// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! The top-level routing/network map tracking logic lives here. //! //! You probably want to create a NetGraphMsgHandler and use that as your RoutingMessageHandler and then //! interrogate it to get routes for your own payments. use bitcoin::secp256k1::key::PublicKey; use ln::channelmanager::ChannelDetails; use ln::features::{ChannelFeatures, InvoiceFeatures, NodeFeatures}; use ln::msgs::{DecodeError, ErrorAction, LightningError, MAX_VALUE_MSAT}; use routing::network_graph::{NetworkGraph, RoutingFees}; use util::ser::{Writeable, Readable}; use util::logger::Logger; use std::cmp; use std::collections::{HashMap, BinaryHeap}; use std::ops::Deref; /// A hop in a route #[derive(Clone, PartialEq)] pub struct RouteHop { /// The node_id of the node at this hop. pub pubkey: PublicKey, /// The node_announcement features of the node at this hop. For the last hop, these may be /// amended to match the features present in the invoice this node generated. pub node_features: NodeFeatures, /// The channel that should be used from the previous hop to reach this node. pub short_channel_id: u64, /// The channel_announcement features of the channel that should be used from the previous hop /// to reach this node. pub channel_features: ChannelFeatures, /// The fee taken on this hop (for paying for the use of the *next* channel in the path). /// For the last hop, this should be the full value of the payment (might be more than /// requested if we had to match htlc_minimum_msat). pub fee_msat: u64, /// The CLTV delta added for this hop. For the last hop, this should be the full CLTV value /// expected at the destination, in excess of the current block height. pub cltv_expiry_delta: u32, } /// (C-not exported) impl Writeable for Vec { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.len() as u8).write(writer)?; for hop in self.iter() { hop.pubkey.write(writer)?; hop.node_features.write(writer)?; hop.short_channel_id.write(writer)?; hop.channel_features.write(writer)?; hop.fee_msat.write(writer)?; hop.cltv_expiry_delta.write(writer)?; } Ok(()) } } /// (C-not exported) impl Readable for Vec { fn read(reader: &mut R) -> Result, DecodeError> { let hops_count: u8 = Readable::read(reader)?; let mut hops = Vec::with_capacity(hops_count as usize); for _ in 0..hops_count { hops.push(RouteHop { pubkey: Readable::read(reader)?, node_features: Readable::read(reader)?, short_channel_id: Readable::read(reader)?, channel_features: Readable::read(reader)?, fee_msat: Readable::read(reader)?, cltv_expiry_delta: Readable::read(reader)?, }); } Ok(hops) } } /// A route directs a payment from the sender (us) to the recipient. If the recipient supports MPP, /// it can take multiple paths. Each path is composed of one or more hops through the network. #[derive(Clone, PartialEq)] pub struct Route { /// The list of routes taken for a single (potentially-)multi-part payment. The pubkey of the /// last RouteHop in each path must be the same. /// Each entry represents a list of hops, NOT INCLUDING our own, where the last hop is the /// destination. Thus, this must always be at least length one. While the maximum length of any /// given path is variable, keeping the length of any path to less than 20 should currently /// ensure it is viable. pub paths: Vec>, } impl Writeable for Route { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { (self.paths.len() as u64).write(writer)?; for hops in self.paths.iter() { hops.write(writer)?; } Ok(()) } } impl Readable for Route { fn read(reader: &mut R) -> Result { let path_count: u64 = Readable::read(reader)?; let mut paths = Vec::with_capacity(cmp::min(path_count, 128) as usize); for _ in 0..path_count { paths.push(Readable::read(reader)?); } Ok(Route { paths }) } } /// A channel descriptor which provides a last-hop route to get_route #[derive(Eq, PartialEq, Debug, Clone)] pub struct RouteHintHop { /// The node_id of the non-target end of the route pub src_node_id: PublicKey, /// The short_channel_id of this channel pub short_channel_id: u64, /// The fees which must be paid to use this channel pub fees: RoutingFees, /// The difference in CLTV values between this node and the next node. pub cltv_expiry_delta: u16, /// The minimum value, in msat, which must be relayed to the next hop. pub htlc_minimum_msat: Option, /// The maximum value in msat available for routing with a single HTLC. pub htlc_maximum_msat: Option, } #[derive(Eq, PartialEq)] struct RouteGraphNode { pubkey: PublicKey, lowest_fee_to_peer_through_node: u64, lowest_fee_to_node: u64, // The maximum value a yet-to-be-constructed payment path might flow through this node. // This value is upper-bounded by us by: // - how much is needed for a path being constructed // - how much value can channels following this node (up to the destination) can contribute, // considering their capacity and fees value_contribution_msat: u64, /// The effective htlc_minimum_msat at this hop. If a later hop on the path had a higher HTLC /// minimum, we use it, plus the fees required at each earlier hop to meet it. path_htlc_minimum_msat: u64, } impl cmp::Ord for RouteGraphNode { fn cmp(&self, other: &RouteGraphNode) -> cmp::Ordering { let other_score = cmp::max(other.lowest_fee_to_peer_through_node, other.path_htlc_minimum_msat); let self_score = cmp::max(self.lowest_fee_to_peer_through_node, self.path_htlc_minimum_msat); other_score.cmp(&self_score).then_with(|| other.pubkey.serialize().cmp(&self.pubkey.serialize())) } } impl cmp::PartialOrd for RouteGraphNode { fn partial_cmp(&self, other: &RouteGraphNode) -> Option { Some(self.cmp(other)) } } struct DummyDirectionalChannelInfo { cltv_expiry_delta: u32, htlc_minimum_msat: u64, htlc_maximum_msat: Option, fees: RoutingFees, } /// It's useful to keep track of the hops associated with the fees required to use them, /// so that we can choose cheaper paths (as per Dijkstra's algorithm). /// Fee values should be updated only in the context of the whole path, see update_value_and_recompute_fees. /// These fee values are useful to choose hops as we traverse the graph "payee-to-payer". #[derive(Clone)] struct PathBuildingHop<'a> { // The RouteHintHop fields which will eventually be used if this hop is used in a final Route. // Note that node_features is calculated separately after our initial graph walk. pubkey: PublicKey, short_channel_id: u64, channel_features: &'a ChannelFeatures, fee_msat: u64, cltv_expiry_delta: u32, /// Minimal fees required to route to the source node of the current hop via any of its inbound channels. src_lowest_inbound_fees: RoutingFees, /// Fees of the channel used in this hop. channel_fees: RoutingFees, /// All the fees paid *after* this channel on the way to the destination next_hops_fee_msat: u64, /// Fee paid for the use of the current channel (see channel_fees). /// The value will be actually deducted from the counterparty balance on the previous link. hop_use_fee_msat: u64, /// Used to compare channels when choosing the for routing. /// Includes paying for the use of a hop and the following hops, as well as /// an estimated cost of reaching this hop. /// Might get stale when fees are recomputed. Primarily for internal use. total_fee_msat: u64, /// This is useful for update_value_and_recompute_fees to make sure /// we don't fall below the minimum. Should not be updated manually and /// generally should not be accessed. htlc_minimum_msat: u64, /// A mirror of the same field in RouteGraphNode. Note that this is only used during the graph /// walk and may be invalid thereafter. path_htlc_minimum_msat: u64, /// If we've already processed a node as the best node, we shouldn't process it again. Normally /// we'd just ignore it if we did as all channels would have a higher new fee, but because we /// may decrease the amounts in use as we walk the graph, the actual calculated fee may /// decrease as well. Thus, we have to explicitly track which nodes have been processed and /// avoid processing them again. was_processed: bool, #[cfg(any(test, feature = "fuzztarget"))] // In tests, we apply further sanity checks on cases where we skip nodes we already processed // to ensure it is specifically in cases where the fee has gone down because of a decrease in // value_contribution_msat, which requires tracking it here. See comments below where it is // used for more info. value_contribution_msat: u64, } // Instantiated with a list of hops with correct data in them collected during path finding, // an instance of this struct should be further modified only via given methods. #[derive(Clone)] struct PaymentPath<'a> { hops: Vec<(PathBuildingHop<'a>, NodeFeatures)>, } impl<'a> PaymentPath<'a> { // TODO: Add a value_msat field to PaymentPath and use it instead of this function. fn get_value_msat(&self) -> u64 { self.hops.last().unwrap().0.fee_msat } fn get_total_fee_paid_msat(&self) -> u64 { if self.hops.len() < 1 { return 0; } let mut result = 0; // Can't use next_hops_fee_msat because it gets outdated. for (i, (hop, _)) in self.hops.iter().enumerate() { if i != self.hops.len() - 1 { result += hop.fee_msat; } } return result; } // If the amount transferred by the path is updated, the fees should be adjusted. Any other way // to change fees may result in an inconsistency. // // Sometimes we call this function right after constructing a path which is inconsistent in // that it the value being transferred has decreased while we were doing path finding, leading // to the fees being paid not lining up with the actual limits. // // Note that this function is not aware of the available_liquidity limit, and thus does not // support increasing the value being transferred. fn update_value_and_recompute_fees(&mut self, value_msat: u64) { assert!(value_msat <= self.hops.last().unwrap().0.fee_msat); let mut total_fee_paid_msat = 0 as u64; for i in (0..self.hops.len()).rev() { let last_hop = i == self.hops.len() - 1; // For non-last-hop, this value will represent the fees paid on the current hop. It // will consist of the fees for the use of the next hop, and extra fees to match // htlc_minimum_msat of the current channel. Last hop is handled separately. let mut cur_hop_fees_msat = 0; if !last_hop { cur_hop_fees_msat = self.hops.get(i + 1).unwrap().0.hop_use_fee_msat; } let mut cur_hop = &mut self.hops.get_mut(i).unwrap().0; cur_hop.next_hops_fee_msat = total_fee_paid_msat; // Overpay in fees if we can't save these funds due to htlc_minimum_msat. // We try to account for htlc_minimum_msat in scoring (add_entry!), so that nodes don't // set it too high just to maliciously take more fees by exploiting this // match htlc_minimum_msat logic. let mut cur_hop_transferred_amount_msat = total_fee_paid_msat + value_msat; if let Some(extra_fees_msat) = cur_hop.htlc_minimum_msat.checked_sub(cur_hop_transferred_amount_msat) { // Note that there is a risk that *previous hops* (those closer to us, as we go // payee->our_node here) would exceed their htlc_maximum_msat or available balance. // // This might make us end up with a broken route, although this should be super-rare // in practice, both because of how healthy channels look like, and how we pick // channels in add_entry. // Also, this can't be exploited more heavily than *announce a free path and fail // all payments*. cur_hop_transferred_amount_msat += extra_fees_msat; total_fee_paid_msat += extra_fees_msat; cur_hop_fees_msat += extra_fees_msat; } if last_hop { // Final hop is a special case: it usually has just value_msat (by design), but also // it still could overpay for the htlc_minimum_msat. cur_hop.fee_msat = cur_hop_transferred_amount_msat; } else { // Propagate updated fees for the use of the channels to one hop back, where they // will be actually paid (fee_msat). The last hop is handled above separately. cur_hop.fee_msat = cur_hop_fees_msat; } // Fee for the use of the current hop which will be deducted on the previous hop. // Irrelevant for the first hop, as it doesn't have the previous hop, and the use of // this channel is free for us. if i != 0 { if let Some(new_fee) = compute_fees(cur_hop_transferred_amount_msat, cur_hop.channel_fees) { cur_hop.hop_use_fee_msat = new_fee; total_fee_paid_msat += new_fee; } else { // It should not be possible because this function is called only to reduce the // value. In that case, compute_fee was already called with the same fees for // larger amount and there was no overflow. unreachable!(); } } } } } fn compute_fees(amount_msat: u64, channel_fees: RoutingFees) -> Option { let proportional_fee_millions = amount_msat.checked_mul(channel_fees.proportional_millionths as u64); if let Some(new_fee) = proportional_fee_millions.and_then(|part| { (channel_fees.base_msat as u64).checked_add(part / 1_000_000) }) { Some(new_fee) } else { // This function may be (indirectly) called without any verification, // with channel_fees provided by a caller. We should handle it gracefully. None } } /// Gets a route from us (payer) to the given target node (payee). /// /// If the payee provided features in their invoice, they should be provided via payee_features. /// Without this, MPP will only be used if the payee's features are available in the network graph. /// /// Extra routing hops between known nodes and the target will be used if they are included in /// last_hops. /// /// If some channels aren't announced, it may be useful to fill in a first_hops with the /// results from a local ChannelManager::list_usable_channels() call. If it is filled in, our /// view of our local channels (from net_graph_msg_handler) will be ignored, and only those /// in first_hops will be used. /// /// Panics if first_hops contains channels without short_channel_ids /// (ChannelManager::list_usable_channels will never include such channels). /// /// The fees on channels from us to next-hops are ignored (as they are assumed to all be /// equal), however the enabled/disabled bit on such channels as well as the /// htlc_minimum_msat/htlc_maximum_msat *are* checked as they may change based on the receiving node. pub fn get_route(our_node_id: &PublicKey, network: &NetworkGraph, payee: &PublicKey, payee_features: Option, first_hops: Option<&[&ChannelDetails]>, last_hops: &[&RouteHintHop], final_value_msat: u64, final_cltv: u32, logger: L) -> Result where L::Target: Logger { // TODO: Obviously *only* using total fee cost sucks. We should consider weighting by // uptime/success in using a node in the past. if *payee == *our_node_id { return Err(LightningError{err: "Cannot generate a route to ourselves".to_owned(), action: ErrorAction::IgnoreError}); } if final_value_msat > MAX_VALUE_MSAT { return Err(LightningError{err: "Cannot generate a route of more value than all existing satoshis".to_owned(), action: ErrorAction::IgnoreError}); } if final_value_msat == 0 { return Err(LightningError{err: "Cannot send a payment of 0 msat".to_owned(), action: ErrorAction::IgnoreError}); } for last_hop in last_hops { if last_hop.src_node_id == *payee { return Err(LightningError{err: "Last hop cannot have a payee as a source.".to_owned(), action: ErrorAction::IgnoreError}); } } // The general routing idea is the following: // 1. Fill first/last hops communicated by the caller. // 2. Attempt to construct a path from payer to payee for transferring // any ~sufficient (described later) value. // If succeed, remember which channels were used and how much liquidity they have available, // so that future paths don't rely on the same liquidity. // 3. Prooceed to the next step if: // - we hit the recommended target value; // - OR if we could not construct a new path. Any next attempt will fail too. // Otherwise, repeat step 2. // 4. See if we managed to collect paths which aggregately are able to transfer target value // (not recommended value). If yes, proceed. If not, fail routing. // 5. Randomly combine paths into routes having enough to fulfill the payment. (TODO: knapsack) // 6. Of all the found paths, select only those with the lowest total fee. // 7. The last path in every selected route is likely to be more than we need. // Reduce its value-to-transfer and recompute fees. // 8. Choose the best route by the lowest total fee. // As for the actual search algorithm, // we do a payee-to-payer pseudo-Dijkstra's sorting by each node's distance from the payee // plus the minimum per-HTLC fee to get from it to another node (aka "shitty pseudo-A*"). // // We are not a faithful Dijkstra's implementation because we can change values which impact // earlier nodes while processing later nodes. Specifically, if we reach a channel with a lower // liquidity limit (via htlc_maximum_msat, on-chain capacity or assumed liquidity limits) then // the value we are currently attempting to send over a path, we simply reduce the value being // sent along the path for any hops after that channel. This may imply that later fees (which // we've already tabulated) are lower because a smaller value is passing through the channels // (and the proportional fee is thus lower). There isn't a trivial way to recalculate the // channels which were selected earlier (and which may still be used for other paths without a // lower liquidity limit), so we simply accept that some liquidity-limited paths may be // de-preferenced. // // One potentially problematic case for this algorithm would be if there are many // liquidity-limited paths which are liquidity-limited near the destination (ie early in our // graph walking), we may never find a path which is not liquidity-limited and has lower // proportional fee (and only lower absolute fee when considering the ultimate value sent). // Because we only consider paths with at least 5% of the total value being sent, the damage // from such a case should be limited, however this could be further reduced in the future by // calculating fees on the amount we wish to route over a path, ie ignoring the liquidity // limits for the purposes of fee calculation. // // Alternatively, we could store more detailed path information in the heap (targets, below) // and index the best-path map (dist, below) by node *and* HTLC limits, however that would blow // up the runtime significantly both algorithmically (as we'd traverse nodes multiple times) // and practically (as we would need to store dynamically-allocated path information in heap // objects, increasing malloc traffic and indirect memory access significantly). Further, the // results of such an algorithm would likely be biased towards lower-value paths. // // Further, we could return to a faithful Dijkstra's algorithm by rejecting paths with limits // outside of our current search value, running a path search more times to gather candidate // paths at different values. While this may be acceptable, further path searches may increase // runtime for little gain. Specifically, the current algorithm rather efficiently explores the // graph for candidate paths, calculating the maximum value which can realistically be sent at // the same time, remaining generic across different payment values. // // TODO: There are a few tweaks we could do, including possibly pre-calculating more stuff // to use as the A* heuristic beyond just the cost to get one node further than the current // one. let dummy_directional_info = DummyDirectionalChannelInfo { // used for first_hops routes cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: None, fees: RoutingFees { base_msat: 0, proportional_millionths: 0, } }; // Allow MPP only if we have a features set from somewhere that indicates the payee supports // it. If the payee supports it they're supposed to include it in the invoice, so that should // work reliably. let allow_mpp = if let Some(features) = &payee_features { features.supports_basic_mpp() } else if let Some(node) = network.get_nodes().get(&payee) { if let Some(node_info) = node.announcement_info.as_ref() { node_info.features.supports_basic_mpp() } else { false } } else { false }; // Step (1). // Prepare the data we'll use for payee-to-payer search by // inserting first hops suggested by the caller as targets. // Our search will then attempt to reach them while traversing from the payee node. let mut first_hop_targets: HashMap<_, (_, ChannelFeatures, _, NodeFeatures)> = HashMap::with_capacity(if first_hops.is_some() { first_hops.as_ref().unwrap().len() } else { 0 }); if let Some(hops) = first_hops { for chan in hops { let short_channel_id = chan.short_channel_id.expect("first_hops should be filled in with usable channels, not pending ones"); if chan.remote_network_id == *our_node_id { return Err(LightningError{err: "First hop cannot have our_node_id as a destination.".to_owned(), action: ErrorAction::IgnoreError}); } first_hop_targets.insert(chan.remote_network_id, (short_channel_id, chan.counterparty_features.to_context(), chan.outbound_capacity_msat, chan.counterparty_features.to_context())); } if first_hop_targets.is_empty() { return Err(LightningError{err: "Cannot route when there are no outbound routes away from us".to_owned(), action: ErrorAction::IgnoreError}); } } let empty_channel_features = ChannelFeatures::empty(); // The main heap containing all candidate next-hops sorted by their score (max(A* fee, // htlc_minimum)). Ideally this would be a heap which allowed cheap score reduction instead of // adding duplicate entries when we find a better path to a given node. let mut targets = BinaryHeap::new(); // Map from node_id to information about the best current path to that node, including feerate // information. let mut dist = HashMap::with_capacity(network.get_nodes().len()); // During routing, if we ignore a path due to an htlc_minimum_msat limit, we set this, // indicating that we may wish to try again with a higher value, potentially paying to meet an // htlc_minimum with extra fees while still finding a cheaper path. let mut hit_minimum_limit; // When arranging a route, we select multiple paths so that we can make a multi-path payment. // We start with a path_value of the exact amount we want, and if that generates a route we may // return it immediately. Otherwise, we don't stop searching for paths until we have 3x the // amount we want in total across paths, selecting the best subset at the end. const ROUTE_CAPACITY_PROVISION_FACTOR: u64 = 3; let recommended_value_msat = final_value_msat * ROUTE_CAPACITY_PROVISION_FACTOR as u64; let mut path_value_msat = final_value_msat; // We don't want multiple paths (as per MPP) share liquidity of the same channels. // This map allows paths to be aware of the channel use by other paths in the same call. // This would help to make a better path finding decisions and not "overbook" channels. // It is unaware of the directions (except for `outbound_capacity_msat` in `first_hops`). let mut bookkeeped_channels_liquidity_available_msat = HashMap::with_capacity(network.get_nodes().len()); // Keeping track of how much value we already collected across other paths. Helps to decide: // - how much a new path should be transferring (upper bound); // - whether a channel should be disregarded because // it's available liquidity is too small comparing to how much more we need to collect; // - when we want to stop looking for new paths. let mut already_collected_value_msat = 0; macro_rules! add_entry { // Adds entry which goes from $src_node_id to $dest_node_id // over the channel with id $chan_id with fees described in // $directional_info. // $next_hops_fee_msat represents the fees paid for using all the channel *after* this one, // since that value has to be transferred over this channel. ( $chan_id: expr, $src_node_id: expr, $dest_node_id: expr, $directional_info: expr, $capacity_sats: expr, $chan_features: expr, $next_hops_fee_msat: expr, $next_hops_value_contribution: expr, $next_hops_path_htlc_minimum_msat: expr ) => { // Channels to self should not be used. This is more of belt-and-suspenders, because in // practice these cases should be caught earlier: // - for regular channels at channel announcement (TODO) // - for first and last hops early in get_route if $src_node_id != $dest_node_id.clone() { let available_liquidity_msat = bookkeeped_channels_liquidity_available_msat.entry($chan_id.clone()).or_insert_with(|| { let mut initial_liquidity_available_msat = None; if let Some(capacity_sats) = $capacity_sats { initial_liquidity_available_msat = Some(capacity_sats * 1000); } if let Some(htlc_maximum_msat) = $directional_info.htlc_maximum_msat { if let Some(available_msat) = initial_liquidity_available_msat { initial_liquidity_available_msat = Some(cmp::min(available_msat, htlc_maximum_msat)); } else { initial_liquidity_available_msat = Some(htlc_maximum_msat); } } match initial_liquidity_available_msat { Some(available_msat) => available_msat, // We assume channels with unknown balance have // a capacity of 0.0025 BTC (or 250_000 sats). None => 250_000 * 1000 } }); // It is tricky to substract $next_hops_fee_msat from available liquidity here. // It may be misleading because we might later choose to reduce the value transferred // over these channels, and the channel which was insufficient might become sufficient. // Worst case: we drop a good channel here because it can't cover the high following // fees caused by one expensive channel, but then this channel could have been used // if the amount being transferred over this path is lower. // We do this for now, but this is a subject for removal. if let Some(available_value_contribution_msat) = available_liquidity_msat.checked_sub($next_hops_fee_msat) { // Routing Fragmentation Mitigation heuristic: // // Routing fragmentation across many payment paths increases the overall routing // fees as you have irreducible routing fees per-link used (`fee_base_msat`). // Taking too many smaller paths also increases the chance of payment failure. // Thus to avoid this effect, we require from our collected links to provide // at least a minimal contribution to the recommended value yet-to-be-fulfilled. // // This requirement is currently 5% of the remaining-to-be-collected value. // This means as we successfully advance in our collection, // the absolute liquidity contribution is lowered, // thus increasing the number of potential channels to be selected. // Derive the minimal liquidity contribution with a ratio of 20 (5%, rounded up) // or 100% if we're not allowed to do multipath payments. let minimal_value_contribution_msat: u64 = if allow_mpp { (recommended_value_msat - already_collected_value_msat + 19) / 20 } else { final_value_msat }; // Verify the liquidity offered by this channel complies to the minimal contribution. let contributes_sufficient_value = available_value_contribution_msat >= minimal_value_contribution_msat; let value_contribution_msat = cmp::min(available_value_contribution_msat, $next_hops_value_contribution); // Includes paying fees for the use of the following channels. let amount_to_transfer_over_msat: u64 = match value_contribution_msat.checked_add($next_hops_fee_msat) { Some(result) => result, // Can't overflow due to how the values were computed right above. None => unreachable!(), }; #[allow(unused_comparisons)] // $next_hops_path_htlc_minimum_msat is 0 in some calls so rustc complains let over_path_minimum_msat = amount_to_transfer_over_msat >= $directional_info.htlc_minimum_msat && amount_to_transfer_over_msat >= $next_hops_path_htlc_minimum_msat; // If HTLC minimum is larger than the amount we're going to transfer, we shouldn't // bother considering this channel. // Since we're choosing amount_to_transfer_over_msat as maximum possible, it can // be only reduced later (not increased), so this channel should just be skipped // as not sufficient. if !over_path_minimum_msat { hit_minimum_limit = true; } else if contributes_sufficient_value { // Note that low contribution here (limited by available_liquidity_msat) // might violate htlc_minimum_msat on the hops which are next along the // payment path (upstream to the payee). To avoid that, we recompute path // path fees knowing the final path contribution after constructing it. let path_htlc_minimum_msat = match compute_fees($next_hops_path_htlc_minimum_msat, $directional_info.fees) .map(|fee_msat| fee_msat.checked_add($next_hops_path_htlc_minimum_msat)) { Some(Some(value_msat)) => cmp::max(value_msat, $directional_info.htlc_minimum_msat), _ => u64::max_value() }; let hm_entry = dist.entry(&$src_node_id); let old_entry = hm_entry.or_insert_with(|| { // If there was previously no known way to access // the source node (recall it goes payee-to-payer) of $chan_id, first add // a semi-dummy record just to compute the fees to reach the source node. // This will affect our decision on selecting $chan_id // as a way to reach the $dest_node_id. let mut fee_base_msat = u32::max_value(); let mut fee_proportional_millionths = u32::max_value(); if let Some(Some(fees)) = network.get_nodes().get(&$src_node_id).map(|node| node.lowest_inbound_channel_fees) { fee_base_msat = fees.base_msat; fee_proportional_millionths = fees.proportional_millionths; } PathBuildingHop { pubkey: $dest_node_id.clone(), short_channel_id: 0, channel_features: $chan_features, fee_msat: 0, cltv_expiry_delta: 0, src_lowest_inbound_fees: RoutingFees { base_msat: fee_base_msat, proportional_millionths: fee_proportional_millionths, }, channel_fees: $directional_info.fees, next_hops_fee_msat: u64::max_value(), hop_use_fee_msat: u64::max_value(), total_fee_msat: u64::max_value(), htlc_minimum_msat: $directional_info.htlc_minimum_msat, path_htlc_minimum_msat, was_processed: false, #[cfg(any(test, feature = "fuzztarget"))] value_contribution_msat, } }); #[allow(unused_mut)] // We only use the mut in cfg(test) let mut should_process = !old_entry.was_processed; #[cfg(any(test, feature = "fuzztarget"))] { // In test/fuzzing builds, we do extra checks to make sure the skipping // of already-seen nodes only happens in cases we expect (see below). if !should_process { should_process = true; } } if should_process { let mut hop_use_fee_msat = 0; let mut total_fee_msat = $next_hops_fee_msat; // Ignore hop_use_fee_msat for channel-from-us as we assume all channels-from-us // will have the same effective-fee if $src_node_id != *our_node_id { match compute_fees(amount_to_transfer_over_msat, $directional_info.fees) { // max_value means we'll always fail // the old_entry.total_fee_msat > total_fee_msat check None => total_fee_msat = u64::max_value(), Some(fee_msat) => { hop_use_fee_msat = fee_msat; total_fee_msat += hop_use_fee_msat; // When calculating the lowest inbound fees to a node, we // calculate fees here not based on the actual value we think // will flow over this channel, but on the minimum value that // we'll accept flowing over it. The minimum accepted value // is a constant through each path collection run, ensuring // consistent basis. Otherwise we may later find a // different path to the source node that is more expensive, // but which we consider to be cheaper because we are capacity // constrained and the relative fee becomes lower. match compute_fees(minimal_value_contribution_msat, old_entry.src_lowest_inbound_fees) .map(|a| a.checked_add(total_fee_msat)) { Some(Some(v)) => { total_fee_msat = v; }, _ => { total_fee_msat = u64::max_value(); } }; } } } let new_graph_node = RouteGraphNode { pubkey: $src_node_id, lowest_fee_to_peer_through_node: total_fee_msat, lowest_fee_to_node: $next_hops_fee_msat as u64 + hop_use_fee_msat, value_contribution_msat: value_contribution_msat, path_htlc_minimum_msat, }; // Update the way of reaching $src_node_id with the given $chan_id (from $dest_node_id), // if this way is cheaper than the already known // (considering the cost to "reach" this channel from the route destination, // the cost of using this channel, // and the cost of routing to the source node of this channel). // Also, consider that htlc_minimum_msat_difference, because we might end up // paying it. Consider the following exploit: // we use 2 paths to transfer 1.5 BTC. One of them is 0-fee normal 1 BTC path, // and for the other one we picked a 1sat-fee path with htlc_minimum_msat of // 1 BTC. Now, since the latter is more expensive, we gonna try to cut it // by 0.5 BTC, but then match htlc_minimum_msat by paying a fee of 0.5 BTC // to this channel. // Ideally the scoring could be smarter (e.g. 0.5*htlc_minimum_msat here), // but it may require additional tracking - we don't want to double-count // the fees included in $next_hops_path_htlc_minimum_msat, but also // can't use something that may decrease on future hops. let old_cost = cmp::max(old_entry.total_fee_msat, old_entry.path_htlc_minimum_msat); let new_cost = cmp::max(total_fee_msat, path_htlc_minimum_msat); if !old_entry.was_processed && new_cost < old_cost { targets.push(new_graph_node); old_entry.next_hops_fee_msat = $next_hops_fee_msat; old_entry.hop_use_fee_msat = hop_use_fee_msat; old_entry.total_fee_msat = total_fee_msat; old_entry.pubkey = $dest_node_id.clone(); old_entry.short_channel_id = $chan_id.clone(); old_entry.channel_features = $chan_features; old_entry.fee_msat = 0; // This value will be later filled with hop_use_fee_msat of the following channel old_entry.cltv_expiry_delta = $directional_info.cltv_expiry_delta as u32; old_entry.channel_fees = $directional_info.fees; old_entry.htlc_minimum_msat = $directional_info.htlc_minimum_msat; old_entry.path_htlc_minimum_msat = path_htlc_minimum_msat; #[cfg(any(test, feature = "fuzztarget"))] { old_entry.value_contribution_msat = value_contribution_msat; } } else if old_entry.was_processed && new_cost < old_cost { #[cfg(any(test, feature = "fuzztarget"))] { // If we're skipping processing a node which was previously // processed even though we found another path to it with a // cheaper fee, check that it was because the second path we // found (which we are processing now) has a lower value // contribution due to an HTLC minimum limit. // // e.g. take a graph with two paths from node 1 to node 2, one // through channel A, and one through channel B. Channel A and // B are both in the to-process heap, with their scores set by // a higher htlc_minimum than fee. // Channel A is processed first, and the channels onwards from // node 1 are added to the to-process heap. Thereafter, we pop // Channel B off of the heap, note that it has a much more // restrictive htlc_maximum_msat, and recalculate the fees for // all of node 1's channels using the new, reduced, amount. // // This would be bogus - we'd be selecting a higher-fee path // with a lower htlc_maximum_msat instead of the one we'd // already decided to use. debug_assert!(path_htlc_minimum_msat < old_entry.path_htlc_minimum_msat); debug_assert!(value_contribution_msat < old_entry.value_contribution_msat); } } } } } } }; } let empty_node_features = NodeFeatures::empty(); // Find ways (channels with destination) to reach a given node and store them // in the corresponding data structures (routing graph etc). // $fee_to_target_msat represents how much it costs to reach to this node from the payee, // meaning how much will be paid in fees after this node (to the best of our knowledge). // This data can later be helpful to optimize routing (pay lower fees). macro_rules! add_entries_to_cheapest_to_target_node { ( $node: expr, $node_id: expr, $fee_to_target_msat: expr, $next_hops_value_contribution: expr, $next_hops_path_htlc_minimum_msat: expr ) => { let skip_node = if let Some(elem) = dist.get_mut($node_id) { let was_processed = elem.was_processed; elem.was_processed = true; was_processed } else { // Entries are added to dist in add_entry!() when there is a channel from a node. // Because there are no channels from payee, it will not have a dist entry at this point. // If we're processing any other node, it is always be the result of a channel from it. assert_eq!($node_id, payee); false }; if !skip_node { if first_hops.is_some() { if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&$node_id) { add_entry!(first_hop, *our_node_id, $node_id, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat); } } let features = if let Some(node_info) = $node.announcement_info.as_ref() { &node_info.features } else { &empty_node_features }; if !features.requires_unknown_bits() { for chan_id in $node.channels.iter() { let chan = network.get_channels().get(chan_id).unwrap(); if !chan.features.requires_unknown_bits() { if chan.node_one == *$node_id { // ie $node is one, ie next hop in A* is two, via the two_to_one channel if first_hops.is_none() || chan.node_two != *our_node_id { if let Some(two_to_one) = chan.two_to_one.as_ref() { if two_to_one.enabled { add_entry!(chan_id, chan.node_two, chan.node_one, two_to_one, chan.capacity_sats, &chan.features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat); } } } } else { if first_hops.is_none() || chan.node_one != *our_node_id { if let Some(one_to_two) = chan.one_to_two.as_ref() { if one_to_two.enabled { add_entry!(chan_id, chan.node_one, chan.node_two, one_to_two, chan.capacity_sats, &chan.features, $fee_to_target_msat, $next_hops_value_contribution, $next_hops_path_htlc_minimum_msat); } } } } } } } } }; } let mut payment_paths = Vec::::new(); // TODO: diversify by nodes (so that all paths aren't doomed if one node is offline). 'paths_collection: loop { // For every new path, start from scratch, except // bookkeeped_channels_liquidity_available_msat, which will improve // the further iterations of path finding. Also don't erase first_hop_targets. targets.clear(); dist.clear(); hit_minimum_limit = false; // If first hop is a private channel and the only way to reach the payee, this is the only // place where it could be added. if first_hops.is_some() { if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&payee) { add_entry!(first_hop, *our_node_id, payee, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, 0, path_value_msat, 0); } } // Add the payee as a target, so that the payee-to-payer // search algorithm knows what to start with. match network.get_nodes().get(payee) { // The payee is not in our network graph, so nothing to add here. // There is still a chance of reaching them via last_hops though, // so don't yet fail the payment here. // If not, targets.pop() will not even let us enter the loop in step 2. None => {}, Some(node) => { add_entries_to_cheapest_to_target_node!(node, payee, 0, path_value_msat, 0); }, } // Step (1). // If a caller provided us with last hops, add them to routing targets. Since this happens // earlier than general path finding, they will be somewhat prioritized, although currently // it matters only if the fees are exactly the same. for hop in last_hops.iter() { let have_hop_src_in_graph = if let Some(&(ref first_hop, ref features, ref outbound_capacity_msat, _)) = first_hop_targets.get(&hop.src_node_id) { // If this hop connects to a node with which we have a direct channel, ignore // the network graph and add both the hop and our direct channel to // the candidate set. // // Currently there are no channel-context features defined, so we are a // bit lazy here. In the future, we should pull them out via our // ChannelManager, but there's no reason to waste the space until we // need them. add_entry!(first_hop, *our_node_id , hop.src_node_id, dummy_directional_info, Some(outbound_capacity_msat / 1000), features, 0, path_value_msat, 0); true } else { // In any other case, only add the hop if the source is in the regular network // graph: network.get_nodes().get(&hop.src_node_id).is_some() }; if have_hop_src_in_graph { // BOLT 11 doesn't allow inclusion of features for the last hop hints, which // really sucks, cause we're gonna need that eventually. let last_hop_htlc_minimum_msat: u64 = match hop.htlc_minimum_msat { Some(htlc_minimum_msat) => htlc_minimum_msat, None => 0 }; let directional_info = DummyDirectionalChannelInfo { cltv_expiry_delta: hop.cltv_expiry_delta as u32, htlc_minimum_msat: last_hop_htlc_minimum_msat, htlc_maximum_msat: hop.htlc_maximum_msat, fees: hop.fees, }; add_entry!(hop.short_channel_id, hop.src_node_id, payee, directional_info, None::, &empty_channel_features, 0, path_value_msat, 0); } } // At this point, targets are filled with the data from first and // last hops communicated by the caller, and the payment receiver. let mut found_new_path = false; // Step (2). // If this loop terminates due the exhaustion of targets, two situations are possible: // - not enough outgoing liquidity: // 0 < already_collected_value_msat < final_value_msat // - enough outgoing liquidity: // final_value_msat <= already_collected_value_msat < recommended_value_msat // Both these cases (and other cases except reaching recommended_value_msat) mean that // paths_collection will be stopped because found_new_path==false. // This is not necessarily a routing failure. 'path_construction: while let Some(RouteGraphNode { pubkey, lowest_fee_to_node, value_contribution_msat, path_htlc_minimum_msat, .. }) = targets.pop() { // Since we're going payee-to-payer, hitting our node as a target means we should stop // traversing the graph and arrange the path out of what we found. if pubkey == *our_node_id { let mut new_entry = dist.remove(&our_node_id).unwrap(); let mut ordered_hops = vec!((new_entry.clone(), NodeFeatures::empty())); 'path_walk: loop { if let Some(&(_, _, _, ref features)) = first_hop_targets.get(&ordered_hops.last().unwrap().0.pubkey) { ordered_hops.last_mut().unwrap().1 = features.clone(); } else if let Some(node) = network.get_nodes().get(&ordered_hops.last().unwrap().0.pubkey) { if let Some(node_info) = node.announcement_info.as_ref() { ordered_hops.last_mut().unwrap().1 = node_info.features.clone(); } else { ordered_hops.last_mut().unwrap().1 = NodeFeatures::empty(); } } else { // We should be able to fill in features for everything except the last // hop, if the last hop was provided via a BOLT 11 invoice (though we // should be able to extend it further as BOLT 11 does have feature // flags for the last hop node itself). assert!(ordered_hops.last().unwrap().0.pubkey == *payee); } // Means we succesfully traversed from the payer to the payee, now // save this path for the payment route. Also, update the liquidity // remaining on the used hops, so that we take them into account // while looking for more paths. if ordered_hops.last().unwrap().0.pubkey == *payee { break 'path_walk; } new_entry = match dist.remove(&ordered_hops.last().unwrap().0.pubkey) { Some(payment_hop) => payment_hop, // We can't arrive at None because, if we ever add an entry to targets, // we also fill in the entry in dist (see add_entry!). None => unreachable!(), }; // We "propagate" the fees one hop backward (topologically) here, // so that fees paid for a HTLC forwarding on the current channel are // associated with the previous channel (where they will be subtracted). ordered_hops.last_mut().unwrap().0.fee_msat = new_entry.hop_use_fee_msat; ordered_hops.last_mut().unwrap().0.cltv_expiry_delta = new_entry.cltv_expiry_delta; ordered_hops.push((new_entry.clone(), NodeFeatures::empty())); } ordered_hops.last_mut().unwrap().0.fee_msat = value_contribution_msat; ordered_hops.last_mut().unwrap().0.hop_use_fee_msat = 0; ordered_hops.last_mut().unwrap().0.cltv_expiry_delta = final_cltv; let mut payment_path = PaymentPath {hops: ordered_hops}; // We could have possibly constructed a slightly inconsistent path: since we reduce // value being transferred along the way, we could have violated htlc_minimum_msat // on some channels we already passed (assuming dest->source direction). Here, we // recompute the fees again, so that if that's the case, we match the currently // underpaid htlc_minimum_msat with fees. payment_path.update_value_and_recompute_fees(cmp::min(value_contribution_msat, final_value_msat)); // Since a path allows to transfer as much value as // the smallest channel it has ("bottleneck"), we should recompute // the fees so sender HTLC don't overpay fees when traversing // larger channels than the bottleneck. This may happen because // when we were selecting those channels we were not aware how much value // this path will transfer, and the relative fee for them // might have been computed considering a larger value. // Remember that we used these channels so that we don't rely // on the same liquidity in future paths. let mut prevented_redundant_path_selection = false; for (payment_hop, _) in payment_path.hops.iter() { let channel_liquidity_available_msat = bookkeeped_channels_liquidity_available_msat.get_mut(&payment_hop.short_channel_id).unwrap(); let mut spent_on_hop_msat = value_contribution_msat; let next_hops_fee_msat = payment_hop.next_hops_fee_msat; spent_on_hop_msat += next_hops_fee_msat; if spent_on_hop_msat == *channel_liquidity_available_msat { // If this path used all of this channel's available liquidity, we know // this path will not be selected again in the next loop iteration. prevented_redundant_path_selection = true; } *channel_liquidity_available_msat -= spent_on_hop_msat; } if !prevented_redundant_path_selection { // If we weren't capped by hitting a liquidity limit on a channel in the path, // we'll probably end up picking the same path again on the next iteration. // Decrease the available liquidity of a hop in the middle of the path. let victim_liquidity = bookkeeped_channels_liquidity_available_msat.get_mut( &payment_path.hops[(payment_path.hops.len() - 1) / 2].0.short_channel_id).unwrap(); *victim_liquidity = 0; } // Track the total amount all our collected paths allow to send so that we: // - know when to stop looking for more paths // - know which of the hops are useless considering how much more sats we need // (contributes_sufficient_value) already_collected_value_msat += value_contribution_msat; payment_paths.push(payment_path); found_new_path = true; break 'path_construction; } // If we found a path back to the payee, we shouldn't try to process it again. This is // the equivalent of the `elem.was_processed` check in // add_entries_to_cheapest_to_target_node!() (see comment there for more info). if pubkey == *payee { continue 'path_construction; } // Otherwise, since the current target node is not us, // keep "unrolling" the payment graph from payee to payer by // finding a way to reach the current target from the payer side. match network.get_nodes().get(&pubkey) { None => {}, Some(node) => { add_entries_to_cheapest_to_target_node!(node, &pubkey, lowest_fee_to_node, value_contribution_msat, path_htlc_minimum_msat); }, } } if !allow_mpp { // If we don't support MPP, no use trying to gather more value ever. break 'paths_collection; } // Step (3). // Stop either when the recommended value is reached or if no new path was found in this // iteration. // In the latter case, making another path finding attempt won't help, // because we deterministically terminated the search due to low liquidity. if already_collected_value_msat >= recommended_value_msat || !found_new_path { break 'paths_collection; } else if found_new_path && already_collected_value_msat == final_value_msat && payment_paths.len() == 1 { // Further, if this was our first walk of the graph, and we weren't limited by an // htlc_minimum_msat, return immediately because this path should suffice. If we were // limited by an htlc_minimum_msat value, find another path with a higher value, // potentially allowing us to pay fees to meet the htlc_minimum on the new path while // still keeping a lower total fee than this path. if !hit_minimum_limit { break 'paths_collection; } path_value_msat = recommended_value_msat; } } // Step (4). if payment_paths.len() == 0 { return Err(LightningError{err: "Failed to find a path to the given destination".to_owned(), action: ErrorAction::IgnoreError}); } if already_collected_value_msat < final_value_msat { return Err(LightningError{err: "Failed to find a sufficient route to the given destination".to_owned(), action: ErrorAction::IgnoreError}); } // Sort by total fees and take the best paths. payment_paths.sort_by_key(|path| path.get_total_fee_paid_msat()); if payment_paths.len() > 50 { payment_paths.truncate(50); } // Draw multiple sufficient routes by randomly combining the selected paths. let mut drawn_routes = Vec::new(); for i in 0..payment_paths.len() { let mut cur_route = Vec::::new(); let mut aggregate_route_value_msat = 0; // Step (5). // TODO: real random shuffle // Currently just starts with i_th and goes up to i-1_th in a looped way. let cur_payment_paths = [&payment_paths[i..], &payment_paths[..i]].concat(); // Step (6). for payment_path in cur_payment_paths { cur_route.push(payment_path.clone()); aggregate_route_value_msat += payment_path.get_value_msat(); if aggregate_route_value_msat > final_value_msat { // Last path likely overpaid. Substract it from the most expensive // (in terms of proportional fee) path in this route and recompute fees. // This might be not the most economically efficient way, but fewer paths // also makes routing more reliable. let mut overpaid_value_msat = aggregate_route_value_msat - final_value_msat; // First, drop some expensive low-value paths entirely if possible. // Sort by value so that we drop many really-low values first, since // fewer paths is better: the payment is less likely to fail. // TODO: this could also be optimized by also sorting by feerate_per_sat_routed, // so that the sender pays less fees overall. And also htlc_minimum_msat. cur_route.sort_by_key(|path| path.get_value_msat()); // We should make sure that at least 1 path left. let mut paths_left = cur_route.len(); cur_route.retain(|path| { if paths_left == 1 { return true } let mut keep = true; let path_value_msat = path.get_value_msat(); if path_value_msat <= overpaid_value_msat { keep = false; overpaid_value_msat -= path_value_msat; paths_left -= 1; } keep }); if overpaid_value_msat == 0 { break; } assert!(cur_route.len() > 0); // Step (7). // Now, substract the overpaid value from the most-expensive path. // TODO: this could also be optimized by also sorting by feerate_per_sat_routed, // so that the sender pays less fees overall. And also htlc_minimum_msat. cur_route.sort_by_key(|path| { path.hops.iter().map(|hop| hop.0.channel_fees.proportional_millionths as u64).sum::() }); let expensive_payment_path = cur_route.first_mut().unwrap(); // We already dropped all the small channels above, meaning all the // remaining channels are larger than remaining overpaid_value_msat. // Thus, this can't be negative. let expensive_path_new_value_msat = expensive_payment_path.get_value_msat() - overpaid_value_msat; expensive_payment_path.update_value_and_recompute_fees(expensive_path_new_value_msat); break; } } drawn_routes.push(cur_route); } // Step (8). // Select the best route by lowest total fee. drawn_routes.sort_by_key(|paths| paths.iter().map(|path| path.get_total_fee_paid_msat()).sum::()); let mut selected_paths = Vec::>::new(); for payment_path in drawn_routes.first().unwrap() { selected_paths.push(payment_path.hops.iter().map(|(payment_hop, node_features)| { RouteHop { pubkey: payment_hop.pubkey, node_features: node_features.clone(), short_channel_id: payment_hop.short_channel_id, channel_features: payment_hop.channel_features.clone(), fee_msat: payment_hop.fee_msat, cltv_expiry_delta: payment_hop.cltv_expiry_delta, } }).collect()); } if let Some(features) = &payee_features { for path in selected_paths.iter_mut() { path.last_mut().unwrap().node_features = features.to_context(); } } let route = Route { paths: selected_paths }; log_trace!(logger, "Got route: {}", log_route!(route)); Ok(route) } #[cfg(test)] mod tests { use routing::router::{get_route, RouteHintHop, RoutingFees}; use routing::network_graph::{NetworkGraph, NetGraphMsgHandler}; use chain::transaction::OutPoint; use ln::features::{ChannelFeatures, InitFeatures, InvoiceFeatures, NodeFeatures}; use ln::msgs::{ErrorAction, LightningError, OptionalField, UnsignedChannelAnnouncement, ChannelAnnouncement, RoutingMessageHandler, NodeAnnouncement, UnsignedNodeAnnouncement, ChannelUpdate, UnsignedChannelUpdate}; use ln::channelmanager; use util::test_utils; use util::ser::Writeable; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::Hash; use bitcoin::network::constants::Network; use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::transaction::TxOut; use hex; use bitcoin::secp256k1::key::{PublicKey,SecretKey}; use bitcoin::secp256k1::{Secp256k1, All}; use std::sync::Arc; // Using the same keys for LN and BTC ids fn add_channel(net_graph_msg_handler: &NetGraphMsgHandler, Arc>, secp_ctx: &Secp256k1, node_1_privkey: &SecretKey, node_2_privkey: &SecretKey, features: ChannelFeatures, short_channel_id: u64) { let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey); let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey); let unsigned_announcement = UnsignedChannelAnnouncement { features, chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id, node_id_1, node_id_2, bitcoin_key_1: node_id_1, bitcoin_key_2: node_id_2, excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = ChannelAnnouncement { node_signature_1: secp_ctx.sign(&msghash, node_1_privkey), node_signature_2: secp_ctx.sign(&msghash, node_2_privkey), bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_privkey), bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_privkey), contents: unsigned_announcement.clone(), }; match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) { Ok(res) => assert!(res), _ => panic!() }; } fn update_channel(net_graph_msg_handler: &NetGraphMsgHandler, Arc>, secp_ctx: &Secp256k1, node_privkey: &SecretKey, update: UnsignedChannelUpdate) { let msghash = hash_to_message!(&Sha256dHash::hash(&update.encode()[..])[..]); let valid_channel_update = ChannelUpdate { signature: secp_ctx.sign(&msghash, node_privkey), contents: update.clone() }; match net_graph_msg_handler.handle_channel_update(&valid_channel_update) { Ok(res) => assert!(res), Err(_) => panic!() }; } fn add_or_update_node(net_graph_msg_handler: &NetGraphMsgHandler, Arc>, secp_ctx: &Secp256k1, node_privkey: &SecretKey, features: NodeFeatures, timestamp: u32) { let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey); let unsigned_announcement = UnsignedNodeAnnouncement { features, timestamp, node_id, rgb: [0; 3], alias: [0; 32], addresses: Vec::new(), excess_address_data: Vec::new(), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]); let valid_announcement = NodeAnnouncement { signature: secp_ctx.sign(&msghash, node_privkey), contents: unsigned_announcement.clone() }; match net_graph_msg_handler.handle_node_announcement(&valid_announcement) { Ok(_) => (), Err(_) => panic!() }; } fn get_nodes(secp_ctx: &Secp256k1) -> (SecretKey, PublicKey, Vec, Vec) { let privkeys: Vec = (2..10).map(|i| { SecretKey::from_slice(&hex::decode(format!("{:02}", i).repeat(32)).unwrap()[..]).unwrap() }).collect(); let pubkeys = privkeys.iter().map(|secret| PublicKey::from_secret_key(&secp_ctx, secret)).collect(); let our_privkey = SecretKey::from_slice(&hex::decode("01".repeat(32)).unwrap()[..]).unwrap(); let our_id = PublicKey::from_secret_key(&secp_ctx, &our_privkey); (our_privkey, our_id, privkeys, pubkeys) } fn id_to_feature_flags(id: u8) -> Vec { // Set the feature flags to the id'th odd (ie non-required) feature bit so that we can // test for it later. let idx = (id - 1) * 2 + 1; if idx > 8*3 { vec![1 << (idx - 8*3), 0, 0, 0] } else if idx > 8*2 { vec![1 << (idx - 8*2), 0, 0] } else if idx > 8*1 { vec![1 << (idx - 8*1), 0] } else { vec![1 << idx] } } fn build_graph() -> (Secp256k1, NetGraphMsgHandler, std::sync::Arc>, std::sync::Arc, std::sync::Arc) { let secp_ctx = Secp256k1::new(); let logger = Arc::new(test_utils::TestLogger::new()); let chain_monitor = Arc::new(test_utils::TestChainSource::new(Network::Testnet)); let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), None, Arc::clone(&logger)); // Build network from our_id to node7: // // -1(1)2- node0 -1(3)2- // / \ // our_id -1(12)2- node7 -1(13)2--- node2 // \ / // -1(2)2- node1 -1(4)2- // // // chan1 1-to-2: disabled // chan1 2-to-1: enabled, 0 fee // // chan2 1-to-2: enabled, ignored fee // chan2 2-to-1: enabled, 0 fee // // chan3 1-to-2: enabled, 0 fee // chan3 2-to-1: enabled, 100 msat fee // // chan4 1-to-2: enabled, 100% fee // chan4 2-to-1: enabled, 0 fee // // chan12 1-to-2: enabled, ignored fee // chan12 2-to-1: enabled, 0 fee // // chan13 1-to-2: enabled, 200% fee // chan13 2-to-1: enabled, 0 fee // // // -1(5)2- node3 -1(8)2-- // | 2 | // | (11) | // / 1 \ // node2--1(6)2- node4 -1(9)2--- node6 (not in global route map) // \ / // -1(7)2- node5 -1(10)2- // // chan5 1-to-2: enabled, 100 msat fee // chan5 2-to-1: enabled, 0 fee // // chan6 1-to-2: enabled, 0 fee // chan6 2-to-1: enabled, 0 fee // // chan7 1-to-2: enabled, 100% fee // chan7 2-to-1: enabled, 0 fee // // chan8 1-to-2: enabled, variable fee (0 then 1000 msat) // chan8 2-to-1: enabled, 0 fee // // chan9 1-to-2: enabled, 1001 msat fee // chan9 2-to-1: enabled, 0 fee // // chan10 1-to-2: enabled, 0 fee // chan10 2-to-1: enabled, 0 fee // // chan11 1-to-2: enabled, 0 fee // chan11 2-to-1: enabled, 0 fee let (our_privkey, _, privkeys, _) = get_nodes(&secp_ctx); add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[0], ChannelFeatures::from_le_bytes(id_to_feature_flags(1)), 1); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 1, flags: 1, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[0], NodeFeatures::from_le_bytes(id_to_feature_flags(1)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[1], ChannelFeatures::from_le_bytes(id_to_feature_flags(2)), 2); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 1, flags: 0, cltv_expiry_delta: u16::max_value(), htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: u32::max_value(), fee_proportional_millionths: u32::max_value(), excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 1, flags: 1, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], NodeFeatures::from_le_bytes(id_to_feature_flags(2)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[7], ChannelFeatures::from_le_bytes(id_to_feature_flags(12)), 12); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 1, flags: 0, cltv_expiry_delta: u16::max_value(), htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: u32::max_value(), fee_proportional_millionths: u32::max_value(), excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 1, flags: 1, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[7], NodeFeatures::from_le_bytes(id_to_feature_flags(8)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 3); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 1, flags: 0, cltv_expiry_delta: (3 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 1, flags: 1, cltv_expiry_delta: (3 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 100, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(4)), 4); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 1, flags: 0, cltv_expiry_delta: (4 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 1000000, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 1, flags: 1, cltv_expiry_delta: (4 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(13)), 13); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 1, flags: 0, cltv_expiry_delta: (13 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 2000000, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 1, flags: 1, cltv_expiry_delta: (13 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[2], NodeFeatures::from_le_bytes(id_to_feature_flags(3)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(6)), 6); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 1, flags: 0, cltv_expiry_delta: (6 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 1, flags: 1, cltv_expiry_delta: (6 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new(), }); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(11)), 11); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 1, flags: 0, cltv_expiry_delta: (11 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 1, flags: 1, cltv_expiry_delta: (11 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[4], NodeFeatures::from_le_bytes(id_to_feature_flags(5)), 0); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[3], NodeFeatures::from_le_bytes(id_to_feature_flags(4)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[5], ChannelFeatures::from_le_bytes(id_to_feature_flags(7)), 7); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 1, flags: 0, cltv_expiry_delta: (7 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 1000000, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[5], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 1, flags: 1, cltv_expiry_delta: (7 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[5], NodeFeatures::from_le_bytes(id_to_feature_flags(6)), 0); (secp_ctx, net_graph_msg_handler, chain_monitor, logger) } #[test] fn simple_route_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, _, nodes) = get_nodes(&secp_ctx); // Simple route to 2 via 1 if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 0, 42, Arc::clone(&logger)) { assert_eq!(err, "Cannot send a payment of 0 msat"); } else { panic!(); } let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 2); assert_eq!(route.paths[0][0].fee_msat, 100); assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 4); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4)); } #[test] fn invalid_first_hop_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, _, nodes) = get_nodes(&secp_ctx); // Simple route to 2 via 1 let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(2), remote_network_id: our_id, counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 100000, user_id: 0, outbound_capacity_msat: 100000, inbound_capacity_msat: 100000, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::>()), &Vec::new(), 100, 42, Arc::clone(&logger)) { assert_eq!(err, "First hop cannot have our_node_id as a destination."); } else { panic!(); } let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); } #[test] fn htlc_minimum_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // Simple route to 2 via 1 // Disable other paths update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Check against amount_to_transfer_over_msat. // Set minimal HTLC of 200_000_000 msat. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 3, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 200_000_000, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Second hop only allows to forward 199_999_999 at most, thus not allowing the first hop to // be used. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 3, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(199_999_999), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Not possible to send 199_999_999, because the minimum on channel=2 is 200_000_000. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 199_999_999, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a path to the given destination"); } else { panic!(); } // Lift the restriction on the first hop. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 4, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // A payment above the minimum should pass let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 199_999_999, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); } #[test] fn htlc_minimum_overpay_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // A route to node#2 via two paths. // One path allows transferring 35-40 sats, another one also allows 35-40 sats. // Thus, they can't send 60 without overpaying. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 35_000, htlc_maximum_msat: OptionalField::Present(40_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 3, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 35_000, htlc_maximum_msat: OptionalField::Present(40_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Make 0 fee. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Disable other paths update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 3, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)).unwrap(); // Overpay fees to hit htlc_minimum_msat. let overpaid_fees = route.paths[0][0].fee_msat + route.paths[1][0].fee_msat; // TODO: this could be better balanced to overpay 10k and not 15k. assert_eq!(overpaid_fees, 15_000); // Now, test that if there are 2 paths, a "cheaper" by fee path wouldn't be prioritized // while taking even more fee to match htlc_minimum_msat. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 4, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 65_000, htlc_maximum_msat: OptionalField::Present(80_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 3, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 4, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 100_000, excess_data: Vec::new() }); let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)).unwrap(); // Fine to overpay for htlc_minimum_msat if it allows us to save fee. assert_eq!(route.paths.len(), 1); assert_eq!(route.paths[0][0].short_channel_id, 12); let fees = route.paths[0][0].fee_msat; assert_eq!(fees, 5_000); let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap(); // Not fine to overpay for htlc_minimum_msat if it requires paying more than fee on // the other channel. assert_eq!(route.paths.len(), 1); assert_eq!(route.paths[0][0].short_channel_id, 2); let fees = route.paths[0][0].fee_msat; assert_eq!(fees, 5_000); } #[test] fn disable_channels_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // // Disable channels 4 and 12 by flags=2 update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 2, // to disable cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // If all the channels require some features we don't understand, route should fail if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a path to the given destination"); } else { panic!(); } // If we specify a channel to node7, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: nodes[7].clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 250_000_000, inbound_capacity_msat: 0, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[7]); assert_eq!(route.paths[0][0].short_channel_id, 42); assert_eq!(route.paths[0][0].fee_msat, 200); assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 13); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13)); } #[test] fn disable_node_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // Disable nodes 1, 2, and 8 by requiring unknown feature bits let mut unknown_features = NodeFeatures::known(); unknown_features.set_required_unknown_bits(); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[0], unknown_features.clone(), 1); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], unknown_features.clone(), 1); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[7], unknown_features.clone(), 1); // If all nodes require some features we don't understand, route should fail if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a path to the given destination"); } else { panic!(); } // If we specify a channel to node7, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: nodes[7].clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 250_000_000, inbound_capacity_msat: 0, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[7]); assert_eq!(route.paths[0][0].short_channel_id, 42); assert_eq!(route.paths[0][0].fee_msat, 200); assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); // it should also override our view of their features assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 13); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13)); // Note that we don't test disabling node 3 and failing to route to it, as we (somewhat // naively) assume that the user checked the feature bits on the invoice, which override // the node_announcement. } #[test] fn our_chans_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, _, nodes) = get_nodes(&secp_ctx); // Route to 1 via 2 and 3 because our channel to 1 is disabled let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[0], None, None, &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 3); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 2); assert_eq!(route.paths[0][0].fee_msat, 200); assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 4); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, (3 << 8) | 2); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][2].pubkey, nodes[0]); assert_eq!(route.paths[0][2].short_channel_id, 3); assert_eq!(route.paths[0][2].fee_msat, 100); assert_eq!(route.paths[0][2].cltv_expiry_delta, 42); assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(1)); assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(3)); // If we specify a channel to node7, that overrides our local channel view and that gets used let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: nodes[7].clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 250_000_000, inbound_capacity_msat: 0, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, Some(&our_chans.iter().collect::>()), &Vec::new(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[7]); assert_eq!(route.paths[0][0].short_channel_id, 42); assert_eq!(route.paths[0][0].fee_msat, 200); assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 13); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13)); } fn last_hops(nodes: &Vec) -> Vec { let zero_fees = RoutingFees { base_msat: 0, proportional_millionths: 0, }; vec!(RouteHintHop { src_node_id: nodes[3].clone(), short_channel_id: 8, fees: zero_fees, cltv_expiry_delta: (8 << 8) | 1, htlc_minimum_msat: None, htlc_maximum_msat: None, }, RouteHintHop { src_node_id: nodes[4].clone(), short_channel_id: 9, fees: RoutingFees { base_msat: 1001, proportional_millionths: 0, }, cltv_expiry_delta: (9 << 8) | 1, htlc_minimum_msat: None, htlc_maximum_msat: None, }, RouteHintHop { src_node_id: nodes[5].clone(), short_channel_id: 10, fees: zero_fees, cltv_expiry_delta: (10 << 8) | 1, htlc_minimum_msat: None, htlc_maximum_msat: None, }) } #[test] fn last_hops_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, _, nodes) = get_nodes(&secp_ctx); // Simple test across 2, 3, 5, and 4 via a last_hop channel // First check that lst hop can't have its source as the payee. let invalid_last_hop = RouteHintHop { src_node_id: nodes[6], short_channel_id: 8, fees: RoutingFees { base_msat: 1000, proportional_millionths: 0, }, cltv_expiry_delta: (8 << 8) | 1, htlc_minimum_msat: None, htlc_maximum_msat: None, }; let mut invalid_last_hops = last_hops(&nodes); invalid_last_hops.push(invalid_last_hop); { if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &invalid_last_hops.iter().collect::>(), 100, 42, Arc::clone(&logger)) { assert_eq!(err, "Last hop cannot have a payee as a source."); } else { panic!(); } } let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops(&nodes).iter().collect::>(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 5); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 2); assert_eq!(route.paths[0][0].fee_msat, 100); assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 4); assert_eq!(route.paths[0][1].fee_msat, 0); assert_eq!(route.paths[0][1].cltv_expiry_delta, (6 << 8) | 1); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][2].pubkey, nodes[4]); assert_eq!(route.paths[0][2].short_channel_id, 6); assert_eq!(route.paths[0][2].fee_msat, 0); assert_eq!(route.paths[0][2].cltv_expiry_delta, (11 << 8) | 1); assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(5)); assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(6)); assert_eq!(route.paths[0][3].pubkey, nodes[3]); assert_eq!(route.paths[0][3].short_channel_id, 11); assert_eq!(route.paths[0][3].fee_msat, 0); assert_eq!(route.paths[0][3].cltv_expiry_delta, (8 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.paths[0][3].node_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][3].channel_features.le_flags(), &id_to_feature_flags(11)); assert_eq!(route.paths[0][4].pubkey, nodes[6]); assert_eq!(route.paths[0][4].short_channel_id, 8); assert_eq!(route.paths[0][4].fee_msat, 100); assert_eq!(route.paths[0][4].cltv_expiry_delta, 42); assert_eq!(route.paths[0][4].node_features.le_flags(), &Vec::::new()); // We dont pass flags in from invoices yet assert_eq!(route.paths[0][4].channel_features.le_flags(), &Vec::::new()); // We can't learn any flags from invoices, sadly } #[test] fn our_chans_last_hop_connect_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (_, our_id, _, nodes) = get_nodes(&secp_ctx); // Simple test with outbound channel to 4 to test that last_hops and first_hops connect let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: nodes[3].clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 250_000_000, inbound_capacity_msat: 0, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; let mut last_hops = last_hops(&nodes); let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, Some(&our_chans.iter().collect::>()), &last_hops.iter().collect::>(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[3]); assert_eq!(route.paths[0][0].short_channel_id, 42); assert_eq!(route.paths[0][0].fee_msat, 0); assert_eq!(route.paths[0][0].cltv_expiry_delta, (8 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &vec![0b11]); assert_eq!(route.paths[0][0].channel_features.le_flags(), &Vec::::new()); // No feature flags will meet the relevant-to-channel conversion assert_eq!(route.paths[0][1].pubkey, nodes[6]); assert_eq!(route.paths[0][1].short_channel_id, 8); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &Vec::::new()); // We dont pass flags in from invoices yet assert_eq!(route.paths[0][1].channel_features.le_flags(), &Vec::::new()); // We can't learn any flags from invoices, sadly last_hops[0].fees.base_msat = 1000; // Revert to via 6 as the fee on 8 goes up let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops.iter().collect::>(), 100, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 4); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 2); assert_eq!(route.paths[0][0].fee_msat, 200); // fee increased as its % of value transferred across node assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 4); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, (7 << 8) | 1); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][2].pubkey, nodes[5]); assert_eq!(route.paths[0][2].short_channel_id, 7); assert_eq!(route.paths[0][2].fee_msat, 0); assert_eq!(route.paths[0][2].cltv_expiry_delta, (10 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(6)); assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(7)); assert_eq!(route.paths[0][3].pubkey, nodes[6]); assert_eq!(route.paths[0][3].short_channel_id, 10); assert_eq!(route.paths[0][3].fee_msat, 100); assert_eq!(route.paths[0][3].cltv_expiry_delta, 42); assert_eq!(route.paths[0][3].node_features.le_flags(), &Vec::::new()); // We dont pass flags in from invoices yet assert_eq!(route.paths[0][3].channel_features.le_flags(), &Vec::::new()); // We can't learn any flags from invoices, sadly // ...but still use 8 for larger payments as 6 has a variable feerate let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &last_hops.iter().collect::>(), 2000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths[0].len(), 5); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 2); assert_eq!(route.paths[0][0].fee_msat, 3000); assert_eq!(route.paths[0][0].cltv_expiry_delta, (4 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(2)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 4); assert_eq!(route.paths[0][1].fee_msat, 0); assert_eq!(route.paths[0][1].cltv_expiry_delta, (6 << 8) | 1); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][2].pubkey, nodes[4]); assert_eq!(route.paths[0][2].short_channel_id, 6); assert_eq!(route.paths[0][2].fee_msat, 0); assert_eq!(route.paths[0][2].cltv_expiry_delta, (11 << 8) | 1); assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(5)); assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(6)); assert_eq!(route.paths[0][3].pubkey, nodes[3]); assert_eq!(route.paths[0][3].short_channel_id, 11); assert_eq!(route.paths[0][3].fee_msat, 1000); assert_eq!(route.paths[0][3].cltv_expiry_delta, (8 << 8) | 1); // If we have a peer in the node map, we'll use their features here since we don't have // a way of figuring out their features from the invoice: assert_eq!(route.paths[0][3].node_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][3].channel_features.le_flags(), &id_to_feature_flags(11)); assert_eq!(route.paths[0][4].pubkey, nodes[6]); assert_eq!(route.paths[0][4].short_channel_id, 8); assert_eq!(route.paths[0][4].fee_msat, 2000); assert_eq!(route.paths[0][4].cltv_expiry_delta, 42); assert_eq!(route.paths[0][4].node_features.le_flags(), &Vec::::new()); // We dont pass flags in from invoices yet assert_eq!(route.paths[0][4].channel_features.le_flags(), &Vec::::new()); // We can't learn any flags from invoices, sadly } #[test] fn unannounced_path_test() { // We should be able to send a payment to a destination without any help of a routing graph // if we have a channel with a common counterparty that appears in the first and last hop // hints. let source_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 41).repeat(32)).unwrap()[..]).unwrap()); let middle_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 42).repeat(32)).unwrap()[..]).unwrap()); let target_node_id = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&hex::decode(format!("{:02}", 43).repeat(32)).unwrap()[..]).unwrap()); // If we specify a channel to a middle hop, that overrides our local channel view and that gets used let last_hops = vec![RouteHintHop { src_node_id: middle_node_id, short_channel_id: 8, fees: RoutingFees { base_msat: 1000, proportional_millionths: 0, }, cltv_expiry_delta: (8 << 8) | 1, htlc_minimum_msat: None, htlc_maximum_msat: None, }]; let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: middle_node_id, counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 100000, user_id: 0, outbound_capacity_msat: 100000, inbound_capacity_msat: 100000, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; let route = get_route(&source_node_id, &NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash()), &target_node_id, None, Some(&our_chans.iter().collect::>()), &last_hops.iter().collect::>(), 100, 42, Arc::new(test_utils::TestLogger::new())).unwrap(); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, middle_node_id); assert_eq!(route.paths[0][0].short_channel_id, 42); assert_eq!(route.paths[0][0].fee_msat, 1000); assert_eq!(route.paths[0][0].cltv_expiry_delta, (8 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &[0b11]); assert_eq!(route.paths[0][0].channel_features.le_flags(), &[0; 0]); // We can't learn any flags from invoices, sadly assert_eq!(route.paths[0][1].pubkey, target_node_id); assert_eq!(route.paths[0][1].short_channel_id, 8); assert_eq!(route.paths[0][1].fee_msat, 100); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &[0; 0]); // We dont pass flags in from invoices yet assert_eq!(route.paths[0][1].channel_features.le_flags(), &[0; 0]); // We can't learn any flags from invoices, sadly } #[test] fn available_amount_while_routing_test() { // Tests whether we choose the correct available channel amount while routing. let (secp_ctx, mut net_graph_msg_handler, chain_monitor, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We will use a simple single-path route from // our node to node2 via node0: channels {1, 3}. // First disable all other paths. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Make the first channel (#1) very permissive, // and we will be testing all limits on the second channel. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(1_000_000_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // First, let's see if routing works if we have absolutely no idea about the available amount. // In this case, it should be set to 250_000 sats. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000_001, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route an exact amount we have should be fine. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let path = route.paths.last().unwrap(); assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); assert_eq!(path.last().unwrap().fee_msat, 250_000_000); } // Check that setting outbound_capacity_msat in first_hops limits the channels. // Disable channel #1 and use another first hop. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 3, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(1_000_000_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Now, limit the first_hop by the outbound_capacity_msat of 200_000 sats. let our_chans = vec![channelmanager::ChannelDetails { channel_id: [0; 32], funding_txo: Some(OutPoint { txid: bitcoin::Txid::from_slice(&[0; 32]).unwrap(), index: 0 }), short_channel_id: Some(42), remote_network_id: nodes[0].clone(), counterparty_features: InitFeatures::from_le_bytes(vec![0b11]), channel_value_satoshis: 0, user_id: 0, outbound_capacity_msat: 200_000_000, inbound_capacity_msat: 0, is_outbound: true, is_funding_locked: true, is_live: true, is_public: true, counterparty_forwarding_info: None, }]; { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), Some(&our_chans.iter().collect::>()), &Vec::new(), 200_000_001, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route an exact amount we have should be fine. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), Some(&our_chans.iter().collect::>()), &Vec::new(), 200_000_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let path = route.paths.last().unwrap(); assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); assert_eq!(path.last().unwrap().fee_msat, 200_000_000); } // Enable channel #1 back. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 4, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(1_000_000_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Now let's see if routing works if we know only htlc_maximum_msat. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 3, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(15_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 15_001, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route an exact amount we have should be fine. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 15_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let path = route.paths.last().unwrap(); assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); assert_eq!(path.last().unwrap().fee_msat, 15_000); } // Now let's see if routing works if we know only capacity from the UTXO. // We can't change UTXO capacity on the fly, so we'll disable // the existing channel and add another one with the capacity we need. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 4, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2) .push_slice(&PublicKey::from_secret_key(&secp_ctx, &privkeys[0]).serialize()) .push_slice(&PublicKey::from_secret_key(&secp_ctx, &privkeys[2]).serialize()) .push_opcode(opcodes::all::OP_PUSHNUM_2) .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh(); *chain_monitor.utxo_ret.lock().unwrap() = Ok(TxOut { value: 15, script_pubkey: good_script.clone() }); net_graph_msg_handler.add_chain_access(Some(chain_monitor)); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 333); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 333, timestamp: 1, flags: 0, cltv_expiry_delta: (3 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 333, timestamp: 1, flags: 1, cltv_expiry_delta: (3 << 8) | 2, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 100, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 15_001, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route an exact amount we have should be fine. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 15_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let path = route.paths.last().unwrap(); assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); assert_eq!(path.last().unwrap().fee_msat, 15_000); } // Now let's see if routing chooses htlc_maximum_msat over UTXO capacity. update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 333, timestamp: 6, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(10_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 10_001, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route an exact amount we have should be fine. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 10_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let path = route.paths.last().unwrap(); assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); assert_eq!(path.last().unwrap().fee_msat, 10_000); } } #[test] fn available_liquidity_last_hop_test() { // Check that available liquidity properly limits the path even when only // one of the latter hops is limited. let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // Path via {node7, node2, node4} is channels {12, 13, 6, 11}. // {12, 13, 11} have the capacities of 100, {6} has a capacity of 50. // Total capacity: 50 sats. // Disable other potential paths. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Limit capacities update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(50_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 60_000, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route 49 sats (just a bit below the capacity). let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 49_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 4); assert_eq!(path.last().unwrap().pubkey, nodes[3]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 49_000); } { // Attempt to route an exact amount is also fine let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 4); assert_eq!(path.last().unwrap().pubkey, nodes[3]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 50_000); } } #[test] fn ignore_fee_first_hop_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50). update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 1_000_000, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(50_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 50_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 50_000); } } #[test] fn simple_mpp_route_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We need a route consisting of 3 paths: // From our node to node2 via node0, node7, node1 (three paths one hop each). // To achieve this, the amount being transferred should be around // the total capacity of these 3 paths. // First, we set limits on these (previously unlimited) channels. // Their aggregate capacity will be 50 + 60 + 180 = 290 sats. // Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50). update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(50_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via node7 is channels {12, 13}. Limit them to 60 and 60 sats // (total limit 60). update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(60_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(60_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via node1 is channels {2, 4}. Limit them to 200 and 180 sats // (total capacity 180 sats). update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(180_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 300_000, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route 250 sats (just a bit below the capacity). // Our algorithm should provide us with these 3 paths. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 250_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 3); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 250_000); } { // Attempt to route an exact amount is also fine let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 290_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 3); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 290_000); } } #[test] fn long_mpp_route_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We need a route consisting of 3 paths: // From our node to node3 via {node0, node2}, {node7, node2, node4} and {node7, node2}. // Note that these paths overlap (channels 5, 12, 13). // We will route 300 sats. // Each path will have 100 sats capacity, those channels which // are used twice will have 200 sats capacity. // Disable other potential paths. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node0, node2} is channels {1, 3, 5}. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Capacity of 200 sats because this channel will be used by 3rd path as well. add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 5, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node7, node2, node4} is channels {12, 13, 6, 11}. // Add 100 sats to the capacities of {12, 13}, because these channels // are also used for 3rd path. 100 sats for the rest. Total capacity: 100 sats. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node7, node2} is channels {12, 13, 5}. // We already limited them to 200 sats (they are used twice for 100 sats). // Nothing to do here. { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 350_000, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route 300 sats (exact amount we can route). // Our algorithm should provide us with these 3 paths, 100 sats each. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 300_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 3); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.last().unwrap().pubkey, nodes[3]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 300_000); } } #[test] fn mpp_cheaper_route_test() { let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // This test checks that if we have two cheaper paths and one more expensive path, // so that liquidity-wise any 2 of 3 combination is sufficient, // two cheaper paths will be taken. // These paths have equal available liquidity. // We need a combination of 3 paths: // From our node to node3 via {node0, node2}, {node7, node2, node4} and {node7, node2}. // Note that these paths overlap (channels 5, 12, 13). // Each path will have 100 sats capacity, those channels which // are used twice will have 200 sats capacity. // Disable other potential paths. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node0, node2} is channels {1, 3, 5}. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Capacity of 200 sats because this channel will be used by 3rd path as well. add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 5, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node7, node2, node4} is channels {12, 13, 6, 11}. // Add 100 sats to the capacities of {12, 13}, because these channels // are also used for 3rd path. 100 sats for the rest. Total capacity: 100 sats. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(200_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 1_000, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node7, node2} is channels {12, 13, 5}. // We already limited them to 200 sats (they are used twice for 100 sats). // Nothing to do here. { // Now, attempt to route 180 sats. // Our algorithm should provide us with these 2 paths. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 180_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 2); let mut total_value_transferred_msat = 0; let mut total_paid_msat = 0; for path in &route.paths { assert_eq!(path.last().unwrap().pubkey, nodes[3]); total_value_transferred_msat += path.last().unwrap().fee_msat; for hop in path { total_paid_msat += hop.fee_msat; } } // If we paid fee, this would be higher. assert_eq!(total_value_transferred_msat, 180_000); let total_fees_paid = total_paid_msat - total_value_transferred_msat; assert_eq!(total_fees_paid, 0); } } #[test] fn fees_on_mpp_route_test() { // This test makes sure that MPP algorithm properly takes into account // fees charged on the channels, by making the fees impactful: // if the fee is not properly accounted for, the behavior is different. let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We need a route consisting of 2 paths: // From our node to node3 via {node0, node2} and {node7, node2, node4}. // We will route 200 sats, Each path will have 100 sats capacity. // This test is not particularly stable: e.g., // there's a way to route via {node0, node2, node4}. // It works while pathfinding is deterministic, but can be broken otherwise. // It's fine to ignore this concern for now. // Disable other potential paths. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 7, timestamp: 2, flags: 2, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node0, node2} is channels {1, 3, 5}. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 5, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via {node7, node2, node4} is channels {12, 13, 6, 11}. // All channels should be 100 sats capacity. But for the fee experiment, // we'll add absolute fee of 150 sats paid for the use channel 6 (paid to node2 on channel 13). // Since channel 12 allows to deliver only 250 sats to channel 13, channel 13 can transfer only // 100 sats (and pay 150 sats in fees for the use of channel 6), // so no matter how large are other channels, // the whole path will be limited by 100 sats with just these 2 conditions: // - channel 12 capacity is 250 sats // - fee for channel 6 is 150 sats // Let's test this by enforcing these 2 conditions and removing other limits. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(250_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 150_000, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 11, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 210_000, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route 200 sats (exact amount we can route). let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[3], Some(InvoiceFeatures::known()), None, &Vec::new(), 200_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 2); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.last().unwrap().pubkey, nodes[3]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 200_000); } } #[test] fn drop_lowest_channel_mpp_route_test() { // This test checks that low-capacity channel is dropped when after // path finding we realize that we found more capacity than we need. let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We need a route consisting of 3 paths: // From our node to node2 via node0, node7, node1 (three paths one hop each). // The first and the second paths should be sufficient, but the third should be // cheaper, so that we select it but drop later. // First, we set limits on these (previously unlimited) channels. // Their aggregate capacity will be 50 + 60 + 20 = 130 sats. // Path via node0 is channels {1, 3}. Limit them to 100 and 50 sats (total limit 50); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(100_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[0], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(50_000), fee_base_msat: 100, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via node7 is channels {12, 13}. Limit them to 60 and 60 sats (total limit 60); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(60_000), fee_base_msat: 100, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[7], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 13, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(60_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); // Path via node1 is channels {2, 4}. Limit them to 20 and 20 sats (total capacity 20 sats). update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(20_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(20_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Attempt to route more than available results in a failure. if let Err(LightningError{err, action: ErrorAction::IgnoreError}) = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 150_000, 42, Arc::clone(&logger)) { assert_eq!(err, "Failed to find a sufficient route to the given destination"); } else { panic!(); } } { // Now, attempt to route 125 sats (just a bit below the capacity of 3 channels). // Our algorithm should provide us with these 3 paths. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 125_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 3); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 125_000); } { // Attempt to route without the last small cheap channel let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 2); let mut total_amount_paid_msat = 0; for path in &route.paths { assert_eq!(path.len(), 2); assert_eq!(path.last().unwrap().pubkey, nodes[2]); total_amount_paid_msat += path.last().unwrap().fee_msat; } assert_eq!(total_amount_paid_msat, 90_000); } } #[test] fn min_criteria_consistency() { // Test that we don't use an inconsistent metric between updating and walking nodes during // our Dijkstra's pass. In the initial version of MPP, the "best source" for a given node // was updated with a different criterion from the heap sorting, resulting in loops in // calculated paths. We test for that specific case here. // We construct a network that looks like this: // // node2 -1(3)2- node3 // 2 2 // (2) (4) // 1 1 // node1 -1(5)2- node4 -1(1)2- node6 // 2 // (6) // 1 // our_node // // We create a loop on the side of our real path - our destination is node 6, with a // previous hop of node 4. From 4, the cheapest previous path is channel 2 from node 2, // followed by node 3 over channel 3. Thereafter, the cheapest next-hop is back to node 4 // (this time over channel 4). Channel 4 has 0 htlc_minimum_msat whereas channel 1 (the // other channel with a previous-hop of node 4) has a high (but irrelevant to the overall // payment) htlc_minimum_msat. In the original algorithm, this resulted in node4's // "previous hop" being set to node 3, creating a loop in the path. let secp_ctx = Secp256k1::new(); let logger = Arc::new(test_utils::TestLogger::new()); let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), None, Arc::clone(&logger)); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); add_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, &privkeys[1], ChannelFeatures::from_le_bytes(id_to_feature_flags(6)), 6); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 6, timestamp: 1, flags: 0, cltv_expiry_delta: (6 << 8) | 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[1], NodeFeatures::from_le_bytes(id_to_feature_flags(1)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(5)), 5); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 5, timestamp: 1, flags: 0, cltv_expiry_delta: (5 << 8) | 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 100, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[4], NodeFeatures::from_le_bytes(id_to_feature_flags(4)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[3], ChannelFeatures::from_le_bytes(id_to_feature_flags(4)), 4); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 1, flags: 0, cltv_expiry_delta: (4 << 8) | 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[3], NodeFeatures::from_le_bytes(id_to_feature_flags(3)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], &privkeys[2], ChannelFeatures::from_le_bytes(id_to_feature_flags(3)), 3); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[3], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 3, timestamp: 1, flags: 0, cltv_expiry_delta: (3 << 8) | 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[2], NodeFeatures::from_le_bytes(id_to_feature_flags(2)), 0); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], &privkeys[4], ChannelFeatures::from_le_bytes(id_to_feature_flags(2)), 2); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[2], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 1, flags: 0, cltv_expiry_delta: (2 << 8) | 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], &privkeys[6], ChannelFeatures::from_le_bytes(id_to_feature_flags(1)), 1); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[4], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 1, timestamp: 1, flags: 0, cltv_expiry_delta: (1 << 8) | 0, htlc_minimum_msat: 100, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); add_or_update_node(&net_graph_msg_handler, &secp_ctx, &privkeys[6], NodeFeatures::from_le_bytes(id_to_feature_flags(6)), 0); { // Now ensure the route flows simply over nodes 1 and 4 to 6. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[6], None, None, &Vec::new(), 10_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); assert_eq!(route.paths[0].len(), 3); assert_eq!(route.paths[0][0].pubkey, nodes[1]); assert_eq!(route.paths[0][0].short_channel_id, 6); assert_eq!(route.paths[0][0].fee_msat, 100); assert_eq!(route.paths[0][0].cltv_expiry_delta, (5 << 8) | 0); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(1)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(6)); assert_eq!(route.paths[0][1].pubkey, nodes[4]); assert_eq!(route.paths[0][1].short_channel_id, 5); assert_eq!(route.paths[0][1].fee_msat, 0); assert_eq!(route.paths[0][1].cltv_expiry_delta, (1 << 8) | 0); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(4)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(5)); assert_eq!(route.paths[0][2].pubkey, nodes[6]); assert_eq!(route.paths[0][2].short_channel_id, 1); assert_eq!(route.paths[0][2].fee_msat, 10_000); assert_eq!(route.paths[0][2].cltv_expiry_delta, 42); assert_eq!(route.paths[0][2].node_features.le_flags(), &id_to_feature_flags(6)); assert_eq!(route.paths[0][2].channel_features.le_flags(), &id_to_feature_flags(1)); } } #[test] fn exact_fee_liquidity_limit() { // Test that if, while walking the graph, we find a hop that has exactly enough liquidity // for us, including later hop fees, we take it. In the first version of our MPP algorithm // we calculated fees on a higher value, resulting in us ignoring such paths. let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, _, nodes) = get_nodes(&secp_ctx); // We modify the graph to set the htlc_maximum of channel 2 to below the value we wish to // send. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(85_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 12, timestamp: 2, flags: 0, cltv_expiry_delta: (4 << 8) | 1, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(270_000), fee_base_msat: 0, fee_proportional_millionths: 1000000, excess_data: Vec::new() }); { // Now, attempt to route 90 sats, which is exactly 90 sats at the last hop, plus the // 200% fee charged channel 13 in the 1-to-2 direction. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], None, None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[7]); assert_eq!(route.paths[0][0].short_channel_id, 12); assert_eq!(route.paths[0][0].fee_msat, 90_000*2); assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(8)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(12)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 13); assert_eq!(route.paths[0][1].fee_msat, 90_000); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), &id_to_feature_flags(3)); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13)); } } #[test] fn htlc_max_reduction_below_min() { // Test that if, while walking the graph, we reduce the value being sent to meet an // htlc_maximum_msat, we don't end up undershooting a later htlc_minimum_msat. In the // initial version of MPP we'd accept such routes but reject them while recalculating fees, // resulting in us thinking there is no possible path, even if other paths exist. let (secp_ctx, net_graph_msg_handler, _, logger) = build_graph(); let (our_privkey, our_id, privkeys, nodes) = get_nodes(&secp_ctx); // We modify the graph to set the htlc_minimum of channel 2 and 4 as needed - channel 2 // gets an htlc_maximum_msat of 80_000 and channel 4 an htlc_minimum_msat of 90_000. We // then try to send 90_000. update_channel(&net_graph_msg_handler, &secp_ctx, &our_privkey, UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 2, timestamp: 2, flags: 0, cltv_expiry_delta: 0, htlc_minimum_msat: 0, htlc_maximum_msat: OptionalField::Present(80_000), fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); update_channel(&net_graph_msg_handler, &secp_ctx, &privkeys[1], UnsignedChannelUpdate { chain_hash: genesis_block(Network::Testnet).header.block_hash(), short_channel_id: 4, timestamp: 2, flags: 0, cltv_expiry_delta: (4 << 8) | 1, htlc_minimum_msat: 90_000, htlc_maximum_msat: OptionalField::Absent, fee_base_msat: 0, fee_proportional_millionths: 0, excess_data: Vec::new() }); { // Now, attempt to route 90 sats, hitting the htlc_minimum on channel 4, but // overshooting the htlc_maximum on channel 2. Thus, we should pick the (absurdly // expensive) channels 12-13 path. let route = get_route(&our_id, &net_graph_msg_handler.network_graph.read().unwrap(), &nodes[2], Some(InvoiceFeatures::known()), None, &Vec::new(), 90_000, 42, Arc::clone(&logger)).unwrap(); assert_eq!(route.paths.len(), 1); assert_eq!(route.paths[0].len(), 2); assert_eq!(route.paths[0][0].pubkey, nodes[7]); assert_eq!(route.paths[0][0].short_channel_id, 12); assert_eq!(route.paths[0][0].fee_msat, 90_000*2); assert_eq!(route.paths[0][0].cltv_expiry_delta, (13 << 8) | 1); assert_eq!(route.paths[0][0].node_features.le_flags(), &id_to_feature_flags(8)); assert_eq!(route.paths[0][0].channel_features.le_flags(), &id_to_feature_flags(12)); assert_eq!(route.paths[0][1].pubkey, nodes[2]); assert_eq!(route.paths[0][1].short_channel_id, 13); assert_eq!(route.paths[0][1].fee_msat, 90_000); assert_eq!(route.paths[0][1].cltv_expiry_delta, 42); assert_eq!(route.paths[0][1].node_features.le_flags(), InvoiceFeatures::known().le_flags()); assert_eq!(route.paths[0][1].channel_features.le_flags(), &id_to_feature_flags(13)); } } use std::fs::File; use util::ser::Readable; /// Tries to open a network graph file, or panics with a URL to fetch it. pub(super) fn get_route_file() -> Result { let res = File::open("net_graph-2021-02-12.bin") // By default we're run in RL/lightning .or_else(|_| File::open("lightning/net_graph-2021-02-12.bin")) // We may be run manually in RL/ .or_else(|_| { // Fall back to guessing based on the binary location // path is likely something like .../rust-lightning/target/debug/deps/lightning-... let mut path = std::env::current_exe().unwrap(); path.pop(); // lightning-... path.pop(); // deps path.pop(); // debug path.pop(); // target path.push("lightning"); path.push("net_graph-2021-02-12.bin"); eprintln!("{}", path.to_str().unwrap()); File::open(path) }); #[cfg(require_route_graph_test)] return Ok(res.expect("Didn't have route graph and was configured to require it")); #[cfg(not(require_route_graph_test))] return res; } pub(super) fn random_init_seed() -> u64 { // Because the default HashMap in std pulls OS randomness, we can use it as a (bad) RNG. use std::hash::{BuildHasher, Hasher}; let seed = std::collections::hash_map::RandomState::new().build_hasher().finish(); println!("Using seed of {}", seed); seed } #[test] fn generate_routes() { let mut d = match get_route_file() { Ok(f) => f, Err(_) => { eprintln!("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin"); return; }, }; let graph = NetworkGraph::read(&mut d).unwrap(); // First, get 100 (source, destination) pairs for which route-getting actually succeeds... let mut seed = random_init_seed() as usize; 'load_endpoints: for _ in 0..10 { loop { seed = seed.overflowing_mul(0xdeadbeef).0; let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); seed = seed.overflowing_mul(0xdeadbeef).0; let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); let amt = seed as u64 % 200_000_000; if get_route(src, &graph, dst, None, None, &[], amt, 42, &test_utils::TestLogger::new()).is_ok() { continue 'load_endpoints; } } } } #[test] fn generate_routes_mpp() { let mut d = match get_route_file() { Ok(f) => f, Err(_) => { eprintln!("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin"); return; }, }; let graph = NetworkGraph::read(&mut d).unwrap(); // First, get 100 (source, destination) pairs for which route-getting actually succeeds... let mut seed = random_init_seed() as usize; 'load_endpoints: for _ in 0..10 { loop { seed = seed.overflowing_mul(0xdeadbeef).0; let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); seed = seed.overflowing_mul(0xdeadbeef).0; let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); let amt = seed as u64 % 200_000_000; if get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &test_utils::TestLogger::new()).is_ok() { continue 'load_endpoints; } } } } } #[cfg(all(test, feature = "unstable"))] mod benches { use super::*; use util::logger::{Logger, Record}; use test::Bencher; struct DummyLogger {} impl Logger for DummyLogger { fn log(&self, _record: &Record) {} } #[bench] fn generate_routes(bench: &mut Bencher) { let mut d = tests::get_route_file() .expect("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin"); let graph = NetworkGraph::read(&mut d).unwrap(); // First, get 100 (source, destination) pairs for which route-getting actually succeeds... let mut path_endpoints = Vec::new(); let mut seed: usize = 0xdeadbeef; 'load_endpoints: for _ in 0..100 { loop { seed *= 0xdeadbeef; let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); seed *= 0xdeadbeef; let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); let amt = seed as u64 % 1_000_000; if get_route(src, &graph, dst, None, None, &[], amt, 42, &DummyLogger{}).is_ok() { path_endpoints.push((src, dst, amt)); continue 'load_endpoints; } } } // ...then benchmark finding paths between the nodes we learned. let mut idx = 0; bench.iter(|| { let (src, dst, amt) = path_endpoints[idx % path_endpoints.len()]; assert!(get_route(src, &graph, dst, None, None, &[], amt, 42, &DummyLogger{}).is_ok()); idx += 1; }); } #[bench] fn generate_mpp_routes(bench: &mut Bencher) { let mut d = tests::get_route_file() .expect("Please fetch https://bitcoin.ninja/ldk-net_graph-879e309c128-2020-02-12.bin and place it at lightning/net_graph-2021-02-12.bin"); let graph = NetworkGraph::read(&mut d).unwrap(); // First, get 100 (source, destination) pairs for which route-getting actually succeeds... let mut path_endpoints = Vec::new(); let mut seed: usize = 0xdeadbeef; 'load_endpoints: for _ in 0..100 { loop { seed *= 0xdeadbeef; let src = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); seed *= 0xdeadbeef; let dst = graph.get_nodes().keys().skip(seed % graph.get_nodes().len()).next().unwrap(); let amt = seed as u64 % 1_000_000; if get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &DummyLogger{}).is_ok() { path_endpoints.push((src, dst, amt)); continue 'load_endpoints; } } } // ...then benchmark finding paths between the nodes we learned. let mut idx = 0; bench.iter(|| { let (src, dst, amt) = path_endpoints[idx % path_endpoints.len()]; assert!(get_route(src, &graph, dst, Some(InvoiceFeatures::known()), None, &[], amt, 42, &DummyLogger{}).is_ok()); idx += 1; }); } }