// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! The top-level channel management and payment tracking stuff lives here. //! //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those //! upon reconnect to the relevant peer(s). //! //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing //! on-chain transactions (it only monitors the chain to watch for any force-closes that might //! imply it needs to fail HTLCs/payments/channels it manages). //! use bitcoin::blockdata::block::{Block, BlockHeader}; use bitcoin::blockdata::transaction::Transaction; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::hmac::{Hmac, HmacEngine}; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hashes::cmp::fixed_time_eq; use bitcoin::hash_types::{BlockHash, Txid}; use bitcoin::secp256k1::key::{SecretKey,PublicKey}; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1::ecdh::SharedSecret; use bitcoin::secp256k1; use chain; use chain::Watch; use chain::chaininterface::{BroadcasterInterface, FeeEstimator}; use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID}; use chain::transaction::{OutPoint, TransactionData}; // Since this struct is returned in `list_channels` methods, expose it here in case users want to // construct one themselves. pub use ln::channel::CounterpartyForwardingInfo; use ln::channel::{Channel, ChannelError}; use ln::features::{InitFeatures, NodeFeatures}; use routing::router::{Route, RouteHop}; use ln::msgs; use ln::msgs::NetAddress; use ln::onion_utils; use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField}; use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner}; use util::config::UserConfig; use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider}; use util::{byte_utils, events}; use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer}; use util::chacha20::{ChaCha20, ChaChaReader}; use util::logger::Logger; use util::errors::APIError; use std::{cmp, mem}; use std::collections::{HashMap, hash_map, HashSet}; use std::io::{Cursor, Read}; use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::time::Duration; #[cfg(any(test, feature = "allow_wallclock_use"))] use std::time::Instant; use std::marker::{Sync, Send}; use std::ops::Deref; use bitcoin::hashes::hex::ToHex; // We hold various information about HTLC relay in the HTLC objects in Channel itself: // // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should // forward the HTLC with information it will give back to us when it does so, or if it should Fail // the HTLC with the relevant message for the Channel to handle giving to the remote peer. // // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo // with it to track where it came from (in case of onwards-forward error), waiting a random delay // before we forward it. // // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use // to either fail-backwards or fulfill the HTLC backwards along the relevant path). // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is // our payment, which we can use to decode errors or inform the user that the payment was sent. #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug enum PendingHTLCRouting { Forward { onion_packet: msgs::OnionPacket, short_channel_id: u64, // This should be NonZero eventually when we bump MSRV }, Receive { payment_data: Option, incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed }, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) struct PendingHTLCInfo { routing: PendingHTLCRouting, incoming_shared_secret: [u8; 32], payment_hash: PaymentHash, pub(super) amt_to_forward: u64, pub(super) outgoing_cltv_value: u32, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailureMsg { Relay(msgs::UpdateFailHTLC), Malformed(msgs::UpdateFailMalformedHTLC), } /// Stores whether we can't forward an HTLC or relevant forwarding info #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCStatus { Forward(PendingHTLCInfo), Fail(HTLCFailureMsg), } pub(super) enum HTLCForwardInfo { AddHTLC { forward_info: PendingHTLCInfo, // These fields are produced in `forward_htlcs()` and consumed in // `process_pending_htlc_forwards()` for constructing the // `HTLCSource::PreviousHopData` for failed and forwarded // HTLCs. prev_short_channel_id: u64, prev_htlc_id: u64, prev_funding_outpoint: OutPoint, }, FailHTLC { htlc_id: u64, err_packet: msgs::OnionErrorPacket, }, } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, PartialEq)] pub(crate) struct HTLCPreviousHopData { short_channel_id: u64, htlc_id: u64, incoming_packet_shared_secret: [u8; 32], // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards // channel with a preimage provided by the forward channel. outpoint: OutPoint, } struct ClaimableHTLC { prev_hop: HTLCPreviousHopData, value: u64, /// Filled in when the HTLC was received with a payment_secret packet, which contains a /// total_msat (which may differ from value if this is a Multi-Path Payment) and a /// payment_secret which prevents path-probing attacks and can associate different HTLCs which /// are part of the same payment. payment_data: Option, cltv_expiry: u32, } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, PartialEq)] pub(crate) enum HTLCSource { PreviousHopData(HTLCPreviousHopData), OutboundRoute { path: Vec, session_priv: SecretKey, /// Technically we can recalculate this from the route, but we cache it here to avoid /// doing a double-pass on route when we get a failure back first_hop_htlc_msat: u64, }, } #[cfg(test)] impl HTLCSource { pub fn dummy() -> Self { HTLCSource::OutboundRoute { path: Vec::new(), session_priv: SecretKey::from_slice(&[1; 32]).unwrap(), first_hop_htlc_msat: 0, } } } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailReason { LightningError { err: msgs::OnionErrorPacket, }, Reason { failure_code: u16, data: Vec, } } /// payment_hash type, use to cross-lock hop /// (C-not exported) as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentHash(pub [u8;32]); /// payment_preimage type, use to route payment between hop /// (C-not exported) as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentPreimage(pub [u8;32]); /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together /// (C-not exported) as we just use [u8; 32] directly #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentSecret(pub [u8;32]); type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>); /// Error type returned across the channel_state mutex boundary. When an Err is generated for a /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel /// immediately (ie with no further calls on it made). Thus, this step happens inside a /// channel_state lock. We then return the set of things that need to be done outside the lock in /// this struct and call handle_error!() on it. struct MsgHandleErrInternal { err: msgs::LightningError, shutdown_finish: Option<(ShutdownResult, Option)>, } impl MsgHandleErrInternal { #[inline] fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, shutdown_finish: None, } } #[inline] fn ignore_no_close(err: String) -> Self { Self { err: LightningError { err, action: msgs::ErrorAction::IgnoreError, }, shutdown_finish: None, } } #[inline] fn from_no_close(err: msgs::LightningError) -> Self { Self { err, shutdown_finish: None } } #[inline] fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option) -> Self { Self { err: LightningError { err: err.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err }, }, }, shutdown_finish: Some((shutdown_res, channel_update)), } } #[inline] fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Ignore(msg) => LightningError { err: msg, action: msgs::ErrorAction::IgnoreError, }, ChannelError::Close(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg }, }, }, ChannelError::CloseDelayBroadcast(msg) => LightningError { err: msg.clone(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg }, }, }, }, shutdown_finish: None, } } } /// We hold back HTLCs we intend to relay for a random interval greater than this (see /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited). /// This provides some limited amount of privacy. Ideally this would range from somewhere like one /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly. const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100; /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should /// be sent in the order they appear in the return value, however sometimes the order needs to be /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order /// they were originally sent). In those cases, this enum is also returned. #[derive(Clone, PartialEq)] pub(super) enum RAACommitmentOrder { /// Send the CommitmentUpdate messages first CommitmentFirst, /// Send the RevokeAndACK message first RevokeAndACKFirst, } // Note this is only exposed in cfg(test): pub(super) struct ChannelHolder { pub(super) by_id: HashMap<[u8; 32], Channel>, pub(super) short_to_id: HashMap, /// short channel id -> forward infos. Key of 0 means payments received /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the existence of a channel with the short id here, nor the short /// ids in the PendingHTLCInfo! pub(super) forward_htlcs: HashMap>, /// (payment_hash, payment_secret) -> Vec for tracking HTLCs that /// were to us and can be failed/claimed by the user /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the channels given here actually existing anymore by the time you /// go to read them! claimable_htlcs: HashMap<(PaymentHash, Option), Vec>, /// Messages to send to peers - pushed to in the same lock that they are generated in (except /// for broadcast messages, where ordering isn't as strict). pub(super) pending_msg_events: Vec, } /// Events which we process internally but cannot be procsesed immediately at the generation site /// for some reason. They are handled in timer_tick_occurred, so may be processed with /// quite some time lag. enum BackgroundEvent { /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder /// commitment transaction. ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)), } /// State we hold per-peer. In the future we should put channels in here, but for now we only hold /// the latest Init features we heard from the peer. struct PeerState { latest_features: InitFeatures, } /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g. /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static /// lifetimes). Other times you can afford a reference, which is more efficient, in which case /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents /// issues such as overly long function definitions. Note that the ChannelManager can take any /// type that implements KeysInterface for its keys manager, but this type alias chooses the /// concrete type of the KeysManager. pub type SimpleArcChannelManager = ChannelManager, Arc, Arc, Arc, Arc>; /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes). /// But if this is not necessary, using a reference is more efficient. Defining these type aliases /// helps with issues such as long function definitions. Note that the ChannelManager can take any /// type that implements KeysInterface for its keys manager, but this type alias chooses the /// concrete type of the KeysManager. pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager; /// Manager which keeps track of a number of channels and sends messages to the appropriate /// channel, also tracking HTLC preimages and forwarding onion packets appropriately. /// /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through /// to individual Channels. /// /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for /// all peers during write/read (though does not modify this instance, only the instance being /// serialized). This will result in any channels which have not yet exchanged funding_created (ie /// called funding_transaction_generated for outbound channels). /// /// Note that you can be a bit lazier about writing out ChannelManager than you can be with /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during /// the serialization process). If the deserialized version is out-of-date compared to the /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees). /// /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call /// block_connected() to step towards your best block) upon deserialization before using the /// object! /// /// Note that ChannelManager is responsible for tracking liveness of its channels and generating /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been /// offline for a full minute. In order to track this, you must call /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect. /// /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but /// essentially you should default to using a SimpleRefChannelManager, and use a /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when /// you're using lightning-net-tokio. pub struct ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { default_configuration: UserConfig, genesis_hash: BlockHash, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, #[cfg(test)] pub(super) best_block: RwLock, #[cfg(not(test))] best_block: RwLock, secp_ctx: Secp256k1, #[cfg(any(test, feature = "_test_utils"))] pub(super) channel_state: Mutex>, #[cfg(not(any(test, feature = "_test_utils")))] channel_state: Mutex>, our_network_key: SecretKey, our_network_pubkey: PublicKey, /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this /// value increases strictly since we don't assume access to a time source. last_node_announcement_serial: AtomicUsize, /// The bulk of our storage will eventually be here (channels and message queues and the like). /// If we are connected to a peer we always at least have an entry here, even if no channels /// are currently open with that peer. /// Because adding or removing an entry is rare, we usually take an outer read lock and then /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a /// new channel. per_peer_state: RwLock>>, pending_events: Mutex>, pending_background_events: Mutex>, /// Used when we have to take a BIG lock to make sure everything is self-consistent. /// Essentially just when we're serializing ourselves out. /// Taken first everywhere where we are making changes before any other locks. /// When acquiring this lock in read mode, rather than acquiring it directly, call /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier /// the lock contains sends out a notification when the lock is released. total_consistency_lock: RwLock<()>, persistence_notifier: PersistenceNotifier, keys_manager: K, logger: L, } /// Chain-related parameters used to construct a new `ChannelManager`. /// /// Typically, the block-specific parameters are derived from the best block hash for the network, /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters /// are not needed when deserializing a previously constructed `ChannelManager`. pub struct ChainParameters { /// The network for determining the `chain_hash` in Lightning messages. pub network: Network, /// The hash and height of the latest block successfully connected. /// /// Used to track on-chain channel funding outputs and send payments with reliable timelocks. pub best_block: BestBlock, } /// The best known block as identified by its hash and height. pub struct BestBlock { block_hash: BlockHash, height: u32, } impl BestBlock { /// Returns the best block from the genesis of the given network. pub fn from_genesis(network: Network) -> Self { BestBlock { block_hash: genesis_block(network).header.block_hash(), height: 0, } } /// Returns the best block as identified by the given block hash and height. pub fn new(block_hash: BlockHash, height: u32) -> Self { BestBlock { block_hash, height } } /// Returns the best block hash. pub fn block_hash(&self) -> BlockHash { self.block_hash } /// Returns the best block height. pub fn height(&self) -> u32 { self.height } } /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is /// desirable to notify any listeners on `await_persistable_update_timeout`/ /// `await_persistable_update` that new updates are available for persistence. Therefore, this /// struct is responsible for locking the total consistency lock and, upon going out of scope, /// sending the aforementioned notification (since the lock being released indicates that the /// updates are ready for persistence). struct PersistenceNotifierGuard<'a> { persistence_notifier: &'a PersistenceNotifier, // We hold onto this result so the lock doesn't get released immediately. _read_guard: RwLockReadGuard<'a, ()>, } impl<'a> PersistenceNotifierGuard<'a> { fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self { let read_guard = lock.read().unwrap(); Self { persistence_notifier: notifier, _read_guard: read_guard, } } } impl<'a> Drop for PersistenceNotifierGuard<'a> { fn drop(&mut self) { self.persistence_notifier.notify(); } } /// The amount of time in blocks we require our counterparty wait to claim their money (ie time /// between when we, or our watchtower, must check for them having broadcast a theft transaction). /// /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`] /// /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24; /// The amount of time in blocks we're willing to wait to claim money back to us. This matches /// the maximum required amount in lnd as of March 2021. pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7; /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound /// HTLC's CLTV. The current default represents roughly six hours of blocks at six blocks/hour. /// /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`] /// /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER, // i.e. the node we forwarded the payment on to should always have enough room to reliably time out // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more). pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6 * 6; pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO? // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS, // ie that if the next-hop peer fails the HTLC within // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain, // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before // LATENCY_GRACE_PERIOD_BLOCKS. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS; // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See // ChannelMontior::would_broadcast_at_height for a description of why this is needed. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER; /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels #[derive(Clone)] pub struct ChannelDetails { /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes, /// thereafter this is the txid of the funding transaction xor the funding transaction output). /// Note that this means this value is *not* persistent - it can change once during the /// lifetime of the channel. pub channel_id: [u8; 32], /// The position of the funding transaction in the chain. None if the funding transaction has /// not yet been confirmed and the channel fully opened. pub short_channel_id: Option, /// The node_id of our counterparty pub remote_network_id: PublicKey, /// The Features the channel counterparty provided upon last connection. /// Useful for routing as it is the most up-to-date copy of the counterparty's features and /// many routing-relevant features are present in the init context. pub counterparty_features: InitFeatures, /// The value, in satoshis, of this channel as appears in the funding output pub channel_value_satoshis: u64, /// The user_id passed in to create_channel, or 0 if the channel was inbound. pub user_id: u64, /// The available outbound capacity for sending HTLCs to the remote peer. This does not include /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not /// available for inclusion in new outbound HTLCs). This further does not include any pending /// outgoing HTLCs which are awaiting some other resolution to be sent. pub outbound_capacity_msat: u64, /// The available inbound capacity for the remote peer to send HTLCs to us. This does not /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not /// available for inclusion in new inbound HTLCs). /// Note that there are some corner cases not fully handled here, so the actual available /// inbound capacity may be slightly higher than this. pub inbound_capacity_msat: u64, /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b) /// the peer is connected, and (c) no monitor update failure is pending resolution. pub is_live: bool, /// Information on the fees and requirements that the counterparty requires when forwarding /// payments to us through this channel. pub counterparty_forwarding_info: Option, } /// If a payment fails to send, it can be in one of several states. This enum is returned as the /// Err() type describing which state the payment is in, see the description of individual enum /// states for more. #[derive(Clone, Debug)] pub enum PaymentSendFailure { /// A parameter which was passed to send_payment was invalid, preventing us from attempting to /// send the payment at all. No channel state has been changed or messages sent to peers, and /// once you've changed the parameter at error, you can freely retry the payment in full. ParameterError(APIError), /// A parameter in a single path which was passed to send_payment was invalid, preventing us /// from attempting to send the payment at all. No channel state has been changed or messages /// sent to peers, and once you've changed the parameter at error, you can freely retry the /// payment in full. /// /// The results here are ordered the same as the paths in the route object which was passed to /// send_payment. PathParameterError(Vec>), /// All paths which were attempted failed to send, with no channel state change taking place. /// You can freely retry the payment in full (though you probably want to do so over different /// paths than the ones selected). AllFailedRetrySafe(Vec), /// Some paths which were attempted failed to send, though possibly not all. At least some /// paths have irrevocably committed to the HTLC and retrying the payment in full would result /// in over-/re-payment. /// /// The results here are ordered the same as the paths in the route object which was passed to /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely /// retried (though there is currently no API with which to do so). /// /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel /// with the latest update_id. PartialFailure(Vec>), } macro_rules! handle_error { ($self: ident, $internal: expr, $counterparty_node_id: expr) => { match $internal { Ok(msg) => Ok(msg), Err(MsgHandleErrInternal { err, shutdown_finish }) => { #[cfg(debug_assertions)] { // In testing, ensure there are no deadlocks where the lock is already held upon // entering the macro. assert!($self.channel_state.try_lock().is_ok()); } let mut msg_events = Vec::with_capacity(2); if let Some((shutdown_res, update_option)) = shutdown_finish { $self.finish_force_close_channel(shutdown_res); if let Some(update) = update_option { msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } log_error!($self.logger, "{}", err.err); if let msgs::ErrorAction::IgnoreError = err.action { } else { msg_events.push(events::MessageSendEvent::HandleError { node_id: $counterparty_node_id, action: err.action.clone() }); } if !msg_events.is_empty() { $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events); } // Return error in case higher-API need one Err(err) }, } } } macro_rules! break_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(ChannelError::Ignore(msg)) => { break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone())) }, Err(ChannelError::Close(msg)) => { log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok())) }, Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); } } } } macro_rules! try_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(ChannelError::Ignore(msg)) => { return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone())) }, Err(ChannelError::Close(msg)) => { log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok())) }, Err(ChannelError::CloseDelayBroadcast(msg)) => { log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } let shutdown_res = chan.force_shutdown(false); return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok())) } } } } macro_rules! handle_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new()) }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { match $err { ChannelMonitorUpdateErr::PermanentFailure => { log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..])); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } // TODO: $failed_fails is dropped here, which will cause other channels to hit the // chain in a confused state! We need to move them into the ChannelMonitor which // will be responsible for failing backwards once things confirm on-chain. // It's ok that we drop $failed_forwards here - at this point we'd rather they // broadcast HTLC-Timeout and pay the associated fees to get their funds back than // us bother trying to claim it just to forward on to another peer. If we're // splitting hairs we'd prefer to claim payments that were to us, but we haven't // given up the preimage yet, so might as well just wait until the payment is // retried, avoiding the on-chain fees. let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok())); res }, ChannelMonitorUpdateErr::TemporaryFailure => { log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails", log_bytes!($entry.key()[..]), if $resend_commitment && $resend_raa { match $action_type { RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" }, RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" }, } } else if $resend_commitment { "commitment" } else if $resend_raa { "RAA" } else { "nothing" }, (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(), (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len()); if !$resend_commitment { debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa); } if !$resend_raa { debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment); } $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails); Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key())) }, } } } macro_rules! return_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment); }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails); } } // Does not break in case of TemporaryFailure! macro_rules! maybe_break_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) { (e, ChannelMonitorUpdateErr::PermanentFailure) => { break e; }, (_, ChannelMonitorUpdateErr::TemporaryFailure) => { }, } } } impl ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Constructs a new ChannelManager to hold several channels and route between them. /// /// This is the main "logic hub" for all channel-related actions, and implements /// ChannelMessageHandler. /// /// Non-proportional fees are fixed according to our risk using the provided fee estimator. /// /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`! /// /// Users need to notify the new ChannelManager when a new block is connected or /// disconnected using its `block_connected` and `block_disconnected` methods, starting /// from after `params.latest_hash`. pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self { let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes()); ChannelManager { default_configuration: config.clone(), genesis_hash: genesis_block(params.network).header.block_hash(), fee_estimator: fee_est, chain_monitor, tx_broadcaster, best_block: RwLock::new(params.best_block), channel_state: Mutex::new(ChannelHolder{ by_id: HashMap::new(), short_to_id: HashMap::new(), forward_htlcs: HashMap::new(), claimable_htlcs: HashMap::new(), pending_msg_events: Vec::new(), }), our_network_key: keys_manager.get_node_secret(), our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()), secp_ctx, last_node_announcement_serial: AtomicUsize::new(0), per_peer_state: RwLock::new(HashMap::new()), pending_events: Mutex::new(Vec::new()), pending_background_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), persistence_notifier: PersistenceNotifier::new(), keys_manager, logger, } } /// Gets the current configuration applied to all new channels, as pub fn get_current_default_configuration(&self) -> &UserConfig { &self.default_configuration } /// Creates a new outbound channel to the given remote node and with the given value. /// /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow /// tracking of which events correspond with which create_channel call. Note that the /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and /// otherwise ignored. /// /// If successful, will generate a SendOpenChannel message event, so you should probably poll /// PeerManager::process_events afterwards. /// /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000. pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option) -> Result<(), APIError> { if channel_value_satoshis < 1000 { return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) }); } let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration }; let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?; let res = channel.get_open_channel(self.genesis_hash.clone()); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); // We want to make sure the lock is actually acquired by PersistenceNotifierGuard. debug_assert!(&self.total_consistency_lock.try_write().is_err()); let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => { if cfg!(feature = "fuzztarget") { return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() }); } else { panic!("RNG is bad???"); } }, hash_map::Entry::Vacant(entry) => { entry.insert(channel); } } channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: their_network_key, msg: res, }); Ok(()) } fn list_channels_with_filter)) -> bool>(&self, f: Fn) -> Vec { let mut res = Vec::new(); { let channel_state = self.channel_state.lock().unwrap(); res.reserve(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter().filter(f) { let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat(); res.push(ChannelDetails { channel_id: (*channel_id).clone(), short_channel_id: channel.get_short_channel_id(), remote_network_id: channel.get_counterparty_node_id(), counterparty_features: InitFeatures::empty(), channel_value_satoshis: channel.get_value_satoshis(), inbound_capacity_msat, outbound_capacity_msat, user_id: channel.get_user_id(), is_live: channel.is_live(), counterparty_forwarding_info: channel.counterparty_forwarding_info(), }); } } let per_peer_state = self.per_peer_state.read().unwrap(); for chan in res.iter_mut() { if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) { chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone(); } } res } /// Gets the list of open channels, in random order. See ChannelDetail field documentation for /// more information. pub fn list_channels(&self) -> Vec { self.list_channels_with_filter(|_| true) } /// Gets the list of usable channels, in random order. Useful as an argument to /// get_route to ensure non-announced channels are used. /// /// These are guaranteed to have their is_live value set to true, see the documentation for /// ChannelDetails::is_live for more info on exactly what the criteria are. pub fn list_usable_channels(&self) -> Vec { // Note we use is_live here instead of usable which leads to somewhat confused // internal/external nomenclature, but that's ok cause that's probably what the user // really wanted anyway. self.list_channels_with_filter(|&(_, ref channel)| channel.is_live()) } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// May generate a SendShutdown message event on success, which should be relayed. pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let (mut failed_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?; channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: chan_entry.get().get_counterparty_node_id(), msg: shutdown_msg }); if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (failed_htlcs, Some(chan_entry.remove_entry().1)) } else { (failed_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}) } }; for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } let chan_update = if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { Some(update) } else { None } } else { None }; if let Some(update) = chan_update { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(()) } #[inline] fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) { let (monitor_update_option, mut failed_htlcs) = shutdown_res; log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len()); for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } if let Some((funding_txo, monitor_update)) = monitor_update_option { // There isn't anything we can do if we get an update failure - we're already // force-closing. The monitor update on the required in-memory copy should broadcast // the latest local state, which is the best we can do anyway. Thus, it is safe to // ignore the result here. let _ = self.chain_monitor.update_channel(funding_txo, monitor_update); } } fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result { let mut chan = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) { if let Some(node_id) = peer_node_id { if chan.get().get_counterparty_node_id() != *node_id { return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}); } } if let Some(short_id) = chan.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } chan.remove_entry().1 } else { return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()}); } }; log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..])); self.finish_force_close_channel(chan.force_shutdown(true)); if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(chan.get_counterparty_node_id()) } /// Force closes a channel, immediately broadcasting the latest local commitment transaction to /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager. pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); match self.force_close_channel_with_peer(channel_id, None) { Ok(counterparty_node_id) => { self.channel_state.lock().unwrap().pending_msg_events.push( events::MessageSendEvent::HandleError { node_id: counterparty_node_id, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() } }, } ); Ok(()) }, Err(e) => Err(e) } } /// Force close all channels, immediately broadcasting the latest local commitment transaction /// for each to the chain and rejecting new HTLCs on each. pub fn force_close_all_channels(&self) { for chan in self.list_channels() { let _ = self.force_close_channel(&chan.channel_id); } } fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard>) { macro_rules! return_malformed_err { ($msg: expr, $err_code: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(), failure_code: $err_code, })), self.channel_state.lock().unwrap()); } } } if let Err(_) = msg.onion_routing_packet.public_key { return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6); } let shared_secret = { let mut arr = [0; 32]; arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]); arr }; let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret); if msg.onion_routing_packet.version != 0 { //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way, //the hash doesn't really serve any purpose - in the case of hashing all data, the //receiving node would have to brute force to figure out which version was put in the //packet by the node that send us the message, in the case of hashing the hop_data, the //node knows the HMAC matched, so they already know what is there... return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4); } let mut hmac = HmacEngine::::new(&mu); hmac.input(&msg.onion_routing_packet.hop_data); hmac.input(&msg.payment_hash.0[..]); if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) { return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5); } let mut channel_state = None; macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg); if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data), })), channel_state.unwrap()); } } } let mut chacha = ChaCha20::new(&rho, &[0u8; 8]); let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) }; let (next_hop_data, next_hop_hmac) = { match msgs::OnionHopData::read(&mut chacha_stream) { Err(err) => { let error_code = match err { msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte msgs::DecodeError::UnknownRequiredFeature| msgs::DecodeError::InvalidValue| msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload _ => 0x2000 | 2, // Should never happen }; return_err!("Unable to decode our hop data", error_code, &[0;0]); }, Ok(msg) => { let mut hmac = [0; 32]; if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) { return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]); } (msg, hmac) }, } }; let pending_forward_info = if next_hop_hmac == [0; 32] { #[cfg(test)] { // In tests, make sure that the initial onion pcket data is, at least, non-0. // We could do some fancy randomness test here, but, ehh, whatever. // This checks for the issue where you can calculate the path length given the // onion data as all the path entries that the originator sent will be here // as-is (and were originally 0s). // Of course reverse path calculation is still pretty easy given naive routing // algorithms, but this fixes the most-obvious case. let mut next_bytes = [0; 32]; chacha_stream.read_exact(&mut next_bytes).unwrap(); assert_ne!(next_bytes[..], [0; 32][..]); chacha_stream.read_exact(&mut next_bytes).unwrap(); assert_ne!(next_bytes[..], [0; 32][..]); } // OUR PAYMENT! // final_expiry_too_soon // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least // HTLC_FAIL_BACK_BUFFER blocks to go. // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational). if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 { return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]); } // final_incorrect_htlc_amount if next_hop_data.amt_to_forward > msg.amount_msat { return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat)); } // final_incorrect_cltv_expiry if next_hop_data.outgoing_cltv_value != msg.cltv_expiry { return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry)); } let payment_data = match next_hop_data.format { msgs::OnionHopDataFormat::Legacy { .. } => None, msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]), msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data, }; // Note that we could obviously respond immediately with an update_fulfill_htlc // message, however that would leak that we are the recipient of this payment, so // instead we stay symmetric with the forwarding case, only responding (after a // delay) once they've send us a commitment_signed! PendingHTLCStatus::Forward(PendingHTLCInfo { routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry: msg.cltv_expiry, }, payment_hash: msg.payment_hash.clone(), incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.amt_to_forward, outgoing_cltv_value: next_hop_data.outgoing_cltv_value, }) } else { let mut new_packet_data = [0; 20*65]; let read_pos = chacha_stream.read(&mut new_packet_data).unwrap(); #[cfg(debug_assertions)] { // Check two things: // a) that the behavior of our stream here will return Ok(0) even if the TLV // read above emptied out our buffer and the unwrap() wont needlessly panic // b) that we didn't somehow magically end up with extra data. let mut t = [0; 1]; debug_assert!(chacha_stream.read(&mut t).unwrap() == 0); } // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we // fill the onion hop data we'll forward to our next-hop peer. chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]); let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap(); let blinding_factor = { let mut sha = Sha256::engine(); sha.input(&new_pubkey.serialize()[..]); sha.input(&shared_secret); Sha256::from_engine(sha).into_inner() }; let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) { Err(e) } else { Ok(new_pubkey) }; let outgoing_packet = msgs::OnionPacket { version: 0, public_key, hop_data: new_packet_data, hmac: next_hop_hmac.clone(), }; let short_channel_id = match next_hop_data.format { msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id, msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id, msgs::OnionHopDataFormat::FinalNode { .. } => { return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]); }, }; PendingHTLCStatus::Forward(PendingHTLCInfo { routing: PendingHTLCRouting::Forward { onion_packet: outgoing_packet, short_channel_id, }, payment_hash: msg.payment_hash.clone(), incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.amt_to_forward, outgoing_cltv_value: next_hop_data.outgoing_cltv_value, }) }; channel_state = Some(self.channel_state.lock().unwrap()); if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info { // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel // with a short_channel_id of 0. This is important as various things later assume // short_channel_id is non-0 in any ::Forward. if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing { let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned(); let forwarding_id = match id_option { None => { // unknown_next_peer return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]); }, Some(id) => id.clone(), }; if let Some((err, code, chan_update)) = loop { let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap(); // Note that we could technically not return an error yet here and just hope // that the connection is reestablished or monitor updated by the time we get // around to doing the actual forward, but better to fail early if we can and // hopefully an attacker trying to path-trace payments cannot make this occur // on a small/per-node/per-channel scale. if !chan.is_live() { // channel_disabled break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap()))); } if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap()))); } let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) }); if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap()))); } if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap()))); } let cur_height = self.best_block.read().unwrap().height() + 1; // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational) if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap()))); } if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far break Some(("CLTV expiry is too far in the future", 21, None)); } // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS. // But, to be safe against policy reception, we use a longuer delay. if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 { break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap()))); } break None; } { let mut res = Vec::with_capacity(8 + 128); if let Some(chan_update) = chan_update { if code == 0x1000 | 11 || code == 0x1000 | 12 { res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat)); } else if code == 0x1000 | 13 { res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry)); } else if code == 0x1000 | 20 { // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791 res.extend_from_slice(&byte_utils::be16_to_array(0)); } res.extend_from_slice(&chan_update.encode_with_len()[..]); } return_err!(err, code, &res[..]); } } } (pending_forward_info, channel_state.unwrap()) } /// only fails if the channel does not yet have an assigned short_id /// May be called with channel_state already locked! fn get_channel_update(&self, chan: &Channel) -> Result { let short_channel_id = match chan.get_short_channel_id() { None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}), Some(id) => id, }; let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..]; let unsigned = msgs::UnsignedChannelUpdate { chain_hash: self.genesis_hash, short_channel_id, timestamp: chan.get_update_time_counter(), flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1), cltv_expiry_delta: chan.get_cltv_expiry_delta(), htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(), htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()), fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator), fee_proportional_millionths: chan.get_fee_proportional_millionths(), excess_data: Vec::new(), }; let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]); let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key); Ok(msgs::ChannelUpdate { signature: sig, contents: unsigned }) } // Only public for testing, this should otherwise never be called direcly pub(crate) fn send_payment_along_path(&self, path: &Vec, payment_hash: &PaymentHash, payment_secret: &Option, total_value: u64, cur_height: u32) -> Result<(), APIError> { log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id); let prng_seed = self.keys_manager.get_secure_random_bytes(); let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted"); let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv) .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?; let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?; if onion_utils::route_size_insane(&onion_payloads) { return Err(APIError::RouteError{err: "Route size too large considering onion data"}); } let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let err: Result<(), _> = loop { let mut channel_lock = self.channel_state.lock().unwrap(); let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) { None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}), Some(id) => id.clone(), }; let channel_state = &mut *channel_lock; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) { match { if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey { return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"}); } if !chan.get().is_live() { return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()}); } break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute { path: path.clone(), session_priv: session_priv.clone(), first_hop_htlc_msat: htlc_msat, }, onion_packet, &self.logger), channel_state, chan) } { Some((update_add, commitment_signed, monitor_update)) => { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true); // Note that MonitorUpdateFailed here indicates (per function docs) // that we will resend the commitment update once monitor updating // is restored. Therefore, we must return an error indicating that // it is unsafe to retry the payment wholesale, which we do in the // send_payment check for MonitorUpdateFailed, below. return Err(APIError::MonitorUpdateFailed); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: path.first().unwrap().pubkey, updates: msgs::CommitmentUpdate { update_add_htlcs: vec![update_add], update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, }, }); }, None => {}, } } else { unreachable!(); } return Ok(()); }; match handle_error!(self, err, path.first().unwrap().pubkey) { Ok(_) => unreachable!(), Err(e) => { Err(APIError::ChannelUnavailable { err: e.err }) }, } } /// Sends a payment along a given route. /// /// Value parameters are provided via the last hop in route, see documentation for RouteHop /// fields for more info. /// /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative /// payment), we don't do anything to stop you! We always try to ensure that if the provided /// next hop knows the preimage to payment_hash they can claim an additional amount as /// specified in the last hop in the route! Thus, you should probably do your own /// payment_preimage tracking (which you should already be doing as they represent "proof of /// payment") and prevent double-sends yourself. /// /// May generate SendHTLCs message(s) event on success, which should be relayed. /// /// Each path may have a different return value, and PaymentSendValue may return a Vec with /// each entry matching the corresponding-index entry in the route paths, see /// PaymentSendFailure for more info. /// /// In general, a path may raise: /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee, /// node public key) is specified. /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates /// (including due to previous monitor update failure or new permanent monitor update /// failure). /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the /// relevant updates. /// /// Note that depending on the type of the PaymentSendFailure the HTLC may have been /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a /// different route unless you intend to pay twice! /// /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route /// must not contain multiple paths as multi-path payments require a recipient-provided /// payment_secret. /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature /// bit set (either as required or as available). If multiple paths are present in the Route, /// we assume the invoice had the basic_mpp feature set. pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option) -> Result<(), PaymentSendFailure> { if route.paths.len() < 1 { return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"})); } if route.paths.len() > 10 { // This limit is completely arbitrary - there aren't any real fundamental path-count // limits. After we support retrying individual paths we should likely bump this, but // for now more than 10 paths likely carries too much one-path failure. return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"})); } let mut total_value = 0; let our_node_id = self.get_our_node_id(); let mut path_errs = Vec::with_capacity(route.paths.len()); 'path_check: for path in route.paths.iter() { if path.len() < 1 || path.len() > 20 { path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"})); continue 'path_check; } for (idx, hop) in path.iter().enumerate() { if idx != path.len() - 1 && hop.pubkey == our_node_id { path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"})); continue 'path_check; } } total_value += path.last().unwrap().fee_msat; path_errs.push(Ok(())); } if path_errs.iter().any(|e| e.is_err()) { return Err(PaymentSendFailure::PathParameterError(path_errs)); } let cur_height = self.best_block.read().unwrap().height() + 1; let mut results = Vec::new(); for path in route.paths.iter() { results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height)); } let mut has_ok = false; let mut has_err = false; for res in results.iter() { if res.is_ok() { has_ok = true; } if res.is_err() { has_err = true; } if let &Err(APIError::MonitorUpdateFailed) = res { // MonitorUpdateFailed is inherently unsafe to retry, so we call it a // PartialFailure. has_err = true; has_ok = true; break; } } if has_err && has_ok { Err(PaymentSendFailure::PartialFailure(results)) } else if has_err { Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect())) } else { Ok(()) } } /// Call this upon creation of a funding transaction for the given channel. /// /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`]. /// /// Panics if a funding transaction has already been provided for this channel. /// /// May panic if the output found in the funding transaction is duplicative with some other /// channel (note that this should be trivially prevented by using unique funding transaction /// keys per-channel). /// /// Do NOT broadcast the funding transaction yourself. When we have safely received our /// counterparty's signature the funding transaction will automatically be broadcast via the /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed. /// /// Note that this includes RBF or similar transaction replacement strategies - lightning does /// not currently support replacing a funding transaction on an existing channel. Instead, /// create a new channel with a conflicting funding transaction. pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); for inp in funding_transaction.input.iter() { if inp.witness.is_empty() { return Err(APIError::APIMisuseError { err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned() }); } } let (chan, msg) = { let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) { Some(mut chan) => { let mut output_index = None; let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh(); for (idx, outp) in funding_transaction.output.iter().enumerate() { if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() { if output_index.is_some() { return Err(APIError::APIMisuseError { err: "Multiple outputs matched the expected script and value".to_owned() }); } if idx > u16::max_value() as usize { return Err(APIError::APIMisuseError { err: "Transaction had more than 2^16 outputs, which is not supported".to_owned() }); } output_index = Some(idx as u16); } } if output_index.is_none() { return Err(APIError::APIMisuseError { err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned() }); } let funding_txo = OutPoint { txid: funding_transaction.txid(), index: output_index.unwrap() }; (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger) .map_err(|e| if let ChannelError::Close(msg) = e { MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None) } else { unreachable!(); }) , chan) }, None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) }, }; match handle_error!(self, res, chan.get_counterparty_node_id()) { Ok(funding_msg) => { (chan, funding_msg) }, Err(_) => { return Err(APIError::ChannelUnavailable { err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned() }) }, } }; let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated { node_id: chan.get_counterparty_node_id(), msg, }); match channel_state.by_id.entry(chan.channel_id()) { hash_map::Entry::Occupied(_) => { panic!("Generated duplicate funding txid?"); }, hash_map::Entry::Vacant(e) => { e.insert(chan); } } Ok(()) } fn get_announcement_sigs(&self, chan: &Channel) -> Option { if !chan.should_announce() { log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id())); return None } let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) { Ok(res) => res, Err(_) => return None, // Only in case of state precondition violations eg channel is closing }; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); Some(msgs::AnnouncementSignatures { channel_id: chan.channel_id(), short_channel_id: chan.get_short_channel_id().unwrap(), node_signature: our_node_sig, bitcoin_signature: our_bitcoin_sig, }) } #[allow(dead_code)] // Messages of up to 64KB should never end up more than half full with addresses, as that would // be absurd. We ensure this by checking that at least 500 (our stated public contract on when // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB // message... const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2; #[deny(const_err)] #[allow(dead_code)] // ...by failing to compile if the number of addresses that would be half of a message is // smaller than 500: const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500; /// Generates a signed node_announcement from the given arguments and creates a /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have /// seen a channel_announcement from us (ie unless we have public channels open). /// /// RGB is a node "color" and alias is a printable human-readable string to describe this node /// to humans. They carry no in-protocol meaning. /// /// addresses represent the set (possibly empty) of socket addresses on which this node accepts /// incoming connections. These will be broadcast to the network, publicly tying these /// addresses together. If you wish to preserve user privacy, addresses should likely contain /// only Tor Onion addresses. /// /// Panics if addresses is absurdly large (more than 500). pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); if addresses.len() > 500 { panic!("More than half the message size was taken up by public addresses!"); } let announcement = msgs::UnsignedNodeAnnouncement { features: NodeFeatures::known(), timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32, node_id: self.get_our_node_id(), rgb, alias, addresses, excess_address_data: Vec::new(), excess_data: Vec::new(), }; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement { msg: msgs::NodeAnnouncement { signature: self.secp_ctx.sign(&msghash, &self.our_network_key), contents: announcement }, }); } /// Processes HTLCs which are pending waiting on random forward delay. /// /// Should only really ever be called in response to a PendingHTLCsForwardable event. /// Will likely generate further events. pub fn process_pending_htlc_forwards(&self) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let mut new_events = Vec::new(); let mut failed_forwards = Vec::new(); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() { if short_chan_id != 0 { let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) { Some(chan_id) => chan_id.clone(), None => { failed_forwards.reserve(pending_forwards.len()); for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info, prev_funding_outpoint } => { let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }); failed_forwards.push((htlc_source, forward_info.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() } )); }, HTLCForwardInfo::FailHTLC { .. } => { // Channel went away before we could fail it. This implies // the channel is now on chain and our counterparty is // trying to broadcast the HTLC-Timeout, but that's their // problem, not ours. } } } continue; } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) { let mut add_htlc_msgs = Vec::new(); let mut fail_htlc_msgs = Vec::new(); for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo { routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value }, prev_funding_outpoint } => { log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, }); match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg); } else { panic!("Stated return value requirements in send_htlc() were not met"); } let chan_update = self.get_channel_update(chan.get()).unwrap(); failed_forwards.push((htlc_source, payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() } )); continue; }, Ok(update_add) => { match update_add { Some(msg) => { add_htlc_msgs.push(msg); }, None => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can add anymore HTLCs. The Channel // will automatically handle building the update_add_htlc and // commitment_signed messages when we can. // TODO: Do some kind of timer to set the channel as !is_live() // as we don't really want others relying on us relaying through // this channel currently :/. } } } } }, HTLCForwardInfo::AddHTLC { .. } => { panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward"); }, HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => { log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id); match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg); } else { panic!("Stated return value requirements in get_update_fail_htlc() were not met"); } // fail-backs are best-effort, we probably already have one // pending, and if not that's OK, if not, the channel is on // the chain and sending the HTLC-Timeout is their problem. continue; }, Ok(Some(msg)) => { fail_htlc_msgs.push(msg); }, Ok(None) => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can update the commitment // transaction. The Channel will automatically handle // building the update_fail_htlc and commitment_signed // messages when we can. // We don't need any kind of timer here as they should fail // the channel onto the chain if they can't get our // update_fail_htlc in time, it's not our problem. } } }, } } if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() { let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) { Ok(res) => res, Err(e) => { // We surely failed send_commitment due to bad keys, in that case // close channel and then send error message to peer. let counterparty_node_id = chan.get().get_counterparty_node_id(); let err: Result<(), _> = match e { ChannelError::Ignore(_) => { panic!("Stated return value requirements in send_commitment() were not met"); }, ChannelError::Close(msg) => { log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg); let (channel_id, mut channel) = chan.remove_entry(); if let Some(short_id) = channel.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok())) }, ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); } }; handle_errors.push((counterparty_node_id, err)); continue; } }; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true))); continue; } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: add_htlc_msgs, update_fulfill_htlcs: Vec::new(), update_fail_htlcs: fail_htlc_msgs, update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: commitment_msg, }, }); } } else { unreachable!(); } } else { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo { routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry }, incoming_shared_secret, payment_hash, amt_to_forward, .. }, prev_funding_outpoint } => { let prev_hop = HTLCPreviousHopData { short_channel_id: prev_short_channel_id, outpoint: prev_funding_outpoint, htlc_id: prev_htlc_id, incoming_packet_shared_secret: incoming_shared_secret, }; let mut total_value = 0; let payment_secret_opt = if let &Some(ref data) = &payment_data { Some(data.payment_secret.clone()) } else { None }; let htlcs = channel_state.claimable_htlcs.entry((payment_hash, payment_secret_opt)) .or_insert(Vec::new()); htlcs.push(ClaimableHTLC { prev_hop, value: amt_to_forward, payment_data: payment_data.clone(), cltv_expiry: incoming_cltv_expiry, }); if let &Some(ref data) = &payment_data { for htlc in htlcs.iter() { total_value += htlc.value; if htlc.payment_data.as_ref().unwrap().total_msat != data.total_msat { total_value = msgs::MAX_VALUE_MSAT; } if total_value >= msgs::MAX_VALUE_MSAT { break; } } if total_value >= msgs::MAX_VALUE_MSAT || total_value > data.total_msat { for htlc in htlcs.iter() { let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice( &byte_utils::be32_to_array(self.best_block.read().unwrap().height()), ); failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: htlc.prev_hop.short_channel_id, outpoint: prev_funding_outpoint, htlc_id: htlc.prev_hop.htlc_id, incoming_packet_shared_secret: htlc.prev_hop.incoming_packet_shared_secret, }), payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data } )); } } else if total_value == data.total_msat { new_events.push(events::Event::PaymentReceived { payment_hash, payment_secret: Some(data.payment_secret), amt: total_value, }); } } else { new_events.push(events::Event::PaymentReceived { payment_hash, payment_secret: None, amt: amt_to_forward, }); } }, HTLCForwardInfo::AddHTLC { .. } => { panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive"); }, HTLCForwardInfo::FailHTLC { .. } => { panic!("Got pending fail of our own HTLC"); } } } } } } for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason); } for (counterparty_node_id, err) in handle_errors.drain(..) { let _ = handle_error!(self, err, counterparty_node_id); } if new_events.is_empty() { return } let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_events); } /// Free the background events, generally called from timer_tick_occurred. /// /// Exposed for testing to allow us to process events quickly without generating accidental /// BroadcastChannelUpdate events in timer_tick_occurred. /// /// Expects the caller to have a total_consistency_lock read lock. fn process_background_events(&self) { let mut background_events = Vec::new(); mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events); for event in background_events.drain(..) { match event { BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => { // The channel has already been closed, so no use bothering to care about the // monitor updating completing. let _ = self.chain_monitor.update_channel(funding_txo, update); }, } } } #[cfg(any(test, feature = "_test_utils"))] pub(crate) fn test_process_background_events(&self) { self.process_background_events(); } /// If a peer is disconnected we mark any channels with that peer as 'disabled'. /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate /// to inform the network about the uselessness of these channels. /// /// This method handles all the details, and must be called roughly once per minute. /// /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call. pub fn timer_tick_occurred(&self) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); self.process_background_events(); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; for (_, chan) in channel_state.by_id.iter_mut() { if chan.is_disabled_staged() && !chan.is_live() { if let Ok(update) = self.get_channel_update(&chan) { channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } chan.to_fresh(); } else if chan.is_disabled_staged() && chan.is_live() { chan.to_fresh(); } else if chan.is_disabled_marked() { chan.to_disabled_staged(); } } } /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources /// along the path (including in our own channel on which we received it). /// Returns false if no payment was found to fail backwards, true if the process of failing the /// HTLC backwards has been started. pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, payment_secret: &Option) -> bool { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(*payment_hash, *payment_secret)); if let Some(mut sources) = removed_source { for htlc in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array( self.best_block.read().unwrap().height())); self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }); } true } else { false } } // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to // be surfaced to the user. fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) { for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) { match htlc_src { HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => { let (failure_code, onion_failure_data) = match self.channel_state.lock().unwrap().by_id.entry(channel_id) { hash_map::Entry::Occupied(chan_entry) => { if let Ok(upd) = self.get_channel_update(&chan_entry.get()) { (0x1000|7, upd.encode_with_len()) } else { (0x4000|10, Vec::new()) } }, hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new()) }; let channel_state = self.channel_state.lock().unwrap(); self.fail_htlc_backwards_internal(channel_state, htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data}); }, HTLCSource::OutboundRoute { .. } => { self.pending_events.lock().unwrap().push( events::Event::PaymentFailed { payment_hash, rejected_by_dest: false, #[cfg(test)] error_code: None, #[cfg(test)] error_data: None, } ) }, }; } } /// Fails an HTLC backwards to the sender of it to us. /// Note that while we take a channel_state lock as input, we do *not* assume consistency here. /// There are several callsites that do stupid things like loop over a list of payment_hashes /// to fail and take the channel_state lock for each iteration (as we take ownership and may /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to /// still-available channels. fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) { //TODO: There is a timing attack here where if a node fails an HTLC back to us they can //identify whether we sent it or not based on the (I presume) very different runtime //between the branches here. We should make this async and move it into the forward HTLCs //timer handling. // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // from block_connected which may run during initialization prior to the chain_monitor // being fully configured. See the docs for `ChannelManagerReadArgs` for more. match source { HTLCSource::OutboundRoute { ref path, .. } => { log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0)); mem::drop(channel_state_lock); match &onion_error { &HTLCFailReason::LightningError { ref err } => { #[cfg(test)] let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); #[cfg(not(test))] let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); // TODO: If we decided to blame ourselves (or one of our channels) in // process_onion_failure we should close that channel as it implies our // next-hop is needlessly blaming us! if let Some(update) = channel_update { self.channel_state.lock().unwrap().pending_msg_events.push( events::MessageSendEvent::PaymentFailureNetworkUpdate { update, } ); } self.pending_events.lock().unwrap().push( events::Event::PaymentFailed { payment_hash: payment_hash.clone(), rejected_by_dest: !payment_retryable, #[cfg(test)] error_code: onion_error_code, #[cfg(test)] error_data: onion_error_data } ); }, &HTLCFailReason::Reason { #[cfg(test)] ref failure_code, #[cfg(test)] ref data, .. } => { // we get a fail_malformed_htlc from the first hop // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary // failures here, but that would be insufficient as get_route // generally ignores its view of our own channels as we provide them via // ChannelDetails. // TODO: For non-temporary failures, we really should be closing the // channel here as we apparently can't relay through them anyway. self.pending_events.lock().unwrap().push( events::Event::PaymentFailed { payment_hash: payment_hash.clone(), rejected_by_dest: path.len() == 1, #[cfg(test)] error_code: Some(*failure_code), #[cfg(test)] error_data: Some(data.clone()), } ); } } }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => { let err_packet = match onion_error { HTLCFailReason::Reason { failure_code, data } => { log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code); let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode(); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet) }, HTLCFailReason::LightningError { err } => { log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0)); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data) } }; let mut forward_event = None; if channel_state_lock.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)); } match channel_state_lock.forward_htlcs.entry(short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet })); } } mem::drop(channel_state_lock); if let Some(time) = forward_event { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } }, } } /// Provides a payment preimage in response to a PaymentReceived event, returning true and /// generating message events for the net layer to claim the payment, if possible. Thus, you /// should probably kick the net layer to go send messages if this returns true! /// /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs /// available within a few percent of the expected amount. This is critical for several /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the /// payment_preimage without having provided the full value and b) it avoids certain /// privacy-breaking recipient-probing attacks which may reveal payment activity to /// motivated attackers. /// /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret /// set. Thus, for such payments we will claim any payments which do not under-pay. /// /// May panic if called except in response to a PaymentReceived event. pub fn claim_funds(&self, payment_preimage: PaymentPreimage, payment_secret: &Option, expected_amount: u64) -> bool { let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&(payment_hash, *payment_secret)); if let Some(mut sources) = removed_source { assert!(!sources.is_empty()); // If we are claiming an MPP payment, we have to take special care to ensure that each // channel exists before claiming all of the payments (inside one lock). // Note that channel existance is sufficient as we should always get a monitor update // which will take care of the real HTLC claim enforcement. // // If we find an HTLC which we would need to claim but for which we do not have a // channel, we will fail all parts of the MPP payment. While we could wait and see if // the sender retries the already-failed path(s), it should be a pretty rare case where // we got all the HTLCs and then a channel closed while we were waiting for the user to // provide the preimage, so worrying too much about the optimal handling isn't worth // it. let (is_mpp, mut valid_mpp) = if let &Some(ref data) = &sources[0].payment_data { assert!(payment_secret.is_some()); (true, data.total_msat >= expected_amount) } else { assert!(payment_secret.is_none()); (false, false) }; for htlc in sources.iter() { if !is_mpp || !valid_mpp { break; } if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) { valid_mpp = false; } } let mut errs = Vec::new(); let mut claimed_any_htlcs = false; for htlc in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } if (is_mpp && !valid_mpp) || (!is_mpp && (htlc.value < expected_amount || htlc.value > expected_amount * 2)) { let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array( self.best_block.read().unwrap().height())); self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash, HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data }); } else { match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) { Err(Some(e)) => { if let msgs::ErrorAction::IgnoreError = e.1.err.action { // We got a temporary failure updating monitor, but will claim the // HTLC when the monitor updating is restored (or on chain). log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err); claimed_any_htlcs = true; } else { errs.push(e); } }, Err(None) if is_mpp => unreachable!("We already checked for channel existence, we can't fail here!"), Err(None) => { log_warn!(self.logger, "Channel we expected to claim an HTLC from was closed."); }, Ok(()) => claimed_any_htlcs = true, } } } // Now that we've done the entire above loop in one lock, we can handle any errors // which were generated. channel_state.take(); for (counterparty_node_id, err) in errs.drain(..) { let res: Result<(), _> = Err(err); let _ = handle_error!(self, res, counterparty_node_id); } claimed_any_htlcs } else { false } } fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> { //TODO: Delay the claimed_funds relaying just like we do outbound relay! let channel_state = &mut **channel_state_lock; let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) { Some(chan_id) => chan_id.clone(), None => { return Err(None) } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) { let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update(); match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) { Ok((msgs, monitor_option)) => { if let Some(monitor_update) = monitor_option { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { if was_frozen_for_monitor { assert!(msgs.is_none()); } else { return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err()))); } } } if let Some((msg, commitment_signed)) = msgs { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: vec![msg], update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, } }); } return Ok(()) }, Err(e) => { // TODO: Do something with e? // This should only occur if we are claiming an HTLC at the same time as the // HTLC is being failed (eg because a block is being connected and this caused // an HTLC to time out). This should, of course, only occur if the user is the // one doing the claiming (as it being a part of a peer claim would imply we're // about to lose funds) and only if the lock in claim_funds was dropped as a // previous HTLC was failed (thus not for an MPP payment). debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e); return Err(None) }, } } else { unreachable!(); } } fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_preimage: PaymentPreimage) { match source { HTLCSource::OutboundRoute { .. } => { mem::drop(channel_state_lock); let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PaymentSent { payment_preimage }); }, HTLCSource::PreviousHopData(hop_data) => { let prev_outpoint = hop_data.outpoint; if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) { Ok(()) => Ok(()), Err(None) => { let preimage_update = ChannelMonitorUpdate { update_id: CLOSED_CHANNEL_UPDATE_ID, updates: vec![ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage.clone(), }], }; // We update the ChannelMonitor on the backward link, after // receiving an offchain preimage event from the forward link (the // event being update_fulfill_htlc). if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) { log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}", payment_preimage, e); } Ok(()) }, Err(Some(res)) => Err(res), } { mem::drop(channel_state_lock); let res: Result<(), _> = Err(err); let _ = handle_error!(self, res, counterparty_node_id); } }, } } /// Gets the node_id held by this ChannelManager pub fn get_our_node_id(&self) -> PublicKey { self.our_network_pubkey.clone() } /// Restores a single, given channel to normal operation after a /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update /// operation. /// /// All ChannelMonitor updates up to and including highest_applied_update_id must have been /// fully committed in every copy of the given channels' ChannelMonitors. /// /// Note that there is no effect to calling with a highest_applied_update_id other than the /// current latest ChannelMonitorUpdate and one call to this function after multiple /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field /// exists largely only to prevent races between this and concurrent update_monitor calls. /// /// Thus, the anticipated use is, at a high level: /// 1) You register a chain::Watch with this ChannelManager, /// 2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of /// said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures /// any time it cannot do so instantly, /// 3) update(s) are applied to each remote copy of a ChannelMonitor, /// 4) once all remote copies are updated, you call this function with the update_id that /// completed, and once it is the latest the Channel will be re-enabled. pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let mut close_results = Vec::new(); let mut htlc_forwards = Vec::new(); let mut htlc_failures = Vec::new(); let mut pending_events = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) { Some(chan) => chan, None => return, }; if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id { return; } let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger); if !pending_forwards.is_empty() { htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards)); } htlc_failures.append(&mut pending_failures); macro_rules! handle_cs { () => { if let Some(update) = commitment_update { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: channel.get_counterparty_node_id(), updates: update, }); } } } macro_rules! handle_raa { () => { if let Some(revoke_and_ack) = raa { pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: channel.get_counterparty_node_id(), msg: revoke_and_ack, }); } } } match order { RAACommitmentOrder::CommitmentFirst => { handle_cs!(); handle_raa!(); }, RAACommitmentOrder::RevokeAndACKFirst => { handle_raa!(); handle_cs!(); }, } if let Some(tx) = funding_broadcastable { self.tx_broadcaster.broadcast_transaction(&tx); } if let Some(msg) = funding_locked { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_counterparty_node_id(), msg, }); if let Some(announcement_sigs) = self.get_announcement_sigs(channel) { pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_counterparty_node_id(), msg: announcement_sigs, }); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } } self.pending_events.lock().unwrap().append(&mut pending_events); for failure in htlc_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut htlc_forwards[..]); for res in close_results.drain(..) { self.finish_force_close_channel(res); } } fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> { if msg.chain_hash != self.genesis_hash { return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone())); } let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration) .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?; let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())), hash_map::Entry::Vacant(entry) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: counterparty_node_id.clone(), msg: channel.get_accept_channel(), }); entry.insert(channel); } } Ok(()) } fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> { let (value, output_script, user_id) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.temporary_channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id)); } try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan); (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingGenerationReady { temporary_channel_id: msg.temporary_channel_id, channel_value_satoshis: value, output_script, user_channel_id: user_id, }); Ok(()) } fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> { let ((funding_msg, monitor), mut chan) = { let last_block_hash = self.best_block.read().unwrap().block_hash(); let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id)); } (try_chan_entry!(self, chan.get_mut().funding_created(msg, last_block_hash, &self.logger), channel_state, chan), chan.remove()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id)) } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before watch_channel if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) { match e { ChannelMonitorUpdateErr::PermanentFailure => { // Note that we reply with the new channel_id in error messages if we gave up on the // channel, not the temporary_channel_id. This is compatible with ourselves, but the // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for // any messages referencing a previously-closed channel anyway. // We do not do a force-close here as that would generate a monitor update for // a monitor that we didn't manage to store (and that we don't care about - we // don't respond with the funding_signed so the channel can never go on chain). let (_monitor_update, failed_htlcs) = chan.force_shutdown(true); assert!(failed_htlcs.is_empty()); return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id)); }, ChannelMonitorUpdateErr::TemporaryFailure => { // There's no problem signing a counterparty's funding transaction if our monitor // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't // accepted payment from yet. We do, however, need to wait to send our funding_locked // until we have persisted our monitor. chan.monitor_update_failed(false, false, Vec::new(), Vec::new()); }, } } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(funding_msg.channel_id) { hash_map::Entry::Occupied(_) => { return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id)) }, hash_map::Entry::Vacant(e) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned { node_id: counterparty_node_id.clone(), msg: funding_msg, }); e.insert(chan); } } Ok(()) } fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> { let funding_tx = { let last_block_hash = self.best_block.read().unwrap().block_hash(); let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, last_block_hash, &self.logger) { Ok(update) => update, Err(e) => try_chan_entry!(self, Err(e), channel_state, chan), }; if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false); } funding_tx }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; self.tx_broadcaster.broadcast_transaction(&funding_tx); Ok(()) } fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan); if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) { log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id())); // If we see locking block before receiving remote funding_locked, we broadcast our // announcement_sigs at remote funding_locked reception. If we receive remote // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever // the order of the events but our peer may not receive it due to disconnection. The specs // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer // connection in the future if simultaneous misses by both peers due to network/hardware // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs // to be received, from then sigs are going to be flood to the whole network. channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: counterparty_node_id.clone(), msg: announcement_sigs, }); } Ok(()) }, hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> { let (mut dropped_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry); if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: counterparty_node_id.clone(), msg, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (dropped_htlcs, Some(chan_entry.remove_entry().1)) } else { (dropped_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; for htlc_source in dropped_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> { let (tx, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry); if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } if tx.is_some() { // We're done with this channel, we've got a signed closing transaction and // will send the closing_signed back to the remote peer upon return. This // also implies there are no pending HTLCs left on the channel, so we can // fully delete it from tracking (the channel monitor is still around to // watch for old state broadcasts)! if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (tx, Some(chan_entry.remove_entry().1)) } else { (tx, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; if let Some(broadcast_tx) = tx { log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx)); self.tx_broadcaster.broadcast_transaction(&broadcast_tx); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> { //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and //determine the state of the payment based on our response/if we forward anything/the time //we take to respond. We should take care to avoid allowing such an attack. // //TODO: There exists a further attack where a node may garble the onion data, forward it to //us repeatedly garbled in different ways, and compare our error messages, which are //encrypted with the same key. It's not immediately obvious how to usefully exploit that, //but we should prevent it anyway. let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let create_pending_htlc_status = |chan: &Channel, pending_forward_info: PendingHTLCStatus, error_code: u16| { // Ensure error_code has the UPDATE flag set, since by default we send a // channel update along as part of failing the HTLC. assert!((error_code & 0x1000) != 0); // If the update_add is completely bogus, the call will Err and we will close, // but if we've sent a shutdown and they haven't acknowledged it yet, we just // want to reject the new HTLC and fail it backwards instead of forwarding. match pending_forward_info { PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => { let reason = if let Ok(upd) = self.get_channel_update(chan) { onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{ let mut res = Vec::with_capacity(8 + 128); // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791 res.extend_from_slice(&byte_utils::be16_to_array(0)); res.extend_from_slice(&upd.encode_with_len()[..]); res }[..]) } else { // The only case where we'd be unable to // successfully get a channel update is if the // channel isn't in the fully-funded state yet, // implying our counterparty is trying to route // payments over the channel back to themselves // (cause no one else should know the short_id // is a lightning channel yet). We should have // no problem just calling this // unknown_next_peer (0x4000|10). onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[]) }; let msg = msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason }; PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg)) }, _ => pending_forward_info } }; try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let htlc_source = { let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone()); Ok(()) } fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } if (msg.failure_code & 0x8000) == 0 { let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned()); try_chan_entry!(self, Err(chan_err), channel_state, chan); } try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan); Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) = match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) { Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan), Err((Some(update), e)) => { assert!(chan.get().is_awaiting_monitor_update()); let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update); try_chan_entry!(self, Err(e), channel_state, chan); unreachable!(); }, Ok(res) => res }; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some()); //TODO: Rebroadcast closing_signed if present on monitor update restoration } channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: counterparty_node_id.clone(), msg: revoke_and_ack, }); if let Some(msg) = commitment_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id.clone(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: msg, }, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } #[inline] fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) { for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards { let mut forward_event = None; if !pending_forwards.is_empty() { let mut channel_state = self.channel_state.lock().unwrap(); if channel_state.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)) } for (forward_info, prev_htlc_id) in pending_forwards.drain(..) { match channel_state.forward_htlcs.entry(match forward_info.routing { PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id, PendingHTLCRouting::Receive { .. } => 0, }) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, forward_info }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, forward_info })); } } } } match forward_event { Some(time) => { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } None => {}, } } } fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> { let mut htlcs_to_fail = Vec::new(); let res = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update(); let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) = break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan); htlcs_to_fail = htlcs_to_fail_in; if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { if was_frozen_for_monitor { assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty()); break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned())); } else { if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) { break Err(e); } else { unreachable!(); } } } if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id.clone(), updates, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: counterparty_node_id.clone(), msg, }); } break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap())) }, hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } }; self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id); match res { Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => { for failure in pending_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]); Ok(()) }, Err(e) => Err(e) } } fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } if !chan.get().is_usable() { return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError})); } let our_node_id = self.get_our_node_id(); let (announcement, our_bitcoin_sig) = try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan); let were_node_one = announcement.node_id_1 == our_node_id; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); { let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 }; let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 }; match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key), self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) { (Err(e), _) => { let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key)); try_chan_entry!(self, Err(chan_err), channel_state, chan); }, (_, Err(e)) => { let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key)); try_chan_entry!(self, Err(chan_err), channel_state, chan); }, _ => {} } } let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: msgs::ChannelAnnouncement { node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature }, node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig }, bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature }, bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig }, contents: announcement, }, update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state }); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } Ok(()) } fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) { Some(chan_id) => chan_id.clone(), None => { // It's not a local channel return Ok(()) } }; match channel_state.by_id.entry(chan_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id)); } try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan); }, hash_map::Entry::Vacant(_) => unreachable!() } Ok(()) } fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_counterparty_node_id() != *counterparty_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id)); } // Currently, we expect all holding cell update_adds to be dropped on peer // disconnect, so Channel's reestablish will never hand us any holding cell // freed HTLCs to fail backwards. If in the future we no longer drop pending // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here. let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) = try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan); if let Some(monitor_update) = monitor_update_opt { if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { // channel_reestablish doesn't guarantee the order it returns is sensical // for the messages it returns, but if we're setting what messages to // re-transmit on monitor update success, we need to make sure it is sane. if revoke_and_ack.is_none() { order = RAACommitmentOrder::CommitmentFirst; } if commitment_update.is_none() { order = RAACommitmentOrder::RevokeAndACKFirst; } return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some()); //TODO: Resend the funding_locked if needed once we get the monitor running again } } if let Some(msg) = funding_locked { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: counterparty_node_id.clone(), msg }); } macro_rules! send_raa { () => { if let Some(msg) = revoke_and_ack { channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: counterparty_node_id.clone(), msg }); } } } macro_rules! send_cu { () => { if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: counterparty_node_id.clone(), updates }); } } } match order { RAACommitmentOrder::RevokeAndACKFirst => { send_raa!(); send_cu!(); }, RAACommitmentOrder::CommitmentFirst => { send_cu!(); send_raa!(); }, } if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: counterparty_node_id.clone(), msg, }); } Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id)) } } /// Begin Update fee process. Allowed only on an outbound channel. /// If successful, will generate a UpdateHTLCs event, so you should probably poll /// PeerManager::process_events afterwards. /// Note: This API is likely to change! /// (C-not exported) Cause its doc(hidden) anyway #[doc(hidden)] pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let counterparty_node_id; let err: Result<(), _> = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; match channel_state.by_id.entry(channel_id) { hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}), hash_map::Entry::Occupied(mut chan) => { if !chan.get().is_outbound() { return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()}); } if chan.get().is_awaiting_monitor_update() { return Err(APIError::MonitorUpdateFailed); } if !chan.get().is_live() { return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()}); } counterparty_node_id = chan.get().get_counterparty_node_id(); if let Some((update_fee, commitment_signed, monitor_update)) = break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan) { if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) { unimplemented!(); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_counterparty_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: Some(update_fee), commitment_signed, }, }); } }, } return Ok(()) }; match handle_error!(self, err, counterparty_node_id) { Ok(_) => unreachable!(), Err(e) => { Err(APIError::APIMisuseError { err: e.err })} } } /// Process pending events from the `chain::Watch`. fn process_pending_monitor_events(&self) { let mut failed_channels = Vec::new(); { for monitor_event in self.chain_monitor.release_pending_monitor_events() { match monitor_event { MonitorEvent::HTLCEvent(htlc_update) => { if let Some(preimage) = htlc_update.payment_preimage { log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0)); self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage); } else { log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0)); self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } }, MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let by_id = &mut channel_state.by_id; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown(false)); if let Ok(update) = self.get_channel_update(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() } }, }); } }, } } } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } } /// Handle a list of channel failures during a block_connected or block_disconnected call, /// pushing the channel monitor update (if any) to the background events queue and removing the /// Channel object. fn handle_init_event_channel_failures(&self, mut failed_channels: Vec) { for mut failure in failed_channels.drain(..) { // Either a commitment transactions has been confirmed on-chain or // Channel::block_disconnected detected that the funding transaction has been // reorganized out of the main chain. // We cannot broadcast our latest local state via monitor update (as // Channel::force_shutdown tries to make us do) as we may still be in initialization, // so we track the update internally and handle it when the user next calls // timer_tick_occurred, guaranteeing we're running normally. if let Some((funding_txo, update)) = failure.0.take() { assert_eq!(update.updates.len(), 1); if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] { assert!(should_broadcast); } else { unreachable!(); } self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update))); } self.finish_force_close_channel(failure); } } } impl MessageSendEventsProvider for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn get_and_clear_pending_msg_events(&self) -> Vec { //TODO: This behavior should be documented. It's non-intuitive that we query // ChannelMonitors when clearing other events. self.process_pending_monitor_events(); let mut ret = Vec::new(); let mut channel_state = self.channel_state.lock().unwrap(); mem::swap(&mut ret, &mut channel_state.pending_msg_events); ret } } impl EventsProvider for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn get_and_clear_pending_events(&self) -> Vec { //TODO: This behavior should be documented. It's non-intuitive that we query // ChannelMonitors when clearing other events. self.process_pending_monitor_events(); let mut ret = Vec::new(); let mut pending_events = self.pending_events.lock().unwrap(); mem::swap(&mut ret, &mut *pending_events); ret } } impl chain::Listen for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn block_connected(&self, block: &Block, height: u32) { { let best_block = self.best_block.read().unwrap(); assert_eq!(best_block.block_hash(), block.header.prev_blockhash, "Blocks must be connected in chain-order - the connected header must build on the last connected header"); assert_eq!(best_block.height(), height - 1, "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height"); } let txdata: Vec<_> = block.txdata.iter().enumerate().collect(); self.transactions_confirmed(&block.header, height, &txdata); self.update_best_block(&block.header, height); } fn block_disconnected(&self, header: &BlockHeader, height: u32) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let new_height = height - 1; { let mut best_block = self.best_block.write().unwrap(); assert_eq!(best_block.block_hash(), header.block_hash(), "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header"); assert_eq!(best_block.height(), height, "Blocks must be disconnected in chain-order - the disconnected block must have the correct height"); *best_block = BestBlock::new(header.prev_blockhash, new_height) } self.do_chain_event(Some(new_height), |channel| channel.update_best_block(new_height, header.time)); } } impl ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Calls a function which handles an on-chain event (blocks dis/connected, transactions /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by /// the function. fn do_chain_event) -> Result<(Option, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>> (&self, height_opt: Option, f: FN) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let mut failed_channels = Vec::new(); let mut timed_out_htlcs = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { let res = f(channel); if let Ok((chan_res, mut timed_out_pending_htlcs)) = res { for (source, payment_hash) in timed_out_pending_htlcs.drain(..) { let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now data: chan_update, })); } if let Some(funding_locked) = chan_res { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_counterparty_node_id(), msg: funding_locked, }); if let Some(announcement_sigs) = self.get_announcement_sigs(channel) { log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id())); pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_counterparty_node_id(), msg: announcement_sigs, }); } else { log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id())); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } } else if let Err(e) = res { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } // It looks like our counterparty went on-chain or funding transaction was // reorged out of the main chain. Close the channel. failed_channels.push(channel.force_shutdown(true)); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: channel.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: e }, }); return false; } true }); if let Some(height) = height_opt { channel_state.claimable_htlcs.retain(|&(ref payment_hash, _), htlcs| { htlcs.retain(|htlc| { // If height is approaching the number of blocks we think it takes us to get // our commitment transaction confirmed before the HTLC expires, plus the // number of blocks we generally consider it to take to do a commitment update, // just give up on it and fail the HTLC. if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER { let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec(); htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height)); timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data })); false } else { true } }); !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry. }); } } self.handle_init_event_channel_failures(failed_channels); for (source, payment_hash, reason) in timed_out_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason); } } /// Updates channel state to take note of transactions which were confirmed in the given block /// at the given height. /// /// Note that you must still call (or have called) [`update_best_block`] with the block /// information which is included here. /// /// This method may be called before or after [`update_best_block`] for a given block's /// transaction data and may be called multiple times with additional transaction data for a /// given block. /// /// This method may be called for a previous block after an [`update_best_block`] call has /// been made for a later block, however it must *not* be called with transaction data from a /// block which is no longer in the best chain (ie where [`update_best_block`] has already /// been informed about a blockchain reorganization which no longer includes the block which /// corresponds to `header`). /// /// [`update_best_block`]: `Self::update_best_block` pub fn transactions_confirmed(&self, header: &BlockHeader, height: u32, txdata: &TransactionData) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new()))); } /// Updates channel state with the current best blockchain tip. You should attempt to call this /// quickly after a new block becomes available, however if multiple new blocks become /// available at the same time, only a single `update_best_block()` call needs to be made. /// /// This method should also be called immediately after any block disconnections, once at the /// reorganization fork point, and once with the new chain tip. Calling this method at the /// blockchain reorganization fork point ensures we learn when a funding transaction which was /// previously confirmed is reorganized out of the blockchain, ensuring we do not continue to /// accept payments which cannot be enforced on-chain. /// /// In both the block-connection and block-disconnection case, this method may be called either /// once per block connected or disconnected, or simply at the fork point and new tip(s), /// skipping any intermediary blocks. pub fn update_best_block(&self, header: &BlockHeader, height: u32) { // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called // during initialization prior to the chain_monitor being fully configured in some cases. // See the docs for `ChannelManagerReadArgs` for more. let block_hash = header.block_hash(); log_trace!(self.logger, "New best block: {} at height {}", block_hash, height); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); *self.best_block.write().unwrap() = BestBlock::new(block_hash, height); self.do_chain_event(Some(height), |channel| channel.update_best_block(height, header.time)); loop { // Update last_node_announcement_serial to be the max of its current value and the // block timestamp. This should keep us close to the current time without relying on // having an explicit local time source. // Just in case we end up in a race, we loop until we either successfully update // last_node_announcement_serial or decide we don't need to. let old_serial = self.last_node_announcement_serial.load(Ordering::Acquire); if old_serial >= header.time as usize { break; } if self.last_node_announcement_serial.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() { break; } } } /// Gets the set of txids which should be monitored for their confirmation state. /// /// If you're providing information about reorganizations via [`transaction_unconfirmed`], this /// is the set of transactions which you may need to call [`transaction_unconfirmed`] for. /// /// This may be useful to poll to determine the set of transactions which must be registered /// with an Electrum server or for which an Electrum server needs to be polled to determine /// transaction confirmation state. /// /// This may update after any [`transactions_confirmed`] or [`block_connected`] call. /// /// Note that this is NOT the set of transactions which must be included in calls to /// [`transactions_confirmed`] if they are confirmed, but a small subset of it. /// /// [`transactions_confirmed`]: Self::transactions_confirmed /// [`transaction_unconfirmed`]: Self::transaction_unconfirmed /// [`block_connected`]: chain::Listen::block_connected pub fn get_relevant_txids(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.short_to_id.len()); for chan in channel_state.by_id.values() { if let Some(funding_txo) = chan.get_funding_txo() { res.push(funding_txo.txid); } } res } /// Marks a transaction as having been reorganized out of the blockchain. /// /// If a transaction is included in [`get_relevant_txids`], and is no longer in the main branch /// of the blockchain, this function should be called to indicate that the transaction should /// be considered reorganized out. /// /// Once this is called, the given transaction will no longer appear on [`get_relevant_txids`], /// though this may be called repeatedly for a given transaction without issue. /// /// Note that if the transaction is confirmed on the main chain in a different block (indicated /// via a call to [`transactions_confirmed`]), it may re-appear in [`get_relevant_txids`], thus /// be very wary of race-conditions wherein the final state of a transaction indicated via /// these APIs is not the same as its state on the blockchain. /// /// [`transactions_confirmed`]: Self::transactions_confirmed /// [`get_relevant_txids`]: Self::get_relevant_txids pub fn transaction_unconfirmed(&self, txid: &Txid) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); self.do_chain_event(None, |channel| { if let Some(funding_txo) = channel.get_funding_txo() { if funding_txo.txid == *txid { channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new())) } else { Ok((None, Vec::new())) } } else { Ok((None, Vec::new())) } }); } /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool /// indicating whether persistence is necessary. Only one listener on /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken /// up. /// Note that the feature `allow_wallclock_use` must be enabled to use this function. #[cfg(any(test, feature = "allow_wallclock_use"))] pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool { self.persistence_notifier.wait_timeout(max_wait) } /// Blocks until ChannelManager needs to be persisted. Only one listener on /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken /// up. pub fn await_persistable_update(&self) { self.persistence_notifier.wait() } #[cfg(any(test, feature = "_test_utils"))] pub fn get_persistence_condvar_value(&self) -> bool { let mutcond = &self.persistence_notifier.persistence_lock; let &(ref mtx, _) = mutcond; let guard = mtx.lock().unwrap(); *guard } } impl ChannelMessageHandler for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id); } fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id); } fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id); } fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id); } fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id); } fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id); } fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id); } fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id); } fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id); } fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id); } fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); let mut failed_channels = Vec::new(); let mut failed_payments = Vec::new(); let mut no_channels_remain = true; { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let short_to_id = &mut channel_state.short_to_id; let pending_msg_events = &mut channel_state.pending_msg_events; if no_connection_possible { log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown(true)); if let Ok(update) = self.get_channel_update(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false } else { true } }); } else { log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { // Note that currently on channel reestablish we assert that there are no // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs // on peer disconnect here, there will need to be corresponding changes in // reestablish logic. let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger); chan.to_disabled_marked(); if !failed_adds.is_empty() { let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe failed_payments.push((chan_update, failed_adds)); } if chan.is_shutdown() { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } return false; } else { no_channels_remain = false; } } true }) } pending_msg_events.retain(|msg| { match msg { &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true, &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id, &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true, &events::MessageSendEvent::SendChannelRangeQuery { .. } => false, &events::MessageSendEvent::SendShortIdsQuery { .. } => false, &events::MessageSendEvent::SendReplyChannelRange { .. } => false, } }); } if no_channels_remain { self.per_peer_state.write().unwrap().remove(counterparty_node_id); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } for (chan_update, mut htlc_sources) in failed_payments { for (htlc_source, payment_hash) in htlc_sources.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() }); } } } fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) { log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id)); let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); { let mut peer_state_lock = self.per_peer_state.write().unwrap(); match peer_state_lock.entry(counterparty_node_id.clone()) { hash_map::Entry::Vacant(e) => { e.insert(Mutex::new(PeerState { latest_features: init_msg.features.clone(), })); }, hash_map::Entry::Occupied(e) => { e.get().lock().unwrap().latest_features = init_msg.features.clone(); }, } } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_state_lock; let pending_msg_events = &mut channel_state.pending_msg_events; channel_state.by_id.retain(|_, chan| { if chan.get_counterparty_node_id() == *counterparty_node_id { if !chan.have_received_message() { // If we created this (outbound) channel while we were disconnected from the // peer we probably failed to send the open_channel message, which is now // lost. We can't have had anything pending related to this channel, so we just // drop it. false } else { pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish { node_id: chan.get_counterparty_node_id(), msg: chan.get_channel_reestablish(&self.logger), }); true } } else { true } }); //TODO: Also re-broadcast announcement_signatures } fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) { let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier); if msg.channel_id == [0; 32] { for chan in self.list_channels() { if chan.remote_network_id == *counterparty_node_id { // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id)); } } } else { // Untrusted messages from peer, we throw away the error if id points to a non-existent channel let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id)); } } } /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`. struct PersistenceNotifier { /// Users won't access the persistence_lock directly, but rather wait on its bool using /// `wait_timeout` and `wait`. persistence_lock: (Mutex, Condvar), } impl PersistenceNotifier { fn new() -> Self { Self { persistence_lock: (Mutex::new(false), Condvar::new()), } } fn wait(&self) { loop { let &(ref mtx, ref cvar) = &self.persistence_lock; let mut guard = mtx.lock().unwrap(); guard = cvar.wait(guard).unwrap(); let result = *guard; if result { *guard = false; return } } } #[cfg(any(test, feature = "allow_wallclock_use"))] fn wait_timeout(&self, max_wait: Duration) -> bool { let current_time = Instant::now(); loop { let &(ref mtx, ref cvar) = &self.persistence_lock; let mut guard = mtx.lock().unwrap(); guard = cvar.wait_timeout(guard, max_wait).unwrap().0; // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the // desired wait time has actually passed, and if not then restart the loop with a reduced wait // time. Note that this logic can be highly simplified through the use of // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to // 1.42.0. let elapsed = current_time.elapsed(); let result = *guard; if result || elapsed >= max_wait { *guard = false; return result; } match max_wait.checked_sub(elapsed) { None => return result, Some(_) => continue } } } // Signal to the ChannelManager persister that there are updates necessitating persisting to disk. fn notify(&self) { let &(ref persist_mtx, ref cnd) = &self.persistence_lock; let mut persistence_lock = persist_mtx.lock().unwrap(); *persistence_lock = true; mem::drop(persistence_lock); cnd.notify_all(); } } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl Writeable for PendingHTLCInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match &self.routing { &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => { 0u8.write(writer)?; onion_packet.write(writer)?; short_channel_id.write(writer)?; }, &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => { 1u8.write(writer)?; payment_data.write(writer)?; incoming_cltv_expiry.write(writer)?; }, } self.incoming_shared_secret.write(writer)?; self.payment_hash.write(writer)?; self.amt_to_forward.write(writer)?; self.outgoing_cltv_value.write(writer)?; Ok(()) } } impl Readable for PendingHTLCInfo { fn read(reader: &mut R) -> Result { Ok(PendingHTLCInfo { routing: match Readable::read(reader)? { 0u8 => PendingHTLCRouting::Forward { onion_packet: Readable::read(reader)?, short_channel_id: Readable::read(reader)?, }, 1u8 => PendingHTLCRouting::Receive { payment_data: Readable::read(reader)?, incoming_cltv_expiry: Readable::read(reader)?, }, _ => return Err(DecodeError::InvalidValue), }, incoming_shared_secret: Readable::read(reader)?, payment_hash: Readable::read(reader)?, amt_to_forward: Readable::read(reader)?, outgoing_cltv_value: Readable::read(reader)?, }) } } impl Writeable for HTLCFailureMsg { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailureMsg::Relay(ref fail_msg) => { 0u8.write(writer)?; fail_msg.write(writer)?; }, &HTLCFailureMsg::Malformed(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailureMsg { fn read(reader: &mut R) -> Result { match ::read(reader)? { 0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)), 1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for PendingHTLCStatus { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &PendingHTLCStatus::Forward(ref forward_info) => { 0u8.write(writer)?; forward_info.write(writer)?; }, &PendingHTLCStatus::Fail(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for PendingHTLCStatus { fn read(reader: &mut R) -> Result { match ::read(reader)? { 0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)), 1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl_writeable!(HTLCPreviousHopData, 0, { short_channel_id, outpoint, htlc_id, incoming_packet_shared_secret }); impl_writeable!(ClaimableHTLC, 0, { prev_hop, value, payment_data, cltv_expiry }); impl Writeable for HTLCSource { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCSource::PreviousHopData(ref hop_data) => { 0u8.write(writer)?; hop_data.write(writer)?; }, &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => { 1u8.write(writer)?; path.write(writer)?; session_priv.write(writer)?; first_hop_htlc_msat.write(writer)?; } } Ok(()) } } impl Readable for HTLCSource { fn read(reader: &mut R) -> Result { match ::read(reader)? { 0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)), 1 => Ok(HTLCSource::OutboundRoute { path: Readable::read(reader)?, session_priv: Readable::read(reader)?, first_hop_htlc_msat: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for HTLCFailReason { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailReason::LightningError { ref err } => { 0u8.write(writer)?; err.write(writer)?; }, &HTLCFailReason::Reason { ref failure_code, ref data } => { 1u8.write(writer)?; failure_code.write(writer)?; data.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailReason { fn read(reader: &mut R) -> Result { match ::read(reader)? { 0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }), 1 => Ok(HTLCFailReason::Reason { failure_code: Readable::read(reader)?, data: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for HTLCForwardInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => { 0u8.write(writer)?; prev_short_channel_id.write(writer)?; prev_funding_outpoint.write(writer)?; prev_htlc_id.write(writer)?; forward_info.write(writer)?; }, &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => { 1u8.write(writer)?; htlc_id.write(writer)?; err_packet.write(writer)?; }, } Ok(()) } } impl Readable for HTLCForwardInfo { fn read(reader: &mut R) -> Result { match ::read(reader)? { 0 => Ok(HTLCForwardInfo::AddHTLC { prev_short_channel_id: Readable::read(reader)?, prev_funding_outpoint: Readable::read(reader)?, prev_htlc_id: Readable::read(reader)?, forward_info: Readable::read(reader)?, }), 1 => Ok(HTLCForwardInfo::FailHTLC { htlc_id: Readable::read(reader)?, err_packet: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for ChannelManager where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { let _consistency_lock = self.total_consistency_lock.write().unwrap(); writer.write_all(&[SERIALIZATION_VERSION; 1])?; writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; self.genesis_hash.write(writer)?; { let best_block = self.best_block.read().unwrap(); best_block.height().write(writer)?; best_block.block_hash().write(writer)?; } let channel_state = self.channel_state.lock().unwrap(); let mut unfunded_channels = 0; for (_, channel) in channel_state.by_id.iter() { if !channel.is_funding_initiated() { unfunded_channels += 1; } } ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?; for (_, channel) in channel_state.by_id.iter() { if channel.is_funding_initiated() { channel.write(writer)?; } } (channel_state.forward_htlcs.len() as u64).write(writer)?; for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() { short_channel_id.write(writer)?; (pending_forwards.len() as u64).write(writer)?; for forward in pending_forwards { forward.write(writer)?; } } (channel_state.claimable_htlcs.len() as u64).write(writer)?; for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() { payment_hash.write(writer)?; (previous_hops.len() as u64).write(writer)?; for htlc in previous_hops.iter() { htlc.write(writer)?; } } let per_peer_state = self.per_peer_state.write().unwrap(); (per_peer_state.len() as u64).write(writer)?; for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() { peer_pubkey.write(writer)?; let peer_state = peer_state_mutex.lock().unwrap(); peer_state.latest_features.write(writer)?; } let events = self.pending_events.lock().unwrap(); (events.len() as u64).write(writer)?; for event in events.iter() { event.write(writer)?; } let background_events = self.pending_background_events.lock().unwrap(); (background_events.len() as u64).write(writer)?; for event in background_events.iter() { match event { BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => { 0u8.write(writer)?; funding_txo.write(writer)?; monitor_update.write(writer)?; }, } } (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?; Ok(()) } } /// Arguments for the creation of a ChannelManager that are not deserialized. /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: /// 1) Deserialize all stored ChannelMonitors. /// 2) Deserialize the ChannelManager by filling in this struct and calling: /// <(BlockHash, ChannelManager)>::read(reader, args) /// This may result in closing some Channels if the ChannelMonitor is newer than the stored /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted. /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same /// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and /// ChannelMonitor::get_funding_txo(). /// 4) Reconnect blocks on your ChannelMonitors. /// 5) Disconnect/connect blocks on the ChannelManager. /// 6) Move the ChannelMonitors into your local chain::Watch. /// /// Note that the ordering of #4-6 is not of importance, however all three must occur before you /// call any other methods on the newly-deserialized ChannelManager. /// /// Note that because some channels may be closed during deserialization, it is critical that you /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will /// not force-close the same channels but consider them live), you may end up revoking a state for /// which you've already broadcasted the transaction. pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// The keys provider which will give us relevant keys. Some keys will be loaded during /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel /// signing data. pub keys_manager: K, /// The fee_estimator for use in the ChannelManager in the future. /// /// No calls to the FeeEstimator will be made during deserialization. pub fee_estimator: F, /// The chain::Watch for use in the ChannelManager in the future. /// /// No calls to the chain::Watch will be made during deserialization. It is assumed that /// you have deserialized ChannelMonitors separately and will add them to your /// chain::Watch after deserializing this ChannelManager. pub chain_monitor: M, /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be /// used to broadcast the latest local commitment transactions of channels which must be /// force-closed during deserialization. pub tx_broadcaster: T, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: L, /// Default settings used for new channels. Any existing channels will continue to use the /// runtime settings which were stored when the ChannelManager was serialized. pub default_config: UserConfig, /// A map from channel funding outpoints to ChannelMonitors for those channels (ie /// value.get_funding_txo() should be the key). /// /// If a monitor is inconsistent with the channel state during deserialization the channel will /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This /// is true for missing channels as well. If there is a monitor missing for which we find /// channel data Err(DecodeError::InvalidValue) will be returned. /// /// In such cases the latest local transactions will be sent to the tx_broadcaster included in /// this struct. /// /// (C-not exported) because we have no HashMap bindings pub channel_monitors: HashMap>, } impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManagerReadArgs<'a, Signer, M, T, K, F, L> where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor /// HashMap for you. This is primarily useful for C bindings where it is not practical to /// populate a HashMap directly from C. pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig, mut channel_monitors: Vec<&'a mut ChannelMonitor>) -> Self { Self { keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config, channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect() } } } // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the // SipmleArcChannelManager type: impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ReadableArgs> for (BlockHash, Arc>) where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn read(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result { let (blockhash, chan_manager) = <(BlockHash, ChannelManager)>::read(reader, args)?; Ok((blockhash, Arc::new(chan_manager))) } } impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ReadableArgs> for (BlockHash, ChannelManager) where M::Target: chain::Watch, T::Target: BroadcasterInterface, K::Target: KeysInterface, F::Target: FeeEstimator, L::Target: Logger, { fn read(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result { let _ver: u8 = Readable::read(reader)?; let min_ver: u8 = Readable::read(reader)?; if min_ver > SERIALIZATION_VERSION { return Err(DecodeError::UnknownVersion); } let genesis_hash: BlockHash = Readable::read(reader)?; let best_block_height: u32 = Readable::read(reader)?; let best_block_hash: BlockHash = Readable::read(reader)?; let mut failed_htlcs = Vec::new(); let channel_count: u64 = Readable::read(reader)?; let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128)); let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); for _ in 0..channel_count { let mut channel: Channel = Channel::read(reader, &args.keys_manager)?; let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?; funding_txo_set.insert(funding_txo.clone()); if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) { if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() || channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() || channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() || channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() { // If the channel is ahead of the monitor, return InvalidValue: return Err(DecodeError::InvalidValue); } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() || channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() || channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() || channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() { // But if the channel is behind of the monitor, close the channel: let (_, mut new_failed_htlcs) = channel.force_shutdown(true); failed_htlcs.append(&mut new_failed_htlcs); monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger); } else { if let Some(short_channel_id) = channel.get_short_channel_id() { short_to_id.insert(short_channel_id, channel.channel_id()); } by_id.insert(channel.channel_id(), channel); } } else { return Err(DecodeError::InvalidValue); } } for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() { if !funding_txo_set.contains(funding_txo) { monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger); } } const MAX_ALLOC_SIZE: usize = 1024 * 64; let forward_htlcs_count: u64 = Readable::read(reader)?; let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128)); for _ in 0..forward_htlcs_count { let short_channel_id = Readable::read(reader)?; let pending_forwards_count: u64 = Readable::read(reader)?; let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..pending_forwards_count { pending_forwards.push(Readable::read(reader)?); } forward_htlcs.insert(short_channel_id, pending_forwards); } let claimable_htlcs_count: u64 = Readable::read(reader)?; let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128)); for _ in 0..claimable_htlcs_count { let payment_hash = Readable::read(reader)?; let previous_hops_len: u64 = Readable::read(reader)?; let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..previous_hops_len { previous_hops.push(Readable::read(reader)?); } claimable_htlcs.insert(payment_hash, previous_hops); } let peer_count: u64 = Readable::read(reader)?; let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex)>())); for _ in 0..peer_count { let peer_pubkey = Readable::read(reader)?; let peer_state = PeerState { latest_features: Readable::read(reader)?, }; per_peer_state.insert(peer_pubkey, Mutex::new(peer_state)); } let event_count: u64 = Readable::read(reader)?; let mut pending_events_read: Vec = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..event_count { match MaybeReadable::read(reader)? { Some(event) => pending_events_read.push(event), None => continue, } } let background_event_count: u64 = Readable::read(reader)?; let mut pending_background_events_read: Vec = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::())); for _ in 0..background_event_count { match ::read(reader)? { 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))), _ => return Err(DecodeError::InvalidValue), } } let last_node_announcement_serial: u32 = Readable::read(reader)?; let mut secp_ctx = Secp256k1::new(); secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes()); let channel_manager = ChannelManager { genesis_hash, fee_estimator: args.fee_estimator, chain_monitor: args.chain_monitor, tx_broadcaster: args.tx_broadcaster, best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)), channel_state: Mutex::new(ChannelHolder { by_id, short_to_id, forward_htlcs, claimable_htlcs, pending_msg_events: Vec::new(), }), our_network_key: args.keys_manager.get_node_secret(), our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()), secp_ctx, last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize), per_peer_state: RwLock::new(per_peer_state), pending_events: Mutex::new(pending_events_read), pending_background_events: Mutex::new(pending_background_events_read), total_consistency_lock: RwLock::new(()), persistence_notifier: PersistenceNotifier::new(), keys_manager: args.keys_manager, logger: args.logger, default_configuration: args.default_config, }; for htlc_source in failed_htlcs.drain(..) { channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } //TODO: Broadcast channel update for closed channels, but only after we've made a //connection or two. Ok((best_block_hash.clone(), channel_manager)) } } #[cfg(test)] mod tests { use ln::channelmanager::PersistenceNotifier; use std::sync::Arc; use std::sync::atomic::{AtomicBool, Ordering}; use std::thread; use std::time::Duration; #[test] fn test_wait_timeout() { let persistence_notifier = Arc::new(PersistenceNotifier::new()); let thread_notifier = Arc::clone(&persistence_notifier); let exit_thread = Arc::new(AtomicBool::new(false)); let exit_thread_clone = exit_thread.clone(); thread::spawn(move || { loop { let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock; let mut persistence_lock = persist_mtx.lock().unwrap(); *persistence_lock = true; cnd.notify_all(); if exit_thread_clone.load(Ordering::SeqCst) { break } } }); // Check that we can block indefinitely until updates are available. let _ = persistence_notifier.wait(); // Check that the PersistenceNotifier will return after the given duration if updates are // available. loop { if persistence_notifier.wait_timeout(Duration::from_millis(100)) { break } } exit_thread.store(true, Ordering::SeqCst); // Check that the PersistenceNotifier will return after the given duration even if no updates // are available. loop { if !persistence_notifier.wait_timeout(Duration::from_millis(100)) { break } } } } #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))] pub mod bench { use chain::Listen; use chain::chainmonitor::ChainMonitor; use chain::channelmonitor::Persist; use chain::keysinterface::{KeysManager, InMemorySigner}; use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage}; use ln::features::InitFeatures; use ln::functional_test_utils::*; use ln::msgs::ChannelMessageHandler; use routing::network_graph::NetworkGraph; use routing::router::get_route; use util::test_utils; use util::config::UserConfig; use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider}; use bitcoin::hashes::Hash; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::{Block, BlockHeader, Transaction, TxOut}; use std::sync::Mutex; use test::Bencher; struct NodeHolder<'a, P: Persist> { node: &'a ChannelManager, &'a test_utils::TestBroadcaster, &'a KeysManager, &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger> } #[cfg(test)] #[bench] fn bench_sends(bench: &mut Bencher) { bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new()); } pub fn bench_two_sends>(bench: &mut Bencher, persister_a: P, persister_b: P) { // Do a simple benchmark of sending a payment back and forth between two nodes. // Note that this is unrealistic as each payment send will require at least two fsync // calls per node. let network = bitcoin::Network::Testnet; let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash(); let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())}; let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 }; let mut config: UserConfig = Default::default(); config.own_channel_config.minimum_depth = 1; let logger_a = test_utils::TestLogger::with_id("node a".to_owned()); let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a); let seed_a = [1u8; 32]; let keys_manager_a = KeysManager::new(&seed_a, 42, 42); let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters { network, best_block: BestBlock::from_genesis(network), }); let node_a_holder = NodeHolder { node: &node_a }; let logger_b = test_utils::TestLogger::with_id("node a".to_owned()); let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b); let seed_b = [2u8; 32]; let keys_manager_b = KeysManager::new(&seed_b, 42, 42); let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters { network, best_block: BestBlock::from_genesis(network), }); let node_b_holder = NodeHolder { node: &node_b }; node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap(); node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id())); node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id())); let tx; if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) { tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut { value: 8_000_000, script_pubkey: output_script, }]}; node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); } else { panic!(); } node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id())); node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id())); assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]); let block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![tx], }; Listen::block_connected(&node_a, &block, 1); Listen::block_connected(&node_b, &block, 1); node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id())); node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id())); let dummy_graph = NetworkGraph::new(genesis_hash); macro_rules! send_payment { ($node_a: expr, $node_b: expr) => { let usable_channels = $node_a.list_usable_channels(); let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), None, Some(&usable_channels.iter().map(|r| r).collect::>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap(); let payment_preimage = PaymentPreimage([0; 32]); let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()); $node_a.send_payment(&route, payment_hash, &None).unwrap(); let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap()); $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg); let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id()); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id())); expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b }); expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, 10_000); assert!($node_b.claim_funds(payment_preimage, &None, 10_000)); match $node_b.get_and_clear_pending_msg_events().pop().unwrap() { MessageSendEvent::UpdateHTLCs { node_id, updates } => { assert_eq!(node_id, $node_a.get_our_node_id()); $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]); $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed); }, _ => panic!("Failed to generate claim event"), } let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id()); $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa); $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs); $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id())); expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage); } } bench.iter(|| { send_payment!(node_a, node_b); send_payment!(node_b, node_a); }); } }