, None, HTLCType::TIMEOUT); // Claim the payment on nodes[3], giving it knowledge of the preimage claim_funds!(nodes[3], nodes[2], payment_preimage_1); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, 1); check_preimage_claim(&nodes[3], &node_txn); } get_announce_close_broadcast_events(&nodes, 2, 3); assert_eq!(nodes[2].node.list_channels().len(), 0); assert_eq!(nodes[3].node.list_channels().len(), 1); { // Cheat and reset nodes[4]'s height to 1 let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![] }, 1); } assert_eq!(nodes[3].node.latest_block_height.load(Ordering::Acquire), 1); assert_eq!(nodes[4].node.latest_block_height.load(Ordering::Acquire), 1); // One pending HTLC to time out: let payment_preimage_2 = route_payment(&nodes[3], &vec!(&nodes[4])[..], 3000000).0; // CLTV expires at TEST_FINAL_CLTV + 1 (current height) + 1 (added in send_payment for // buffer space). { let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_checked(&header, 2, &Vec::new()[..], &[0; 0]); for i in 3..TEST_FINAL_CLTV + 2 + HTLC_FAIL_TIMEOUT_BLOCKS + 1 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_checked(&header, i, &Vec::new()[..], &[0; 0]); } let node_txn = test_txn_broadcast(&nodes[3], &chan_4, None, HTLCType::TIMEOUT); // Claim the payment on nodes[4], giving it knowledge of the preimage claim_funds!(nodes[4], nodes[3], payment_preimage_2); header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_checked(&header, 2, &Vec::new()[..], &[0; 0]); for i in 3..TEST_FINAL_CLTV + 2 - CLTV_CLAIM_BUFFER + 1 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_checked(&header, i, &Vec::new()[..], &[0; 0]); } test_txn_broadcast(&nodes[4], &chan_4, None, HTLCType::SUCCESS); header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, TEST_FINAL_CLTV - 5); check_preimage_claim(&nodes[4], &node_txn); } get_announce_close_broadcast_events(&nodes, 3, 4); assert_eq!(nodes[3].node.list_channels().len(), 0); assert_eq!(nodes[4].node.list_channels().len(), 0); } #[test] fn test_justice_tx() { // Test justice txn built on revoked HTLC-Success tx, against both sides let nodes = create_network(2); // Create some new channels: let chan_5 = create_announced_chan_between_nodes(&nodes, 0, 1); // A pending HTLC which will be revoked: let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; // Get the will-be-revoked local txn from nodes[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.iter().next().unwrap().1.last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 2); // First commitment tx, then HTLC tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_5.3.txid()); assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to 0 are present assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout // Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_3); { let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn.pop().unwrap(), node_txn[0]); // An outpoint registration will result in a 2nd block_connected assert_eq!(node_txn[0].input.len(), 2); // We should claim the revoked output and the HTLC output check_spends!(node_txn[0], revoked_local_txn[0].clone()); node_txn.swap_remove(0); } test_txn_broadcast(&nodes[1], &chan_5, None, HTLCType::NONE); nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = test_txn_broadcast(&nodes[0], &chan_5, Some(revoked_local_txn[0].clone()), HTLCType::TIMEOUT); header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[1].clone()] }, 1); test_revoked_htlc_claim_txn_broadcast(&nodes[1], node_txn[1].clone()); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); // We test justice_tx build by A on B's revoked HTLC-Success tx // Create some new channels: let chan_6 = create_announced_chan_between_nodes(&nodes, 0, 1); // A pending HTLC which will be revoked: let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; // Get the will-be-revoked local txn from B let revoked_local_txn = nodes[1].node.channel_state.lock().unwrap().by_id.iter().next().unwrap().1.last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 1); // Only commitment tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_6.3.txid()); assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to A are present // Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_4); { let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn.pop().unwrap(), node_txn[0]); // An outpoint registration will result in a 2nd block_connected assert_eq!(node_txn[0].input.len(), 1); // We claim the received HTLC output check_spends!(node_txn[0], revoked_local_txn[0].clone()); node_txn.swap_remove(0); } test_txn_broadcast(&nodes[0], &chan_6, None, HTLCType::NONE); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = test_txn_broadcast(&nodes[1], &chan_6, Some(revoked_local_txn[0].clone()), HTLCType::SUCCESS); header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[1].clone()] }, 1); test_revoked_htlc_claim_txn_broadcast(&nodes[0], node_txn[1].clone()); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn revoked_output_claim() { // Simple test to ensure a node will claim a revoked output when a stale remote commitment // transaction is broadcast by its counterparty let nodes = create_network(2); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // node[0] is gonna to revoke an old state thus node[1] should be able to claim the revoked output let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 1); // Only output is the full channel value back to nodes[0]: assert_eq!(revoked_local_txn[0].output.len(), 1); // Send a payment through, updating everyone's latest commitment txn send_payment(&nodes[0], &vec!(&nodes[1])[..], 5000000); // Inform nodes[1] that nodes[0] broadcast a stale tx let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); // nodes[1] will broadcast justice tx twice, and its own local state once assert_eq!(node_txn[0], node_txn[2]); check_spends!(node_txn[0], revoked_local_txn[0].clone()); check_spends!(node_txn[1], chan_1.3.clone()); // Inform nodes[0] that a watchtower cheated on its behalf, so it will force-close the chan nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); get_announce_close_broadcast_events(&nodes, 0, 1); } #[test] fn claim_htlc_outputs_shared_tx() { // Node revoked old state, htlcs haven't time out yet, claim them in shared justice tx let nodes = create_network(2); // Create some new channel: let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let (_payment_preimage_2, payment_hash_2) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000); // Get the will-be-revoked local txn from node[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 2); // commitment tx + 1 HTLC-Timeout tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout check_spends!(revoked_local_txn[1], revoked_local_txn[0].clone()); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); connect_blocks(&nodes[1].chain_monitor, HTLC_FAIL_ANTI_REORG_DELAY - 1, 1, true, header.bitcoin_hash()); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { payment_hash, .. } => { assert_eq!(payment_hash, payment_hash_2); }, _ => panic!("Unexpected event"), } let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 4); assert_eq!(node_txn[0].input.len(), 3); // Claim the revoked output + both revoked HTLC outputs check_spends!(node_txn[0], revoked_local_txn[0].clone()); assert_eq!(node_txn[0], node_txn[3]); // justice tx is duplicated due to block re-scanning let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[0].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[1].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[2].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC // Next nodes[1] broadcasts its current local tx state: assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].previous_output.txid, chan_1.3.txid()); //Spending funding tx unique txouput, tx broadcasted by ChannelManager assert_eq!(node_txn[2].input.len(), 1); let witness_script = node_txn[2].clone().input[0].witness.pop().unwrap(); assert_eq!(witness_script.len(), OFFERED_HTLC_SCRIPT_WEIGHT); //Spending an offered htlc output assert_eq!(node_txn[2].input[0].previous_output.txid, node_txn[1].txid()); assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid); assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[1].previous_output.txid); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn claim_htlc_outputs_single_tx() { // Node revoked old state, htlcs have timed out, claim each of them in separated justice tx let nodes = create_network(2); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx, but this // time as two different claim transactions as we're gonna to timeout htlc with given a high current height let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let (_payment_preimage_2, payment_hash_2) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000); // Get the will-be-revoked local txn from node[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200); connect_blocks(&nodes[1].chain_monitor, HTLC_FAIL_ANTI_REORG_DELAY - 1, 200, true, header.bitcoin_hash()); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { payment_hash, .. } => { assert_eq!(payment_hash, payment_hash_2); }, _ => panic!("Unexpected event"), } let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 22); // ChannelManager : 2, ChannelMontitor: 8 (1 standard revoked output, 2 revocation htlc tx, 1 local commitment tx + 1 htlc timeout tx) * 2 (block-rescan) + 5 * (1 local commitment tx + 1 htlc timeout tx) assert_eq!(node_txn[0], node_txn[7]); assert_eq!(node_txn[1], node_txn[8]); assert_eq!(node_txn[2], node_txn[9]); assert_eq!(node_txn[3], node_txn[10]); assert_eq!(node_txn[4], node_txn[11]); assert_eq!(node_txn[3], node_txn[5]); //local commitment tx + htlc timeout tx broadcasted by ChannelManger assert_eq!(node_txn[4], node_txn[6]); for i in 12..22 { if i % 2 == 0 { assert_eq!(node_txn[3], node_txn[i]); } else { assert_eq!(node_txn[4], node_txn[i]); } } assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[2].input.len(), 1); let mut revoked_tx_map = HashMap::new(); revoked_tx_map.insert(revoked_local_txn[0].txid(), revoked_local_txn[0].clone()); node_txn[0].verify(&revoked_tx_map).unwrap(); node_txn[1].verify(&revoked_tx_map).unwrap(); node_txn[2].verify(&revoked_tx_map).unwrap(); let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[0].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[1].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[2].input[0].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC assert_eq!(node_txn[3].input.len(), 1); check_spends!(node_txn[3], chan_1.3.clone()); assert_eq!(node_txn[4].input.len(), 1); let witness_script = node_txn[4].input[0].witness.last().unwrap(); assert_eq!(witness_script.len(), OFFERED_HTLC_SCRIPT_WEIGHT); //Spending an offered htlc output assert_eq!(node_txn[4].input[0].previous_output.txid, node_txn[3].txid()); assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid); assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[1].input[0].previous_output.txid); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn test_htlc_on_chain_success() { // Test that in case of a unilateral close onchain, we detect the state of output thanks to // ChainWatchInterface and pass the preimage backward accordingly. So here we test that ChannelManager is // broadcasting the right event to other nodes in payment path. // We test with two HTLCs simultaneously as that was not handled correctly in the past. // A --------------------> B ----------------------> C (preimage) // First, C should claim the HTLC outputs via HTLC-Success when its own latest local // commitment transaction was broadcast. // Then, B should learn the preimage from said transactions, attempting to claim backwards // towards B. // B should be able to claim via preimage if A then broadcasts its local tx. // Finally, when A sees B's latest local commitment transaction it should be able to claim // the HTLC outputs via the preimage it learned (which, once confirmed should generate a // PaymentSent event). let nodes = create_network(3); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (our_payment_preimage, _payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let (our_payment_preimage_2, _payment_hash_2) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; // Broadcast legit commitment tx from C on B's chain // Broadcast HTLC Success transaction by C on received output from C's commitment tx on B's chain let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(commitment_tx.len(), 1); check_spends!(commitment_tx[0], chan_2.3.clone()); nodes[2].node.claim_funds(our_payment_preimage); nodes[2].node.claim_funds(our_payment_preimage_2); check_added_monitors!(nodes[2], 2); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1); check_closed_broadcast!(nodes[2]); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx), ChannelMonitor : 4 (2*2 * HTLC-Success tx) assert_eq!(node_txn.len(), 5); assert_eq!(node_txn[0], node_txn[3]); assert_eq!(node_txn[1], node_txn[4]); assert_eq!(node_txn[2], commitment_tx[0]); check_spends!(node_txn[0], commitment_tx[0].clone()); check_spends!(node_txn[1], commitment_tx[0].clone()); assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_eq!(node_txn[0].lock_time, 0); assert_eq!(node_txn[1].lock_time, 0); // Verify that B's ChannelManager is able to extract preimage from HTLC Success tx and pass it backward nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: node_txn}, 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); { let mut added_monitors = nodes[1].chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 2); assert_eq!(added_monitors[0].0.txid, chan_1.3.txid()); assert_eq!(added_monitors[1].0.txid, chan_1.3.txid()); added_monitors.clear(); } assert_eq!(events.len(), 2); match events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; macro_rules! check_tx_local_broadcast { ($node: expr, $htlc_offered: expr, $commitment_tx: expr, $chan_tx: expr) => { { // ChannelManager : 3 (commitment tx, 2*HTLC-Timeout tx), ChannelMonitor : 2 (timeout tx) * 2 (block-rescan) let mut node_txn = $node.tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 7); assert_eq!(node_txn[0], node_txn[5]); assert_eq!(node_txn[1], node_txn[6]); check_spends!(node_txn[0], $commitment_tx.clone()); check_spends!(node_txn[1], $commitment_tx.clone()); assert_ne!(node_txn[0].lock_time, 0); assert_ne!(node_txn[1].lock_time, 0); if $htlc_offered { assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output } else { assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment } check_spends!(node_txn[2], $chan_tx.clone()); check_spends!(node_txn[3], node_txn[2].clone()); check_spends!(node_txn[4], node_txn[2].clone()); assert_eq!(node_txn[2].input[0].witness.last().unwrap().len(), 71); assert_eq!(node_txn[3].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[4].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[3].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert!(node_txn[4].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_ne!(node_txn[3].lock_time, 0); assert_ne!(node_txn[4].lock_time, 0); node_txn.clear(); } } } // nodes[1] now broadcasts its own local state as a fallback, suggesting an alternate // commitment transaction with a corresponding HTLC-Timeout transactions, as well as a // timeout-claim of the output that nodes[2] just claimed via success. check_tx_local_broadcast!(nodes[1], false, commitment_tx[0], chan_2.3); // Broadcast legit commitment tx from A on B's chain // Broadcast preimage tx by B on offered output from A commitment tx on A's chain let commitment_tx = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); check_spends!(commitment_tx[0], chan_1.3.clone()); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1); check_closed_broadcast!(nodes[1]); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx), ChannelMonitor : 1 (HTLC-Success) * 2 (block-rescan) assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[2]); check_spends!(node_txn[0], commitment_tx[0].clone()); assert_eq!(node_txn[0].input.len(), 2); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[0].input[1].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[0].lock_time, 0); assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment check_spends!(node_txn[1], chan_1.3.clone()); assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), 71); // We don't bother to check that B can claim the HTLC output on its commitment tx here as // we already checked the same situation with A. // Verify that A's ChannelManager is able to extract preimage from preimage tx and generate PaymentSent nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone(), node_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[0]); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); let mut first_claimed = false; for event in events { match event { Event::PaymentSent { payment_preimage } => { if payment_preimage == our_payment_preimage { assert!(!first_claimed); first_claimed = true; } else { assert_eq!(payment_preimage, our_payment_preimage_2); } }, _ => panic!("Unexpected event"), } } check_tx_local_broadcast!(nodes[0], true, commitment_tx[0], chan_1.3); } #[test] fn test_htlc_on_chain_timeout() { // Test that in case of a unilateral close onchain, we detect the state of output thanks to // ChainWatchInterface and timeout the HTLC backward accordingly. So here we test that ChannelManager is // broadcasting the right event to other nodes in payment path. // A ------------------> B ----------------------> C (timeout) // B's commitment tx C's commitment tx // \ \ // B's HTLC timeout tx B's timeout tx let nodes = create_network(3); // Create some intial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); // Rebalance the network a bit by relaying one payment thorugh all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (_payment_preimage, payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; // Broadcast legit commitment tx from C on B's chain let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); check_spends!(commitment_tx[0], chan_2.3.clone()); nodes[2].node.fail_htlc_backwards(&payment_hash); check_added_monitors!(nodes[2], 0); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let events = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(!update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[1].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1); check_closed_broadcast!(nodes[2]); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx) assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan_2.3.clone()); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 71); // Broadcast timeout transaction by B on received output from C's commitment tx on B's chain // Verify that B's ChannelManager is able to detect that HTLC is timeout by its own tx and react backward in consequence nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 200); let timeout_tx; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 8); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 6 (HTLC-Timeout tx, commitment tx, timeout tx) * 2 (block-rescan) assert_eq!(node_txn[0], node_txn[5]); assert_eq!(node_txn[1], node_txn[6]); assert_eq!(node_txn[2], node_txn[7]); check_spends!(node_txn[0], commitment_tx[0].clone()); assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], chan_2.3.clone()); check_spends!(node_txn[2], node_txn[1].clone()); assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), 71); assert_eq!(node_txn[2].clone().input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[3], chan_2.3.clone()); check_spends!(node_txn[4], node_txn[3].clone()); assert_eq!(node_txn[3].input[0].witness.clone().last().unwrap().len(), 71); assert_eq!(node_txn[4].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); timeout_tx = node_txn[0].clone(); node_txn.clear(); } nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![timeout_tx]}, 1); check_added_monitors!(nodes[1], 0); check_closed_broadcast!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(!update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // Well... here we detect our own htlc_timeout_tx so no tx to be generated assert_eq!(node_txn.len(), 0); // Broadcast legit commitment tx from B on A's chain let commitment_tx = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); check_spends!(commitment_tx[0], chan_1.3.clone()); nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 200); check_closed_broadcast!(nodes[0]); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 2 (timeout tx) * 2 block-rescan assert_eq!(node_txn.len(), 4); assert_eq!(node_txn[0], node_txn[3]); check_spends!(node_txn[0], commitment_tx[0].clone()); assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], chan_1.3.clone()); check_spends!(node_txn[2], node_txn[1].clone()); assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), 71); assert_eq!(node_txn[2].clone().input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); } #[test] fn test_simple_commitment_revoked_fail_backward() { // Test that in case of a revoked commitment tx, we detect the resolution of output by justice tx // and fail backward accordingly. let nodes = create_network(3); // Create some initial channels create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000); // Get the will-be-revoked local txn from nodes[2] let revoked_local_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); // Revoke the old state claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); connect_blocks(&nodes[1].chain_monitor, HTLC_FAIL_ANTI_REORG_DELAY - 1, 1, true, header.bitcoin_hash()); check_added_monitors!(nodes[1], 0); check_closed_broadcast!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {}, _ => panic!("Unexpected event"), } let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { .. } => {}, _ => panic!("Unexpected event"), } }, _ => panic!("Unexpected event"), } } fn do_test_commitment_revoked_fail_backward_exhaustive(deliver_bs_raa: bool, use_dust: bool, no_to_remote: bool) { // Test that if our counterparty broadcasts a revoked commitment transaction we fail all // pending HTLCs on that channel backwards even if the HTLCs aren't present in our latest // commitment transaction anymore. // To do this, we have the peer which will broadcast a revoked commitment transaction send // a number of update_fail/commitment_signed updates without ever sending the RAA in // response to our commitment_signed. This is somewhat misbehavior-y, though not // technically disallowed and we should probably handle it reasonably. // Note that this is pretty exhaustive as an outbound HTLC which we haven't yet // failed/fulfilled backwards must be in at least one of the latest two remote commitment // transactions: // * Once we move it out of our holding cell/add it, we will immediately include it in a // commitment_signed (implying it will be in the latest remote commitment transaction). // * Once they remove it, we will send a (the first) commitment_signed without the HTLC, // and once they revoke the previous commitment transaction (allowing us to send a new // commitment_signed) we will be free to fail/fulfill the HTLC backwards. let mut nodes = create_network(3); // Create some initial channels create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], if no_to_remote { 10_000 } else { 3_000_000 }); // Get the will-be-revoked local txn from nodes[2] let revoked_local_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn[0].output.len(), if no_to_remote { 1 } else { 2 }); // Revoke the old state claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); let value = if use_dust { // The dust limit applied to HTLC outputs considers the fee of the HTLC transaction as // well, so HTLCs at exactly the dust limit will not be included in commitment txn. nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().our_dust_limit_satoshis * 1000 } else { 3000000 }; let (_, first_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); let (_, second_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); let (_, third_payment_hash) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); assert!(nodes[2].node.fail_htlc_backwards(&first_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap(); let bs_raa = commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, false, true, false, true); // Drop the last RAA from 3 -> 2 assert!(nodes[2].node.fail_htlc_backwards(&second_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); // Note that nodes[1] is in AwaitingRAA, so won't send a CS let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[2], 1); assert!(nodes[2].node.fail_htlc_backwards(&third_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap(); // At this point first_payment_hash has dropped out of the latest two commitment // transactions that nodes[1] is tracking... nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); // Note that nodes[1] is (still) in AwaitingRAA, so won't send a CS let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa).unwrap(); check_added_monitors!(nodes[2], 1); // Add a fourth HTLC, this one will get sequestered away in nodes[1]'s holding cell waiting // on nodes[2]'s RAA. let route = nodes[1].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (_, fourth_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(route, fourth_payment_hash).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); check_added_monitors!(nodes[1], 0); if deliver_bs_raa { nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_raa).unwrap(); // One monitor for the new revocation preimage, no second on as we won't generate a new // commitment transaction for nodes[0] until process_pending_htlc_forwards(). check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; // Deliberately don't process the pending fail-back so they all fail back at once after // block connection just like the !deliver_bs_raa case } let mut failed_htlcs = HashSet::new(); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); connect_blocks(&nodes[1].chain_monitor, HTLC_FAIL_ANTI_REORG_DELAY - 1, 1, true, header.bitcoin_hash()); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), if deliver_bs_raa { 1 } else { 2 }); match events[0] { Event::PaymentFailed { ref payment_hash, .. } => { assert_eq!(*payment_hash, fourth_payment_hash); }, _ => panic!("Unexpected event"), } if !deliver_bs_raa { match events[1] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; } nodes[1].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[1].node.process_pending_htlc_forwards(); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), if deliver_bs_raa { 3 } else { 2 }); match events[if deliver_bs_raa { 1 } else { 0 }] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {}, _ => panic!("Unexpected event"), } if deliver_bs_raa { match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert_eq!(nodes[2].node.get_our_node_id(), *node_id); assert_eq!(update_add_htlcs.len(), 1); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); }, _ => panic!("Unexpected event"), } } match events[if deliver_bs_raa { 2 } else { 1 }] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 3); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]).unwrap(); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[1]).unwrap(); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[2]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_msg_events(); // If we delivered B's RAA we got an unknown preimage error, not something // that we should update our routing table for. assert_eq!(events.len(), if deliver_bs_raa { 2 } else { 3 }); for event in events { match event { MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {}, _ => panic!("Unexpected event"), } } let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 3); match events[0] { Event::PaymentFailed { ref payment_hash, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentFailed { ref payment_hash, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); }, _ => panic!("Unexpected event"), } match events[2] { Event::PaymentFailed { ref payment_hash, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); }, _ => panic!("Unexpected event"), } }, _ => panic!("Unexpected event"), } assert!(failed_htlcs.contains(&first_payment_hash.0)); assert!(failed_htlcs.contains(&second_payment_hash.0)); assert!(failed_htlcs.contains(&third_payment_hash.0)); } #[test] fn test_commitment_revoked_fail_backward_exhaustive_a() { do_test_commitment_revoked_fail_backward_exhaustive(false, true, false); do_test_commitment_revoked_fail_backward_exhaustive(true, true, false); do_test_commitment_revoked_fail_backward_exhaustive(false, false, false); do_test_commitment_revoked_fail_backward_exhaustive(true, false, false); } #[test] fn test_commitment_revoked_fail_backward_exhaustive_b() { do_test_commitment_revoked_fail_backward_exhaustive(false, true, true); do_test_commitment_revoked_fail_backward_exhaustive(true, true, true); do_test_commitment_revoked_fail_backward_exhaustive(false, false, true); do_test_commitment_revoked_fail_backward_exhaustive(true, false, true); } #[test] fn test_htlc_ignore_latest_remote_commitment() { // Test that HTLC transactions spending the latest remote commitment transaction are simply // ignored if we cannot claim them. This originally tickled an invalid unwrap(). let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); route_payment(&nodes[0], &[&nodes[1]], 10000000); nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id); check_closed_broadcast!(nodes[0]); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&node_txn[0], &node_txn[1]], &[1; 2]); check_closed_broadcast!(nodes[1]); // Duplicate the block_connected call since this may happen due to other listeners // registering new transactions nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&node_txn[0], &node_txn[1]], &[1; 2]); } #[test] fn test_force_close_fail_back() { // Check which HTLCs are failed-backwards on channel force-closure let mut nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 1, 2); let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 1000000, 42).unwrap(); let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let mut payment_event = { nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); let mut events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); check_added_monitors!(nodes[1], 1); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); check_added_monitors!(nodes[2], 1); let (_, _) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); // nodes[2] now has the latest commitment transaction, but hasn't revoked its previous // state or updated nodes[1]' state. Now force-close and broadcast that commitment/HTLC // transaction and ensure nodes[1] doesn't fail-backwards (this was originally a bug!). nodes[2].node.force_close_channel(&payment_event.commitment_msg.channel_id); check_closed_broadcast!(nodes[2]); let tx = { let mut node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); // Note that we don't bother broadcasting the HTLC-Success transaction here as we don't // have a use for it unless nodes[2] learns the preimage somehow, the funds will go // back to nodes[1] upon timeout otherwise. assert_eq!(node_txn.len(), 1); node_txn.remove(0) }; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&tx], &[1]); // Note no UpdateHTLCs event here from nodes[1] to nodes[0]! check_closed_broadcast!(nodes[1]); // Now check that if we add the preimage to ChannelMonitor it broadcasts our HTLC-Success.. { let mut monitors = nodes[2].chan_monitor.simple_monitor.monitors.lock().unwrap(); monitors.get_mut(&OutPoint::new(Sha256dHash::from_slice(&payment_event.commitment_msg.channel_id[..]).unwrap(), 0)).unwrap() .provide_payment_preimage(&our_payment_hash, &our_payment_preimage); } nodes[2].chain_monitor.block_connected_checked(&header, 1, &[&tx], &[1]); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].previous_output.txid, tx.txid()); assert_eq!(node_txn[0].lock_time, 0); // Must be an HTLC-Success assert_eq!(node_txn[0].input[0].witness.len(), 5); // Must be an HTLC-Success check_spends!(node_txn[0], tx); } #[test] fn test_unconf_chan() { // After creating a chan between nodes, we disconnect all blocks previously seen to force a channel close on nodes[0] side let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let channel_state = nodes[0].node.channel_state.lock().unwrap(); assert_eq!(channel_state.by_id.len(), 1); assert_eq!(channel_state.short_to_id.len(), 1); mem::drop(channel_state); let mut headers = Vec::new(); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; headers.push(header.clone()); for _i in 2..100 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; headers.push(header.clone()); } while !headers.is_empty() { nodes[0].node.block_disconnected(&headers.pop().unwrap()); } check_closed_broadcast!(nodes[0]); let channel_state = nodes[0].node.channel_state.lock().unwrap(); assert_eq!(channel_state.by_id.len(), 0); assert_eq!(channel_state.short_to_id.len(), 0); } #[test] fn test_simple_peer_disconnect() { // Test that we can reconnect when there are no lost messages let nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 1, 2); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_2 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_2); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_1); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; let payment_hash_6 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); claim_payment_along_route(&nodes[0], &vec!(&nodes[1], &nodes[2]), true, payment_preimage_3); fail_payment_along_route(&nodes[0], &[&nodes[1], &nodes[2]], true, payment_hash_5); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (1, 0), (1, 0), (false, false)); { let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentSent { payment_preimage } => { assert_eq!(payment_preimage, payment_preimage_3); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentFailed { payment_hash, rejected_by_dest, .. } => { assert_eq!(payment_hash, payment_hash_5); assert!(rejected_by_dest); }, _ => panic!("Unexpected event"), } } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_4); fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_6); } fn do_test_drop_messages_peer_disconnect(messages_delivered: u8) { // Test that we can reconnect when in-flight HTLC updates get dropped let mut nodes = create_network(2); if messages_delivered == 0 { create_chan_between_nodes_with_value_a(&nodes[0], &nodes[1], 100000, 10001); // nodes[1] doesn't receive the funding_locked message (it'll be re-sent on reconnect) } else { create_announced_chan_between_nodes(&nodes, 0, 1); } let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), Some(&nodes[0].node.list_usable_channels()), &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_1, payment_hash_1) = get_payment_preimage_hash!(nodes[0]); let payment_event = { nodes[0].node.send_payment(route.clone(), payment_hash_1).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; assert_eq!(nodes[1].node.get_our_node_id(), payment_event.node_id); if messages_delivered < 2 { // Drop the payment_event messages, and let them get re-generated in reconnect_nodes! } else { nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); if messages_delivered >= 3 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); check_added_monitors!(nodes[1], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); if messages_delivered >= 4 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); if messages_delivered >= 5 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed).unwrap(); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); if messages_delivered >= 6 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 3 { // Even if the funding_locked messages get exchanged, as long as nothing further was // received on either side, both sides will need to resend them. reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 1), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 3 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (-1, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 4 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (-1, 0), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 5 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 6 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } let events_1 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 1); match events_1[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[1].node.process_pending_htlc_forwards(); let events_2 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(payment_hash_1, *payment_hash); assert_eq!(amt, 1000000); }, _ => panic!("Unexpected event"), } nodes[1].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[1], 1); let events_3 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let (update_fulfill_htlc, commitment_signed) = match events_3[0] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); (updates.update_fulfill_htlcs[0].clone(), updates.commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; if messages_delivered >= 1 { nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlc).unwrap(); let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(payment_preimage_1, *payment_preimage); }, _ => panic!("Unexpected event"), } if messages_delivered >= 2 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); if messages_delivered >= 3 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); if messages_delivered >= 4 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); if messages_delivered >= 5 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 2 { reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (1, 0), (0, 0), (0, 0), (false, false)); //TODO: Deduplicate PaymentSent events, then enable this if: //if messages_delivered < 1 { let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(payment_preimage_1, *payment_preimage); }, _ => panic!("Unexpected event"), } //} } else if messages_delivered == 2 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, -1), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 3 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, -1), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 4 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 5 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Channel should still work fine... let payment_preimage_2 = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0; claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_drop_messages_peer_disconnect_a() { do_test_drop_messages_peer_disconnect(0); do_test_drop_messages_peer_disconnect(1); do_test_drop_messages_peer_disconnect(2); do_test_drop_messages_peer_disconnect(3); } #[test] fn test_drop_messages_peer_disconnect_b() { do_test_drop_messages_peer_disconnect(4); do_test_drop_messages_peer_disconnect(5); do_test_drop_messages_peer_disconnect(6); } #[test] fn test_funding_peer_disconnect() { // Test that we can lock in our funding tx while disconnected let nodes = create_network(2); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); confirm_transaction(&nodes[0].chain_monitor, &tx, tx.version); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::SendFundingLocked { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); confirm_transaction(&nodes[1].chain_monitor, &tx, tx.version); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 2); match events_2[0] { MessageSendEvent::SendFundingLocked { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } match events_2[1] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // TODO: We shouldn't need to manually pass list_usable_chanels here once we support // rebroadcasting announcement_signatures upon reconnect. let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), Some(&nodes[0].node.list_usable_channels()), &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage, _) = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); } #[test] fn test_drop_messages_peer_disconnect_dual_htlc() { // Test that we can handle reconnecting when both sides of a channel have pending // commitment_updates when we disconnect. let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let (payment_preimage_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); // Now try to send a second payment which will fail to send let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_2, payment_hash_2) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route.clone(), payment_hash_2).unwrap(); check_added_monitors!(nodes[0], 1); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); match events_2[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]).unwrap(); let events_3 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(*payment_preimage, payment_preimage_1); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed).unwrap(); let _ = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); }, _ => panic!("Unexpected event"), } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); let as_resp = handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); let bs_resp = handle_chan_reestablish_msgs!(nodes[1], nodes[0]); assert!(as_resp.0.is_none()); assert!(bs_resp.0.is_none()); assert!(bs_resp.1.is_none()); assert!(bs_resp.2.is_none()); assert!(as_resp.3 == RAACommitmentOrder::CommitmentFirst); assert_eq!(as_resp.2.as_ref().unwrap().update_add_htlcs.len(), 1); assert!(as_resp.2.as_ref().unwrap().update_fulfill_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_malformed_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().update_add_htlcs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), as_resp.1.as_ref().unwrap()).unwrap(); let bs_second_commitment_signed = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_second_commitment_signed.update_add_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); let as_commitment_signed = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_commitment_signed.update_add_htlcs.is_empty()); assert!(as_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(as_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment_signed.commitment_signed).unwrap(); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed.commitment_signed).unwrap(); let bs_second_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); expect_pending_htlcs_forwardable!(nodes[1]); let events_5 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_5.len(), 1); match events_5[0] { Event::PaymentReceived { ref payment_hash, amt: _ } => { assert_eq!(payment_hash_2, *payment_hash); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_invalid_channel_announcement() { //Test BOLT 7 channel_announcement msg requirement for final node, gather data to build customed channel_announcement msgs let secp_ctx = Secp256k1::new(); let nodes = create_network(2); let chan_announcement = create_chan_between_nodes(&nodes[0], &nodes[1]); let a_channel_lock = nodes[0].node.channel_state.lock().unwrap(); let b_channel_lock = nodes[1].node.channel_state.lock().unwrap(); let as_chan = a_channel_lock.by_id.get(&chan_announcement.3).unwrap(); let bs_chan = b_channel_lock.by_id.get(&chan_announcement.3).unwrap(); let _ = nodes[0].router.handle_htlc_fail_channel_update(&msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id : as_chan.get_short_channel_id().unwrap(), is_permanent: false } ); let as_bitcoin_key = PublicKey::from_secret_key(&secp_ctx, &as_chan.get_local_keys().funding_key); let bs_bitcoin_key = PublicKey::from_secret_key(&secp_ctx, &bs_chan.get_local_keys().funding_key); let as_network_key = nodes[0].node.get_our_node_id(); let bs_network_key = nodes[1].node.get_our_node_id(); let were_node_one = as_bitcoin_key.serialize()[..] < bs_bitcoin_key.serialize()[..]; let mut chan_announcement; macro_rules! dummy_unsigned_msg { () => { msgs::UnsignedChannelAnnouncement { features: msgs::GlobalFeatures::new(), chain_hash: genesis_block(Network::Testnet).header.bitcoin_hash(), short_channel_id: as_chan.get_short_channel_id().unwrap(), node_id_1: if were_node_one { as_network_key } else { bs_network_key }, node_id_2: if were_node_one { bs_network_key } else { as_network_key }, bitcoin_key_1: if were_node_one { as_bitcoin_key } else { bs_bitcoin_key }, bitcoin_key_2: if were_node_one { bs_bitcoin_key } else { as_bitcoin_key }, excess_data: Vec::new(), }; } } macro_rules! sign_msg { ($unsigned_msg: expr) => { let msghash = Message::from_slice(&Sha256dHash::hash(&$unsigned_msg.encode()[..])[..]).unwrap(); let as_bitcoin_sig = secp_ctx.sign(&msghash, &as_chan.get_local_keys().funding_key); let bs_bitcoin_sig = secp_ctx.sign(&msghash, &bs_chan.get_local_keys().funding_key); let as_node_sig = secp_ctx.sign(&msghash, &nodes[0].keys_manager.get_node_secret()); let bs_node_sig = secp_ctx.sign(&msghash, &nodes[1].keys_manager.get_node_secret()); chan_announcement = msgs::ChannelAnnouncement { node_signature_1 : if were_node_one { as_node_sig } else { bs_node_sig}, node_signature_2 : if were_node_one { bs_node_sig } else { as_node_sig}, bitcoin_signature_1: if were_node_one { as_bitcoin_sig } else { bs_bitcoin_sig }, bitcoin_signature_2 : if were_node_one { bs_bitcoin_sig } else { as_bitcoin_sig }, contents: $unsigned_msg } } } let unsigned_msg = dummy_unsigned_msg!(); sign_msg!(unsigned_msg); assert_eq!(nodes[0].router.handle_channel_announcement(&chan_announcement).unwrap(), true); let _ = nodes[0].router.handle_htlc_fail_channel_update(&msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id : as_chan.get_short_channel_id().unwrap(), is_permanent: false } ); // Configured with Network::Testnet let mut unsigned_msg = dummy_unsigned_msg!(); unsigned_msg.chain_hash = genesis_block(Network::Bitcoin).header.bitcoin_hash(); sign_msg!(unsigned_msg); assert!(nodes[0].router.handle_channel_announcement(&chan_announcement).is_err()); let mut unsigned_msg = dummy_unsigned_msg!(); unsigned_msg.chain_hash = Sha256dHash::hash(&[1,2,3,4,5,6,7,8,9]); sign_msg!(unsigned_msg); assert!(nodes[0].router.handle_channel_announcement(&chan_announcement).is_err()); } #[test] fn test_no_txn_manager_serialize_deserialize() { let mut nodes = create_network(2); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter().next().unwrap().1.write_for_disk(&mut chan_0_monitor_serialized).unwrap(); nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()), Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }))); let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, chan_0_monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut chan_0_monitor_read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let config = UserConfig::new(); let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().unwrap(), &chan_0_monitor); <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: config, keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &channel_monitors, }).unwrap() }; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chan_monitor.add_update_monitor(chan_0_monitor.get_funding_txo().unwrap(), chan_0_monitor).is_ok()); nodes[0].node = Arc::new(nodes_0_deserialized); let nodes_0_as_listener: Arc = nodes[0].node.clone(); nodes[0].chain_monitor.register_listener(Arc::downgrade(&nodes_0_as_listener)); assert_eq!(nodes[0].node.list_channels().len(), 1); check_added_monitors!(nodes[0], 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); for node in nodes.iter() { assert!(node.router.handle_channel_announcement(&announcement).unwrap()); node.router.handle_channel_update(&as_update).unwrap(); node.router.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_simple_manager_serialize_deserialize() { let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let (our_payment_preimage, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); let (_, our_payment_hash) = route_payment(&nodes[0], &[&nodes[1]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter().next().unwrap().1.write_for_disk(&mut chan_0_monitor_serialized).unwrap(); nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()), Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }))); let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, chan_0_monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut chan_0_monitor_read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().unwrap(), &chan_0_monitor); <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::new(), keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &channel_monitors, }).unwrap() }; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chan_monitor.add_update_monitor(chan_0_monitor.get_funding_txo().unwrap(), chan_0_monitor).is_ok()); nodes[0].node = Arc::new(nodes_0_deserialized); check_added_monitors!(nodes[0], 1); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash); claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage); } #[test] fn test_manager_serialize_deserialize_inconsistent_monitor() { // Test deserializing a ChannelManager with an out-of-date ChannelMonitor let mut nodes = create_network(4); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 2, 0); let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3); let (our_payment_preimage, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000); // Serialize the ChannelManager here, but the monitor we keep up-to-date let nodes_0_serialized = nodes[0].node.encode(); route_payment(&nodes[0], &[&nodes[3]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/ // nodes[3]) let mut node_0_monitors_serialized = Vec::new(); for monitor in nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter() { let mut writer = test_utils::TestVecWriter(Vec::new()); monitor.1.write_for_disk(&mut writer).unwrap(); node_0_monitors_serialized.push(writer.0); } nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()), Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }))); let mut node_0_monitors = Vec::new(); for serialized in node_0_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(read.is_empty()); node_0_monitors.push(monitor); } let mut nodes_0_read = &nodes_0_serialized[..]; let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::new(), keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &node_0_monitors.iter().map(|monitor| { (monitor.get_funding_txo().unwrap(), monitor) }).collect(), }).unwrap(); assert!(nodes_0_read.is_empty()); { // Channel close should result in a commitment tx and an HTLC tx let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 2); assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid()); assert_eq!(txn[1].input[0].previous_output.txid, txn[0].txid()); } for monitor in node_0_monitors.drain(..) { assert!(nodes[0].chan_monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor).is_ok()); check_added_monitors!(nodes[0], 1); } nodes[0].node = Arc::new(nodes_0_deserialized); // nodes[1] and nodes[2] have no lost state with nodes[0]... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); //... and we can even still claim the payment! claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage); nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish = get_event_msg!(nodes[3], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id()); if let Err(msgs::HandleError { action: Some(msgs::ErrorAction::SendErrorMessage { msg }), .. }) = nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish) { assert_eq!(msg.channel_id, channel_id); } else { panic!("Unexpected result"); } } macro_rules! check_spendable_outputs { ($node: expr, $der_idx: expr) => { { let events = $node.chan_monitor.simple_monitor.get_and_clear_pending_events(); let mut txn = Vec::new(); for event in events { match event { Event::SpendableOutputs { ref outputs } => { for outp in outputs { match *outp { SpendableOutputDescriptor::DynamicOutputP2WPKH { ref outpoint, ref key, ref output } => { let input = TxIn { previous_output: outpoint.clone(), script_sig: Script::new(), sequence: 0, witness: Vec::new(), }; let outp = TxOut { script_pubkey: Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), value: output.value, }; let mut spend_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec![outp], }; let secp_ctx = Secp256k1::new(); let remotepubkey = PublicKey::from_secret_key(&secp_ctx, &key); let witness_script = Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey(); let sighash = Message::from_slice(&bip143::SighashComponents::new(&spend_tx).sighash_all(&spend_tx.input[0], &witness_script, output.value)[..]).unwrap(); let remotesig = secp_ctx.sign(&sighash, key); spend_tx.input[0].witness.push(remotesig.serialize_der().to_vec()); spend_tx.input[0].witness[0].push(SigHashType::All as u8); spend_tx.input[0].witness.push(remotepubkey.serialize().to_vec()); txn.push(spend_tx); }, SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref key, ref witness_script, ref to_self_delay, ref output } => { let input = TxIn { previous_output: outpoint.clone(), script_sig: Script::new(), sequence: *to_self_delay as u32, witness: Vec::new(), }; let outp = TxOut { script_pubkey: Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), value: output.value, }; let mut spend_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec![outp], }; let secp_ctx = Secp256k1::new(); let sighash = Message::from_slice(&bip143::SighashComponents::new(&spend_tx).sighash_all(&spend_tx.input[0], witness_script, output.value)[..]).unwrap(); let local_delaysig = secp_ctx.sign(&sighash, key); spend_tx.input[0].witness.push(local_delaysig.serialize_der().to_vec()); spend_tx.input[0].witness[0].push(SigHashType::All as u8); spend_tx.input[0].witness.push(vec!(0)); spend_tx.input[0].witness.push(witness_script.clone().into_bytes()); txn.push(spend_tx); }, SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => { let secp_ctx = Secp256k1::new(); let input = TxIn { previous_output: outpoint.clone(), script_sig: Script::new(), sequence: 0, witness: Vec::new(), }; let outp = TxOut { script_pubkey: Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), value: output.value, }; let mut spend_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec![outp.clone()], }; let secret = { match ExtendedPrivKey::new_master(Network::Testnet, &$node.node_seed) { Ok(master_key) => { match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx($der_idx).expect("key space exhausted")) { Ok(key) => key, Err(_) => panic!("Your RNG is busted"), } } Err(_) => panic!("Your rng is busted"), } }; let pubkey = ExtendedPubKey::from_private(&secp_ctx, &secret).public_key; let witness_script = Address::p2pkh(&pubkey, Network::Testnet).script_pubkey(); let sighash = Message::from_slice(&bip143::SighashComponents::new(&spend_tx).sighash_all(&spend_tx.input[0], &witness_script, output.value)[..]).unwrap(); let sig = secp_ctx.sign(&sighash, &secret.private_key.key); spend_tx.input[0].witness.push(sig.serialize_der().to_vec()); spend_tx.input[0].witness[0].push(SigHashType::All as u8); spend_tx.input[0].witness.push(pubkey.key.serialize().to_vec()); txn.push(spend_tx); }, } } }, _ => panic!("Unexpected event"), }; } txn } } } #[test] fn test_claim_sizeable_push_msat() { // Incidentally test SpendableOutput event generation due to detection of to_local output on commitment tx let nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 99000000); nodes[1].node.force_close_channel(&chan.2); check_closed_broadcast!(nodes[1]); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan.3.clone()); assert_eq!(node_txn[0].output.len(), 2); // We can't force trimming of to_remote output as channel_reserve_satoshis block us to do so at channel opening let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, 0); let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], node_txn[0].clone()); } #[test] fn test_claim_on_remote_sizeable_push_msat() { // Same test as previous, just test on remote commitment tx, as per_commitment_point registration changes following you're funder/fundee and // to_remote output is encumbered by a P2WPKH let nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 99000000); nodes[0].node.force_close_channel(&chan.2); check_closed_broadcast!(nodes[0]); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan.3.clone()); assert_eq!(node_txn[0].output.len(), 2); // We can't force trimming of to_remote output as channel_reserve_satoshis block us to do so at channel opening let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, 0); check_closed_broadcast!(nodes[1]); let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 2); assert_eq!(spend_txn[0], spend_txn[1]); check_spends!(spend_txn[0], node_txn[0].clone()); } #[test] fn test_claim_on_remote_revoked_sizeable_push_msat() { // Same test as previous, just test on remote revoked commitment tx, as per_commitment_point registration changes following you're funder/fundee and // to_remote output is encumbered by a P2WPKH let nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 59000000); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[1]); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 4); assert_eq!(spend_txn[0], spend_txn[2]); // to_remote output on revoked remote commitment_tx check_spends!(spend_txn[0], revoked_local_txn[0].clone()); assert_eq!(spend_txn[1], spend_txn[3]); // to_local output on local commitment tx check_spends!(spend_txn[1], node_txn[0].clone()); } #[test] fn test_static_spendable_outputs_preimage_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let commitment_tx = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(commitment_tx[0].input.len(), 1); assert_eq!(commitment_tx[0].input[0].previous_output.txid, chan_1.3.txid()); // Settle A's commitment tx on B's chain let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; assert!(nodes[1].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[1], 1); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()] }, 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } // Check B's monitor was able to send back output descriptor event for preimage tx on A's commitment tx let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelManager : 1 (local commitment tx), ChannelMonitor: 2 (1 preimage tx) * 2 (block-rescan) check_spends!(node_txn[0], commitment_tx[0].clone()); assert_eq!(node_txn[0], node_txn[2]); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], chan_1.3.clone()); let spend_txn = check_spendable_outputs!(nodes[1], 1); // , 0, 0, 1, 1); assert_eq!(spend_txn.len(), 2); assert_eq!(spend_txn[0], spend_txn[1]); check_spends!(spend_txn[0], node_txn[0].clone()); } #[test] fn test_static_spendable_outputs_justice_tx_revoked_commitment_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.iter().next().unwrap().1.last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[1]); let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn.pop().unwrap(), node_txn[0]); assert_eq!(node_txn[0].input.len(), 2); check_spends!(node_txn[0], revoked_local_txn[0].clone()); let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 2); assert_eq!(spend_txn[0], spend_txn[1]); check_spends!(spend_txn[0], node_txn[0].clone()); } #[test] fn test_static_spendable_outputs_justice_tx_revoked_htlc_timeout_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; // A will generate HTLC-Timeout from revoked commitment tx nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[0]); let revoked_htlc_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(revoked_htlc_txn.len(), 3); assert_eq!(revoked_htlc_txn[0], revoked_htlc_txn[2]); assert_eq!(revoked_htlc_txn[0].input.len(), 1); assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(revoked_htlc_txn[0], revoked_local_txn[0].clone()); check_spends!(revoked_htlc_txn[1], chan_1.3.clone()); // B will generate justice tx from A's revoked commitment/HTLC tx nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone(), revoked_htlc_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[1]); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 4); assert_eq!(node_txn[3].input.len(), 1); check_spends!(node_txn[3], revoked_htlc_txn[0].clone()); // Check B's ChannelMonitor was able to generate the right spendable output descriptor let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 3); assert_eq!(spend_txn[0], spend_txn[1]); check_spends!(spend_txn[0], node_txn[0].clone()); check_spends!(spend_txn[2], node_txn[3].clone()); } #[test] fn test_static_spendable_outputs_justice_tx_revoked_htlc_success_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; // B will generate HTLC-Success from revoked commitment tx nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[1]); let revoked_htlc_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(revoked_htlc_txn.len(), 3); assert_eq!(revoked_htlc_txn[0], revoked_htlc_txn[2]); assert_eq!(revoked_htlc_txn[0].input.len(), 1); assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(revoked_htlc_txn[0], revoked_local_txn[0].clone()); // A will generate justice tx from B's revoked commitment/HTLC tx nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone(), revoked_htlc_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[0]); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 4); assert_eq!(node_txn[3].input.len(), 1); check_spends!(node_txn[3], revoked_htlc_txn[0].clone()); // Check A's ChannelMonitor was able to generate the right spendable output descriptor let spend_txn = check_spendable_outputs!(nodes[0], 1); assert_eq!(spend_txn.len(), 5); assert_eq!(spend_txn[0], spend_txn[2]); assert_eq!(spend_txn[1], spend_txn[3]); check_spends!(spend_txn[0], revoked_local_txn[0].clone()); // spending to_remote output from revoked local tx check_spends!(spend_txn[1], node_txn[2].clone()); // spending justice tx output from revoked local tx htlc received output check_spends!(spend_txn[4], node_txn[3].clone()); // spending justice tx output on htlc success tx } #[test] fn test_onchain_to_onchain_claim() { // Test that in case of channel closure, we detect the state of output thanks to // ChainWatchInterface and claim HTLC on downstream peer's remote commitment tx. // First, have C claim an HTLC against its own latest commitment transaction. // Then, broadcast these to B, which should update the monitor downstream on the A<->B // channel. // Finally, check that B will claim the HTLC output if A's latest commitment transaction // gets broadcast. let nodes = create_network(3); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); // Rebalance the network a bit by relaying one payment through all the channels ... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (payment_preimage, _payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; let commitment_tx = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); check_spends!(commitment_tx[0], chan_2.3.clone()); nodes[2].node.claim_funds(payment_preimage); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1); check_closed_broadcast!(nodes[2]); let c_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Success tx), ChannelMonitor : 1 (HTLC-Success tx) assert_eq!(c_txn.len(), 3); assert_eq!(c_txn[0], c_txn[2]); assert_eq!(commitment_tx[0], c_txn[1]); check_spends!(c_txn[1], chan_2.3.clone()); check_spends!(c_txn[2], c_txn[1].clone()); assert_eq!(c_txn[1].input[0].witness.clone().last().unwrap().len(), 71); assert_eq!(c_txn[2].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(c_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_eq!(c_txn[0].lock_time, 0); // Success tx // So we broadcast C's commitment tx and HTLC-Success on B's chain, we should successfully be able to extract preimage and update downstream monitor nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![c_txn[1].clone(), c_txn[2].clone()]}, 1); { let mut b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(b_txn.len(), 4); assert_eq!(b_txn[0], b_txn[3]); check_spends!(b_txn[1], chan_2.3); // B local commitment tx, issued by ChannelManager check_spends!(b_txn[2], b_txn[1].clone()); // HTLC-Timeout on B local commitment tx, issued by ChannelManager assert_eq!(b_txn[2].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(b_txn[2].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_ne!(b_txn[2].lock_time, 0); // Timeout tx check_spends!(b_txn[0], c_txn[1].clone()); // timeout tx on C remote commitment tx, issued by ChannelMonitor, * 2 due to block rescan assert_eq!(b_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(b_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment assert_ne!(b_txn[2].lock_time, 0); // Timeout tx b_txn.clear(); } let msg_events = nodes[1].node.get_and_clear_pending_msg_events(); check_added_monitors!(nodes[1], 1); match msg_events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } match msg_events[1] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; // Broadcast A's commitment tx on B's chain to see if we are able to claim inbound HTLC with our HTLC-Success tx let commitment_tx = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_tx[0].clone()]}, 1); let b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(b_txn.len(), 3); check_spends!(b_txn[1], chan_1.3); // Local commitment tx, issued by ChannelManager assert_eq!(b_txn[0], b_txn[2]); // HTLC-Success tx, issued by ChannelMonitor, * 2 due to block rescan check_spends!(b_txn[0], commitment_tx[0].clone()); assert_eq!(b_txn[0].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(b_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment assert_eq!(b_txn[2].lock_time, 0); // Success tx check_closed_broadcast!(nodes[1]); } #[test] fn test_duplicate_payment_hash_one_failure_one_success() { // Topology : A --> B --> C // We route 2 payments with same hash between B and C, one will be timeout, the other successfully claim let mut nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let (our_payment_preimage, duplicate_payment_hash) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 900000); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 900000).1, duplicate_payment_hash); let commitment_txn = nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(commitment_txn[0].input.len(), 1); check_spends!(commitment_txn[0], chan_2.3.clone()); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_txn[0].clone()] }, 1); check_closed_broadcast!(nodes[1]); let htlc_timeout_tx; { // Extract one of the two HTLC-Timeout transaction let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 7); assert_eq!(node_txn[0], node_txn[5]); assert_eq!(node_txn[1], node_txn[6]); check_spends!(node_txn[0], commitment_txn[0].clone()); assert_eq!(node_txn[0].input.len(), 1); check_spends!(node_txn[1], commitment_txn[0].clone()); assert_eq!(node_txn[1].input.len(), 1); assert_ne!(node_txn[0].input[0], node_txn[1].input[0]); check_spends!(node_txn[2], chan_2.3.clone()); check_spends!(node_txn[3], node_txn[2].clone()); check_spends!(node_txn[4], node_txn[2].clone()); htlc_timeout_tx = node_txn[1].clone(); } nodes[2].node.claim_funds(our_payment_preimage); nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![commitment_txn[0].clone()] }, 1); check_added_monitors!(nodes[2], 2); let events = nodes[2].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } let htlc_success_txn: Vec<_> = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(htlc_success_txn.len(), 5); check_spends!(htlc_success_txn[2], chan_2.3.clone()); assert_eq!(htlc_success_txn[0], htlc_success_txn[3]); assert_eq!(htlc_success_txn[0].input.len(), 1); assert_eq!(htlc_success_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(htlc_success_txn[1], htlc_success_txn[4]); assert_eq!(htlc_success_txn[1].input.len(), 1); assert_eq!(htlc_success_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_ne!(htlc_success_txn[0].input[0], htlc_success_txn[1].input[0]); check_spends!(htlc_success_txn[0], commitment_txn[0].clone()); check_spends!(htlc_success_txn[1], commitment_txn[0].clone()); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![htlc_timeout_tx] }, 200); expect_pending_htlcs_forwardable!(nodes[1]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert_eq!(htlc_updates.update_fail_htlcs[0].htlc_id, 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); { commitment_signed_dance!(nodes[0], nodes[1], &htlc_updates.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::PaymentFailureNetworkUpdate { update: msgs::HTLCFailChannelUpdate::ChannelClosed { .. } } => { }, _ => { panic!("Unexpected event"); } } } let events = nodes[0].node.get_and_clear_pending_events(); match events[0] { Event::PaymentFailed { ref payment_hash, .. } => { assert_eq!(*payment_hash, duplicate_payment_hash); } _ => panic!("Unexpected event"), } // Solve 2nd HTLC by broadcasting on B's chain HTLC-Success Tx from C nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![htlc_success_txn[0].clone()] }, 200); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert_eq!(updates.update_fulfill_htlcs[0].htlc_id, 0); assert!(updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]).unwrap(); commitment_signed_dance!(nodes[0], nodes[1], &updates.commitment_signed, false); let events = nodes[0].node.get_and_clear_pending_events(); match events[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(*payment_preimage, our_payment_preimage); } _ => panic!("Unexpected event"), } } #[test] fn test_dynamic_spendable_outputs_local_htlc_success_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9000000).0; let local_txn = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(local_txn[0].input.len(), 1); check_spends!(local_txn[0], chan_1.3.clone()); // Give B knowledge of preimage to be able to generate a local HTLC-Success Tx nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![local_txn[0].clone()] }, 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[0], local_txn[0].clone()); // Verify that B is able to spend its own HTLC-Success tx thanks to spendable output event given back by its ChannelMonitor let spend_txn = check_spendable_outputs!(nodes[1], 1); assert_eq!(spend_txn.len(), 2); check_spends!(spend_txn[0], node_txn[0].clone()); check_spends!(spend_txn[1], node_txn[2].clone()); } fn do_test_fail_backwards_unrevoked_remote_announce(deliver_last_raa: bool, announce_latest: bool) { // Test that we fail backwards the full set of HTLCs we need to when remote broadcasts an // unrevoked commitment transaction. // This includes HTLCs which were below the dust threshold as well as HTLCs which were awaiting // a remote RAA before they could be failed backwards (and combinations thereof). // We also test duplicate-hash HTLCs by adding two nodes on each side of the target nodes which // use the same payment hashes. // Thus, we use a six-node network: // // A \ / E // - C - D - // B / \ F // And test where C fails back to A/B when D announces its latest commitment transaction let nodes = create_network(6); create_announced_chan_between_nodes(&nodes, 0, 2); create_announced_chan_between_nodes(&nodes, 1, 2); let chan = create_announced_chan_between_nodes(&nodes, 2, 3); create_announced_chan_between_nodes(&nodes, 3, 4); create_announced_chan_between_nodes(&nodes, 3, 5); // Rebalance and check output sanity... send_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 500000); send_payment(&nodes[1], &[&nodes[2], &nodes[3], &nodes[5]], 500000); assert_eq!(nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn[0].output.len(), 2); let ds_dust_limit = nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().our_dust_limit_satoshis; // 0th HTLC: let (_, payment_hash_1) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee // 1st HTLC: let (_, payment_hash_2) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee let route = nodes[1].router.get_route(&nodes[5].node.get_our_node_id(), None, &Vec::new(), ds_dust_limit*1000, TEST_FINAL_CLTV).unwrap(); // 2nd HTLC: send_along_route_with_hash(&nodes[1], route.clone(), &[&nodes[2], &nodes[3], &nodes[5]], ds_dust_limit*1000, payment_hash_1); // not added < dust limit + HTLC tx fee // 3rd HTLC: send_along_route_with_hash(&nodes[1], route, &[&nodes[2], &nodes[3], &nodes[5]], ds_dust_limit*1000, payment_hash_2); // not added < dust limit + HTLC tx fee // 4th HTLC: let (_, payment_hash_3) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); // 5th HTLC: let (_, payment_hash_4) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); let route = nodes[1].router.get_route(&nodes[5].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); // 6th HTLC: send_along_route_with_hash(&nodes[1], route.clone(), &[&nodes[2], &nodes[3], &nodes[5]], 1000000, payment_hash_3); // 7th HTLC: send_along_route_with_hash(&nodes[1], route, &[&nodes[2], &nodes[3], &nodes[5]], 1000000, payment_hash_4); // 8th HTLC: let (_, payment_hash_5) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); // 9th HTLC: let route = nodes[1].router.get_route(&nodes[5].node.get_our_node_id(), None, &Vec::new(), ds_dust_limit*1000, TEST_FINAL_CLTV).unwrap(); send_along_route_with_hash(&nodes[1], route, &[&nodes[2], &nodes[3], &nodes[5]], ds_dust_limit*1000, payment_hash_5); // not added < dust limit + HTLC tx fee // 10th HTLC: let (_, payment_hash_6) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee // 11th HTLC: let route = nodes[1].router.get_route(&nodes[5].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); send_along_route_with_hash(&nodes[1], route, &[&nodes[2], &nodes[3], &nodes[5]], 1000000, payment_hash_6); // Double-check that six of the new HTLC were added // We now have six HTLCs pending over the dust limit and six HTLCs under the dust limit (ie, // with to_local and to_remote outputs, 8 outputs and 6 HTLCs not included). assert_eq!(nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn.len(), 1); assert_eq!(nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn[0].output.len(), 8); // Now fail back three of the over-dust-limit and three of the under-dust-limit payments in one go. // Fail 0th below-dust, 4th above-dust, 8th above-dust, 10th below-dust HTLCs assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_1)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_3)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_5)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_6)); check_added_monitors!(nodes[4], 0); expect_pending_htlcs_forwardable!(nodes[4]); check_added_monitors!(nodes[4], 1); let four_removes = get_htlc_update_msgs!(nodes[4], nodes[3].node.get_our_node_id()); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[0]).unwrap(); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[1]).unwrap(); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[2]).unwrap(); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[3]).unwrap(); commitment_signed_dance!(nodes[3], nodes[4], four_removes.commitment_signed, false); // Fail 3rd below-dust and 7th above-dust HTLCs assert!(nodes[5].node.fail_htlc_backwards(&payment_hash_2)); assert!(nodes[5].node.fail_htlc_backwards(&payment_hash_4)); check_added_monitors!(nodes[5], 0); expect_pending_htlcs_forwardable!(nodes[5]); check_added_monitors!(nodes[5], 1); let two_removes = get_htlc_update_msgs!(nodes[5], nodes[3].node.get_our_node_id()); nodes[3].node.handle_update_fail_htlc(&nodes[5].node.get_our_node_id(), &two_removes.update_fail_htlcs[0]).unwrap(); nodes[3].node.handle_update_fail_htlc(&nodes[5].node.get_our_node_id(), &two_removes.update_fail_htlcs[1]).unwrap(); commitment_signed_dance!(nodes[3], nodes[5], two_removes.commitment_signed, false); let ds_prev_commitment_tx = nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn.clone(); expect_pending_htlcs_forwardable!(nodes[3]); check_added_monitors!(nodes[3], 1); let six_removes = get_htlc_update_msgs!(nodes[3], nodes[2].node.get_our_node_id()); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[0]).unwrap(); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[1]).unwrap(); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[2]).unwrap(); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[3]).unwrap(); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[4]).unwrap(); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[5]).unwrap(); if deliver_last_raa { commitment_signed_dance!(nodes[2], nodes[3], six_removes.commitment_signed, false); } else { let _cs_last_raa = commitment_signed_dance!(nodes[2], nodes[3], six_removes.commitment_signed, false, true, false, true); } // D's latest commitment transaction now contains 1st + 2nd + 9th HTLCs (implicitly, they're // below the dust limit) and the 5th + 6th + 11th HTLCs. It has failed back the 0th, 3rd, 4th, // 7th, 8th, and 10th, but as we haven't yet delivered the final RAA to C, the fails haven't // propagated back to A/B yet (and D has two unrevoked commitment transactions). // // We now broadcast the latest commitment transaction, which *should* result in failures for // the 0th, 1st, 2nd, 3rd, 4th, 7th, 8th, 9th, and 10th HTLCs, ie all the below-dust HTLCs and // the non-broadcast above-dust HTLCs. // // Alternatively, we may broadcast the previous commitment transaction, which should only // result in failures for the below-dust HTLCs, ie the 0th, 1st, 2nd, 3rd, 9th, and 10th HTLCs. let ds_last_commitment_tx = nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().last_local_commitment_txn.clone(); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; if announce_latest { nodes[2].chain_monitor.block_connected_checked(&header, 1, &[&ds_last_commitment_tx[0]], &[1; 1]); } else { nodes[2].chain_monitor.block_connected_checked(&header, 1, &[&ds_prev_commitment_tx[0]], &[1; 1]); } connect_blocks(&nodes[2].chain_monitor, HTLC_FAIL_ANTI_REORG_DELAY - 1, 1, true, header.bitcoin_hash()); check_closed_broadcast!(nodes[2]); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 2); let cs_msgs = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(cs_msgs.len(), 2); let mut a_done = false; for msg in cs_msgs { match msg { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { // Both under-dust HTLCs and the one above-dust HTLC that we had already failed // should be failed-backwards here. let target = if *node_id == nodes[0].node.get_our_node_id() { // If announce_latest, expect 0th, 1st, 4th, 8th, 10th HTLCs, else only 0th, 1st, 10th below-dust HTLCs for htlc in &updates.update_fail_htlcs { assert!(htlc.htlc_id == 1 || htlc.htlc_id == 2 || htlc.htlc_id == 6 || if announce_latest { htlc.htlc_id == 3 || htlc.htlc_id == 5 } else { false }); } assert_eq!(updates.update_fail_htlcs.len(), if announce_latest { 5 } else { 3 }); assert!(!a_done); a_done = true; &nodes[0] } else { // If announce_latest, expect 2nd, 3rd, 7th, 9th HTLCs, else only 2nd, 3rd, 9th below-dust HTLCs for htlc in &updates.update_fail_htlcs { assert!(htlc.htlc_id == 1 || htlc.htlc_id == 2 || htlc.htlc_id == 5 || if announce_latest { htlc.htlc_id == 4 } else { false }); } assert_eq!(*node_id, nodes[1].node.get_our_node_id()); assert_eq!(updates.update_fail_htlcs.len(), if announce_latest { 4 } else { 3 }); &nodes[1] }; target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]).unwrap(); target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[1]).unwrap(); target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[2]).unwrap(); if announce_latest { target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[3]).unwrap(); if *node_id == nodes[0].node.get_our_node_id() { target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[4]).unwrap(); } } commitment_signed_dance!(target, nodes[2], updates.commitment_signed, false, true); }, _ => panic!("Unexpected event"), } } let as_events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(as_events.len(), if announce_latest { 5 } else { 3 }); let mut as_failds = HashSet::new(); for event in as_events.iter() { if let &Event::PaymentFailed { ref payment_hash, ref rejected_by_dest, .. } = event { assert!(as_failds.insert(*payment_hash)); if *payment_hash != payment_hash_2 { assert_eq!(*rejected_by_dest, deliver_last_raa); } else { assert!(!rejected_by_dest); } } else { panic!("Unexpected event"); } } assert!(as_failds.contains(&payment_hash_1)); assert!(as_failds.contains(&payment_hash_2)); if announce_latest { assert!(as_failds.contains(&payment_hash_3)); assert!(as_failds.contains(&payment_hash_5)); } assert!(as_failds.contains(&payment_hash_6)); let bs_events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(bs_events.len(), if announce_latest { 4 } else { 3 }); let mut bs_failds = HashSet::new(); for event in bs_events.iter() { if let &Event::PaymentFailed { ref payment_hash, ref rejected_by_dest, .. } = event { assert!(bs_failds.insert(*payment_hash)); if *payment_hash != payment_hash_1 && *payment_hash != payment_hash_5 { assert_eq!(*rejected_by_dest, deliver_last_raa); } else { assert!(!rejected_by_dest); } } else { panic!("Unexpected event"); } } assert!(bs_failds.contains(&payment_hash_1)); assert!(bs_failds.contains(&payment_hash_2)); if announce_latest { assert!(bs_failds.contains(&payment_hash_4)); } assert!(bs_failds.contains(&payment_hash_5)); // For each HTLC which was not failed-back by normal process (ie deliver_last_raa), we should // get a PaymentFailureNetworkUpdate. A should have gotten 4 HTLCs which were failed-back due // to unknown-preimage-etc, B should have gotten 2. Thus, in the // announce_latest && deliver_last_raa case, we should have 5-4=1 and 4-2=2 // PaymentFailureNetworkUpdates. let as_msg_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_msg_events.len(), if deliver_last_raa { 1 } else if !announce_latest { 3 } else { 5 }); let bs_msg_events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(bs_msg_events.len(), if deliver_last_raa { 2 } else if !announce_latest { 3 } else { 4 }); for event in as_msg_events.iter().chain(bs_msg_events.iter()) { match event { &MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {}, _ => panic!("Unexpected event"), } } } #[test] fn test_fail_backwards_latest_remote_announce_a() { do_test_fail_backwards_unrevoked_remote_announce(false, true); } #[test] fn test_fail_backwards_latest_remote_announce_b() { do_test_fail_backwards_unrevoked_remote_announce(true, true); } #[test] fn test_fail_backwards_previous_remote_announce() { do_test_fail_backwards_unrevoked_remote_announce(false, false); // Note that true, true doesn't make sense as it implies we announce a revoked state, which is // tested for in test_commitment_revoked_fail_backward_exhaustive() } #[test] fn test_dynamic_spendable_outputs_local_htlc_timeout_tx() { let nodes = create_network(2); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); route_payment(&nodes[0], &vec!(&nodes[1])[..], 9000000).0; let local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(local_txn[0].input.len(), 1); check_spends!(local_txn[0], chan_1.3.clone()); // Timeout HTLC on A's chain and so it can generate a HTLC-Timeout tx let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![local_txn[0].clone()] }, 200); check_closed_broadcast!(nodes[0]); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[0], local_txn[0].clone()); // Verify that A is able to spend its own HTLC-Timeout tx thanks to spendable output event given back by its ChannelMonitor let spend_txn = check_spendable_outputs!(nodes[0], 1); assert_eq!(spend_txn.len(), 8); assert_eq!(spend_txn[0], spend_txn[2]); assert_eq!(spend_txn[0], spend_txn[4]); assert_eq!(spend_txn[0], spend_txn[6]); assert_eq!(spend_txn[1], spend_txn[3]); assert_eq!(spend_txn[1], spend_txn[5]); assert_eq!(spend_txn[1], spend_txn[7]); check_spends!(spend_txn[0], local_txn[0].clone()); check_spends!(spend_txn[1], node_txn[0].clone()); } #[test] fn test_static_output_closing_tx() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let closing_tx = close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true).2; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![closing_tx.clone()] }, 1); let spend_txn = check_spendable_outputs!(nodes[0], 2); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], closing_tx.clone()); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![closing_tx.clone()] }, 1); let spend_txn = check_spendable_outputs!(nodes[1], 2); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], closing_tx); } fn do_htlc_claim_local_commitment_only(use_dust: bool) { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let (our_payment_preimage, _) = route_payment(&nodes[0], &[&nodes[1]], if use_dust { 50000 } else { 3000000 }); // Claim the payment, but don't deliver A's commitment_signed, resulting in the HTLC only being // present in B's local commitment transaction, but none of A's commitment transactions. assert!(nodes[1].node.claim_funds(our_payment_preimage)); check_added_monitors!(nodes[1], 1); let bs_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_updates.update_fulfill_htlcs[0]).unwrap(); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { payment_preimage } => { assert_eq!(payment_preimage, our_payment_preimage); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_updates.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let as_updates = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_updates.0).unwrap(); check_added_monitors!(nodes[1], 1); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; for i in 1..TEST_FINAL_CLTV - CLTV_CLAIM_BUFFER + CHAN_CONFIRM_DEPTH + 1 { nodes[1].chain_monitor.block_connected_checked(&header, i, &Vec::new(), &Vec::new()); header.prev_blockhash = header.bitcoin_hash(); } test_txn_broadcast(&nodes[1], &chan, None, if use_dust { HTLCType::NONE } else { HTLCType::SUCCESS }); check_closed_broadcast!(nodes[1]); } fn do_htlc_claim_current_remote_commitment_only(use_dust: bool) { let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), if use_dust { 50000 } else { 3000000 }, TEST_FINAL_CLTV).unwrap(); let (_, payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let _as_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // As far as A is concerned, the HTLC is now present only in the latest remote commitment // transaction, however it is not in A's latest local commitment, so we can just broadcast that // to "time out" the HTLC. let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; for i in 1..TEST_FINAL_CLTV + HTLC_FAIL_TIMEOUT_BLOCKS + CHAN_CONFIRM_DEPTH + 1 { nodes[0].chain_monitor.block_connected_checked(&header, i, &Vec::new(), &Vec::new()); header.prev_blockhash = header.bitcoin_hash(); } test_txn_broadcast(&nodes[0], &chan, None, HTLCType::NONE); check_closed_broadcast!(nodes[0]); } fn do_htlc_claim_previous_remote_commitment_only(use_dust: bool, check_revoke_no_close: bool) { let nodes = create_network(3); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); // Fail the payment, but don't deliver A's final RAA, resulting in the HTLC only being present // in B's previous (unrevoked) commitment transaction, but none of A's commitment transactions. // Also optionally test that we *don't* fail the channel in case the commitment transaction was // actually revoked. let htlc_value = if use_dust { 50000 } else { 3000000 }; let (_, our_payment_hash) = route_payment(&nodes[0], &[&nodes[1]], htlc_value); assert!(nodes[1].node.fail_htlc_backwards(&our_payment_hash)); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let bs_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_updates.update_fail_htlcs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_updates.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let as_updates = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_updates.0).unwrap(); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_updates.1).unwrap(); check_added_monitors!(nodes[1], 1); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); if check_revoke_no_close { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); check_added_monitors!(nodes[0], 1); } let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; for i in 1..TEST_FINAL_CLTV + HTLC_FAIL_TIMEOUT_BLOCKS + CHAN_CONFIRM_DEPTH + 1 { nodes[0].chain_monitor.block_connected_checked(&header, i, &Vec::new(), &Vec::new()); header.prev_blockhash = header.bitcoin_hash(); } if !check_revoke_no_close { test_txn_broadcast(&nodes[0], &chan, None, HTLCType::NONE); check_closed_broadcast!(nodes[0]); } else { let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { payment_hash, rejected_by_dest, .. } => { assert_eq!(payment_hash, our_payment_hash); assert!(rejected_by_dest); }, _ => panic!("Unexpected event"), } } } // Test that we close channels on-chain when broadcastable HTLCs reach their timeout window. // There are only a few cases to test here: // * its not really normative behavior, but we test that below-dust HTLCs "included" in // broadcastable commitment transactions result in channel closure, // * its included in an unrevoked-but-previous remote commitment transaction, // * its included in the latest remote or local commitment transactions. // We test each of the three possible commitment transactions individually and use both dust and // non-dust HTLCs. // Note that we don't bother testing both outbound and inbound HTLC failures for each case, and we // assume they are handled the same across all six cases, as both outbound and inbound failures are // tested for at least one of the cases in other tests. #[test] fn htlc_claim_single_commitment_only_a() { do_htlc_claim_local_commitment_only(true); do_htlc_claim_local_commitment_only(false); do_htlc_claim_current_remote_commitment_only(true); do_htlc_claim_current_remote_commitment_only(false); } #[test] fn htlc_claim_single_commitment_only_b() { do_htlc_claim_previous_remote_commitment_only(true, false); do_htlc_claim_previous_remote_commitment_only(false, false); do_htlc_claim_previous_remote_commitment_only(true, true); do_htlc_claim_previous_remote_commitment_only(false, true); } fn run_onion_failure_test(_name: &str, test_case: u8, nodes: &Vec, route: &Route, payment_hash: &PaymentHash, callback_msg: F1, callback_node: F2, expected_retryable: bool, expected_error_code: Option, expected_channel_update: Option) where F1: for <'a> FnMut(&'a mut msgs::UpdateAddHTLC), F2: FnMut(), { run_onion_failure_test_with_fail_intercept(_name, test_case, nodes, route, payment_hash, callback_msg, |_|{}, callback_node, expected_retryable, expected_error_code, expected_channel_update); } // test_case // 0: node1 fails backward // 1: final node fails backward // 2: payment completed but the user rejects the payment // 3: final node fails backward (but tamper onion payloads from node0) // 100: trigger error in the intermediate node and tamper returning fail_htlc // 200: trigger error in the final node and tamper returning fail_htlc fn run_onion_failure_test_with_fail_intercept(_name: &str, test_case: u8, nodes: &Vec, route: &Route, payment_hash: &PaymentHash, mut callback_msg: F1, mut callback_fail: F2, mut callback_node: F3, expected_retryable: bool, expected_error_code: Option, expected_channel_update: Option) where F1: for <'a> FnMut(&'a mut msgs::UpdateAddHTLC), F2: for <'a> FnMut(&'a mut msgs::UpdateFailHTLC), F3: FnMut(), { use ln::msgs::HTLCFailChannelUpdate; // reset block height let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; for ix in 0..nodes.len() { nodes[ix].chain_monitor.block_connected_checked(&header, 1, &Vec::new()[..], &[0; 0]); } macro_rules! expect_event { ($node: expr, $event_type: path) => {{ let events = $node.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { $event_type { .. } => {}, _ => panic!("Unexpected event"), } }} } macro_rules! expect_htlc_forward { ($node: expr) => {{ expect_event!($node, Event::PendingHTLCsForwardable); $node.node.channel_state.lock().unwrap().next_forward = Instant::now(); $node.node.process_pending_htlc_forwards(); }} } // 0 ~~> 2 send payment nodes[0].node.send_payment(route.clone(), payment_hash.clone()).unwrap(); check_added_monitors!(nodes[0], 1); let update_0 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // temper update_add (0 => 1) let mut update_add_0 = update_0.update_add_htlcs[0].clone(); if test_case == 0 || test_case == 3 || test_case == 100 { callback_msg(&mut update_add_0); callback_node(); } // 0 => 1 update_add & CS nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add_0).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], &update_0.commitment_signed, false, true); let update_1_0 = match test_case { 0|100 => { // intermediate node failure; fail backward to 0 let update_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(update_1_0.update_fail_htlcs.len()+update_1_0.update_fail_malformed_htlcs.len()==1 && (update_1_0.update_fail_htlcs.len()==1 || update_1_0.update_fail_malformed_htlcs.len()==1)); update_1_0 }, 1|2|3|200 => { // final node failure; forwarding to 2 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); // forwarding on 1 if test_case != 200 { callback_node(); } expect_htlc_forward!(&nodes[1]); let update_1 = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); check_added_monitors!(&nodes[1], 1); assert_eq!(update_1.update_add_htlcs.len(), 1); // tamper update_add (1 => 2) let mut update_add_1 = update_1.update_add_htlcs[0].clone(); if test_case != 3 && test_case != 200 { callback_msg(&mut update_add_1); } // 1 => 2 nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &update_add_1).unwrap(); commitment_signed_dance!(nodes[2], nodes[1], update_1.commitment_signed, false, true); if test_case == 2 || test_case == 200 { expect_htlc_forward!(&nodes[2]); expect_event!(&nodes[2], Event::PaymentReceived); callback_node(); expect_pending_htlcs_forwardable!(nodes[2]); } let update_2_1 = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); if test_case == 2 || test_case == 200 { check_added_monitors!(&nodes[2], 1); } assert!(update_2_1.update_fail_htlcs.len() == 1); let mut fail_msg = update_2_1.update_fail_htlcs[0].clone(); if test_case == 200 { callback_fail(&mut fail_msg); } // 2 => 1 nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &fail_msg).unwrap(); commitment_signed_dance!(nodes[1], nodes[2], update_2_1.commitment_signed, true); // backward fail on 1 let update_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(update_1_0.update_fail_htlcs.len() == 1); update_1_0 }, _ => unreachable!(), }; // 1 => 0 commitment_signed_dance if update_1_0.update_fail_htlcs.len() > 0 { let mut fail_msg = update_1_0.update_fail_htlcs[0].clone(); if test_case == 100 { callback_fail(&mut fail_msg); } nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg).unwrap(); } else { nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_1_0.update_fail_malformed_htlcs[0]).unwrap(); }; commitment_signed_dance!(nodes[0], nodes[1], update_1_0.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); if let &Event::PaymentFailed { payment_hash:_, ref rejected_by_dest, ref error_code } = &events[0] { assert_eq!(*rejected_by_dest, !expected_retryable); assert_eq!(*error_code, expected_error_code); } else { panic!("Uexpected event"); } let events = nodes[0].node.get_and_clear_pending_msg_events(); if expected_channel_update.is_some() { assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => { match update { &HTLCFailChannelUpdate::ChannelUpdateMessage { .. } => { if let HTLCFailChannelUpdate::ChannelUpdateMessage { .. } = expected_channel_update.unwrap() {} else { panic!("channel_update not found!"); } }, &HTLCFailChannelUpdate::ChannelClosed { ref short_channel_id, ref is_permanent } => { if let HTLCFailChannelUpdate::ChannelClosed { short_channel_id: ref expected_short_channel_id, is_permanent: ref expected_is_permanent } = expected_channel_update.unwrap() { assert!(*short_channel_id == *expected_short_channel_id); assert!(*is_permanent == *expected_is_permanent); } else { panic!("Unexpected message event"); } }, &HTLCFailChannelUpdate::NodeFailure { ref node_id, ref is_permanent } => { if let HTLCFailChannelUpdate::NodeFailure { node_id: ref expected_node_id, is_permanent: ref expected_is_permanent } = expected_channel_update.unwrap() { assert!(*node_id == *expected_node_id); assert!(*is_permanent == *expected_is_permanent); } else { panic!("Unexpected message event"); } }, } }, _ => panic!("Unexpected message event"), } } else { assert_eq!(events.len(), 0); } } impl msgs::ChannelUpdate { fn dummy() -> msgs::ChannelUpdate { use secp256k1::ffi::Signature as FFISignature; use secp256k1::Signature; msgs::ChannelUpdate { signature: Signature::from(FFISignature::new()), contents: msgs::UnsignedChannelUpdate { chain_hash: Sha256dHash::hash(&vec![0u8][..]), short_channel_id: 0, timestamp: 0, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: vec![], } } } } #[test] fn test_onion_failure() { use ln::msgs::ChannelUpdate; use ln::channelmanager::CLTV_FAR_FAR_AWAY; use secp256k1; const BADONION: u16 = 0x8000; const PERM: u16 = 0x4000; const NODE: u16 = 0x2000; const UPDATE: u16 = 0x1000; let mut nodes = create_network(3); for node in nodes.iter() { *node.keys_manager.override_session_priv.lock().unwrap() = Some(SecretKey::from_slice(&[3; 32]).unwrap()); } let channels = [create_announced_chan_between_nodes(&nodes, 0, 1), create_announced_chan_between_nodes(&nodes, 1, 2)]; let (_, payment_hash) = get_payment_preimage_hash!(nodes[0]); let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 40000, TEST_FINAL_CLTV).unwrap(); // positve case send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 40000); // intermediate node failure run_onion_failure_test("invalid_realm", 0, &nodes, &route, &payment_hash, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let cur_height = nodes[0].node.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); let (mut onion_payloads, _htlc_msat, _htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height).unwrap(); onion_payloads[0].realm = 3; msg.onion_routing_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, &payment_hash); }, ||{}, true, Some(PERM|1), Some(msgs::HTLCFailChannelUpdate::ChannelClosed{short_channel_id: channels[1].0.contents.short_channel_id, is_permanent: true}));//XXX incremented channels idx here // final node failure run_onion_failure_test("invalid_realm", 3, &nodes, &route, &payment_hash, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let cur_height = nodes[0].node.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); let (mut onion_payloads, _htlc_msat, _htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height).unwrap(); onion_payloads[1].realm = 3; msg.onion_routing_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, &payment_hash); }, ||{}, false, Some(PERM|1), Some(msgs::HTLCFailChannelUpdate::ChannelClosed{short_channel_id: channels[1].0.contents.short_channel_id, is_permanent: true})); // the following three with run_onion_failure_test_with_fail_intercept() test only the origin node // receiving simulated fail messages // intermediate node failure run_onion_failure_test_with_fail_intercept("temporary_node_failure", 100, &nodes, &route, &payment_hash, |msg| { // trigger error msg.amount_msat -= 1; }, |msg| { // and tamper returning error message let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], NODE|2, &[0;0]); }, ||{}, true, Some(NODE|2), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[0].pubkey, is_permanent: false})); // final node failure run_onion_failure_test_with_fail_intercept("temporary_node_failure", 200, &nodes, &route, &payment_hash, |_msg| {}, |msg| { // and tamper returning error message let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[1].shared_secret[..], NODE|2, &[0;0]); }, ||{ nodes[2].node.fail_htlc_backwards(&payment_hash); }, true, Some(NODE|2), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[1].pubkey, is_permanent: false})); // intermediate node failure run_onion_failure_test_with_fail_intercept("permanent_node_failure", 100, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], PERM|NODE|2, &[0;0]); }, ||{}, true, Some(PERM|NODE|2), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[0].pubkey, is_permanent: true})); // final node failure run_onion_failure_test_with_fail_intercept("permanent_node_failure", 200, &nodes, &route, &payment_hash, |_msg| {}, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[1].shared_secret[..], PERM|NODE|2, &[0;0]); }, ||{ nodes[2].node.fail_htlc_backwards(&payment_hash); }, false, Some(PERM|NODE|2), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[1].pubkey, is_permanent: true})); // intermediate node failure run_onion_failure_test_with_fail_intercept("required_node_feature_missing", 100, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], PERM|NODE|3, &[0;0]); }, ||{ nodes[2].node.fail_htlc_backwards(&payment_hash); }, true, Some(PERM|NODE|3), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[0].pubkey, is_permanent: true})); // final node failure run_onion_failure_test_with_fail_intercept("required_node_feature_missing", 200, &nodes, &route, &payment_hash, |_msg| {}, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[1].shared_secret[..], PERM|NODE|3, &[0;0]); }, ||{ nodes[2].node.fail_htlc_backwards(&payment_hash); }, false, Some(PERM|NODE|3), Some(msgs::HTLCFailChannelUpdate::NodeFailure{node_id: route.hops[1].pubkey, is_permanent: true})); run_onion_failure_test("invalid_onion_version", 0, &nodes, &route, &payment_hash, |msg| { msg.onion_routing_packet.version = 1; }, ||{}, true, Some(BADONION|PERM|4), None); run_onion_failure_test("invalid_onion_hmac", 0, &nodes, &route, &payment_hash, |msg| { msg.onion_routing_packet.hmac = [3; 32]; }, ||{}, true, Some(BADONION|PERM|5), None); run_onion_failure_test("invalid_onion_key", 0, &nodes, &route, &payment_hash, |msg| { msg.onion_routing_packet.public_key = Err(secp256k1::Error::InvalidPublicKey);}, ||{}, true, Some(BADONION|PERM|6), None); run_onion_failure_test_with_fail_intercept("temporary_channel_failure", 100, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], UPDATE|7, &ChannelUpdate::dummy().encode_with_len()[..]); }, ||{}, true, Some(UPDATE|7), Some(msgs::HTLCFailChannelUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy()})); run_onion_failure_test_with_fail_intercept("permanent_channel_failure", 100, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], PERM|8, &[0;0]); // short_channel_id from the processing node }, ||{}, true, Some(PERM|8), Some(msgs::HTLCFailChannelUpdate::ChannelClosed{short_channel_id: channels[1].0.contents.short_channel_id, is_permanent: true})); run_onion_failure_test_with_fail_intercept("required_channel_feature_missing", 100, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); msg.reason = onion_utils::build_first_hop_failure_packet(&onion_keys[0].shared_secret[..], PERM|9, &[0;0]); // short_channel_id from the processing node }, ||{}, true, Some(PERM|9), Some(msgs::HTLCFailChannelUpdate::ChannelClosed{short_channel_id: channels[1].0.contents.short_channel_id, is_permanent: true})); let mut bogus_route = route.clone(); bogus_route.hops[1].short_channel_id -= 1; run_onion_failure_test("unknown_next_peer", 0, &nodes, &bogus_route, &payment_hash, |_| {}, ||{}, true, Some(PERM|10), Some(msgs::HTLCFailChannelUpdate::ChannelClosed{short_channel_id: bogus_route.hops[1].short_channel_id, is_permanent:true})); let amt_to_forward = nodes[1].node.channel_state.lock().unwrap().by_id.get(&channels[1].2).unwrap().get_their_htlc_minimum_msat() - 1; let mut bogus_route = route.clone(); let route_len = bogus_route.hops.len(); bogus_route.hops[route_len-1].fee_msat = amt_to_forward; run_onion_failure_test("amount_below_minimum", 0, &nodes, &bogus_route, &payment_hash, |_| {}, ||{}, true, Some(UPDATE|11), Some(msgs::HTLCFailChannelUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy()})); //TODO: with new config API, we will be able to generate both valid and //invalid channel_update cases. run_onion_failure_test("fee_insufficient", 0, &nodes, &route, &payment_hash, |msg| { msg.amount_msat -= 1; }, || {}, true, Some(UPDATE|12), Some(msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id: channels[0].0.contents.short_channel_id, is_permanent: true})); run_onion_failure_test("incorrect_cltv_expiry", 0, &nodes, &route, &payment_hash, |msg| { // need to violate: cltv_expiry - cltv_expiry_delta >= outgoing_cltv_value msg.cltv_expiry -= 1; }, || {}, true, Some(UPDATE|13), Some(msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id: channels[0].0.contents.short_channel_id, is_permanent: true})); run_onion_failure_test("expiry_too_soon", 0, &nodes, &route, &payment_hash, |msg| { let height = msg.cltv_expiry - CLTV_CLAIM_BUFFER - HTLC_FAIL_TIMEOUT_BLOCKS + 1; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_checked(&header, height, &Vec::new()[..], &[0; 0]); }, ||{}, true, Some(UPDATE|14), Some(msgs::HTLCFailChannelUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy()})); run_onion_failure_test("unknown_payment_hash", 2, &nodes, &route, &payment_hash, |_| {}, || { nodes[2].node.fail_htlc_backwards(&payment_hash); }, false, Some(PERM|15), None); run_onion_failure_test("final_expiry_too_soon", 1, &nodes, &route, &payment_hash, |msg| { let height = msg.cltv_expiry - CLTV_CLAIM_BUFFER - HTLC_FAIL_TIMEOUT_BLOCKS + 1; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[2].chain_monitor.block_connected_checked(&header, height, &Vec::new()[..], &[0; 0]); }, || {}, true, Some(17), None); run_onion_failure_test("final_incorrect_cltv_expiry", 1, &nodes, &route, &payment_hash, |_| {}, || { for (_, pending_forwards) in nodes[1].node.channel_state.lock().unwrap().borrow_parts().forward_htlcs.iter_mut() { for f in pending_forwards.iter_mut() { match f { &mut HTLCForwardInfo::AddHTLC { ref mut forward_info, .. } => forward_info.outgoing_cltv_value += 1, _ => {}, } } } }, true, Some(18), None); run_onion_failure_test("final_incorrect_htlc_amount", 1, &nodes, &route, &payment_hash, |_| {}, || { // violate amt_to_forward > msg.amount_msat for (_, pending_forwards) in nodes[1].node.channel_state.lock().unwrap().borrow_parts().forward_htlcs.iter_mut() { for f in pending_forwards.iter_mut() { match f { &mut HTLCForwardInfo::AddHTLC { ref mut forward_info, .. } => forward_info.amt_to_forward -= 1, _ => {}, } } } }, true, Some(19), None); run_onion_failure_test("channel_disabled", 0, &nodes, &route, &payment_hash, |_| {}, || { // disconnect event to the channel between nodes[1] ~ nodes[2] nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); }, true, Some(UPDATE|20), Some(msgs::HTLCFailChannelUpdate::ChannelUpdateMessage{msg: ChannelUpdate::dummy()})); reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); run_onion_failure_test("expiry_too_far", 0, &nodes, &route, &payment_hash, |msg| { let session_priv = SecretKey::from_slice(&[3; 32]).unwrap(); let mut route = route.clone(); let height = 1; route.hops[1].cltv_expiry_delta += CLTV_FAR_FAR_AWAY + route.hops[0].cltv_expiry_delta + 1; let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::new(), &route, &session_priv).unwrap(); let (onion_payloads, _, htlc_cltv) = onion_utils::build_onion_payloads(&route, height).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, &payment_hash); msg.cltv_expiry = htlc_cltv; msg.onion_routing_packet = onion_packet; }, ||{}, true, Some(21), None); } #[test] #[should_panic] fn bolt2_open_channel_sending_node_checks_part1() { //This test needs to be on its own as we are catching a panic let nodes = create_network(2); //Force duplicate channel ids for node in nodes.iter() { *node.keys_manager.override_channel_id_priv.lock().unwrap() = Some([0; 32]); } // BOLT #2 spec: Sending node must ensure temporary_channel_id is unique from any other channel ID with the same peer. let channel_value_satoshis=10000; let push_msat=10001; nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42).unwrap(); let node0_to_1_send_open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &node0_to_1_send_open_channel).unwrap(); //Create a second channel with a channel_id collision assert!(nodes[0].node.create_channel(nodes[0].node.get_our_node_id(), channel_value_satoshis, push_msat, 42).is_err()); } #[test] fn bolt2_open_channel_sending_node_checks_part2() { let nodes = create_network(2); // BOLT #2 spec: Sending node must set funding_satoshis to less than 2^24 satoshis let channel_value_satoshis=2^24; let push_msat=10001; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42).is_err()); // BOLT #2 spec: Sending node must set push_msat to equal or less than 1000 * funding_satoshis let channel_value_satoshis=10000; // Test when push_msat is equal to 1000 * funding_satoshis. let push_msat=1000*channel_value_satoshis+1; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42).is_err()); // BOLT #2 spec: Sending node must set set channel_reserve_satoshis greater than or equal to dust_limit_satoshis let channel_value_satoshis=10000; let push_msat=10001; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42).is_ok()); //Create a valid channel let node0_to_1_send_open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert!(node0_to_1_send_open_channel.channel_reserve_satoshis>=node0_to_1_send_open_channel.dust_limit_satoshis); // BOLT #2 spec: Sending node must set undefined bits in channel_flags to 0 // Only the least-significant bit of channel_flags is currently defined resulting in channel_flags only having one of two possible states 0 or 1 assert!(node0_to_1_send_open_channel.channel_flags<=1); // BOLT #2 spec: Sending node should set to_self_delay sufficient to ensure the sender can irreversibly spend a commitment transaction output, in case of misbehaviour by the receiver. assert!(BREAKDOWN_TIMEOUT>0); assert!(node0_to_1_send_open_channel.to_self_delay==BREAKDOWN_TIMEOUT); // BOLT #2 spec: Sending node must ensure the chain_hash value identifies the chain it wishes to open the channel within. let chain_hash=genesis_block(Network::Testnet).header.bitcoin_hash(); assert_eq!(node0_to_1_send_open_channel.chain_hash,chain_hash); // BOLT #2 spec: Sending node must set funding_pubkey, revocation_basepoint, htlc_basepoint, payment_basepoint, and delayed_payment_basepoint to valid DER-encoded, compressed, secp256k1 pubkeys. assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.funding_pubkey.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.revocation_basepoint.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.htlc_basepoint.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.payment_basepoint.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.delayed_payment_basepoint.serialize()).is_ok()); } // BOLT 2 Requirements for the Sender when constructing and sending an update_add_htlc message. // BOLT 2 Requirement: MUST NOT offer amount_msat it cannot pay for in the remote commitment transaction at the current feerate_per_kw (see "Updating Fees") while maintaining its channel reserve. //TODO: I don't believe this is explicitly enforced when sending an HTLC but as the Fee aspect of the BOLT specs is in flux leaving this as a TODO. #[test] fn test_update_add_htlc_bolt2_sender_value_below_minimum_msat() { //BOLT2 Requirement: MUST offer amount_msat greater than 0. //BOLT2 Requirement: MUST NOT offer amount_msat below the receiving node's htlc_minimum_msat (same validation check catches both of these) let mut nodes = create_network(2); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000); let mut route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); route.hops[0].fee_msat = 0; let err = nodes[0].node.send_payment(route, our_payment_hash); if let Err(APIError::ChannelUnavailable{err}) = err { assert_eq!(err, "Cannot send less than their minimum HTLC value"); } else { assert!(false); } } #[test] fn test_update_add_htlc_bolt2_sender_cltv_expiry_too_high() { //BOLT 2 Requirement: MUST set cltv_expiry less than 500000000. //It is enforced when constructing a route. let mut nodes = create_network(2); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 0); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000000, 500000001).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let err = nodes[0].node.send_payment(route, our_payment_hash); if let Err(APIError::RouteError{err}) = err { assert_eq!(err, "Channel CLTV overflowed?!"); } else { assert!(false); } } #[test] fn test_update_add_htlc_bolt2_sender_exceed_max_htlc_num_and_htlc_id_increment() { //BOLT 2 Requirement: if result would be offering more than the remote's max_accepted_htlcs HTLCs, in the remote commitment transaction: MUST NOT add an HTLC. //BOLT 2 Requirement: for the first HTLC it offers MUST set id to 0. //BOLT 2 Requirement: MUST increase the value of id by 1 for each successive offer. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 0); let max_accepted_htlcs = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().their_max_accepted_htlcs as u64; for i in 0..max_accepted_htlcs { let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let payment_event = { nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate{ update_add_htlcs: ref htlcs, .. }, } = events[0] { assert_eq!(htlcs[0].htlc_id, i); } else { assert!(false); } SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], our_payment_hash, 100000); } let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 100000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let err = nodes[0].node.send_payment(route, our_payment_hash); if let Err(APIError::ChannelUnavailable{err}) = err { assert_eq!(err, "Cannot push more than their max accepted HTLCs"); } else { assert!(false); } } #[test] fn test_update_add_htlc_bolt2_sender_exceed_max_htlc_value_in_flight() { //BOLT 2 Requirement: if the sum of total offered HTLCs would exceed the remote's max_htlc_value_in_flight_msat: MUST NOT add an HTLC. let mut nodes = create_network(2); let channel_value = 100000; let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, channel_value, 0); let max_in_flight = get_channel_value_stat!(nodes[0], chan.2).their_max_htlc_value_in_flight_msat; send_payment(&nodes[0], &vec!(&nodes[1])[..], max_in_flight); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], max_in_flight+1, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let err = nodes[0].node.send_payment(route, our_payment_hash); if let Err(APIError::ChannelUnavailable{err}) = err { assert_eq!(err, "Cannot send value that would put us over the max HTLC value in flight"); } else { assert!(false); } send_payment(&nodes[0], &[&nodes[1]], max_in_flight); } // BOLT 2 Requirements for the Receiver when handling an update_add_htlc message. #[test] fn test_update_add_htlc_bolt2_receiver_check_amount_received_more_than_min() { //BOLT2 Requirement: receiving an amount_msat equal to 0, OR less than its own htlc_minimum_msat -> SHOULD fail the channel. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000); let htlc_minimum_msat: u64; { let chan_lock = nodes[0].node.channel_state.lock().unwrap(); let channel = chan_lock.by_id.get(&chan.2).unwrap(); htlc_minimum_msat = channel.get_our_htlc_minimum_msat(); } let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], htlc_minimum_msat, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = htlc_minimum_msat-1; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote side tried to send less than our minimum HTLC value"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_add_htlc_bolt2_receiver_sender_can_afford_amount_sent() { //BOLT2 Requirement: receiving an amount_msat that the sending node cannot afford at the current feerate_per_kw (while maintaining its channel reserve): SHOULD fail the channel let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000); let their_channel_reserve = get_channel_value_stat!(nodes[0], chan.2).channel_reserve_msat; let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 5000000-their_channel_reserve, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = 5000000-their_channel_reserve+1; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote HTLC add would put them over their reserve value"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_add_htlc_bolt2_receiver_check_max_htlc_limit() { //BOLT 2 Requirement: if a sending node adds more than its max_accepted_htlcs HTLCs to its local commitment transaction: SHOULD fail the channel //BOLT 2 Requirement: MUST allow multiple HTLCs with the same payment_hash. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 3999999, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let session_priv = SecretKey::from_slice(&{ let mut session_key = [0; 32]; rng::fill_bytes(&mut session_key); session_key }).expect("RNG is bad!"); let cur_height = nodes[0].node.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::signing_only(), &route, &session_priv).unwrap(); let (onion_payloads, _htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, &our_payment_hash); let mut msg = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 0, amount_msat: 1000, payment_hash: our_payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet.clone(), }; for i in 0..super::channel::OUR_MAX_HTLCS { msg.htlc_id = i as u64; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg).unwrap(); } msg.htlc_id = (super::channel::OUR_MAX_HTLCS) as u64; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to push more than our max accepted HTLCs"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_add_htlc_bolt2_receiver_check_max_in_flight_msat() { //OR adds more than its max_htlc_value_in_flight_msat worth of offered HTLCs to its local commitment transaction: SHOULD fail the channel let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = get_channel_value_stat!(nodes[1], chan.2).their_max_htlc_value_in_flight_msat + 1; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err,"Remote HTLC add would put them over their max HTLC value in flight"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_add_htlc_bolt2_receiver_check_cltv_expiry() { //BOLT2 Requirement: if sending node sets cltv_expiry to greater or equal to 500000000: SHOULD fail the channel. let mut nodes = create_network(2); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 3999999, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].cltv_expiry = 500000000; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err,"Remote provided CLTV expiry in seconds instead of block height"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_add_htlc_bolt2_receiver_check_repeated_id_ignore() { //BOLT 2 requirement: if the sender did not previously acknowledge the commitment of that HTLC: MUST ignore a repeated id value after a reconnection. // We test this by first testing that that repeated HTLCs pass commitment signature checks // after disconnect and that non-sequential htlc_ids result in a channel failure. let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); //Disconnect and Reconnect nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); handle_chan_reestablish_msgs!(nodes[1], nodes[0]); //Resend HTLC nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); assert_eq!(updates.commitment_signed.htlc_signatures.len(), 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &updates.commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let _bs_responses = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote skipped HTLC ID"); } else { assert!(false); } assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1]); } #[test] fn test_update_fulfill_htlc_bolt2_update_fulfill_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); let update_msg = msgs::UpdateFulfillHTLC{ channel_id: chan.2, htlc_id: 0, payment_preimage: our_payment_preimage, }; let err = nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to fulfill/fail HTLC before it had been committed"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_update_fail_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); let update_msg = msgs::UpdateFailHTLC{ channel_id: chan.2, htlc_id: 0, reason: msgs::OnionErrorPacket { data: Vec::new()}, }; let err = nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to fulfill/fail HTLC before it had been committed"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_update_fail_malformed_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); let update_msg = msgs::UpdateFailMalformedHTLC{ channel_id: chan.2, htlc_id: 0, sha256_of_onion: [1; 32], failure_code: 0x8000, }; let err = nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to fulfill/fail HTLC before it had been committed"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_incorrect_htlc_id() { //BOLT 2 Requirement: A receiving node: if the id does not correspond to an HTLC in its current commitment transaction MUST fail the channel. let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let our_payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 100000).0; nodes[1].node.claim_funds(our_payment_preimage); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut update_fulfill_msg: msgs::UpdateFulfillHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); update_fulfill_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_fulfill_msg.htlc_id = 1; let err = nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to fulfill/fail an HTLC we couldn't find"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_wrong_preimage() { //BOLT 2 Requirement: A receiving node: if the payment_preimage value in update_fulfill_htlc doesn't SHA256 hash to the corresponding HTLC payment_hash MUST fail the channel. let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let our_payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 100000).0; nodes[1].node.claim_funds(our_payment_preimage); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut update_fulfill_msg: msgs::UpdateFulfillHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); update_fulfill_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_fulfill_msg.payment_preimage = PaymentPreimage([1; 32]); let err = nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Remote tried to fulfill HTLC with an incorrect preimage"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_missing_badonion_bit_for_malformed_htlc_message() { //BOLT 2 Requirement: A receiving node: if the BADONION bit in failure_code is not set for update_fail_malformed_htlc MUST fail the channel. let mut nodes = create_network(2); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &[], 1000000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].onion_routing_packet.version = 1; //Produce a malformed HTLC message nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]).unwrap(); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false, true); let events = nodes[1].node.get_and_clear_pending_msg_events(); let mut update_msg: msgs::UpdateFailMalformedHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fail_malformed_htlcs.len(), 1); assert!(update_fee.is_none()); update_fail_malformed_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_msg.failure_code &= !0x8000; let err = nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_msg); if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::SendErrorMessage {..})}) = err { assert_eq!(err, "Got update_fail_malformed_htlc with BADONION not set"); } else { assert!(false); } assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0]); } #[test] fn test_update_fulfill_htlc_bolt2_after_malformed_htlc_message_must_forward_update_fail_htlc() { //BOLT 2 Requirement: a receiving node which has an outgoing HTLC canceled by update_fail_malformed_htlc: // * MUST return an error in the update_fail_htlc sent to the link which originally sent the HTLC, using the failure_code given and setting the data to sha256_of_onion. let mut nodes = create_network(3); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000); create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 1000000, 1000000); let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 100000, TEST_FINAL_CLTV).unwrap(); let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); //First hop let mut payment_event = { nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); let mut events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); check_added_monitors!(nodes[1], 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); //Second Hop payment_event.msgs[0].onion_routing_packet.version = 1; //Produce a malformed HTLC message nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); check_added_monitors!(nodes[2], 0); commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false, true); let events_3 = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let update_msg : (msgs::UpdateFailMalformedHTLC, msgs::CommitmentSigned) = { match events_3[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fail_malformed_htlcs.len(), 1); assert!(update_fee.is_none()); (update_fail_malformed_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), } }; nodes[1].node.handle_update_fail_malformed_htlc(&nodes[2].node.get_our_node_id(), &update_msg.0).unwrap(); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[2], update_msg.1, false, true); expect_pending_htlcs_forwardable!(nodes[1]); let events_4 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_4.len(), 1); //Confirm that handlinge the update_malformed_htlc message produces an update_fail_htlc message to be forwarded back along the route match events_4[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); }, _ => panic!("Unexpected event"), }; check_added_monitors!(nodes[1], 1); }