// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Test that monitor update failures don't get our channel state out of sync. //! One of the biggest concern with the monitor update failure handling code is that messages //! resent after monitor updating is restored are delivered out-of-order, resulting in //! commitment_signed messages having "invalid signatures". //! To test this we stand up a network of three nodes and read bytes from the fuzz input to denote //! actions such as sending payments, handling events, or changing monitor update return values on //! a per-node basis. This should allow it to find any cases where the ordering of actions results //! in us getting out of sync with ourselves, and, assuming at least one of our recieve- or //! send-side handling is correct, other peers. We consider it a failure if any action results in a //! channel being force-closed. use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::constants::genesis_block; use bitcoin::blockdata::transaction::{Transaction, TxOut}; use bitcoin::blockdata::script::{Builder, Script}; use bitcoin::blockdata::opcodes; use bitcoin::network::constants::Network; use bitcoin::hashes::Hash as TraitImport; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hash_types::{BlockHash, WPubkeyHash}; use lightning::chain; use lightning::chain::{BestBlock, ChannelMonitorUpdateErr, chainmonitor, channelmonitor, Confirm, Watch}; use lightning::chain::channelmonitor::{ChannelMonitor, MonitorEvent}; use lightning::chain::transaction::OutPoint; use lightning::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator}; use lightning::chain::keysinterface::{KeyMaterial, KeysInterface, InMemorySigner, Recipient}; use lightning::ln::{PaymentHash, PaymentPreimage, PaymentSecret}; use lightning::ln::channelmanager::{ChainParameters, ChannelManager, PaymentSendFailure, ChannelManagerReadArgs}; use lightning::ln::channel::FEE_SPIKE_BUFFER_FEE_INCREASE_MULTIPLE; use lightning::ln::features::{ChannelFeatures, InitFeatures, NodeFeatures}; use lightning::ln::msgs::{CommitmentUpdate, ChannelMessageHandler, DecodeError, UpdateAddHTLC, Init}; use lightning::ln::script::ShutdownScript; use lightning::util::enforcing_trait_impls::{EnforcingSigner, EnforcementState}; use lightning::util::errors::APIError; use lightning::util::events; use lightning::util::logger::Logger; use lightning::util::config::UserConfig; use lightning::util::events::MessageSendEventsProvider; use lightning::util::ser::{Readable, ReadableArgs, Writeable, Writer}; use lightning::routing::router::{Route, RouteHop}; use utils::test_logger::{self, Output}; use utils::test_persister::TestPersister; use bitcoin::secp256k1::{PublicKey,SecretKey}; use bitcoin::secp256k1::ecdsa::RecoverableSignature; use bitcoin::secp256k1::Secp256k1; use std::mem; use std::cmp::{self, Ordering}; use std::collections::{HashSet, hash_map, HashMap}; use std::sync::{Arc,Mutex}; use std::sync::atomic; use std::io::Cursor; use bitcoin::bech32::u5; const MAX_FEE: u32 = 10_000; struct FuzzEstimator { ret_val: atomic::AtomicU32, } impl FeeEstimator for FuzzEstimator { fn get_est_sat_per_1000_weight(&self, conf_target: ConfirmationTarget) -> u32 { // We force-close channels if our counterparty sends us a feerate which is a small multiple // of our HighPriority fee estimate or smaller than our Background fee estimate. Thus, we // always return a HighPriority feerate here which is >= the maximum Normal feerate and a // Background feerate which is <= the minimum Normal feerate. match conf_target { ConfirmationTarget::HighPriority => MAX_FEE, ConfirmationTarget::Background => 253, ConfirmationTarget::Normal => cmp::min(self.ret_val.load(atomic::Ordering::Acquire), MAX_FEE), } } } pub struct TestBroadcaster {} impl BroadcasterInterface for TestBroadcaster { fn broadcast_transaction(&self, _tx: &Transaction) { } } pub struct VecWriter(pub Vec); impl Writer for VecWriter { fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> { self.0.extend_from_slice(buf); Ok(()) } } struct TestChainMonitor { pub logger: Arc, pub keys: Arc, pub persister: Arc, pub chain_monitor: Arc, Arc, Arc, Arc, Arc>>, // If we reload a node with an old copy of ChannelMonitors, the ChannelManager deserialization // logic will automatically force-close our channels for us (as we don't have an up-to-date // monitor implying we are not able to punish misbehaving counterparties). Because this test // "fails" if we ever force-close a channel, we avoid doing so, always saving the latest // fully-serialized monitor state here, as well as the corresponding update_id. pub latest_monitors: Mutex)>>, pub should_update_manager: atomic::AtomicBool, } impl TestChainMonitor { pub fn new(broadcaster: Arc, logger: Arc, feeest: Arc, persister: Arc, keys: Arc) -> Self { Self { chain_monitor: Arc::new(chainmonitor::ChainMonitor::new(None, broadcaster, logger.clone(), feeest, Arc::clone(&persister))), logger, keys, persister, latest_monitors: Mutex::new(HashMap::new()), should_update_manager: atomic::AtomicBool::new(false), } } } impl chain::Watch for TestChainMonitor { fn watch_channel(&self, funding_txo: OutPoint, monitor: channelmonitor::ChannelMonitor) -> Result<(), chain::ChannelMonitorUpdateErr> { let mut ser = VecWriter(Vec::new()); monitor.write(&mut ser).unwrap(); if let Some(_) = self.latest_monitors.lock().unwrap().insert(funding_txo, (monitor.get_latest_update_id(), ser.0)) { panic!("Already had monitor pre-watch_channel"); } self.should_update_manager.store(true, atomic::Ordering::Relaxed); self.chain_monitor.watch_channel(funding_txo, monitor) } fn update_channel(&self, funding_txo: OutPoint, update: channelmonitor::ChannelMonitorUpdate) -> Result<(), chain::ChannelMonitorUpdateErr> { let mut map_lock = self.latest_monitors.lock().unwrap(); let mut map_entry = match map_lock.entry(funding_txo) { hash_map::Entry::Occupied(entry) => entry, hash_map::Entry::Vacant(_) => panic!("Didn't have monitor on update call"), }; let deserialized_monitor = <(BlockHash, channelmonitor::ChannelMonitor)>:: read(&mut Cursor::new(&map_entry.get().1), &*self.keys).unwrap().1; deserialized_monitor.update_monitor(&update, &&TestBroadcaster{}, &&FuzzEstimator { ret_val: atomic::AtomicU32::new(253) }, &self.logger).unwrap(); let mut ser = VecWriter(Vec::new()); deserialized_monitor.write(&mut ser).unwrap(); map_entry.insert((update.update_id, ser.0)); self.should_update_manager.store(true, atomic::Ordering::Relaxed); self.chain_monitor.update_channel(funding_txo, update) } fn release_pending_monitor_events(&self) -> Vec<(OutPoint, Vec)> { return self.chain_monitor.release_pending_monitor_events(); } } struct KeyProvider { node_id: u8, rand_bytes_id: atomic::AtomicU32, enforcement_states: Mutex>>>, } impl KeysInterface for KeyProvider { type Signer = EnforcingSigner; fn get_node_secret(&self, _recipient: Recipient) -> Result { Ok(SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, self.node_id]).unwrap()) } fn get_inbound_payment_key_material(&self) -> KeyMaterial { KeyMaterial([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, self.node_id]) } fn get_destination_script(&self) -> Script { let secp_ctx = Secp256k1::signing_only(); let channel_monitor_claim_key = SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, self.node_id]).unwrap(); let our_channel_monitor_claim_key_hash = WPubkeyHash::hash(&PublicKey::from_secret_key(&secp_ctx, &channel_monitor_claim_key).serialize()); Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_monitor_claim_key_hash[..]).into_script() } fn get_shutdown_scriptpubkey(&self) -> ShutdownScript { let secp_ctx = Secp256k1::signing_only(); let secret_key = SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, self.node_id]).unwrap(); let pubkey_hash = WPubkeyHash::hash(&PublicKey::from_secret_key(&secp_ctx, &secret_key).serialize()); ShutdownScript::new_p2wpkh(&pubkey_hash) } fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> EnforcingSigner { let secp_ctx = Secp256k1::signing_only(); let id = self.rand_bytes_id.fetch_add(1, atomic::Ordering::Relaxed); let keys = InMemorySigner::new( &secp_ctx, self.get_node_secret(Recipient::Node).unwrap(), SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, self.node_id]).unwrap(), SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, self.node_id]).unwrap(), SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, self.node_id]).unwrap(), SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, self.node_id]).unwrap(), SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, self.node_id]).unwrap(), [id as u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, self.node_id], channel_value_satoshis, [0; 32], ); let revoked_commitment = self.make_enforcement_state_cell(keys.commitment_seed); EnforcingSigner::new_with_revoked(keys, revoked_commitment, false) } fn get_secure_random_bytes(&self) -> [u8; 32] { let id = self.rand_bytes_id.fetch_add(1, atomic::Ordering::Relaxed); let mut res = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, self.node_id]; res[30-4..30].copy_from_slice(&id.to_le_bytes()); res } fn read_chan_signer(&self, buffer: &[u8]) -> Result { let mut reader = std::io::Cursor::new(buffer); let inner: InMemorySigner = ReadableArgs::read(&mut reader, self.get_node_secret(Recipient::Node).unwrap())?; let state = self.make_enforcement_state_cell(inner.commitment_seed); Ok(EnforcingSigner { inner, state, disable_revocation_policy_check: false, }) } fn sign_invoice(&self, _hrp_bytes: &[u8], _invoice_data: &[u5], _recipient: Recipient) -> Result { unreachable!() } } impl KeyProvider { fn make_enforcement_state_cell(&self, commitment_seed: [u8; 32]) -> Arc> { let mut revoked_commitments = self.enforcement_states.lock().unwrap(); if !revoked_commitments.contains_key(&commitment_seed) { revoked_commitments.insert(commitment_seed, Arc::new(Mutex::new(EnforcementState::new()))); } let cell = revoked_commitments.get(&commitment_seed).unwrap(); Arc::clone(cell) } } #[inline] fn check_api_err(api_err: APIError) { match api_err { APIError::APIMisuseError { .. } => panic!("We can't misuse the API"), APIError::FeeRateTooHigh { .. } => panic!("We can't send too much fee?"), APIError::RouteError { .. } => panic!("Our routes should work"), APIError::ChannelUnavailable { err } => { // Test the error against a list of errors we can hit, and reject // all others. If you hit this panic, the list of acceptable errors // is probably just stale and you should add new messages here. match err.as_str() { "Peer for first hop currently disconnected/pending monitor update!" => {}, _ if err.starts_with("Cannot push more than their max accepted HTLCs ") => {}, _ if err.starts_with("Cannot send value that would put us over the max HTLC value in flight our peer will accept ") => {}, _ if err.starts_with("Cannot send value that would put our balance under counterparty-announced channel reserve value") => {}, _ if err.starts_with("Cannot send value that would put counterparty balance under holder-announced channel reserve value") => {}, _ if err.starts_with("Cannot send value that would overdraw remaining funds.") => {}, _ if err.starts_with("Cannot send value that would not leave enough to pay for fees.") => {}, _ if err.starts_with("Cannot send value that would put our exposure to dust HTLCs at") => {}, _ => panic!("{}", err), } }, APIError::MonitorUpdateFailed => { // We can (obviously) temp-fail a monitor update }, APIError::IncompatibleShutdownScript { .. } => panic!("Cannot send an incompatible shutdown script"), } } #[inline] fn check_payment_err(send_err: PaymentSendFailure) { match send_err { PaymentSendFailure::ParameterError(api_err) => check_api_err(api_err), PaymentSendFailure::PathParameterError(per_path_results) => { for res in per_path_results { if let Err(api_err) = res { check_api_err(api_err); } } }, PaymentSendFailure::AllFailedRetrySafe(per_path_results) => { for api_err in per_path_results { check_api_err(api_err); } }, PaymentSendFailure::PartialFailure { results, .. } => { for res in results { if let Err(api_err) = res { check_api_err(api_err); } } }, } } type ChanMan = ChannelManager, Arc, Arc, Arc, Arc>; #[inline] fn get_payment_secret_hash(dest: &ChanMan, payment_id: &mut u8) -> Option<(PaymentSecret, PaymentHash)> { let mut payment_hash; for _ in 0..256 { payment_hash = PaymentHash(Sha256::hash(&[*payment_id; 1]).into_inner()); if let Ok(payment_secret) = dest.create_inbound_payment_for_hash(payment_hash, None, 3600) { return Some((payment_secret, payment_hash)); } *payment_id = payment_id.wrapping_add(1); } None } #[inline] fn send_payment(source: &ChanMan, dest: &ChanMan, dest_chan_id: u64, amt: u64, payment_id: &mut u8) -> bool { let (payment_secret, payment_hash) = if let Some((secret, hash)) = get_payment_secret_hash(dest, payment_id) { (secret, hash) } else { return true; }; if let Err(err) = source.send_payment(&Route { paths: vec![vec![RouteHop { pubkey: dest.get_our_node_id(), node_features: NodeFeatures::known(), short_channel_id: dest_chan_id, channel_features: ChannelFeatures::known(), fee_msat: amt, cltv_expiry_delta: 200, }]], payment_params: None, }, payment_hash, &Some(payment_secret)) { check_payment_err(err); false } else { true } } #[inline] fn send_hop_payment(source: &ChanMan, middle: &ChanMan, middle_chan_id: u64, dest: &ChanMan, dest_chan_id: u64, amt: u64, payment_id: &mut u8) -> bool { let (payment_secret, payment_hash) = if let Some((secret, hash)) = get_payment_secret_hash(dest, payment_id) { (secret, hash) } else { return true; }; if let Err(err) = source.send_payment(&Route { paths: vec![vec![RouteHop { pubkey: middle.get_our_node_id(), node_features: NodeFeatures::known(), short_channel_id: middle_chan_id, channel_features: ChannelFeatures::known(), fee_msat: 50000, cltv_expiry_delta: 100, },RouteHop { pubkey: dest.get_our_node_id(), node_features: NodeFeatures::known(), short_channel_id: dest_chan_id, channel_features: ChannelFeatures::known(), fee_msat: amt, cltv_expiry_delta: 200, }]], payment_params: None, }, payment_hash, &Some(payment_secret)) { check_payment_err(err); false } else { true } } #[inline] pub fn do_test(data: &[u8], underlying_out: Out) { let out = SearchingOutput::new(underlying_out); let broadcast = Arc::new(TestBroadcaster{}); macro_rules! make_node { ($node_id: expr, $fee_estimator: expr) => { { let logger: Arc = Arc::new(test_logger::TestLogger::new($node_id.to_string(), out.clone())); let keys_manager = Arc::new(KeyProvider { node_id: $node_id, rand_bytes_id: atomic::AtomicU32::new(0), enforcement_states: Mutex::new(HashMap::new()) }); let monitor = Arc::new(TestChainMonitor::new(broadcast.clone(), logger.clone(), $fee_estimator.clone(), Arc::new(TestPersister { update_ret: Mutex::new(Ok(())) }), Arc::clone(&keys_manager))); let mut config = UserConfig::default(); config.channel_config.forwarding_fee_proportional_millionths = 0; config.channel_handshake_config.announced_channel = true; let network = Network::Bitcoin; let params = ChainParameters { network, best_block: BestBlock::from_genesis(network), }; (ChannelManager::new($fee_estimator.clone(), monitor.clone(), broadcast.clone(), Arc::clone(&logger), keys_manager.clone(), config, params), monitor, keys_manager) } } } macro_rules! reload_node { ($ser: expr, $node_id: expr, $old_monitors: expr, $keys_manager: expr, $fee_estimator: expr) => { { let keys_manager = Arc::clone(& $keys_manager); let logger: Arc = Arc::new(test_logger::TestLogger::new($node_id.to_string(), out.clone())); let chain_monitor = Arc::new(TestChainMonitor::new(broadcast.clone(), logger.clone(), $fee_estimator.clone(), Arc::new(TestPersister { update_ret: Mutex::new(Ok(())) }), Arc::clone(& $keys_manager))); let mut config = UserConfig::default(); config.channel_config.forwarding_fee_proportional_millionths = 0; config.channel_handshake_config.announced_channel = true; let mut monitors = HashMap::new(); let mut old_monitors = $old_monitors.latest_monitors.lock().unwrap(); for (outpoint, (update_id, monitor_ser)) in old_monitors.drain() { monitors.insert(outpoint, <(BlockHash, ChannelMonitor)>::read(&mut Cursor::new(&monitor_ser), &*$keys_manager).expect("Failed to read monitor").1); chain_monitor.latest_monitors.lock().unwrap().insert(outpoint, (update_id, monitor_ser)); } let mut monitor_refs = HashMap::new(); for (outpoint, monitor) in monitors.iter_mut() { monitor_refs.insert(*outpoint, monitor); } let read_args = ChannelManagerReadArgs { keys_manager, fee_estimator: $fee_estimator.clone(), chain_monitor: chain_monitor.clone(), tx_broadcaster: broadcast.clone(), logger, default_config: config, channel_monitors: monitor_refs, }; let res = (<(BlockHash, ChanMan)>::read(&mut Cursor::new(&$ser.0), read_args).expect("Failed to read manager").1, chain_monitor.clone()); for (funding_txo, mon) in monitors.drain() { assert!(chain_monitor.chain_monitor.watch_channel(funding_txo, mon).is_ok()); } res } } } let mut channel_txn = Vec::new(); macro_rules! make_channel { ($source: expr, $dest: expr, $chan_id: expr) => { { $source.peer_connected(&$dest.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); $dest.peer_connected(&$source.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); $source.create_channel($dest.get_our_node_id(), 100_000, 42, 0, None).unwrap(); let open_channel = { let events = $source.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let events::MessageSendEvent::SendOpenChannel { ref msg, .. } = events[0] { msg.clone() } else { panic!("Wrong event type"); } }; $dest.handle_open_channel(&$source.get_our_node_id(), InitFeatures::known(), &open_channel); let accept_channel = { let events = $dest.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let events::MessageSendEvent::SendAcceptChannel { ref msg, .. } = events[0] { msg.clone() } else { panic!("Wrong event type"); } }; $source.handle_accept_channel(&$dest.get_our_node_id(), InitFeatures::known(), &accept_channel); let funding_output; { let events = $source.get_and_clear_pending_events(); assert_eq!(events.len(), 1); if let events::Event::FundingGenerationReady { ref temporary_channel_id, ref channel_value_satoshis, ref output_script, .. } = events[0] { let tx = Transaction { version: $chan_id, lock_time: 0, input: Vec::new(), output: vec![TxOut { value: *channel_value_satoshis, script_pubkey: output_script.clone(), }]}; funding_output = OutPoint { txid: tx.txid(), index: 0 }; $source.funding_transaction_generated(&temporary_channel_id, &$dest.get_our_node_id(), tx.clone()).unwrap(); channel_txn.push(tx); } else { panic!("Wrong event type"); } } let funding_created = { let events = $source.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let events::MessageSendEvent::SendFundingCreated { ref msg, .. } = events[0] { msg.clone() } else { panic!("Wrong event type"); } }; $dest.handle_funding_created(&$source.get_our_node_id(), &funding_created); let funding_signed = { let events = $dest.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let events::MessageSendEvent::SendFundingSigned { ref msg, .. } = events[0] { msg.clone() } else { panic!("Wrong event type"); } }; $source.handle_funding_signed(&$dest.get_our_node_id(), &funding_signed); funding_output } } } macro_rules! confirm_txn { ($node: expr) => { { let chain_hash = genesis_block(Network::Bitcoin).block_hash(); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: chain_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; let txdata: Vec<_> = channel_txn.iter().enumerate().map(|(i, tx)| (i + 1, tx)).collect(); $node.transactions_confirmed(&header, &txdata, 1); for _ in 2..100 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; } $node.best_block_updated(&header, 99); } } } macro_rules! lock_fundings { ($nodes: expr) => { { let mut node_events = Vec::new(); for node in $nodes.iter() { node_events.push(node.get_and_clear_pending_msg_events()); } for (idx, node_event) in node_events.iter().enumerate() { for event in node_event { if let events::MessageSendEvent::SendChannelReady { ref node_id, ref msg } = event { for node in $nodes.iter() { if node.get_our_node_id() == *node_id { node.handle_channel_ready(&$nodes[idx].get_our_node_id(), msg); } } } else { panic!("Wrong event type"); } } } for node in $nodes.iter() { let events = node.get_and_clear_pending_msg_events(); for event in events { if let events::MessageSendEvent::SendAnnouncementSignatures { .. } = event { } else { panic!("Wrong event type"); } } } } } } let fee_est_a = Arc::new(FuzzEstimator { ret_val: atomic::AtomicU32::new(253) }); let mut last_htlc_clear_fee_a = 253; let fee_est_b = Arc::new(FuzzEstimator { ret_val: atomic::AtomicU32::new(253) }); let mut last_htlc_clear_fee_b = 253; let fee_est_c = Arc::new(FuzzEstimator { ret_val: atomic::AtomicU32::new(253) }); let mut last_htlc_clear_fee_c = 253; // 3 nodes is enough to hit all the possible cases, notably unknown-source-unknown-dest // forwarding. let (node_a, mut monitor_a, keys_manager_a) = make_node!(0, fee_est_a); let (node_b, mut monitor_b, keys_manager_b) = make_node!(1, fee_est_b); let (node_c, mut monitor_c, keys_manager_c) = make_node!(2, fee_est_c); let mut nodes = [node_a, node_b, node_c]; let chan_1_funding = make_channel!(nodes[0], nodes[1], 0); let chan_2_funding = make_channel!(nodes[1], nodes[2], 1); for node in nodes.iter() { confirm_txn!(node); } lock_fundings!(nodes); let chan_a = nodes[0].list_usable_channels()[0].short_channel_id.unwrap(); let chan_b = nodes[2].list_usable_channels()[0].short_channel_id.unwrap(); let mut payment_id: u8 = 0; let mut chan_a_disconnected = false; let mut chan_b_disconnected = false; let mut ab_events = Vec::new(); let mut ba_events = Vec::new(); let mut bc_events = Vec::new(); let mut cb_events = Vec::new(); let mut node_a_ser = VecWriter(Vec::new()); nodes[0].write(&mut node_a_ser).unwrap(); let mut node_b_ser = VecWriter(Vec::new()); nodes[1].write(&mut node_b_ser).unwrap(); let mut node_c_ser = VecWriter(Vec::new()); nodes[2].write(&mut node_c_ser).unwrap(); macro_rules! test_return { () => { { assert_eq!(nodes[0].list_channels().len(), 1); assert_eq!(nodes[1].list_channels().len(), 2); assert_eq!(nodes[2].list_channels().len(), 1); return; } } } let mut read_pos = 0; macro_rules! get_slice { ($len: expr) => { { let slice_len = $len as usize; if data.len() < read_pos + slice_len { test_return!(); } read_pos += slice_len; &data[read_pos - slice_len..read_pos] } } } loop { // Push any events from Node B onto ba_events and bc_events macro_rules! push_excess_b_events { ($excess_events: expr, $expect_drop_node: expr) => { { let a_id = nodes[0].get_our_node_id(); let expect_drop_node: Option = $expect_drop_node; let expect_drop_id = if let Some(id) = expect_drop_node { Some(nodes[id].get_our_node_id()) } else { None }; for event in $excess_events { let push_a = match event { events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => { if Some(*node_id) == expect_drop_id { panic!("peer_disconnected should drop msgs bound for the disconnected peer"); } *node_id == a_id }, events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => { if Some(*node_id) == expect_drop_id { panic!("peer_disconnected should drop msgs bound for the disconnected peer"); } *node_id == a_id }, events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => { if Some(*node_id) == expect_drop_id { panic!("peer_disconnected should drop msgs bound for the disconnected peer"); } *node_id == a_id }, events::MessageSendEvent::SendChannelReady { .. } => continue, events::MessageSendEvent::SendAnnouncementSignatures { .. } => continue, events::MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => { assert_eq!(msg.contents.flags & 2, 0); // The disable bit must never be set! if Some(*node_id) == expect_drop_id { panic!("peer_disconnected should drop msgs bound for the disconnected peer"); } *node_id == a_id }, _ => panic!("Unhandled message event {:?}", event), }; if push_a { ba_events.push(event); } else { bc_events.push(event); } } } } } // While delivering messages, we select across three possible message selection processes // to ensure we get as much coverage as possible. See the individual enum variants for more // details. #[derive(PartialEq)] enum ProcessMessages { /// Deliver all available messages, including fetching any new messages from /// `get_and_clear_pending_msg_events()` (which may have side effects). AllMessages, /// Call `get_and_clear_pending_msg_events()` first, and then deliver up to one /// message (which may already be queued). OneMessage, /// Deliver up to one already-queued message. This avoids any potential side-effects /// of `get_and_clear_pending_msg_events()` (eg freeing the HTLC holding cell), which /// provides potentially more coverage. OnePendingMessage, } macro_rules! process_msg_events { ($node: expr, $corrupt_forward: expr, $limit_events: expr) => { { let mut events = if $node == 1 { let mut new_events = Vec::new(); mem::swap(&mut new_events, &mut ba_events); new_events.extend_from_slice(&bc_events[..]); bc_events.clear(); new_events } else if $node == 0 { let mut new_events = Vec::new(); mem::swap(&mut new_events, &mut ab_events); new_events } else { let mut new_events = Vec::new(); mem::swap(&mut new_events, &mut cb_events); new_events }; let mut new_events = Vec::new(); if $limit_events != ProcessMessages::OnePendingMessage { new_events = nodes[$node].get_and_clear_pending_msg_events(); } let mut had_events = false; let mut events_iter = events.drain(..).chain(new_events.drain(..)); let mut extra_ev = None; for event in &mut events_iter { had_events = true; match event { events::MessageSendEvent::UpdateHTLCs { node_id, updates: CommitmentUpdate { update_add_htlcs, update_fail_htlcs, update_fulfill_htlcs, update_fail_malformed_htlcs, update_fee, commitment_signed } } => { for (idx, dest) in nodes.iter().enumerate() { if dest.get_our_node_id() == node_id { for update_add in update_add_htlcs.iter() { out.locked_write(format!("Delivering update_add_htlc to node {}.\n", idx).as_bytes()); if !$corrupt_forward { dest.handle_update_add_htlc(&nodes[$node].get_our_node_id(), update_add); } else { // Corrupt the update_add_htlc message so that its HMAC // check will fail and we generate a // update_fail_malformed_htlc instead of an // update_fail_htlc as we do when we reject a payment. let mut msg_ser = update_add.encode(); msg_ser[1000] ^= 0xff; let new_msg = UpdateAddHTLC::read(&mut Cursor::new(&msg_ser)).unwrap(); dest.handle_update_add_htlc(&nodes[$node].get_our_node_id(), &new_msg); } } for update_fulfill in update_fulfill_htlcs.iter() { out.locked_write(format!("Delivering update_fulfill_htlc to node {}.\n", idx).as_bytes()); dest.handle_update_fulfill_htlc(&nodes[$node].get_our_node_id(), update_fulfill); } for update_fail in update_fail_htlcs.iter() { out.locked_write(format!("Delivering update_fail_htlc to node {}.\n", idx).as_bytes()); dest.handle_update_fail_htlc(&nodes[$node].get_our_node_id(), update_fail); } for update_fail_malformed in update_fail_malformed_htlcs.iter() { out.locked_write(format!("Delivering update_fail_malformed_htlc to node {}.\n", idx).as_bytes()); dest.handle_update_fail_malformed_htlc(&nodes[$node].get_our_node_id(), update_fail_malformed); } if let Some(msg) = update_fee { out.locked_write(format!("Delivering update_fee to node {}.\n", idx).as_bytes()); dest.handle_update_fee(&nodes[$node].get_our_node_id(), &msg); } let processed_change = !update_add_htlcs.is_empty() || !update_fulfill_htlcs.is_empty() || !update_fail_htlcs.is_empty() || !update_fail_malformed_htlcs.is_empty(); if $limit_events != ProcessMessages::AllMessages && processed_change { // If we only want to process some messages, don't deliver the CS until later. extra_ev = Some(events::MessageSendEvent::UpdateHTLCs { node_id, updates: CommitmentUpdate { update_add_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed } }); break; } out.locked_write(format!("Delivering commitment_signed to node {}.\n", idx).as_bytes()); dest.handle_commitment_signed(&nodes[$node].get_our_node_id(), &commitment_signed); break; } } }, events::MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { for (idx, dest) in nodes.iter().enumerate() { if dest.get_our_node_id() == *node_id { out.locked_write(format!("Delivering revoke_and_ack to node {}.\n", idx).as_bytes()); dest.handle_revoke_and_ack(&nodes[$node].get_our_node_id(), msg); } } }, events::MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => { for (idx, dest) in nodes.iter().enumerate() { if dest.get_our_node_id() == *node_id { out.locked_write(format!("Delivering channel_reestablish to node {}.\n", idx).as_bytes()); dest.handle_channel_reestablish(&nodes[$node].get_our_node_id(), msg); } } }, events::MessageSendEvent::SendChannelReady { .. } => { // Can be generated as a reestablish response }, events::MessageSendEvent::SendAnnouncementSignatures { .. } => { // Can be generated as a reestablish response }, events::MessageSendEvent::SendChannelUpdate { ref msg, .. } => { // When we reconnect we will resend a channel_update to make sure our // counterparty has the latest parameters for receiving payments // through us. We do, however, check that the message does not include // the "disabled" bit, as we should never ever have a channel which is // disabled when we send such an update (or it may indicate channel // force-close which we should detect as an error). assert_eq!(msg.contents.flags & 2, 0); }, _ => if out.may_fail.load(atomic::Ordering::Acquire) { return; } else { panic!("Unhandled message event {:?}", event) }, } if $limit_events != ProcessMessages::AllMessages { break; } } if $node == 1 { push_excess_b_events!(extra_ev.into_iter().chain(events_iter), None); } else if $node == 0 { if let Some(ev) = extra_ev { ab_events.push(ev); } for event in events_iter { ab_events.push(event); } } else { if let Some(ev) = extra_ev { cb_events.push(ev); } for event in events_iter { cb_events.push(event); } } had_events } } } macro_rules! drain_msg_events_on_disconnect { ($counterparty_id: expr) => { { if $counterparty_id == 0 { for event in nodes[0].get_and_clear_pending_msg_events() { match event { events::MessageSendEvent::UpdateHTLCs { .. } => {}, events::MessageSendEvent::SendRevokeAndACK { .. } => {}, events::MessageSendEvent::SendChannelReestablish { .. } => {}, events::MessageSendEvent::SendChannelReady { .. } => {}, events::MessageSendEvent::SendAnnouncementSignatures { .. } => {}, events::MessageSendEvent::SendChannelUpdate { ref msg, .. } => { assert_eq!(msg.contents.flags & 2, 0); // The disable bit must never be set! }, _ => if out.may_fail.load(atomic::Ordering::Acquire) { return; } else { panic!("Unhandled message event") }, } } push_excess_b_events!(nodes[1].get_and_clear_pending_msg_events().drain(..), Some(0)); ab_events.clear(); ba_events.clear(); } else { for event in nodes[2].get_and_clear_pending_msg_events() { match event { events::MessageSendEvent::UpdateHTLCs { .. } => {}, events::MessageSendEvent::SendRevokeAndACK { .. } => {}, events::MessageSendEvent::SendChannelReestablish { .. } => {}, events::MessageSendEvent::SendChannelReady { .. } => {}, events::MessageSendEvent::SendAnnouncementSignatures { .. } => {}, events::MessageSendEvent::SendChannelUpdate { ref msg, .. } => { assert_eq!(msg.contents.flags & 2, 0); // The disable bit must never be set! }, _ => if out.may_fail.load(atomic::Ordering::Acquire) { return; } else { panic!("Unhandled message event") }, } } push_excess_b_events!(nodes[1].get_and_clear_pending_msg_events().drain(..), Some(2)); bc_events.clear(); cb_events.clear(); } } } } macro_rules! process_events { ($node: expr, $fail: expr) => { { // In case we get 256 payments we may have a hash collision, resulting in the // second claim/fail call not finding the duplicate-hash HTLC, so we have to // deduplicate the calls here. let mut claim_set = HashSet::new(); let mut events = nodes[$node].get_and_clear_pending_events(); // Sort events so that PendingHTLCsForwardable get processed last. This avoids a // case where we first process a PendingHTLCsForwardable, then claim/fail on a // PaymentReceived, claiming/failing two HTLCs, but leaving a just-generated // PaymentReceived event for the second HTLC in our pending_events (and breaking // our claim_set deduplication). events.sort_by(|a, b| { if let events::Event::PaymentReceived { .. } = a { if let events::Event::PendingHTLCsForwardable { .. } = b { Ordering::Less } else { Ordering::Equal } } else if let events::Event::PendingHTLCsForwardable { .. } = a { if let events::Event::PaymentReceived { .. } = b { Ordering::Greater } else { Ordering::Equal } } else { Ordering::Equal } }); let had_events = !events.is_empty(); for event in events.drain(..) { match event { events::Event::PaymentReceived { payment_hash, .. } => { if claim_set.insert(payment_hash.0) { if $fail { nodes[$node].fail_htlc_backwards(&payment_hash); } else { nodes[$node].claim_funds(PaymentPreimage(payment_hash.0)); } } }, events::Event::PaymentSent { .. } => {}, events::Event::PaymentClaimed { .. } => {}, events::Event::PaymentPathSuccessful { .. } => {}, events::Event::PaymentPathFailed { .. } => {}, events::Event::ProbeSuccessful { .. } | events::Event::ProbeFailed { .. } => { // Even though we don't explicitly send probes, because probes are // detected based on hashing the payment hash+preimage, its rather // trivial for the fuzzer to build payments that accidentally end up // looking like probes. }, events::Event::PaymentForwarded { .. } if $node == 1 => {}, events::Event::PendingHTLCsForwardable { .. } => { nodes[$node].process_pending_htlc_forwards(); }, events::Event::HTLCHandlingFailed { .. } => {}, _ => if out.may_fail.load(atomic::Ordering::Acquire) { return; } else { panic!("Unhandled event") }, } } had_events } } } let v = get_slice!(1)[0]; out.locked_write(format!("READ A BYTE! HANDLING INPUT {:x}...........\n", v).as_bytes()); match v { // In general, we keep related message groups close together in binary form, allowing // bit-twiddling mutations to have similar effects. This is probably overkill, but no // harm in doing so. 0x00 => *monitor_a.persister.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure), 0x01 => *monitor_b.persister.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure), 0x02 => *monitor_c.persister.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure), 0x04 => *monitor_a.persister.update_ret.lock().unwrap() = Ok(()), 0x05 => *monitor_b.persister.update_ret.lock().unwrap() = Ok(()), 0x06 => *monitor_c.persister.update_ret.lock().unwrap() = Ok(()), 0x08 => { if let Some((id, _)) = monitor_a.latest_monitors.lock().unwrap().get(&chan_1_funding) { monitor_a.chain_monitor.force_channel_monitor_updated(chan_1_funding, *id); nodes[0].process_monitor_events(); } }, 0x09 => { if let Some((id, _)) = monitor_b.latest_monitors.lock().unwrap().get(&chan_1_funding) { monitor_b.chain_monitor.force_channel_monitor_updated(chan_1_funding, *id); nodes[1].process_monitor_events(); } }, 0x0a => { if let Some((id, _)) = monitor_b.latest_monitors.lock().unwrap().get(&chan_2_funding) { monitor_b.chain_monitor.force_channel_monitor_updated(chan_2_funding, *id); nodes[1].process_monitor_events(); } }, 0x0b => { if let Some((id, _)) = monitor_c.latest_monitors.lock().unwrap().get(&chan_2_funding) { monitor_c.chain_monitor.force_channel_monitor_updated(chan_2_funding, *id); nodes[2].process_monitor_events(); } }, 0x0c => { if !chan_a_disconnected { nodes[0].peer_disconnected(&nodes[1].get_our_node_id(), false); nodes[1].peer_disconnected(&nodes[0].get_our_node_id(), false); chan_a_disconnected = true; drain_msg_events_on_disconnect!(0); } }, 0x0d => { if !chan_b_disconnected { nodes[1].peer_disconnected(&nodes[2].get_our_node_id(), false); nodes[2].peer_disconnected(&nodes[1].get_our_node_id(), false); chan_b_disconnected = true; drain_msg_events_on_disconnect!(2); } }, 0x0e => { if chan_a_disconnected { nodes[0].peer_connected(&nodes[1].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); nodes[1].peer_connected(&nodes[0].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); chan_a_disconnected = false; } }, 0x0f => { if chan_b_disconnected { nodes[1].peer_connected(&nodes[2].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); nodes[2].peer_connected(&nodes[1].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); chan_b_disconnected = false; } }, 0x10 => { process_msg_events!(0, true, ProcessMessages::AllMessages); }, 0x11 => { process_msg_events!(0, false, ProcessMessages::AllMessages); }, 0x12 => { process_msg_events!(0, true, ProcessMessages::OneMessage); }, 0x13 => { process_msg_events!(0, false, ProcessMessages::OneMessage); }, 0x14 => { process_msg_events!(0, true, ProcessMessages::OnePendingMessage); }, 0x15 => { process_msg_events!(0, false, ProcessMessages::OnePendingMessage); }, 0x16 => { process_events!(0, true); }, 0x17 => { process_events!(0, false); }, 0x18 => { process_msg_events!(1, true, ProcessMessages::AllMessages); }, 0x19 => { process_msg_events!(1, false, ProcessMessages::AllMessages); }, 0x1a => { process_msg_events!(1, true, ProcessMessages::OneMessage); }, 0x1b => { process_msg_events!(1, false, ProcessMessages::OneMessage); }, 0x1c => { process_msg_events!(1, true, ProcessMessages::OnePendingMessage); }, 0x1d => { process_msg_events!(1, false, ProcessMessages::OnePendingMessage); }, 0x1e => { process_events!(1, true); }, 0x1f => { process_events!(1, false); }, 0x20 => { process_msg_events!(2, true, ProcessMessages::AllMessages); }, 0x21 => { process_msg_events!(2, false, ProcessMessages::AllMessages); }, 0x22 => { process_msg_events!(2, true, ProcessMessages::OneMessage); }, 0x23 => { process_msg_events!(2, false, ProcessMessages::OneMessage); }, 0x24 => { process_msg_events!(2, true, ProcessMessages::OnePendingMessage); }, 0x25 => { process_msg_events!(2, false, ProcessMessages::OnePendingMessage); }, 0x26 => { process_events!(2, true); }, 0x27 => { process_events!(2, false); }, 0x2c => { if !chan_a_disconnected { nodes[1].peer_disconnected(&nodes[0].get_our_node_id(), false); chan_a_disconnected = true; drain_msg_events_on_disconnect!(0); } if monitor_a.should_update_manager.load(atomic::Ordering::Relaxed) { node_a_ser.0.clear(); nodes[0].write(&mut node_a_ser).unwrap(); } let (new_node_a, new_monitor_a) = reload_node!(node_a_ser, 0, monitor_a, keys_manager_a, fee_est_a); nodes[0] = new_node_a; monitor_a = new_monitor_a; }, 0x2d => { if !chan_a_disconnected { nodes[0].peer_disconnected(&nodes[1].get_our_node_id(), false); chan_a_disconnected = true; nodes[0].get_and_clear_pending_msg_events(); ab_events.clear(); ba_events.clear(); } if !chan_b_disconnected { nodes[2].peer_disconnected(&nodes[1].get_our_node_id(), false); chan_b_disconnected = true; nodes[2].get_and_clear_pending_msg_events(); bc_events.clear(); cb_events.clear(); } let (new_node_b, new_monitor_b) = reload_node!(node_b_ser, 1, monitor_b, keys_manager_b, fee_est_b); nodes[1] = new_node_b; monitor_b = new_monitor_b; }, 0x2e => { if !chan_b_disconnected { nodes[1].peer_disconnected(&nodes[2].get_our_node_id(), false); chan_b_disconnected = true; drain_msg_events_on_disconnect!(2); } if monitor_c.should_update_manager.load(atomic::Ordering::Relaxed) { node_c_ser.0.clear(); nodes[2].write(&mut node_c_ser).unwrap(); } let (new_node_c, new_monitor_c) = reload_node!(node_c_ser, 2, monitor_c, keys_manager_c, fee_est_c); nodes[2] = new_node_c; monitor_c = new_monitor_c; }, // 1/10th the channel size: 0x30 => { send_payment(&nodes[0], &nodes[1], chan_a, 10_000_000, &mut payment_id); }, 0x31 => { send_payment(&nodes[1], &nodes[0], chan_a, 10_000_000, &mut payment_id); }, 0x32 => { send_payment(&nodes[1], &nodes[2], chan_b, 10_000_000, &mut payment_id); }, 0x33 => { send_payment(&nodes[2], &nodes[1], chan_b, 10_000_000, &mut payment_id); }, 0x34 => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 10_000_000, &mut payment_id); }, 0x35 => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 10_000_000, &mut payment_id); }, 0x38 => { send_payment(&nodes[0], &nodes[1], chan_a, 1_000_000, &mut payment_id); }, 0x39 => { send_payment(&nodes[1], &nodes[0], chan_a, 1_000_000, &mut payment_id); }, 0x3a => { send_payment(&nodes[1], &nodes[2], chan_b, 1_000_000, &mut payment_id); }, 0x3b => { send_payment(&nodes[2], &nodes[1], chan_b, 1_000_000, &mut payment_id); }, 0x3c => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 1_000_000, &mut payment_id); }, 0x3d => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 1_000_000, &mut payment_id); }, 0x40 => { send_payment(&nodes[0], &nodes[1], chan_a, 100_000, &mut payment_id); }, 0x41 => { send_payment(&nodes[1], &nodes[0], chan_a, 100_000, &mut payment_id); }, 0x42 => { send_payment(&nodes[1], &nodes[2], chan_b, 100_000, &mut payment_id); }, 0x43 => { send_payment(&nodes[2], &nodes[1], chan_b, 100_000, &mut payment_id); }, 0x44 => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 100_000, &mut payment_id); }, 0x45 => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 100_000, &mut payment_id); }, 0x48 => { send_payment(&nodes[0], &nodes[1], chan_a, 10_000, &mut payment_id); }, 0x49 => { send_payment(&nodes[1], &nodes[0], chan_a, 10_000, &mut payment_id); }, 0x4a => { send_payment(&nodes[1], &nodes[2], chan_b, 10_000, &mut payment_id); }, 0x4b => { send_payment(&nodes[2], &nodes[1], chan_b, 10_000, &mut payment_id); }, 0x4c => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 10_000, &mut payment_id); }, 0x4d => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 10_000, &mut payment_id); }, 0x50 => { send_payment(&nodes[0], &nodes[1], chan_a, 1_000, &mut payment_id); }, 0x51 => { send_payment(&nodes[1], &nodes[0], chan_a, 1_000, &mut payment_id); }, 0x52 => { send_payment(&nodes[1], &nodes[2], chan_b, 1_000, &mut payment_id); }, 0x53 => { send_payment(&nodes[2], &nodes[1], chan_b, 1_000, &mut payment_id); }, 0x54 => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 1_000, &mut payment_id); }, 0x55 => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 1_000, &mut payment_id); }, 0x58 => { send_payment(&nodes[0], &nodes[1], chan_a, 100, &mut payment_id); }, 0x59 => { send_payment(&nodes[1], &nodes[0], chan_a, 100, &mut payment_id); }, 0x5a => { send_payment(&nodes[1], &nodes[2], chan_b, 100, &mut payment_id); }, 0x5b => { send_payment(&nodes[2], &nodes[1], chan_b, 100, &mut payment_id); }, 0x5c => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 100, &mut payment_id); }, 0x5d => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 100, &mut payment_id); }, 0x60 => { send_payment(&nodes[0], &nodes[1], chan_a, 10, &mut payment_id); }, 0x61 => { send_payment(&nodes[1], &nodes[0], chan_a, 10, &mut payment_id); }, 0x62 => { send_payment(&nodes[1], &nodes[2], chan_b, 10, &mut payment_id); }, 0x63 => { send_payment(&nodes[2], &nodes[1], chan_b, 10, &mut payment_id); }, 0x64 => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 10, &mut payment_id); }, 0x65 => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 10, &mut payment_id); }, 0x68 => { send_payment(&nodes[0], &nodes[1], chan_a, 1, &mut payment_id); }, 0x69 => { send_payment(&nodes[1], &nodes[0], chan_a, 1, &mut payment_id); }, 0x6a => { send_payment(&nodes[1], &nodes[2], chan_b, 1, &mut payment_id); }, 0x6b => { send_payment(&nodes[2], &nodes[1], chan_b, 1, &mut payment_id); }, 0x6c => { send_hop_payment(&nodes[0], &nodes[1], chan_a, &nodes[2], chan_b, 1, &mut payment_id); }, 0x6d => { send_hop_payment(&nodes[2], &nodes[1], chan_b, &nodes[0], chan_a, 1, &mut payment_id); }, 0x80 => { let max_feerate = last_htlc_clear_fee_a * FEE_SPIKE_BUFFER_FEE_INCREASE_MULTIPLE as u32; if fee_est_a.ret_val.fetch_add(250, atomic::Ordering::AcqRel) + 250 > max_feerate { fee_est_a.ret_val.store(max_feerate, atomic::Ordering::Release); } nodes[0].maybe_update_chan_fees(); }, 0x81 => { fee_est_a.ret_val.store(253, atomic::Ordering::Release); nodes[0].maybe_update_chan_fees(); }, 0x84 => { let max_feerate = last_htlc_clear_fee_b * FEE_SPIKE_BUFFER_FEE_INCREASE_MULTIPLE as u32; if fee_est_b.ret_val.fetch_add(250, atomic::Ordering::AcqRel) + 250 > max_feerate { fee_est_b.ret_val.store(max_feerate, atomic::Ordering::Release); } nodes[1].maybe_update_chan_fees(); }, 0x85 => { fee_est_b.ret_val.store(253, atomic::Ordering::Release); nodes[1].maybe_update_chan_fees(); }, 0x88 => { let max_feerate = last_htlc_clear_fee_c * FEE_SPIKE_BUFFER_FEE_INCREASE_MULTIPLE as u32; if fee_est_c.ret_val.fetch_add(250, atomic::Ordering::AcqRel) + 250 > max_feerate { fee_est_c.ret_val.store(max_feerate, atomic::Ordering::Release); } nodes[2].maybe_update_chan_fees(); }, 0x89 => { fee_est_c.ret_val.store(253, atomic::Ordering::Release); nodes[2].maybe_update_chan_fees(); }, 0xff => { // Test that no channel is in a stuck state where neither party can send funds even // after we resolve all pending events. // First make sure there are no pending monitor updates, resetting the error state // and calling force_channel_monitor_updated for each monitor. *monitor_a.persister.update_ret.lock().unwrap() = Ok(()); *monitor_b.persister.update_ret.lock().unwrap() = Ok(()); *monitor_c.persister.update_ret.lock().unwrap() = Ok(()); if let Some((id, _)) = monitor_a.latest_monitors.lock().unwrap().get(&chan_1_funding) { monitor_a.chain_monitor.force_channel_monitor_updated(chan_1_funding, *id); nodes[0].process_monitor_events(); } if let Some((id, _)) = monitor_b.latest_monitors.lock().unwrap().get(&chan_1_funding) { monitor_b.chain_monitor.force_channel_monitor_updated(chan_1_funding, *id); nodes[1].process_monitor_events(); } if let Some((id, _)) = monitor_b.latest_monitors.lock().unwrap().get(&chan_2_funding) { monitor_b.chain_monitor.force_channel_monitor_updated(chan_2_funding, *id); nodes[1].process_monitor_events(); } if let Some((id, _)) = monitor_c.latest_monitors.lock().unwrap().get(&chan_2_funding) { monitor_c.chain_monitor.force_channel_monitor_updated(chan_2_funding, *id); nodes[2].process_monitor_events(); } // Next, make sure peers are all connected to each other if chan_a_disconnected { nodes[0].peer_connected(&nodes[1].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); nodes[1].peer_connected(&nodes[0].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); chan_a_disconnected = false; } if chan_b_disconnected { nodes[1].peer_connected(&nodes[2].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); nodes[2].peer_connected(&nodes[1].get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None }); chan_b_disconnected = false; } for i in 0..std::usize::MAX { if i == 100 { panic!("It may take may iterations to settle the state, but it should not take forever"); } // Then, make sure any current forwards make their way to their destination if process_msg_events!(0, false, ProcessMessages::AllMessages) { continue; } if process_msg_events!(1, false, ProcessMessages::AllMessages) { continue; } if process_msg_events!(2, false, ProcessMessages::AllMessages) { continue; } // ...making sure any pending PendingHTLCsForwardable events are handled and // payments claimed. if process_events!(0, false) { continue; } if process_events!(1, false) { continue; } if process_events!(2, false) { continue; } break; } // Finally, make sure that at least one end of each channel can make a substantial payment assert!( send_payment(&nodes[0], &nodes[1], chan_a, 10_000_000, &mut payment_id) || send_payment(&nodes[1], &nodes[0], chan_a, 10_000_000, &mut payment_id)); assert!( send_payment(&nodes[1], &nodes[2], chan_b, 10_000_000, &mut payment_id) || send_payment(&nodes[2], &nodes[1], chan_b, 10_000_000, &mut payment_id)); last_htlc_clear_fee_a = fee_est_a.ret_val.load(atomic::Ordering::Acquire); last_htlc_clear_fee_b = fee_est_b.ret_val.load(atomic::Ordering::Acquire); last_htlc_clear_fee_c = fee_est_c.ret_val.load(atomic::Ordering::Acquire); }, _ => test_return!(), } node_a_ser.0.clear(); nodes[0].write(&mut node_a_ser).unwrap(); monitor_a.should_update_manager.store(false, atomic::Ordering::Relaxed); node_b_ser.0.clear(); nodes[1].write(&mut node_b_ser).unwrap(); monitor_b.should_update_manager.store(false, atomic::Ordering::Relaxed); node_c_ser.0.clear(); nodes[2].write(&mut node_c_ser).unwrap(); monitor_c.should_update_manager.store(false, atomic::Ordering::Relaxed); } } /// We actually have different behavior based on if a certain log string has been seen, so we have /// to do a bit more tracking. #[derive(Clone)] struct SearchingOutput { output: O, may_fail: Arc, } impl Output for SearchingOutput { fn locked_write(&self, data: &[u8]) { // We hit a design limitation of LN state machine (see CONCURRENT_INBOUND_HTLC_FEE_BUFFER) if std::str::from_utf8(data).unwrap().contains("Outbound update_fee HTLC buffer overflow - counterparty should force-close this channel") { self.may_fail.store(true, atomic::Ordering::Release); } self.output.locked_write(data) } } impl SearchingOutput { pub fn new(output: O) -> Self { Self { output, may_fail: Arc::new(atomic::AtomicBool::new(false)) } } } pub fn chanmon_consistency_test(data: &[u8], out: Out) { do_test(data, out); } #[no_mangle] pub extern "C" fn chanmon_consistency_run(data: *const u8, datalen: usize) { do_test(unsafe { std::slice::from_raw_parts(data, datalen) }, test_logger::DevNull{}); }