// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry //! payments thereafter. use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch}; use crate::chain::channelmonitor::{ANTI_REORG_DELAY, LATENCY_GRACE_PERIOD_BLOCKS}; use crate::chain::transaction::OutPoint; use crate::chain::keysinterface::{EntropySource, KeysInterface}; use crate::ln::channel::EXPIRE_PREV_CONFIG_TICKS; use crate::ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure, IDEMPOTENCY_TIMEOUT_TICKS}; use crate::ln::msgs; use crate::ln::msgs::ChannelMessageHandler; use crate::routing::gossip::RoutingFees; use crate::routing::router::{get_route, PaymentParameters, RouteHint, RouteHintHop, RouteParameters}; use crate::util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider}; use crate::util::test_utils; use crate::util::errors::APIError; use crate::util::ser::Writeable; use bitcoin::{Block, BlockHeader, TxMerkleNode}; use bitcoin::hashes::Hash; use bitcoin::network::constants::Network; use crate::prelude::*; use crate::ln::functional_test_utils::*; use crate::routing::gossip::NodeId; #[test] fn retry_single_path_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. let payment_id = PaymentId(payment_hash.0); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Rebalance the channel so the retry succeeds. send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); // Mine two blocks (we expire retries after 3, so this will check that we don't expire early) connect_blocks(&nodes[0], 2); // Retry the payment and make sure it succeeds. nodes[0].node.retry_payment(&route, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); } #[test] fn mpp_failure() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret); fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash); } #[test] fn mpp_retry() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id; route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id; route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id; // Initiate the MPP payment. let payment_id = PaymentId(payment_hash.0); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), payment_id).unwrap(); check_added_monitors!(nodes[0], 2); // one monitor per path let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); // Pass half of the payment along the success path. let (success_path_msgs, mut events) = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &events); pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None); // Add the HTLC along the first hop. let (fail_path_msgs_1, _events) = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &events); let (update_add, commitment_signed) = match fail_path_msgs_1 { MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(update_add_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); (update_add_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add); commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false); // Attempt to forward the payment and complete the 2nd path's failure. expect_pending_htlcs_forwardable!(&nodes[2]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]); let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[2], 1); nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Rebalance the channel so the second half of the payment can succeed. send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); // Make sure it errors as expected given a too-large amount. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) { assert!(err.contains("over total_payment_amt_msat")); } else { panic!("Unexpected error"); } // Make sure it errors as expected given the wrong payment_id. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } // Retry the second half of the payment and make sure it succeeds. let mut path = route.clone(); path.paths.remove(0); nodes[0].node.retry_payment(&path, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } fn do_mpp_receive_timeout(send_partial_mpp: bool) { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id; route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id; route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id; // Initiate the MPP payment. nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 2); // one monitor per path let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); // Pass half of the payment along the first path. let (node_1_msgs, mut events) = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &events); pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_1_msgs, false, None); if send_partial_mpp { // Time out the partial MPP for _ in 0..MPP_TIMEOUT_TICKS { nodes[3].node.timer_tick_occurred(); } // Failed HTLC from node 3 -> 1 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]); let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id()); assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1); nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]); check_added_monitors!(nodes[3], 1); commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false); // Failed HTLC from node 1 -> 0 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]); let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]); check_added_monitors!(nodes[1], 1); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..])); } else { // Pass half of the payment along the second path. let (node_2_msgs, _events) = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &events); pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), node_2_msgs, true, None); // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts for _ in 0..MPP_TIMEOUT_TICKS { nodes[3].node.timer_tick_occurred(); } claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } } #[test] fn mpp_receive_timeout() { do_mpp_receive_timeout(true); do_mpp_receive_timeout(false); } #[test] fn retry_expired_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false); // Mine blocks so the payment will have expired. connect_blocks(&nodes[0], 3); // Retry the payment and make sure it errors as expected. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId(payment_hash.0)) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } } #[test] fn no_pending_leak_on_initial_send_failure() { // In an earlier version of our payment tracking, we'd have a retry entry even when the initial // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a // pending payment forever and never time it out. // Here we test exactly that - retrying a payment when a peer was disconnected on the first // try, and then check that no pending payment is being tracked. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!")); assert!(!nodes[0].node.has_pending_payments()); } fn do_retry_with_no_persist(confirm_before_reload: bool) { // If we send a pending payment and `send_payment` returns success, we should always either // return a payment failure event or a payment success event, and on failure the payment should // be retryable. // // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its // always persisted asynchronously), the ChannelManager has to reload some payment data from // ChannelMonitor(s) in some cases. This tests that reloading. // // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking // which has separate codepaths for "commitment transaction already confirmed" and not. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Serialize the ChannelManager prior to sending payments let nodes_0_serialized = nodes[0].node.encode(); // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time // out and retry. let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment // which would prevent retry. nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true); // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone(); if confirm_before_reload { mine_transaction(&nodes[0], &as_commitment_tx); nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); } // The ChannelMonitor should always be the latest version, as we're required to persist it // during the `commitment_signed_dance!()`. let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); reload_node!(nodes[0], test_default_channel_config(), &nodes_0_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and // force-close the channel. check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[0].node.has_pending_payments()); let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_broadcasted_txn.len(), 1); assert_eq!(as_broadcasted_txn[0], as_commitment_tx); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an // error, as the channel has hit the chain. nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap(); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let as_err = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_err.len(), 1); match as_err[0] { MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) }); check_added_monitors!(nodes[1], 1); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); }, _ => panic!("Unexpected event"), } check_closed_broadcast!(nodes[1], false); // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when // we close in a moment. nodes[2].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[2], 1); expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); check_added_monitors!(nodes[1], 1); commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false); expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false); if confirm_before_reload { let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone(); nodes[0].node.best_block_updated(&best_block.0.header, best_block.1); } // Create a new channel on which to retry the payment before we fail the payment via the // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us // connecting several blocks while creating the channel (implying time has passed). create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); mine_transaction(&nodes[1], &as_commitment_tx); let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_claim_txn.len(), 1); check_spends!(bs_htlc_claim_txn[0], as_commitment_tx); if !confirm_before_reload { mine_transaction(&nodes[0], &as_commitment_tx); } mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]); expect_payment_sent!(nodes[0], payment_preimage_1); connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20); let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_htlc_timeout_txn.len(), 2); let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]); check_spends!(first_htlc_timeout_tx, as_commitment_tx); check_spends!(second_htlc_timeout_tx, as_commitment_tx); if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output { confirm_transaction(&nodes[0], &second_htlc_timeout_tx); } else { confirm_transaction(&nodes[0], &first_htlc_timeout_tx); } nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was // reloaded) via a route over the new channel, which work without issue and eventually be // received and claimed at the recipient just like any other payment. let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee // and not the original fee. We also update node[1]'s relevant config as // do_claim_payment_along_route expects us to never overpay. { let per_peer_state = nodes[1].node.per_peer_state.read().unwrap(); let mut peer_state = per_peer_state.get(&nodes[2].node.get_our_node_id()) .unwrap().lock().unwrap(); let mut channel = peer_state.channel_by_id.get_mut(&chan_id_2).unwrap(); let mut new_config = channel.config(); new_config.forwarding_fee_base_msat += 100_000; channel.update_config(&new_config); new_route.paths[0][0].fee_msat += 100_000; } // Force expiration of the channel's previous config. for _ in 0..EXPIRE_PREV_CONFIG_TICKS { nodes[1].node.timer_tick_occurred(); } assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment nodes[0].node.retry_payment(&new_route, PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat)); } #[test] fn retry_with_no_persist() { do_retry_with_no_persist(true); do_retry_with_no_persist(false); } fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) { // Test that an off-chain completed payment is not retryable on restart. This was previously // broken for dust payments, but we test for both dust and non-dust payments. // // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain // output at all. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let mut manually_accept_config = test_default_channel_config(); manually_accept_config.manually_accept_inbound_channels = true; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]); let first_persister: test_utils::TestPersister; let first_new_chain_monitor: test_utils::TestChainMonitor; let first_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let second_persister: test_utils::TestPersister; let second_new_chain_monitor: test_utils::TestChainMonitor; let second_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let third_persister: test_utils::TestPersister; let third_new_chain_monitor: test_utils::TestChainMonitor; let third_nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Because we set nodes[1] to manually accept channels, just open a 0-conf channel. let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None); confirm_transaction(&nodes[0], &funding_tx); confirm_transaction(&nodes[1], &funding_tx); // Ignore the announcement_signatures messages nodes[0].node.get_and_clear_pending_msg_events(); nodes[1].node.get_and_clear_pending_msg_events(); let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; // Serialize the ChannelManager prior to sending payments let mut nodes_0_serialized = nodes[0].node.encode(); let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0; let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 }); // The ChannelMonitor should always be the latest version, as we're required to persist it // during the `commitment_signed_dance!()`. let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized], first_persister, first_new_chain_monitor, first_nodes_0_deserialized); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and // force-close the channel. check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[0].node.has_pending_payments()); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an // error, as the channel has hit the chain. nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap(); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let as_err = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_err.len(), 1); let bs_commitment_tx; match as_err[0] { MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id()) }); check_added_monitors!(nodes[1], 1); bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); }, _ => panic!("Unexpected event"), } check_closed_broadcast!(nodes[1], false); // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional // incoming HTLCs with the same payment hash later. nodes[2].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[2], 1); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]); // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved // after the commitment transaction, so always connect the commitment transaction. mine_transaction(&nodes[0], &bs_commitment_tx[0]); mine_transaction(&nodes[1], &bs_commitment_tx[0]); if !use_dust { connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32)); connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32)); let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]); assert_eq!(as_htlc_timeout.len(), 1); mine_transaction(&nodes[0], &as_htlc_timeout[0]); // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set. nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); mine_transaction(&nodes[1], &as_htlc_timeout[0]); } // Create a new channel on which to retry the payment before we fail the payment via the // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us // connecting several blocks while creating the channel (implying time has passed). // We do this with a zero-conf channel to avoid connecting blocks as a side-effect. let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs) // confirming, we will fail as it's considered still-pending... let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment // again. We serialize the node first as we'll then test retrying the HTLC after a restart // (which should also still work). connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); // We set mpp_parts_remain to avoid having abandon_payment called expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode(); nodes_0_serialized = nodes[0].node.encode(); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok()); assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty()); reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], second_persister, second_new_chain_monitor, second_nodes_0_deserialized); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures // the payment is not (spuriously) listed as still pending. assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok()); check_added_monitors!(nodes[0], 1); pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret); claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); let chan_1_monitor_serialized = get_monitor!(nodes[0], chan_id_3).encode(); nodes_0_serialized = nodes[0].node.encode(); // Ensure that after reload we cannot retry the payment. reload_node!(nodes[0], test_default_channel_config(), nodes_0_serialized, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], third_persister, third_new_chain_monitor, third_nodes_0_deserialized); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); } #[test] fn test_completed_payment_not_retryable_on_reload() { do_test_completed_payment_not_retryable_on_reload(true); do_test_completed_payment_not_retryable_on_reload(false); } fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) { // When a Channel is closed, any outbound HTLCs which were relayed through it are simply // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when // the ChannelMonitor tells it to. // // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Route a payment, but force-close the channel before the HTLC fulfill message arrives at // nodes[0]. let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000); nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap(); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[1]); check_spends!(node_txn[1], funding_tx); check_spends!(node_txn[2], node_txn[1]); let timeout_txn = vec![node_txn[2].clone()]; nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash, 10_000_000); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]}); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(claim_txn.len(), 1); check_spends!(claim_txn[0], node_txn[1]); header.prev_blockhash = nodes[0].best_block_hash(); connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]}); if confirm_commitment_tx { connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1); } header.prev_blockhash = nodes[0].best_block_hash(); let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } }; if payment_timeout { assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV! connect_block(&nodes[0], &claim_block); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2); } // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update // returning InProgress. This should cause the claim event to never make its way to the // ChannelManager. chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear(); chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress); if payment_timeout { connect_blocks(&nodes[0], 1); } else { connect_block(&nodes[0], &claim_block); } let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 }; let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap() .get_mut(&funding_txo).unwrap().drain().collect(); // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice. // If we're testing connection idempotency we may get substantially more. assert!(mon_updates.len() >= 1); assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); // If we persist the ChannelManager here, we should get the PaymentSent event after // deserialization. let mut chan_manager_serialized = Vec::new(); if !persist_manager_post_event { chan_manager_serialized = nodes[0].node.encode(); } // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the // payment sent event. chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed); let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); for update in mon_updates { nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap(); } if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, false); } else { expect_payment_sent!(nodes[0], payment_preimage); } // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it // twice. if persist_manager_post_event { chan_manager_serialized = nodes[0].node.encode(); } // Now reload nodes[0]... reload_node!(nodes[0], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); if persist_manager_post_event { assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } else if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, false); } else { expect_payment_sent!(nodes[0], payment_preimage); } // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of // payment events should kick in, leaving us with no pending events here. let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1; nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn test_dup_htlc_onchain_fails_on_reload() { do_test_dup_htlc_onchain_fails_on_reload(true, true, true); do_test_dup_htlc_onchain_fails_on_reload(true, true, false); do_test_dup_htlc_onchain_fails_on_reload(true, false, false); do_test_dup_htlc_onchain_fails_on_reload(false, true, true); do_test_dup_htlc_onchain_fails_on_reload(false, true, false); do_test_dup_htlc_onchain_fails_on_reload(false, false, false); } #[test] fn test_fulfill_restart_failure() { // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC // again, or fail it, giving us free money. // // Of course probably they won't fail it and give us free money, but because we have code to // handle it, we should test the logic for it anyway. We do that here. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000); // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state // pre-fulfill, which we do by serializing it here. let chan_manager_serialized = nodes[1].node.encode(); let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id).encode(); nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash, 100_000); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); expect_payment_sent_without_paths!(nodes[0], payment_preimage); // Now reload nodes[1]... reload_node!(nodes[1], &chan_manager_serialized, &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[1], 1); let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false); // nodes[0] shouldn't generate any events here, while it just got a payment failure completion // it had already considered the payment fulfilled, and now they just got free money. assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn get_ldk_payment_preimage() { // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let amt_msat = 60_000; let expiry_secs = 60 * 60; let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap(); let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id()) .with_features(channelmanager::provided_invoice_features()); let scorer = test_utils::TestScorer::with_penalty(0); let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet); let random_seed_bytes = keys_manager.get_secure_random_bytes(); let route = get_route( &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(), Some(&nodes[0].node.list_usable_channels().iter().collect::>()), amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap(); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); // Make sure to use `get_payment_preimage` let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap(); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage)); claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage); } #[test] fn sent_probe_is_probe_of_sending_node() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // First check we refuse to build a single-hop probe let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000); assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err()); // Then build an actual two-hop probing path let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000); match nodes[0].node.send_probe(route.paths[0].clone()) { Ok((payment_hash, payment_id)) => { assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id)); assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id)); assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id)); }, _ => panic!(), } get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); } #[test] fn successful_probe_yields_event() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); // node[1] -- update_add_htlcs -> node[2] check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[2], 0); commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true); // node[1] <- update_fail_htlcs -- node[2] let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true); // node[0] <- update_fail_htlcs -- node[1] let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[0], 0); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events.drain(..).next().unwrap() { crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); }, _ => panic!(), }; } #[test] fn failed_probe_yields_event() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id()); let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); // node[0] <- update_fail_htlcs -- node[1] check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); // Skip the PendingHTLCsForwardable event let _events = nodes[1].node.get_and_clear_pending_events(); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[0], 0); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events.drain(..).next().unwrap() { crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); }, _ => panic!(), }; } #[test] fn onchain_failed_probe_yields_event() { // Tests that an attempt to probe over a channel that is eventaully closed results in a failure // event. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id()); // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain. let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on // Node A, which after 6 confirmations should result in a probe failure event. let bs_txn = get_local_commitment_txn!(nodes[1], chan_id); confirm_transaction(&nodes[0], &bs_txn[0]); check_closed_broadcast!(&nodes[0], true); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); let mut found_probe_failed = false; for event in events.drain(..) { match event { Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); found_probe_failed = true; }, Event::ChannelClosed { .. } => {}, _ => panic!(), } } assert!(found_probe_failed); } #[test] fn claimed_send_payment_idempotent() { // Tests that `send_payment` (and friends) are (reasonably) idempotent. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); let (first_payment_preimage, _, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000); macro_rules! check_send_rejected { () => { // If we try to resend a new payment with a different payment_hash but with the same // payment_id, it should be rejected. let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id); match send_result { Err(PaymentSendFailure::DuplicatePayment) => {}, _ => panic!("Unexpected send result: {:?}", send_result), } // Further, if we try to send a spontaneous payment with the same payment_id it should // also be rejected. let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id); match send_result { Err(PaymentSendFailure::DuplicatePayment) => {}, _ => panic!("Unexpected send result: {:?}", send_result), } } } check_send_rejected!(); // Claim the payment backwards, but note that the PaymentSent event is still pending and has // not been seen by the user. At this point, from the user perspective nothing has changed, so // we must remain just as idempotent as we were before. do_claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, first_payment_preimage); for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS { nodes[0].node.timer_tick_occurred(); } check_send_rejected!(); // Once the user sees and handles the `PaymentSent` event, we expect them to no longer call // `send_payment`, and our idempotency guarantees are off - they should have atomically marked // the payment complete. However, they could have called `send_payment` while the event was // being processed, leading to a race in our idempotency guarantees. Thus, even immediately // after the event is handled a duplicate payment should sitll be rejected. expect_payment_sent!(&nodes[0], first_payment_preimage, Some(0)); check_send_rejected!(); // If relatively little time has passed, a duplicate payment should still fail. nodes[0].node.timer_tick_occurred(); check_send_rejected!(); // However, after some time has passed (at least more than the one timer tick above), a // duplicate payment should go through, as ChannelManager should no longer have any remaining // references to the old payment data. for _ in 0..IDEMPOTENCY_TIMEOUT_TICKS { nodes[0].node.timer_tick_occurred(); } nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap(); check_added_monitors!(nodes[0], 1); pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret); claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage); } #[test] fn abandoned_send_payment_idempotent() { // Tests that `send_payment` (and friends) allow duplicate PaymentIds immediately after // abandon_payment. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (route, second_payment_hash, second_payment_preimage, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); let (_, first_payment_hash, _, payment_id) = send_along_route(&nodes[0], route.clone(), &[&nodes[1]], 100_000); macro_rules! check_send_rejected { () => { // If we try to resend a new payment with a different payment_hash but with the same // payment_id, it should be rejected. let send_result = nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id); match send_result { Err(PaymentSendFailure::DuplicatePayment) => {}, _ => panic!("Unexpected send result: {:?}", send_result), } // Further, if we try to send a spontaneous payment with the same payment_id it should // also be rejected. let send_result = nodes[0].node.send_spontaneous_payment(&route, None, payment_id); match send_result { Err(PaymentSendFailure::DuplicatePayment) => {}, _ => panic!("Unexpected send result: {:?}", send_result), } } } check_send_rejected!(); nodes[1].node.fail_htlc_backwards(&first_payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: first_payment_hash }]); pass_failed_payment_back_no_abandon(&nodes[0], &[&[&nodes[1]]], false, first_payment_hash); check_send_rejected!(); // Until we abandon the payment, no matter how many timer ticks pass, we still cannot reuse the // PaymentId. for _ in 0..=IDEMPOTENCY_TIMEOUT_TICKS { nodes[0].node.timer_tick_occurred(); } check_send_rejected!(); nodes[0].node.abandon_payment(payment_id); get_event!(nodes[0], Event::PaymentFailed); // However, we can reuse the PaymentId immediately after we `abandon_payment`. nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret), payment_id).unwrap(); check_added_monitors!(nodes[0], 1); pass_along_route(&nodes[0], &[&[&nodes[1]]], 100_000, second_payment_hash, second_payment_secret); claim_payment(&nodes[0], &[&nodes[1]], second_payment_preimage); } #[derive(PartialEq)] enum InterceptTest { Forward, Fail, Timeout, } #[test] fn test_trivial_inflight_htlc_tracking(){ // In this test, we test three scenarios: // (1) Sending + claiming a payment successfully should return `None` when querying InFlightHtlcs // (2) Sending a payment without claiming it should return the payment's value (500000) when querying InFlightHtlcs // (3) After we claim the payment sent in (2), InFlightHtlcs should return `None` for the query. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let (_, _, chan_1_id, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (_, _, chan_2_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Send and claim the payment. Inflight HTLCs should be empty. send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000); { let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs(); let mut node_0_per_peer_lock; let mut node_0_peer_state_lock; let mut node_1_per_peer_lock; let mut node_1_peer_state_lock; let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id); let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id); let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()), channel_1.get_short_channel_id().unwrap() ); let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()), channel_2.get_short_channel_id().unwrap() ); assert_eq!(chan_1_used_liquidity, None); assert_eq!(chan_2_used_liquidity, None); } // Send the payment, but do not claim it. Our inflight HTLCs should contain the pending payment. let (payment_preimage, _, _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 500000); { let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs(); let mut node_0_per_peer_lock; let mut node_0_peer_state_lock; let mut node_1_per_peer_lock; let mut node_1_peer_state_lock; let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id); let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id); let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()), channel_1.get_short_channel_id().unwrap() ); let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()), channel_2.get_short_channel_id().unwrap() ); // First hop accounts for expected 1000 msat fee assert_eq!(chan_1_used_liquidity, Some(501000)); assert_eq!(chan_2_used_liquidity, Some(500000)); } // Now, let's claim the payment. This should result in the used liquidity to return `None`. claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); { let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs(); let mut node_0_per_peer_lock; let mut node_0_peer_state_lock; let mut node_1_per_peer_lock; let mut node_1_peer_state_lock; let channel_1 = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, chan_1_id); let channel_2 = get_channel_ref!(&nodes[1], nodes[2], node_1_per_peer_lock, node_1_peer_state_lock, chan_2_id); let chan_1_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()), channel_1.get_short_channel_id().unwrap() ); let chan_2_used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[2].node.get_our_node_id()), channel_2.get_short_channel_id().unwrap() ); assert_eq!(chan_1_used_liquidity, None); assert_eq!(chan_2_used_liquidity, None); } } #[test] fn test_holding_cell_inflight_htlcs() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); let (_, payment_hash_2, payment_secret_2) = get_payment_preimage_hash!(nodes[1]); // Queue up two payments - one will be delivered right away, one immediately goes into the // holding cell as nodes[0] is AwaitingRAA. { nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1), PaymentId(payment_hash_1.0)).unwrap(); check_added_monitors!(nodes[0], 1); nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap(); check_added_monitors!(nodes[0], 0); } let inflight_htlcs = node_chanmgrs[0].compute_inflight_htlcs(); { let mut node_0_per_peer_lock; let mut node_0_peer_state_lock; let channel = get_channel_ref!(&nodes[0], nodes[1], node_0_per_peer_lock, node_0_peer_state_lock, channel_id); let used_liquidity = inflight_htlcs.used_liquidity_msat( &NodeId::from_pubkey(&nodes[0].node.get_our_node_id()) , &NodeId::from_pubkey(&nodes[1].node.get_our_node_id()), channel.get_short_channel_id().unwrap() ); assert_eq!(used_liquidity, Some(2000000)); } // Clear pending events so test doesn't throw a "Had excess message on node..." error nodes[0].node.get_and_clear_pending_msg_events(); } #[test] fn intercepted_payment() { // Test that detecting an intercept scid on payment forward will signal LDK to generate an // intercept event, which the LSP can then use to either (a) open a JIT channel to forward the // payment or (b) fail the payment. do_test_intercepted_payment(InterceptTest::Forward); do_test_intercepted_payment(InterceptTest::Fail); // Make sure that intercepted payments will be automatically failed back if too many blocks pass. do_test_intercepted_payment(InterceptTest::Timeout); } fn do_test_intercepted_payment(test: InterceptTest) { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let mut zero_conf_chan_config = test_default_channel_config(); zero_conf_chan_config.manually_accept_inbound_channels = true; let mut intercept_forwards_config = test_default_channel_config(); intercept_forwards_config.accept_intercept_htlcs = true; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), Some(zero_conf_chan_config)]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let scorer = test_utils::TestScorer::with_penalty(0); let random_seed_bytes = chanmon_cfgs[0].keys_manager.get_secure_random_bytes(); let _ = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let amt_msat = 100_000; let intercept_scid = nodes[1].node.get_intercept_scid(); let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id()) .with_route_hints(vec![ RouteHint(vec![RouteHintHop { src_node_id: nodes[1].node.get_our_node_id(), short_channel_id: intercept_scid, fees: RoutingFees { base_msat: 1000, proportional_millionths: 0, }, cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA, htlc_minimum_msat: None, htlc_maximum_msat: None, }]) ]) .with_features(channelmanager::provided_invoice_features()); let route_params = RouteParameters { payment_params, final_value_msat: amt_msat, final_cltv_expiry_delta: TEST_FINAL_CLTV, }; let route = get_route( &nodes[0].node.get_our_node_id(), &route_params.payment_params, &nodes[0].network_graph.read_only(), None, route_params.final_value_msat, route_params.final_cltv_expiry_delta, nodes[0].logger, &scorer, &random_seed_bytes ).unwrap(); let (payment_hash, payment_secret) = nodes[2].node.create_inbound_payment(Some(amt_msat), 60 * 60).unwrap(); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); let payment_event = { { let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); added_monitors.clear(); } let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], &payment_event.commitment_msg, false, true); // Check that we generate the PaymentIntercepted event when an intercept forward is detected. let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); let (intercept_id, expected_outbound_amount_msat) = match events[0] { crate::util::events::Event::HTLCIntercepted { intercept_id, expected_outbound_amount_msat, payment_hash: pmt_hash, inbound_amount_msat, requested_next_hop_scid: short_channel_id } => { assert_eq!(pmt_hash, payment_hash); assert_eq!(inbound_amount_msat, route.get_total_amount() + route.get_total_fees()); assert_eq!(short_channel_id, intercept_scid); (intercept_id, expected_outbound_amount_msat) }, _ => panic!() }; // Check for unknown channel id error. let unknown_chan_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &[42; 32], nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err(); assert_eq!(unknown_chan_id_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!([42; 32]), nodes[2].node.get_our_node_id()) }); if test == InterceptTest::Fail { // Ensure we can fail the intercepted payment back. nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap(); expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(nodes[1], vec![HTLCDestination::UnknownNextHop { requested_forward_scid: intercept_scid }]); nodes[1].node.process_pending_htlc_forwards(); let update_fail = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(&nodes[1], 1); assert!(update_fail.update_fail_htlcs.len() == 1); let fail_msg = update_fail.update_fail_htlcs[0].clone(); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg); commitment_signed_dance!(nodes[0], nodes[1], update_fail.commitment_signed, false); // Ensure the payment fails with the expected error. let fail_conditions = PaymentFailedConditions::new() .blamed_scid(intercept_scid) .blamed_chan_closed(true) .expected_htlc_error_data(0x4000 | 10, &[]); expect_payment_failed_conditions(&nodes[0], payment_hash, false, fail_conditions); } else if test == InterceptTest::Forward { // Check that we'll fail as expected when sending to a channel that isn't in `ChannelReady` yet. let temp_chan_id = nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 100_000, 0, 42, None).unwrap(); let unusable_chan_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &temp_chan_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err(); assert_eq!(unusable_chan_err , APIError::ChannelUnavailable { err: format!("Channel with id {} not fully established", log_bytes!(temp_chan_id)) }); assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1); // Open the just-in-time channel so the payment can then be forwarded. let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None); // Finally, forward the intercepted payment through and claim it. nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap(); expect_pending_htlcs_forwardable!(nodes[1]); let payment_event = { { let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); added_monitors.clear(); } let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[2], nodes[1], &payment_event.commitment_msg, false, true); expect_pending_htlcs_forwardable!(nodes[2]); let payment_preimage = nodes[2].node.get_payment_preimage(payment_hash, payment_secret).unwrap(); expect_payment_claimable!(&nodes[2], payment_hash, payment_secret, amt_msat, Some(payment_preimage), nodes[2].node.get_our_node_id()); do_claim_payment_along_route(&nodes[0], &vec!(&vec!(&nodes[1], &nodes[2])[..]), false, payment_preimage); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentSent { payment_preimage: ref ev_preimage, payment_hash: ref ev_hash, ref fee_paid_msat, .. } => { assert_eq!(payment_preimage, *ev_preimage); assert_eq!(payment_hash, *ev_hash); assert_eq!(fee_paid_msat, &Some(1000)); }, _ => panic!("Unexpected event") } match events[1] { Event::PaymentPathSuccessful { payment_hash: hash, .. } => { assert_eq!(hash, Some(payment_hash)); }, _ => panic!("Unexpected event") } } else if test == InterceptTest::Timeout { let mut block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 }, txdata: vec![], }; connect_block(&nodes[0], &block); connect_block(&nodes[1], &block); for _ in 0..TEST_FINAL_CLTV { block.header.prev_blockhash = block.block_hash(); connect_block(&nodes[0], &block); connect_block(&nodes[1], &block); } expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::InvalidForward { requested_forward_scid: intercept_scid }]); check_added_monitors!(nodes[1], 1); let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_timeout_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1); assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty()); assert!(htlc_timeout_updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false, 0x2000 | 2, []); // Check for unknown intercept id error. let (_, channel_id) = open_zero_conf_channel(&nodes[1], &nodes[2], None); let unknown_intercept_id_err = nodes[1].node.forward_intercepted_htlc(intercept_id, &channel_id, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat).unwrap_err(); assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) }); let unknown_intercept_id_err = nodes[1].node.fail_intercepted_htlc(intercept_id).unwrap_err(); assert_eq!(unknown_intercept_id_err , APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0)) }); } }