//! The logic to monitor for on-chain transactions and create the relevant claim responses lives //! here. //! //! ChannelMonitor objects are generated by ChannelManager in response to relevant //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can //! be made in responding to certain messages, see ManyChannelMonitor for more. //! //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other //! security-domain-separated system design, you should consider having multiple paths for //! ChannelMonitors to get out of the HSM and onto monitoring devices. use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction}; use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint; use bitcoin::blockdata::script::{Script, Builder}; use bitcoin::blockdata::opcodes; use bitcoin::consensus::encode::{self, Decodable, Encodable}; use bitcoin::util::hash::BitcoinHash; use bitcoin::util::bip143; use bitcoin_hashes::Hash; use bitcoin_hashes::sha256::Hash as Sha256; use bitcoin_hashes::hash160::Hash as Hash160; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use secp256k1::{Secp256k1,Signature}; use secp256k1::key::{SecretKey,PublicKey}; use secp256k1; use ln::msgs::DecodeError; use ln::chan_utils; use ln::chan_utils::HTLCOutputInCommitment; use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash}; use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT}; use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface, FeeEstimator, ConfirmationTarget, MIN_RELAY_FEE_SAT_PER_1000_WEIGHT}; use chain::transaction::OutPoint; use chain::keysinterface::SpendableOutputDescriptor; use util::logger::Logger; use util::ser::{ReadableArgs, Readable, Writer, Writeable, WriterWriteAdaptor, U48}; use util::{byte_utils, events}; use std::collections::{HashMap, hash_map}; use std::sync::{Arc,Mutex}; use std::{hash,cmp, mem}; /// An error enum representing a failure to persist a channel monitor update. #[derive(Clone)] pub enum ChannelMonitorUpdateErr { /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of /// our state failed, but is expected to succeed at some point in the future). /// /// Such a failure will "freeze" a channel, preventing us from revoking old states or /// submitting new commitment transactions to the remote party. /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore /// the channel to an operational state. /// /// Note that continuing to operate when no copy of the updated ChannelMonitor could be /// persisted is unsafe - if you failed to store the update on your own local disk you should /// instead return PermanentFailure to force closure of the channel ASAP. /// /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting /// to claim it on this channel) and those updates must be applied wherever they can be. At /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to /// the channel which would invalidate previous ChannelMonitors are not made when a channel has /// been "frozen". /// /// Note that even if updates made after TemporaryFailure succeed you must still call /// test_restore_channel_monitor to ensure you have the latest monitor and re-enable normal /// channel operation. /// /// For deployments where a copy of ChannelMonitors and other local state are backed up in a /// remote location (with local copies persisted immediately), it is anticipated that all /// updates will return TemporaryFailure until the remote copies could be updated. TemporaryFailure, /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a /// different watchtower and cannot update with all watchtowers that were previously informed /// of this channel). This will force-close the channel in question. /// /// Should also be used to indicate a failure to update the local copy of the channel monitor. PermanentFailure, } /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::insert_combine this /// means you tried to merge two monitors for different channels or for a channel which was /// restored from a backup and then generated new commitment updates. /// Contains a human-readable error message. #[derive(Debug)] pub struct MonitorUpdateError(pub &'static str); /// Simple structure send back by ManyChannelMonitor in case of HTLC detected onchain from a /// forward channel and from which info are needed to update HTLC in a backward channel. pub struct HTLCUpdate { pub(super) payment_hash: PaymentHash, pub(super) payment_preimage: Option, pub(super) source: HTLCSource } /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing /// events to it, while also taking any add_update_monitor events and passing them to some remote /// server(s). /// /// Note that any updates to a channel's monitor *must* be applied to each instance of the /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions /// which we have revoked, allowing our counterparty to claim all funds in the channel! /// /// User needs to notify implementors of ManyChannelMonitor when a new block is connected or /// disconnected using their `block_connected` and `block_disconnected` methods. However, rather /// than calling these methods directly, the user should register implementors as listeners to the /// BlockNotifier and call the BlockNotifier's `block_(dis)connected` methods, which will notify /// all registered listeners in one go. pub trait ManyChannelMonitor: Send + Sync { /// Adds or updates a monitor for the given `funding_txo`. /// /// Implementor must also ensure that the funding_txo outpoint is registered with any relevant /// ChainWatchInterfaces such that the provided monitor receives block_connected callbacks with /// any spends of it. fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>; /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated /// with success or failure backward fn fetch_pending_htlc_updated(&self) -> Vec; } /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a /// watchtower or watch our own channels. /// /// Note that you must provide your own key by which to refer to channels. /// /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably /// index by a PublicKey which is required to sign any updates. /// /// If you're using this for local monitoring of your own channels, you probably want to use /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation. pub struct SimpleManyChannelMonitor { #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly pub monitors: Mutex>, #[cfg(not(test))] monitors: Mutex>, chain_monitor: Arc, broadcaster: Arc, pending_events: Mutex>, pending_htlc_updated: Mutex)>>>, logger: Arc, fee_estimator: Arc } impl<'a, Key : Send + cmp::Eq + hash::Hash> ChainListener for SimpleManyChannelMonitor { fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) { let block_hash = header.bitcoin_hash(); let mut new_events: Vec = Vec::with_capacity(0); let mut htlc_updated_infos = Vec::new(); { let mut monitors = self.monitors.lock().unwrap(); for monitor in monitors.values_mut() { let (txn_outputs, spendable_outputs, mut htlc_updated) = monitor.block_connected(txn_matched, height, &block_hash, &*self.broadcaster, &*self.fee_estimator); if spendable_outputs.len() > 0 { new_events.push(events::Event::SpendableOutputs { outputs: spendable_outputs, }); } for (ref txid, ref outputs) in txn_outputs { for (idx, output) in outputs.iter().enumerate() { self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey); } } htlc_updated_infos.append(&mut htlc_updated); } } { // ChannelManager will just need to fetch pending_htlc_updated and pass state backward let mut pending_htlc_updated = self.pending_htlc_updated.lock().unwrap(); for htlc in htlc_updated_infos.drain(..) { match pending_htlc_updated.entry(htlc.2) { hash_map::Entry::Occupied(mut e) => { // In case of reorg we may have htlc outputs solved in a different way so // we prefer to keep claims but don't store duplicate updates for a given // (payment_hash, HTLCSource) pair. let mut existing_claim = false; e.get_mut().retain(|htlc_data| { if htlc.0 == htlc_data.0 { if htlc_data.1.is_some() { existing_claim = true; true } else { false } } else { true } }); if !existing_claim { e.get_mut().push((htlc.0, htlc.1)); } } hash_map::Entry::Vacant(e) => { e.insert(vec![(htlc.0, htlc.1)]); } } } } let mut pending_events = self.pending_events.lock().unwrap(); pending_events.append(&mut new_events); } fn block_disconnected(&self, header: &BlockHeader, disconnected_height: u32) { let block_hash = header.bitcoin_hash(); let mut monitors = self.monitors.lock().unwrap(); for monitor in monitors.values_mut() { monitor.block_disconnected(disconnected_height, &block_hash, &*self.broadcaster, &*self.fee_estimator); } } } impl SimpleManyChannelMonitor { /// Creates a new object which can be used to monitor several channels given the chain /// interface with which to register to receive notifications. pub fn new(chain_monitor: Arc, broadcaster: Arc, logger: Arc, feeest: Arc) -> Arc> { let res = Arc::new(SimpleManyChannelMonitor { monitors: Mutex::new(HashMap::new()), chain_monitor, broadcaster, pending_events: Mutex::new(Vec::new()), pending_htlc_updated: Mutex::new(HashMap::new()), logger, fee_estimator: feeest, }); res } /// Adds or updates the monitor which monitors the channel referred to by the given key. pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), MonitorUpdateError> { let mut monitors = self.monitors.lock().unwrap(); match monitors.get_mut(&key) { Some(orig_monitor) => { log_trace!(self, "Updating Channel Monitor for channel {}", log_funding_info!(monitor.key_storage)); return orig_monitor.insert_combine(monitor); }, None => {} }; match monitor.key_storage { Storage::Local { ref funding_info, .. } => { match funding_info { &None => { return Err(MonitorUpdateError("Try to update a useless monitor without funding_txo !")); }, &Some((ref outpoint, ref script)) => { log_trace!(self, "Got new Channel Monitor for channel {}", log_bytes!(outpoint.to_channel_id()[..])); self.chain_monitor.install_watch_tx(&outpoint.txid, script); self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32), script); }, } }, Storage::Watchtower { .. } => { self.chain_monitor.watch_all_txn(); } } monitors.insert(key, monitor); Ok(()) } } impl ManyChannelMonitor for SimpleManyChannelMonitor { fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> { match self.add_update_monitor_by_key(funding_txo, monitor) { Ok(_) => Ok(()), Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure), } } fn fetch_pending_htlc_updated(&self) -> Vec { let mut updated = self.pending_htlc_updated.lock().unwrap(); let mut pending_htlcs_updated = Vec::with_capacity(updated.len()); for (k, v) in updated.drain() { for htlc_data in v { pending_htlcs_updated.push(HTLCUpdate { payment_hash: k, payment_preimage: htlc_data.1, source: htlc_data.0, }); } } pending_htlcs_updated } } impl events::EventsProvider for SimpleManyChannelMonitor { fn get_and_clear_pending_events(&self) -> Vec { let mut pending_events = self.pending_events.lock().unwrap(); let mut ret = Vec::new(); mem::swap(&mut ret, &mut *pending_events); ret } } /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction, /// instead claiming it in its own individual transaction. const CLTV_SHARED_CLAIM_BUFFER: u32 = 12; /// If an HTLC expires within this many blocks, force-close the channel to broadcast the /// HTLC-Success transaction. /// In other words, this is an upper bound on how many blocks we think it can take us to get a /// transaction confirmed (and we use it in a few more, equivalent, places). pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6; /// Number of blocks by which point we expect our counterparty to have seen new blocks on the /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures /// due to expiration but increase the cost of funds being locked longuer in case of failure. /// This delay also cover a low-power peer being slow to process blocks and so being behind us on /// accurate block height. /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY /// with at worst this delay, so we are not only using this value as a mercy for them but also /// us as a safeguard to delay with enough time. pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3; /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money. /// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer. /// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already /// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not /// keeping bumping another claim tx to solve the outpoint. pub(crate) const ANTI_REORG_DELAY: u32 = 6; #[derive(Clone, PartialEq)] enum Storage { Local { revocation_base_key: SecretKey, htlc_base_key: SecretKey, delayed_payment_base_key: SecretKey, payment_base_key: SecretKey, shutdown_pubkey: PublicKey, prev_latest_per_commitment_point: Option, latest_per_commitment_point: Option, funding_info: Option<(OutPoint, Script)>, current_remote_commitment_txid: Option, prev_remote_commitment_txid: Option, }, Watchtower { revocation_base_key: PublicKey, htlc_base_key: PublicKey, } } #[derive(Clone, PartialEq)] struct LocalSignedTx { /// txid of the transaction in tx, just used to make comparison faster txid: Sha256dHash, tx: Transaction, revocation_key: PublicKey, a_htlc_key: PublicKey, b_htlc_key: PublicKey, delayed_payment_key: PublicKey, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option)>, } #[derive(PartialEq)] enum InputDescriptors { RevokedOfferedHTLC, RevokedReceivedHTLC, OfferedHTLC, ReceivedHTLC, RevokedOutput, // either a revoked to_local output on commitment tx, a revoked HTLC-Timeout output or a revoked HTLC-Success output } /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build /// a new bumped one in case of lenghty confirmation delay #[derive(Clone, PartialEq)] enum InputMaterial { Revoked { script: Script, pubkey: Option, key: SecretKey, is_htlc: bool, amount: u64, }, RemoteHTLC { script: Script, key: SecretKey, preimage: Option, amount: u64, locktime: u32, }, LocalHTLC { script: Script, sigs: (Signature, Signature), preimage: Option, amount: u64, } } impl Writeable for InputMaterial { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &InputMaterial::Revoked { ref script, ref pubkey, ref key, ref is_htlc, ref amount} => { writer.write_all(&[0; 1])?; script.write(writer)?; pubkey.write(writer)?; writer.write_all(&key[..])?; if *is_htlc { writer.write_all(&[0; 1])?; } else { writer.write_all(&[1; 1])?; } writer.write_all(&byte_utils::be64_to_array(*amount))?; }, &InputMaterial::RemoteHTLC { ref script, ref key, ref preimage, ref amount, ref locktime } => { writer.write_all(&[1; 1])?; script.write(writer)?; key.write(writer)?; preimage.write(writer)?; writer.write_all(&byte_utils::be64_to_array(*amount))?; writer.write_all(&byte_utils::be32_to_array(*locktime))?; }, &InputMaterial::LocalHTLC { ref script, ref sigs, ref preimage, ref amount } => { writer.write_all(&[2; 1])?; script.write(writer)?; sigs.0.write(writer)?; sigs.1.write(writer)?; preimage.write(writer)?; writer.write_all(&byte_utils::be64_to_array(*amount))?; } } Ok(()) } } impl Readable for InputMaterial { fn read(reader: &mut R) -> Result { let input_material = match >::read(reader)? { 0 => { let script = Readable::read(reader)?; let pubkey = Readable::read(reader)?; let key = Readable::read(reader)?; let is_htlc = match >::read(reader)? { 0 => true, 1 => false, _ => return Err(DecodeError::InvalidValue), }; let amount = Readable::read(reader)?; InputMaterial::Revoked { script, pubkey, key, is_htlc, amount } }, 1 => { let script = Readable::read(reader)?; let key = Readable::read(reader)?; let preimage = Readable::read(reader)?; let amount = Readable::read(reader)?; let locktime = Readable::read(reader)?; InputMaterial::RemoteHTLC { script, key, preimage, amount, locktime } }, 2 => { let script = Readable::read(reader)?; let their_sig = Readable::read(reader)?; let our_sig = Readable::read(reader)?; let preimage = Readable::read(reader)?; let amount = Readable::read(reader)?; InputMaterial::LocalHTLC { script, sigs: (their_sig, our_sig), preimage, amount } } _ => return Err(DecodeError::InvalidValue), }; Ok(input_material) } } /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it /// once they mature to enough confirmations (ANTI_REORG_DELAY) #[derive(Clone, PartialEq)] enum OnchainEvent { /// Outpoint under claim process by our own tx, once this one get enough confirmations, we remove it from /// bump-txn candidate buffer. Claim { claim_request: Sha256dHash, }, /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can /// only win from it, so it's never an OnchainEvent HTLCUpdate { htlc_update: (HTLCSource, PaymentHash), }, /// Claim tx aggregate multiple claimable outpoints. One of the outpoint may be claimed by a remote party tx. /// In this case, we need to drop the outpoint and regenerate a new claim tx. By safety, we keep tracking /// the outpoint to be sure to resurect it back to the claim tx if reorgs happen. ContentiousOutpoint { outpoint: BitcoinOutPoint, input_material: InputMaterial, } } /// Higher-level cache structure needed to re-generate bumped claim txn if needed #[derive(Clone, PartialEq)] struct ClaimTxBumpMaterial { // At every block tick, used to check if pending claiming tx is taking too // much time for confirmation and we need to bump it. height_timer: u32, // Tracked in case of reorg to wipe out now-superflous bump material feerate_previous: u64, // Soonest timelocks among set of outpoints claimed, used to compute // a priority of not feerate soonest_timelock: u32, // Cache of script, pubkey, sig or key to solve claimable outputs scriptpubkey. per_input_material: HashMap, } impl Writeable for ClaimTxBumpMaterial { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { writer.write_all(&byte_utils::be32_to_array(self.height_timer))?; writer.write_all(&byte_utils::be64_to_array(self.feerate_previous))?; writer.write_all(&byte_utils::be32_to_array(self.soonest_timelock))?; writer.write_all(&byte_utils::be64_to_array(self.per_input_material.len() as u64))?; for (outp, tx_material) in self.per_input_material.iter() { outp.write(writer)?; tx_material.write(writer)?; } Ok(()) } } impl Readable for ClaimTxBumpMaterial { fn read(reader: &mut R) -> Result { let height_timer = Readable::read(reader)?; let feerate_previous = Readable::read(reader)?; let soonest_timelock = Readable::read(reader)?; let per_input_material_len: u64 = Readable::read(reader)?; let mut per_input_material = HashMap::with_capacity(cmp::min(per_input_material_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0 ..per_input_material_len { let outpoint = Readable::read(reader)?; let input_material = Readable::read(reader)?; per_input_material.insert(outpoint, input_material); } Ok(Self { height_timer, feerate_previous, soonest_timelock, per_input_material }) } } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates /// on-chain transactions to ensure no loss of funds occurs. /// /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date /// information and are actively monitoring the chain. #[derive(Clone)] pub struct ChannelMonitor { commitment_transaction_number_obscure_factor: u64, key_storage: Storage, their_htlc_base_key: Option, their_delayed_payment_base_key: Option, // first is the idx of the first of the two revocation points their_cur_revocation_points: Option<(u64, PublicKey, Option)>, our_to_self_delay: u16, their_to_self_delay: Option, old_secrets: [([u8; 32], u64); 49], remote_claimable_outpoints: HashMap>)>>, /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain. /// Nor can we figure out their commitment numbers without the commitment transaction they are /// spending. Thus, in order to claim them via revocation key, we track all the remote /// commitment transactions which we find on-chain, mapping them to the commitment number which /// can be used to derive the revocation key and claim the transactions. remote_commitment_txn_on_chain: HashMap)>, /// Cache used to make pruning of payment_preimages faster. /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked /// remote transactions (ie should remain pretty small). /// Serialized to disk but should generally not be sent to Watchtowers. remote_hash_commitment_number: HashMap, // We store two local commitment transactions to avoid any race conditions where we may update // some monitors (potentially on watchtowers) but then fail to update others, resulting in the // various monitors for one channel being out of sync, and us broadcasting a local // transaction for which we have deleted claim information on some watchtowers. prev_local_signed_commitment_tx: Option, current_local_signed_commitment_tx: Option, // Used just for ChannelManager to make sure it has the latest channel data during // deserialization current_remote_commitment_number: u64, payment_preimages: HashMap, destination_script: Script, // Thanks to data loss protection, we may be able to claim our non-htlc funds // back, this is the script we have to spend from but we need to // scan every commitment transaction for that to_remote_rescue: Option<(Script, SecretKey)>, // Used to track claiming requests. If claim tx doesn't confirm before height timer expiration we need to bump // it (RBF or CPFP). If an input has been part of an aggregate tx at first claim try, we need to keep it within // another bumped aggregate tx to comply with RBF rules. We may have multiple claiming txn in the flight for the // same set of outpoints. One of the outpoints may be spent by a transaction not issued by us. That's why at // block connection we scan all inputs and if any of them is among a set of a claiming request we test for set // equality between spending transaction and claim request. If true, it means transaction was one our claiming one // after a security delay of 6 blocks we remove pending claim request. If false, it means transaction wasn't and // we need to regenerate new claim request we reduced set of stil-claimable outpoints. // Key is identifier of the pending claim request, i.e the txid of the initial claiming transaction generated by // us and is immutable until all outpoint of the claimable set are post-anti-reorg-delay solved. // Entry is cache of elements need to generate a bumped claiming transaction (see ClaimTxBumpMaterial) pending_claim_requests: HashMap, // Used to link outpoints claimed in a connected block to a pending claim request. // Key is outpoint than monitor parsing has detected we have keys/scripts to claim // Value is (pending claim request identifier, confirmation_block), identifier // is txid of the initial claiming transaction and is immutable until outpoint is // post-anti-reorg-delay solved, confirmaiton_block is used to erase entry if // block with output gets disconnected. claimable_outpoints: HashMap, // Used to track onchain events, i.e transactions parts of channels confirmed on chain, on which // we have to take actions once they reach enough confs. Key is a block height timer, i.e we enforce // actions when we receive a block with given height. Actions depend on OnchainEvent type. onchain_events_waiting_threshold_conf: HashMap>, // We simply modify last_block_hash in Channel's block_connected so that serialization is // consistent but hopefully the users' copy handles block_connected in a consistent way. // (we do *not*, however, update them in insert_combine to ensure any local user copies keep // their last_block_hash from its state and not based on updated copies that didn't run through // the full block_connected). pub(crate) last_block_hash: Sha256dHash, secp_ctx: Secp256k1, //TODO: dedup this a bit... logger: Arc, } macro_rules! subtract_high_prio_fee { ($self: ident, $fee_estimator: expr, $value: expr, $predicted_weight: expr, $used_feerate: expr) => { { $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority); let mut fee = $used_feerate * ($predicted_weight as u64) / 1000; if $value <= fee { $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal); fee = $used_feerate * ($predicted_weight as u64) / 1000; if $value <= fee { $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Background); fee = $used_feerate * ($predicted_weight as u64) / 1000; if $value <= fee { log_error!($self, "Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat)", fee, $value); false } else { log_warn!($self, "Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)", $value); $value -= fee; true } } else { log_warn!($self, "Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)", $value); $value -= fee; true } } else { $value -= fee; true } } } } #[cfg(any(test, feature = "fuzztarget"))] /// Used only in testing and fuzztarget to check serialization roundtrips don't change the /// underlying object impl PartialEq for ChannelMonitor { fn eq(&self, other: &Self) -> bool { if self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor || self.key_storage != other.key_storage || self.their_htlc_base_key != other.their_htlc_base_key || self.their_delayed_payment_base_key != other.their_delayed_payment_base_key || self.their_cur_revocation_points != other.their_cur_revocation_points || self.our_to_self_delay != other.our_to_self_delay || self.their_to_self_delay != other.their_to_self_delay || self.remote_claimable_outpoints != other.remote_claimable_outpoints || self.remote_commitment_txn_on_chain != other.remote_commitment_txn_on_chain || self.remote_hash_commitment_number != other.remote_hash_commitment_number || self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx || self.current_remote_commitment_number != other.current_remote_commitment_number || self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx || self.payment_preimages != other.payment_preimages || self.destination_script != other.destination_script || self.to_remote_rescue != other.to_remote_rescue || self.pending_claim_requests != other.pending_claim_requests || self.claimable_outpoints != other.claimable_outpoints || self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf { false } else { for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) { if secret != o_secret || idx != o_idx { return false } } true } } } impl ChannelMonitor { pub(super) fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &SecretKey, htlc_base_key: &SecretKey, payment_base_key: &SecretKey, shutdown_pubkey: &PublicKey, our_to_self_delay: u16, destination_script: Script, logger: Arc) -> ChannelMonitor { ChannelMonitor { commitment_transaction_number_obscure_factor: 0, key_storage: Storage::Local { revocation_base_key: revocation_base_key.clone(), htlc_base_key: htlc_base_key.clone(), delayed_payment_base_key: delayed_payment_base_key.clone(), payment_base_key: payment_base_key.clone(), shutdown_pubkey: shutdown_pubkey.clone(), prev_latest_per_commitment_point: None, latest_per_commitment_point: None, funding_info: None, current_remote_commitment_txid: None, prev_remote_commitment_txid: None, }, their_htlc_base_key: None, their_delayed_payment_base_key: None, their_cur_revocation_points: None, our_to_self_delay: our_to_self_delay, their_to_self_delay: None, old_secrets: [([0; 32], 1 << 48); 49], remote_claimable_outpoints: HashMap::new(), remote_commitment_txn_on_chain: HashMap::new(), remote_hash_commitment_number: HashMap::new(), prev_local_signed_commitment_tx: None, current_local_signed_commitment_tx: None, current_remote_commitment_number: 1 << 48, payment_preimages: HashMap::new(), destination_script: destination_script, to_remote_rescue: None, pending_claim_requests: HashMap::new(), claimable_outpoints: HashMap::new(), onchain_events_waiting_threshold_conf: HashMap::new(), last_block_hash: Default::default(), secp_ctx: Secp256k1::new(), logger, } } fn get_witnesses_weight(inputs: &[InputDescriptors]) -> usize { let mut tx_weight = 2; // count segwit flags for inp in inputs { // We use expected weight (and not actual) as signatures and time lock delays may vary tx_weight += match inp { // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script &InputDescriptors::RevokedOfferedHTLC => { 1 + 1 + 73 + 1 + 33 + 1 + 133 }, // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script &InputDescriptors::RevokedReceivedHTLC => { 1 + 1 + 73 + 1 + 33 + 1 + 139 }, // number_of_witness_elements + sig_length + remotehtlc_sig + preimage_length + preimage + witness_script_length + witness_script &InputDescriptors::OfferedHTLC => { 1 + 1 + 73 + 1 + 32 + 1 + 133 }, // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script &InputDescriptors::ReceivedHTLC => { 1 + 1 + 73 + 1 + 1 + 1 + 139 }, // number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script &InputDescriptors::RevokedOutput => { 1 + 1 + 73 + 1 + 1 + 1 + 77 }, }; } tx_weight } fn get_height_timer(current_height: u32, timelock_expiration: u32) -> u32 { if timelock_expiration <= current_height || timelock_expiration - current_height <= 3 { return current_height + 1 } else if timelock_expiration - current_height <= 15 { return current_height + 3 } current_height + 15 } #[inline] fn place_secret(idx: u64) -> u8 { for i in 0..48 { if idx & (1 << i) == (1 << i) { return i } } 48 } #[inline] fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] { let mut res: [u8; 32] = secret; for i in 0..bits { let bitpos = bits - 1 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote /// commitment transaction's secret, they are de facto pruned (we can use revocation key). pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> { let pos = ChannelMonitor::place_secret(idx); for i in 0..pos { let (old_secret, old_idx) = self.old_secrets[i as usize]; if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret { return Err(MonitorUpdateError("Previous secret did not match new one")); } } if self.get_min_seen_secret() <= idx { return Ok(()); } self.old_secrets[pos as usize] = (secret, idx); // Prune HTLCs from the previous remote commitment tx so we don't generate failure/fulfill // events for now-revoked/fulfilled HTLCs. // TODO: We should probably consider whether we're really getting the next secret here. if let Storage::Local { ref mut prev_remote_commitment_txid, .. } = self.key_storage { if let Some(txid) = prev_remote_commitment_txid.take() { for &mut (_, ref mut source) in self.remote_claimable_outpoints.get_mut(&txid).unwrap() { *source = None; } } } if !self.payment_preimages.is_empty() { let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !"); let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref(); let min_idx = self.get_min_seen_secret(); let remote_hash_commitment_number = &mut self.remote_hash_commitment_number; self.payment_preimages.retain(|&k, _| { for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs { if k == htlc.payment_hash { return true } } if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx { for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() { if k == htlc.payment_hash { return true } } } let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) { if *cn < min_idx { return true } true } else { false }; if contains { remote_hash_commitment_number.remove(&k); } false }); } Ok(()) } /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction. /// The monitor watches for it to be broadcasted and then uses the HTLC information (and /// possibly future revocation/preimage information) to claim outputs where possible. /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers. pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option>)>, commitment_number: u64, their_revocation_point: PublicKey) { // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction // so that a remote monitor doesn't learn anything unless there is a malicious close. // (only maybe, sadly we cant do the same for local info, as we need to be aware of // timeouts) for &(ref htlc, _) in &htlc_outputs { self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number); } let new_txid = unsigned_commitment_tx.txid(); log_trace!(self, "Tracking new remote commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len()); log_trace!(self, "New potential remote commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx)); if let Storage::Local { ref mut current_remote_commitment_txid, ref mut prev_remote_commitment_txid, .. } = self.key_storage { *prev_remote_commitment_txid = current_remote_commitment_txid.take(); *current_remote_commitment_txid = Some(new_txid); } self.remote_claimable_outpoints.insert(new_txid, htlc_outputs); self.current_remote_commitment_number = commitment_number; //TODO: Merge this into the other per-remote-transaction output storage stuff match self.their_cur_revocation_points { Some(old_points) => { if old_points.0 == commitment_number + 1 { self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point))); } else if old_points.0 == commitment_number + 2 { if let Some(old_second_point) = old_points.2 { self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point))); } else { self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); } } else { self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); } }, None => { self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); } } } pub(super) fn provide_rescue_remote_commitment_tx_info(&mut self, their_revocation_point: PublicKey) { match self.key_storage { Storage::Local { ref payment_base_key, .. } => { if let Ok(payment_key) = chan_utils::derive_public_key(&self.secp_ctx, &their_revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &payment_base_key)) { let to_remote_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0) .push_slice(&Hash160::hash(&payment_key.serialize())[..]) .into_script(); if let Ok(to_remote_key) = chan_utils::derive_private_key(&self.secp_ctx, &their_revocation_point, &payment_base_key) { self.to_remote_rescue = Some((to_remote_script, to_remote_key)); } } }, Storage::Watchtower { .. } => {} } } /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it /// is important that any clones of this channel monitor (including remote clones) by kept /// up-to-date as our local commitment transaction is updated. /// Panics if set_their_to_self_delay has never been called. /// Also update Storage with latest local per_commitment_point to derive local_delayedkey in /// case of onchain HTLC tx pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option)>) { assert!(self.their_to_self_delay.is_some()); self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take(); self.current_local_signed_commitment_tx = Some(LocalSignedTx { txid: signed_commitment_tx.txid(), tx: signed_commitment_tx, revocation_key: local_keys.revocation_key, a_htlc_key: local_keys.a_htlc_key, b_htlc_key: local_keys.b_htlc_key, delayed_payment_key: local_keys.a_delayed_payment_key, feerate_per_kw, htlc_outputs, }); if let Storage::Local { ref mut latest_per_commitment_point, .. } = self.key_storage { *latest_per_commitment_point = Some(local_keys.per_commitment_point); } else { panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?"); } } /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all /// commitment_tx_infos which contain the payment hash have been revoked. pub(super) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) { self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone()); } /// Combines this ChannelMonitor with the information contained in the other ChannelMonitor. /// After a successful call this ChannelMonitor is up-to-date and is safe to use to monitor the /// chain for new blocks/transactions. pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), MonitorUpdateError> { match self.key_storage { Storage::Local { ref funding_info, .. } => { if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); } let our_funding_info = funding_info; if let Storage::Local { ref funding_info, .. } = other.key_storage { if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); } // We should be able to compare the entire funding_txo, but in fuzztarget it's trivially // easy to collide the funding_txo hash and have a different scriptPubKey. if funding_info.as_ref().unwrap().0 != our_funding_info.as_ref().unwrap().0 { return Err(MonitorUpdateError("Funding transaction outputs are not identical!")); } } else { return Err(MonitorUpdateError("Try to combine a Local monitor with a Watchtower one !")); } }, Storage::Watchtower { .. } => { if let Storage::Watchtower { .. } = other.key_storage { unimplemented!(); } else { return Err(MonitorUpdateError("Try to combine a Watchtower monitor with a Local one !")); } }, } let other_min_secret = other.get_min_seen_secret(); let our_min_secret = self.get_min_seen_secret(); if our_min_secret > other_min_secret { self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap())?; } if let Some(ref local_tx) = self.current_local_signed_commitment_tx { if let Some(ref other_local_tx) = other.current_local_signed_commitment_tx { let our_commitment_number = 0xffffffffffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor); let other_commitment_number = 0xffffffffffff - ((((other_local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (other_local_tx.tx.lock_time as u64 & 0xffffff)) ^ other.commitment_transaction_number_obscure_factor); if our_commitment_number >= other_commitment_number { self.key_storage = other.key_storage; } } } // TODO: We should use current_remote_commitment_number and the commitment number out of // local transactions to decide how to merge if our_min_secret >= other_min_secret { self.their_cur_revocation_points = other.their_cur_revocation_points; for (txid, htlcs) in other.remote_claimable_outpoints.drain() { self.remote_claimable_outpoints.insert(txid, htlcs); } if let Some(local_tx) = other.prev_local_signed_commitment_tx { self.prev_local_signed_commitment_tx = Some(local_tx); } if let Some(local_tx) = other.current_local_signed_commitment_tx { self.current_local_signed_commitment_tx = Some(local_tx); } self.payment_preimages = other.payment_preimages; self.to_remote_rescue = other.to_remote_rescue; } self.current_remote_commitment_number = cmp::min(self.current_remote_commitment_number, other.current_remote_commitment_number); Ok(()) } /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) { assert!(commitment_transaction_number_obscure_factor < (1 << 48)); self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor; } /// Allows this monitor to scan only for transactions which are applicable. Note that this is /// optional, without it this monitor cannot be used in an SPV client, but you may wish to /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it /// provides slightly better privacy. /// It's the responsibility of the caller to register outpoint and script with passing the former /// value as key to add_update_monitor. pub(super) fn set_funding_info(&mut self, new_funding_info: (OutPoint, Script)) { match self.key_storage { Storage::Local { ref mut funding_info, .. } => { *funding_info = Some(new_funding_info); }, Storage::Watchtower { .. } => { panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?"); } } } /// We log these base keys at channel opening to being able to rebuild redeemscript in case of leaked revoked commit tx pub(super) fn set_their_base_keys(&mut self, their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey) { self.their_htlc_base_key = Some(their_htlc_base_key.clone()); self.their_delayed_payment_base_key = Some(their_delayed_payment_base_key.clone()); } pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) { self.their_to_self_delay = Some(their_to_self_delay); } pub(super) fn unset_funding_info(&mut self) { match self.key_storage { Storage::Local { ref mut funding_info, .. } => { *funding_info = None; }, Storage::Watchtower { .. } => { panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?"); }, } } /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for. pub fn get_funding_txo(&self) -> Option { match self.key_storage { Storage::Local { ref funding_info, .. } => { match funding_info { &Some((outpoint, _)) => Some(outpoint), &None => None } }, Storage::Watchtower { .. } => { return None; } } } /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of. /// Generally useful when deserializing as during normal operation the return values of /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note /// that the get_funding_txo outpoint and transaction must also be monitored for!). pub fn get_monitored_outpoints(&self) -> Vec<(Sha256dHash, u32, &Script)> { let mut res = Vec::with_capacity(self.remote_commitment_txn_on_chain.len() * 2); for (ref txid, &(_, ref outputs)) in self.remote_commitment_txn_on_chain.iter() { for (idx, output) in outputs.iter().enumerate() { res.push(((*txid).clone(), idx as u32, output)); } } res } /// Serializes into a vec, with various modes for the exposed pub fns fn write(&self, writer: &mut W, for_local_storage: bool) -> Result<(), ::std::io::Error> { //TODO: We still write out all the serialization here manually instead of using the fancy //serialization framework we have, we should migrate things over to it. writer.write_all(&[SERIALIZATION_VERSION; 1])?; writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; // Set in initial Channel-object creation, so should always be set by now: U48(self.commitment_transaction_number_obscure_factor).write(writer)?; macro_rules! write_option { ($thing: expr) => { match $thing { &Some(ref t) => { 1u8.write(writer)?; t.write(writer)?; }, &None => 0u8.write(writer)?, } } } match self.key_storage { Storage::Local { ref revocation_base_key, ref htlc_base_key, ref delayed_payment_base_key, ref payment_base_key, ref shutdown_pubkey, ref prev_latest_per_commitment_point, ref latest_per_commitment_point, ref funding_info, ref current_remote_commitment_txid, ref prev_remote_commitment_txid } => { writer.write_all(&[0; 1])?; writer.write_all(&revocation_base_key[..])?; writer.write_all(&htlc_base_key[..])?; writer.write_all(&delayed_payment_base_key[..])?; writer.write_all(&payment_base_key[..])?; writer.write_all(&shutdown_pubkey.serialize())?; prev_latest_per_commitment_point.write(writer)?; latest_per_commitment_point.write(writer)?; match funding_info { &Some((ref outpoint, ref script)) => { writer.write_all(&outpoint.txid[..])?; writer.write_all(&byte_utils::be16_to_array(outpoint.index))?; script.write(writer)?; }, &None => { debug_assert!(false, "Try to serialize a useless Local monitor !"); }, } current_remote_commitment_txid.write(writer)?; prev_remote_commitment_txid.write(writer)?; }, Storage::Watchtower { .. } => unimplemented!(), } writer.write_all(&self.their_htlc_base_key.as_ref().unwrap().serialize())?; writer.write_all(&self.their_delayed_payment_base_key.as_ref().unwrap().serialize())?; match self.their_cur_revocation_points { Some((idx, pubkey, second_option)) => { writer.write_all(&byte_utils::be48_to_array(idx))?; writer.write_all(&pubkey.serialize())?; match second_option { Some(second_pubkey) => { writer.write_all(&second_pubkey.serialize())?; }, None => { writer.write_all(&[0; 33])?; }, } }, None => { writer.write_all(&byte_utils::be48_to_array(0))?; }, } writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?; writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()))?; for &(ref secret, ref idx) in self.old_secrets.iter() { writer.write_all(secret)?; writer.write_all(&byte_utils::be64_to_array(*idx))?; } macro_rules! serialize_htlc_in_commitment { ($htlc_output: expr) => { writer.write_all(&[$htlc_output.offered as u8; 1])?; writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?; writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?; writer.write_all(&$htlc_output.payment_hash.0[..])?; $htlc_output.transaction_output_index.write(writer)?; } } writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?; for (ref txid, ref htlc_infos) in self.remote_claimable_outpoints.iter() { writer.write_all(&txid[..])?; writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?; for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() { serialize_htlc_in_commitment!(htlc_output); write_option!(htlc_source); } } writer.write_all(&byte_utils::be64_to_array(self.remote_commitment_txn_on_chain.len() as u64))?; for (ref txid, &(commitment_number, ref txouts)) in self.remote_commitment_txn_on_chain.iter() { writer.write_all(&txid[..])?; writer.write_all(&byte_utils::be48_to_array(commitment_number))?; (txouts.len() as u64).write(writer)?; for script in txouts.iter() { script.write(writer)?; } } if for_local_storage { writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?; for (ref payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() { writer.write_all(&payment_hash.0[..])?; writer.write_all(&byte_utils::be48_to_array(*commitment_number))?; } } else { writer.write_all(&byte_utils::be64_to_array(0))?; } macro_rules! serialize_local_tx { ($local_tx: expr) => { if let Err(e) = $local_tx.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { match e { encode::Error::Io(e) => return Err(e), _ => panic!("local tx must have been well-formed!"), } } writer.write_all(&$local_tx.revocation_key.serialize())?; writer.write_all(&$local_tx.a_htlc_key.serialize())?; writer.write_all(&$local_tx.b_htlc_key.serialize())?; writer.write_all(&$local_tx.delayed_payment_key.serialize())?; writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?; writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?; for &(ref htlc_output, ref sigs, ref htlc_source) in $local_tx.htlc_outputs.iter() { serialize_htlc_in_commitment!(htlc_output); if let &Some((ref their_sig, ref our_sig)) = sigs { 1u8.write(writer)?; writer.write_all(&their_sig.serialize_compact())?; writer.write_all(&our_sig.serialize_compact())?; } else { 0u8.write(writer)?; } write_option!(htlc_source); } } } if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx { writer.write_all(&[1; 1])?; serialize_local_tx!(prev_local_tx); } else { writer.write_all(&[0; 1])?; } if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { writer.write_all(&[1; 1])?; serialize_local_tx!(cur_local_tx); } else { writer.write_all(&[0; 1])?; } if for_local_storage { writer.write_all(&byte_utils::be48_to_array(self.current_remote_commitment_number))?; } else { writer.write_all(&byte_utils::be48_to_array(0))?; } writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?; for payment_preimage in self.payment_preimages.values() { writer.write_all(&payment_preimage.0[..])?; } self.last_block_hash.write(writer)?; self.destination_script.write(writer)?; if let Some((ref to_remote_script, ref local_key)) = self.to_remote_rescue { writer.write_all(&[1; 1])?; to_remote_script.write(writer)?; local_key.write(writer)?; } else { writer.write_all(&[0; 1])?; } writer.write_all(&byte_utils::be64_to_array(self.pending_claim_requests.len() as u64))?; for (ref ancestor_claim_txid, claim_tx_data) in self.pending_claim_requests.iter() { ancestor_claim_txid.write(writer)?; claim_tx_data.write(writer)?; } writer.write_all(&byte_utils::be64_to_array(self.claimable_outpoints.len() as u64))?; for (ref outp, ref claim_and_height) in self.claimable_outpoints.iter() { outp.write(writer)?; claim_and_height.0.write(writer)?; claim_and_height.1.write(writer)?; } writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?; for (ref target, ref events) in self.onchain_events_waiting_threshold_conf.iter() { writer.write_all(&byte_utils::be32_to_array(**target))?; writer.write_all(&byte_utils::be64_to_array(events.len() as u64))?; for ev in events.iter() { match *ev { OnchainEvent::Claim { ref claim_request } => { writer.write_all(&[0; 1])?; claim_request.write(writer)?; }, OnchainEvent::HTLCUpdate { ref htlc_update } => { writer.write_all(&[1; 1])?; htlc_update.0.write(writer)?; htlc_update.1.write(writer)?; }, OnchainEvent::ContentiousOutpoint { ref outpoint, ref input_material } => { writer.write_all(&[2; 1])?; outpoint.write(writer)?; input_material.write(writer)?; } } } } Ok(()) } /// Writes this monitor into the given writer, suitable for writing to disk. /// /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie not just starting at the same height but starting at the highest /// common block that appears on your best chain as well as on the chain which contains the /// last block hash returned) upon deserializing the object! pub fn write_for_disk(&self, writer: &mut W) -> Result<(), ::std::io::Error> { self.write(writer, true) } /// Encodes this monitor into the given writer, suitable for sending to a remote watchtower /// /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie not just starting at the same height but starting at the highest /// common block that appears on your best chain as well as on the chain which contains the /// last block hash returned) upon deserializing the object! pub fn write_for_watchtower(&self, writer: &mut W) -> Result<(), ::std::io::Error> { self.write(writer, false) } /// Can only fail if idx is < get_min_seen_secret pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> { for i in 0..self.old_secrets.len() { if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 { return Some(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx)) } } assert!(idx < self.get_min_seen_secret()); None } pub(super) fn get_min_seen_secret(&self) -> u64 { //TODO This can be optimized? let mut min = 1 << 48; for &(_, idx) in self.old_secrets.iter() { if idx < min { min = idx; } } min } pub(super) fn get_cur_remote_commitment_number(&self) -> u64 { self.current_remote_commitment_number } pub(super) fn get_cur_local_commitment_number(&self) -> u64 { if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx { 0xffff_ffff_ffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor) } else { 0xffff_ffff_ffff } } /// Attempts to claim a remote commitment transaction's outputs using the revocation key and /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for /// HTLC-Success/HTLC-Timeout transactions. /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of /// revoked remote commitment tx fn check_spend_remote_transaction(&mut self, tx: &Transaction, height: u32, fee_estimator: &FeeEstimator) -> (Vec, (Sha256dHash, Vec), Vec) { // Most secp and related errors trying to create keys means we have no hope of constructing // a spend transaction...so we return no transactions to broadcast let mut txn_to_broadcast = Vec::new(); let mut watch_outputs = Vec::new(); let mut spendable_outputs = Vec::new(); let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers! let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid); macro_rules! ignore_error { ( $thing : expr ) => { match $thing { Ok(a) => a, Err(_) => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs) } }; } let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor); if commitment_number >= self.get_min_seen_secret() { let secret = self.get_secret(commitment_number).unwrap(); let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret)); let (revocation_pubkey, b_htlc_key, local_payment_key) = match self.key_storage { Storage::Local { ref revocation_base_key, ref htlc_base_key, ref payment_base_key, .. } => { let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key); (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))), Some(ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, &per_commitment_point, &payment_base_key)))) }, Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => { let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key); (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key)), None) }, }; let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key.unwrap())); let a_htlc_key = match self.their_htlc_base_key { None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs), Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &their_htlc_base_key)), }; let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key); let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh(); let local_payment_p2wpkh = if let Some(payment_key) = local_payment_key { // Note that the Network here is ignored as we immediately drop the address for the // script_pubkey version. let payment_hash160 = Hash160::hash(&PublicKey::from_secret_key(&self.secp_ctx, &payment_key).serialize()); Some(Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script()) } else { None }; let mut total_value = 0; let mut inputs = Vec::new(); let mut inputs_info = Vec::new(); let mut inputs_desc = Vec::new(); for (idx, outp) in tx.output.iter().enumerate() { if outp.script_pubkey == revokeable_p2wsh { inputs.push(TxIn { previous_output: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); inputs_desc.push(InputDescriptors::RevokedOutput); inputs_info.push((None, outp.value, self.our_to_self_delay as u32)); total_value += outp.value; } else if Some(&outp.script_pubkey) == local_payment_p2wpkh.as_ref() { spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH { outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, key: local_payment_key.unwrap(), output: outp.clone(), }); } } macro_rules! sign_input { ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => { { let (sig, redeemscript, revocation_key) = match self.key_storage { Storage::Local { ref revocation_base_key, .. } => { let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else { let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()].0; chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey) }; let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]); let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key)); (self.secp_ctx.sign(&sighash, &revocation_key), redeemscript, revocation_key) }, Storage::Watchtower { .. } => { unimplemented!(); } }; $input.witness.push(sig.serialize_der().to_vec()); $input.witness[0].push(SigHashType::All as u8); if $htlc_idx.is_none() { $input.witness.push(vec!(1)); } else { $input.witness.push(revocation_pubkey.serialize().to_vec()); } $input.witness.push(redeemscript.clone().into_bytes()); (redeemscript, revocation_key) } } } if let Some(ref per_commitment_data) = per_commitment_option { inputs.reserve_exact(per_commitment_data.len()); for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() { if let Some(transaction_output_index) = htlc.transaction_output_index { let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey); if transaction_output_index as usize >= tx.output.len() || tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 || tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user } let input = TxIn { previous_output: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }; if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER { inputs.push(input); inputs_desc.push(if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }); inputs_info.push((Some(idx), tx.output[transaction_output_index as usize].value, htlc.cltv_expiry)); total_value += tx.output[transaction_output_index as usize].value; } else { let mut single_htlc_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec!(TxOut { script_pubkey: self.destination_script.clone(), value: htlc.amount_msat / 1000, }), }; let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }]); let height_timer = Self::get_height_timer(height, htlc.cltv_expiry); let mut used_feerate; if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, used_feerate) { let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx); let (redeemscript, revocation_key) = sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000); assert!(predicted_weight >= single_htlc_tx.get_weight()); log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", single_htlc_tx.input[0].previous_output.txid, single_htlc_tx.input[0].previous_output.vout, height_timer); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(single_htlc_tx.input[0].previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: Some(revocation_pubkey), key: revocation_key, is_htlc: true, amount: htlc.amount_msat / 1000 }); match self.claimable_outpoints.entry(single_htlc_tx.input[0].previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((single_htlc_tx.txid(), height)); } } match self.pending_claim_requests.entry(single_htlc_tx.txid()) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material }); } } txn_to_broadcast.push(single_htlc_tx); } } } } } if !inputs.is_empty() || !txn_to_broadcast.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours // We're definitely a remote commitment transaction! log_trace!(self, "Got broadcast of revoked remote commitment transaction, generating general spend tx with {} inputs and {} other txn to broadcast", inputs.len(), txn_to_broadcast.len()); watch_outputs.append(&mut tx.output.clone()); self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect())); macro_rules! check_htlc_fails { ($txid: expr, $commitment_tx: expr) => { if let Some(ref outpoints) = self.remote_claimable_outpoints.get($txid) { for &(ref htlc, ref source_option) in outpoints.iter() { if let &Some(ref source) = source_option { log_info!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of revoked remote commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1); match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { let e = entry.get_mut(); e.retain(|ref event| { match **event { OnchainEvent::HTLCUpdate { ref htlc_update } => { return htlc_update.0 != **source }, _ => return true } }); e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}); } hash_map::Entry::Vacant(entry) => { entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]); } } } } } } } if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage { if let &Some(ref txid) = current_remote_commitment_txid { check_htlc_fails!(txid, "current"); } if let &Some(ref txid) = prev_remote_commitment_txid { check_htlc_fails!(txid, "remote"); } } // No need to check local commitment txn, symmetric HTLCSource must be present as per-htlc data on remote commitment tx } if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx let outputs = vec!(TxOut { script_pubkey: self.destination_script.clone(), value: total_value, }); let mut spend_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: outputs, }; let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&inputs_desc[..]); let mut used_feerate; if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } let sighash_parts = bip143::SighashComponents::new(&spend_tx); let mut per_input_material = HashMap::with_capacity(spend_tx.input.len()); let mut soonest_timelock = ::std::u32::MAX; for info in inputs_info.iter() { if info.2 <= soonest_timelock { soonest_timelock = info.2; } } let height_timer = Self::get_height_timer(height, soonest_timelock); let spend_txid = spend_tx.txid(); for (input, info) in spend_tx.input.iter_mut().zip(inputs_info.iter()) { let (redeemscript, revocation_key) = sign_input!(sighash_parts, input, info.0, info.1); log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", input.previous_output.txid, input.previous_output.vout, height_timer); per_input_material.insert(input.previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: if info.0.is_some() { Some(revocation_pubkey) } else { None }, key: revocation_key, is_htlc: if info.0.is_some() { true } else { false }, amount: info.1 }); match self.claimable_outpoints.entry(input.previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((spend_txid, height)); } } } match self.pending_claim_requests.entry(spend_txid) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock, per_input_material }); } } assert!(predicted_weight >= spend_tx.get_weight()); spendable_outputs.push(SpendableOutputDescriptor::StaticOutput { outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 }, output: spend_tx.output[0].clone(), }); txn_to_broadcast.push(spend_tx); } else if let Some(per_commitment_data) = per_commitment_option { // While this isn't useful yet, there is a potential race where if a counterparty // revokes a state at the same time as the commitment transaction for that state is // confirmed, and the watchtower receives the block before the user, the user could // upload a new ChannelMonitor with the revocation secret but the watchtower has // already processed the block, resulting in the remote_commitment_txn_on_chain entry // not being generated by the above conditional. Thus, to be safe, we go ahead and // insert it here. watch_outputs.append(&mut tx.output.clone()); self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect())); log_trace!(self, "Got broadcast of non-revoked remote commitment transaction {}", commitment_txid); macro_rules! check_htlc_fails { ($txid: expr, $commitment_tx: expr, $id: tt) => { if let Some(ref latest_outpoints) = self.remote_claimable_outpoints.get($txid) { $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() { if let &Some(ref source) = source_option { // Check if the HTLC is present in the commitment transaction that was // broadcast, but not if it was below the dust limit, which we should // fail backwards immediately as there is no way for us to learn the // payment_preimage. // Note that if the dust limit were allowed to change between // commitment transactions we'd want to be check whether *any* // broadcastable commitment transaction has the HTLC in it, but it // cannot currently change after channel initialization, so we don't // need to here. for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() { if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() { continue $id; } } log_trace!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx); match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { let e = entry.get_mut(); e.retain(|ref event| { match **event { OnchainEvent::HTLCUpdate { ref htlc_update } => { return htlc_update.0 != **source }, _ => return true } }); e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}); } hash_map::Entry::Vacant(entry) => { entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]); } } } } } } } if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage { if let &Some(ref txid) = current_remote_commitment_txid { check_htlc_fails!(txid, "current", 'current_loop); } if let &Some(ref txid) = prev_remote_commitment_txid { check_htlc_fails!(txid, "previous", 'prev_loop); } } if let Some(revocation_points) = self.their_cur_revocation_points { let revocation_point_option = if revocation_points.0 == commitment_number { Some(&revocation_points.1) } else if let Some(point) = revocation_points.2.as_ref() { if revocation_points.0 == commitment_number + 1 { Some(point) } else { None } } else { None }; if let Some(revocation_point) = revocation_point_option { let (revocation_pubkey, b_htlc_key) = match self.key_storage { Storage::Local { ref revocation_base_key, ref htlc_base_key, .. } => { (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key)))) }, Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => { (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)), ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key))) }, }; let a_htlc_key = match self.their_htlc_base_key { None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs), Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)), }; for (idx, outp) in tx.output.iter().enumerate() { if outp.script_pubkey.is_v0_p2wpkh() { match self.key_storage { Storage::Local { ref payment_base_key, .. } => { if let Ok(local_key) = chan_utils::derive_private_key(&self.secp_ctx, &revocation_point, &payment_base_key) { spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH { outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, key: local_key, output: outp.clone(), }); } }, Storage::Watchtower { .. } => {} } break; // Only to_remote ouput is claimable } } let mut total_value = 0; let mut inputs = Vec::new(); let mut inputs_desc = Vec::new(); let mut inputs_info = Vec::new(); macro_rules! sign_input { ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => { { let (sig, redeemscript, htlc_key) = match self.key_storage { Storage::Local { ref htlc_base_key, .. } => { let htlc = &per_commitment_option.unwrap()[$input.sequence as usize].0; let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey); let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]); let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key)); (self.secp_ctx.sign(&sighash, &htlc_key), redeemscript, htlc_key) }, Storage::Watchtower { .. } => { unimplemented!(); } }; $input.witness.push(sig.serialize_der().to_vec()); $input.witness[0].push(SigHashType::All as u8); $input.witness.push($preimage); $input.witness.push(redeemscript.clone().into_bytes()); (redeemscript, htlc_key) } } } for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() { if let Some(transaction_output_index) = htlc.transaction_output_index { let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey); if transaction_output_index as usize >= tx.output.len() || tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 || tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user } if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) { if htlc.offered { let input = TxIn { previous_output: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index, }, script_sig: Script::new(), sequence: idx as u32, // reset to 0xfffffffd in sign_input witness: Vec::new(), }; if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER { inputs.push(input); inputs_desc.push(if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC }); inputs_info.push((payment_preimage, tx.output[transaction_output_index as usize].value, htlc.cltv_expiry)); total_value += tx.output[transaction_output_index as usize].value; } else { let mut single_htlc_tx = Transaction { version: 2, lock_time: 0, input: vec![input], output: vec!(TxOut { script_pubkey: self.destination_script.clone(), value: htlc.amount_msat / 1000, }), }; let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC }]); let height_timer = Self::get_height_timer(height, htlc.cltv_expiry); let mut used_feerate; if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, used_feerate) { let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx); let (redeemscript, htlc_key) = sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.0.to_vec()); assert!(predicted_weight >= single_htlc_tx.get_weight()); spendable_outputs.push(SpendableOutputDescriptor::StaticOutput { outpoint: BitcoinOutPoint { txid: single_htlc_tx.txid(), vout: 0 }, output: single_htlc_tx.output[0].clone(), }); log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", single_htlc_tx.input[0].previous_output.txid, single_htlc_tx.input[0].previous_output.vout, height_timer); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(single_htlc_tx.input[0].previous_output, InputMaterial::RemoteHTLC { script: redeemscript, key: htlc_key, preimage: Some(*payment_preimage), amount: htlc.amount_msat / 1000, locktime: 0 }); match self.claimable_outpoints.entry(single_htlc_tx.input[0].previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((single_htlc_tx.txid(), height)); } } match self.pending_claim_requests.entry(single_htlc_tx.txid()) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material}); } } txn_to_broadcast.push(single_htlc_tx); } } } } if !htlc.offered { // TODO: If the HTLC has already expired, potentially merge it with the // rest of the claim transaction, as above. let input = TxIn { previous_output: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index, }, script_sig: Script::new(), sequence: idx as u32, witness: Vec::new(), }; let mut timeout_tx = Transaction { version: 2, lock_time: htlc.cltv_expiry, input: vec![input], output: vec!(TxOut { script_pubkey: self.destination_script.clone(), value: htlc.amount_msat / 1000, }), }; let predicted_weight = timeout_tx.get_weight() + Self::get_witnesses_weight(&[InputDescriptors::ReceivedHTLC]); let height_timer = Self::get_height_timer(height, htlc.cltv_expiry); let mut used_feerate; if subtract_high_prio_fee!(self, fee_estimator, timeout_tx.output[0].value, predicted_weight, used_feerate) { let sighash_parts = bip143::SighashComponents::new(&timeout_tx); let (redeemscript, htlc_key) = sign_input!(sighash_parts, timeout_tx.input[0], htlc.amount_msat / 1000, vec![0]); assert!(predicted_weight >= timeout_tx.get_weight()); //TODO: track SpendableOutputDescriptor log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", timeout_tx.input[0].previous_output.txid, timeout_tx.input[0].previous_output.vout, height_timer); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(timeout_tx.input[0].previous_output, InputMaterial::RemoteHTLC { script : redeemscript, key: htlc_key, preimage: None, amount: htlc.amount_msat / 1000, locktime: htlc.cltv_expiry }); match self.claimable_outpoints.entry(timeout_tx.input[0].previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((timeout_tx.txid(), height)); } } match self.pending_claim_requests.entry(timeout_tx.txid()) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material }); } } } txn_to_broadcast.push(timeout_tx); } } } if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx let outputs = vec!(TxOut { script_pubkey: self.destination_script.clone(), value: total_value }); let mut spend_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: outputs, }; let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&inputs_desc[..]); let mut used_feerate; if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } let sighash_parts = bip143::SighashComponents::new(&spend_tx); let mut per_input_material = HashMap::with_capacity(spend_tx.input.len()); let mut soonest_timelock = ::std::u32::MAX; for info in inputs_info.iter() { if info.2 <= soonest_timelock { soonest_timelock = info.2; } } let height_timer = Self::get_height_timer(height, soonest_timelock); let spend_txid = spend_tx.txid(); for (input, info) in spend_tx.input.iter_mut().zip(inputs_info.iter()) { let (redeemscript, htlc_key) = sign_input!(sighash_parts, input, info.1, (info.0).0.to_vec()); log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", input.previous_output.txid, input.previous_output.vout, height_timer); per_input_material.insert(input.previous_output, InputMaterial::RemoteHTLC { script: redeemscript, key: htlc_key, preimage: Some(*(info.0)), amount: info.1, locktime: 0}); match self.claimable_outpoints.entry(input.previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((spend_txid, height)); } } } match self.pending_claim_requests.entry(spend_txid) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock, per_input_material }); } } assert!(predicted_weight >= spend_tx.get_weight()); spendable_outputs.push(SpendableOutputDescriptor::StaticOutput { outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 }, output: spend_tx.output[0].clone(), }); txn_to_broadcast.push(spend_tx); } } } else if let Some((ref to_remote_rescue, ref local_key)) = self.to_remote_rescue { for (idx, outp) in tx.output.iter().enumerate() { if to_remote_rescue == &outp.script_pubkey { spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH { outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, key: local_key.clone(), output: outp.clone(), }); } } } (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs) } /// Attempts to claim a remote HTLC-Success/HTLC-Timeout's outputs using the revocation key fn check_spend_remote_htlc(&mut self, tx: &Transaction, commitment_number: u64, height: u32, fee_estimator: &FeeEstimator) -> (Option, Option) { //TODO: send back new outputs to guarantee pending_claim_request consistency if tx.input.len() != 1 || tx.output.len() != 1 { return (None, None) } macro_rules! ignore_error { ( $thing : expr ) => { match $thing { Ok(a) => a, Err(_) => return (None, None) } }; } let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (None, None); }; let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret)); let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key); let revocation_pubkey = match self.key_storage { Storage::Local { ref revocation_base_key, .. } => { ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))) }, Storage::Watchtower { ref revocation_base_key, .. } => { ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)) }, }; let delayed_key = match self.their_delayed_payment_base_key { None => return (None, None), Some(their_delayed_payment_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &their_delayed_payment_base_key)), }; let redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key); let revokeable_p2wsh = redeemscript.to_v0_p2wsh(); let htlc_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers! let mut inputs = Vec::new(); let mut amount = 0; if tx.output[0].script_pubkey == revokeable_p2wsh { //HTLC transactions have one txin, one txout inputs.push(TxIn { previous_output: BitcoinOutPoint { txid: htlc_txid, vout: 0, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); amount = tx.output[0].value; } if !inputs.is_empty() { let outputs = vec!(TxOut { script_pubkey: self.destination_script.clone(), value: amount }); let mut spend_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: outputs, }; let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&[InputDescriptors::RevokedOutput]); let mut used_feerate; if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) { return (None, None); } let sighash_parts = bip143::SighashComponents::new(&spend_tx); let (sig, revocation_key) = match self.key_storage { Storage::Local { ref revocation_base_key, .. } => { let sighash = hash_to_message!(&sighash_parts.sighash_all(&spend_tx.input[0], &redeemscript, amount)[..]); let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key)); (self.secp_ctx.sign(&sighash, &revocation_key), revocation_key) } Storage::Watchtower { .. } => { unimplemented!(); } }; spend_tx.input[0].witness.push(sig.serialize_der().to_vec()); spend_tx.input[0].witness[0].push(SigHashType::All as u8); spend_tx.input[0].witness.push(vec!(1)); spend_tx.input[0].witness.push(redeemscript.clone().into_bytes()); assert!(predicted_weight >= spend_tx.get_weight()); let outpoint = BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 }; let output = spend_tx.output[0].clone(); let height_timer = Self::get_height_timer(height, self.their_to_self_delay.unwrap() as u32); // We can safely unwrap given we are past channel opening log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", spend_tx.input[0].previous_output.txid, spend_tx.input[0].previous_output.vout, height_timer); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(spend_tx.input[0].previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: None, key: revocation_key, is_htlc: false, amount: tx.output[0].value }); match self.claimable_outpoints.entry(spend_tx.input[0].previous_output) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert((spend_tx.txid(), height)); } } match self.pending_claim_requests.entry(spend_tx.txid()) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: height + self.our_to_self_delay as u32, per_input_material }); } } (Some(spend_tx), Some(SpendableOutputDescriptor::StaticOutput { outpoint, output })) } else { (None, None) } } fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx, per_commitment_point: &Option, delayed_payment_base_key: &Option, height: u32) -> (Vec, Vec, Vec, Vec<(Sha256dHash, ClaimTxBumpMaterial)>) { let mut res = Vec::with_capacity(local_tx.htlc_outputs.len()); let mut spendable_outputs = Vec::with_capacity(local_tx.htlc_outputs.len()); let mut watch_outputs = Vec::with_capacity(local_tx.htlc_outputs.len()); let mut pending_claims = Vec::with_capacity(local_tx.htlc_outputs.len()); macro_rules! add_dynamic_output { ($father_tx: expr, $vout: expr) => { if let Some(ref per_commitment_point) = *per_commitment_point { if let Some(ref delayed_payment_base_key) = *delayed_payment_base_key { if let Ok(local_delayedkey) = chan_utils::derive_private_key(&self.secp_ctx, per_commitment_point, delayed_payment_base_key) { spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WSH { outpoint: BitcoinOutPoint { txid: $father_tx.txid(), vout: $vout }, key: local_delayedkey, witness_script: chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.our_to_self_delay, &local_tx.delayed_payment_key), to_self_delay: self.our_to_self_delay, output: $father_tx.output[$vout as usize].clone(), }); } } } } } let redeemscript = chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.their_to_self_delay.unwrap(), &local_tx.delayed_payment_key); let revokeable_p2wsh = redeemscript.to_v0_p2wsh(); for (idx, output) in local_tx.tx.output.iter().enumerate() { if output.script_pubkey == revokeable_p2wsh { add_dynamic_output!(local_tx.tx, idx as u32); break; } } for &(ref htlc, ref sigs, _) in local_tx.htlc_outputs.iter() { if let Some(transaction_output_index) = htlc.transaction_output_index { if let &Some((ref their_sig, ref our_sig)) = sigs { if htlc.offered { log_trace!(self, "Broadcasting HTLC-Timeout transaction against local commitment transactions"); let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key); htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der().to_vec()); htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8); htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der().to_vec()); htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8); htlc_timeout_tx.input[0].witness.push(Vec::new()); let htlc_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key); htlc_timeout_tx.input[0].witness.push(htlc_script.clone().into_bytes()); add_dynamic_output!(htlc_timeout_tx, 0); let height_timer = Self::get_height_timer(height, htlc.cltv_expiry); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(htlc_timeout_tx.input[0].previous_output, InputMaterial::LocalHTLC { script: htlc_script, sigs: (*their_sig, *our_sig), preimage: None, amount: htlc.amount_msat / 1000}); //TODO: with option_simplified_commitment track outpoint too log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", htlc_timeout_tx.input[0].previous_output.vout, htlc_timeout_tx.input[0].previous_output.txid, height_timer); pending_claims.push((htlc_timeout_tx.txid(), ClaimTxBumpMaterial { height_timer, feerate_previous: 0, soonest_timelock: htlc.cltv_expiry, per_input_material })); res.push(htlc_timeout_tx); } else { if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) { log_trace!(self, "Broadcasting HTLC-Success transaction against local commitment transactions"); let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key); htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy htlc_success_tx.input[0].witness.push(their_sig.serialize_der().to_vec()); htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8); htlc_success_tx.input[0].witness.push(our_sig.serialize_der().to_vec()); htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8); htlc_success_tx.input[0].witness.push(payment_preimage.0.to_vec()); let htlc_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key); htlc_success_tx.input[0].witness.push(htlc_script.clone().into_bytes()); add_dynamic_output!(htlc_success_tx, 0); let height_timer = Self::get_height_timer(height, htlc.cltv_expiry); let mut per_input_material = HashMap::with_capacity(1); per_input_material.insert(htlc_success_tx.input[0].previous_output, InputMaterial::LocalHTLC { script: htlc_script, sigs: (*their_sig, *our_sig), preimage: Some(*payment_preimage), amount: htlc.amount_msat / 1000}); //TODO: with option_simplified_commitment track outpoint too log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", htlc_success_tx.input[0].previous_output.vout, htlc_success_tx.input[0].previous_output.txid, height_timer); pending_claims.push((htlc_success_tx.txid(), ClaimTxBumpMaterial { height_timer, feerate_previous: 0, soonest_timelock: htlc.cltv_expiry, per_input_material })); res.push(htlc_success_tx); } } watch_outputs.push(local_tx.tx.output[transaction_output_index as usize].clone()); } else { panic!("Should have sigs for non-dust local tx outputs!") } } } (res, spendable_outputs, watch_outputs, pending_claims) } /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet) /// revoked using data in local_claimable_outpoints. /// Should not be used if check_spend_revoked_transaction succeeds. fn check_spend_local_transaction(&mut self, tx: &Transaction, height: u32) -> (Vec, Vec, (Sha256dHash, Vec)) { let commitment_txid = tx.txid(); let mut local_txn = Vec::new(); let mut spendable_outputs = Vec::new(); let mut watch_outputs = Vec::new(); macro_rules! wait_threshold_conf { ($height: expr, $source: expr, $commitment_tx: expr, $payment_hash: expr) => { log_trace!(self, "Failing HTLC with payment_hash {} from {} local commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1); match self.onchain_events_waiting_threshold_conf.entry($height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { let e = entry.get_mut(); e.retain(|ref event| { match **event { OnchainEvent::HTLCUpdate { ref htlc_update } => { return htlc_update.0 != $source }, _ => return true } }); e.push(OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}); } hash_map::Entry::Vacant(entry) => { entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}]); } } } } macro_rules! append_onchain_update { ($updates: expr) => { local_txn.append(&mut $updates.0); spendable_outputs.append(&mut $updates.1); watch_outputs.append(&mut $updates.2); for claim in $updates.3 { match self.pending_claim_requests.entry(claim.0) { hash_map::Entry::Occupied(_) => {}, hash_map::Entry::Vacant(entry) => { entry.insert(claim.1); } } } } } // HTLCs set may differ between last and previous local commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward let mut is_local_tx = false; if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx { if local_tx.txid == commitment_txid { is_local_tx = true; log_trace!(self, "Got latest local commitment tx broadcast, searching for available HTLCs to claim"); match self.key_storage { Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => { append_onchain_update!(self.broadcast_by_local_state(local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key), height)); }, Storage::Watchtower { .. } => { append_onchain_update!(self.broadcast_by_local_state(local_tx, &None, &None, height)); } } } } if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx { if local_tx.txid == commitment_txid { is_local_tx = true; log_trace!(self, "Got previous local commitment tx broadcast, searching for available HTLCs to claim"); match self.key_storage { Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => { append_onchain_update!(self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key), height)); }, Storage::Watchtower { .. } => { append_onchain_update!(self.broadcast_by_local_state(local_tx, &None, &None, height)); } } } } macro_rules! fail_dust_htlcs_after_threshold_conf { ($local_tx: expr) => { for &(ref htlc, _, ref source) in &$local_tx.htlc_outputs { if htlc.transaction_output_index.is_none() { if let &Some(ref source) = source { wait_threshold_conf!(height, source.clone(), "lastest", htlc.payment_hash.clone()); } } } } } if is_local_tx { if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx { fail_dust_htlcs_after_threshold_conf!(local_tx); } if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx { fail_dust_htlcs_after_threshold_conf!(local_tx); } } (local_txn, spendable_outputs, (commitment_txid, watch_outputs)) } /// Generate a spendable output event when closing_transaction get registered onchain. fn check_spend_closing_transaction(&self, tx: &Transaction) -> Option { if tx.input[0].sequence == 0xFFFFFFFF && !tx.input[0].witness.is_empty() && tx.input[0].witness.last().unwrap().len() == 71 { match self.key_storage { Storage::Local { ref shutdown_pubkey, .. } => { let our_channel_close_key_hash = Hash160::hash(&shutdown_pubkey.serialize()); let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script(); for (idx, output) in tx.output.iter().enumerate() { if shutdown_script == output.script_pubkey { return Some(SpendableOutputDescriptor::StaticOutput { outpoint: BitcoinOutPoint { txid: tx.txid(), vout: idx as u32 }, output: output.clone(), }); } } } Storage::Watchtower { .. } => { //TODO: we need to ensure an offline client will generate the event when it // comes back online after only the watchtower saw the transaction } } } None } /// Used by ChannelManager deserialization to broadcast the latest local state if its copy of /// the Channel was out-of-date. You may use it to get a broadcastable local toxic tx in case of /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our remote side knows /// a higher revocation secret than the local commitment number we are aware of. Broadcasting these /// transactions are UNSAFE, as they allow remote side to punish you. Nevertheless you may want to /// broadcast them if remote don't close channel with his higher commitment transaction after a /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact /// out-of-band the other node operator to coordinate with him if option is available to you. /// In any-case, choice is up to the user. pub fn get_latest_local_commitment_txn(&self) -> Vec { if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx { let mut res = vec![local_tx.tx.clone()]; match self.key_storage { Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => { res.append(&mut self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key), 0).0); // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do. // The data will be re-generated and tracked in check_spend_local_transaction if we get a confirmation. }, _ => panic!("Can only broadcast by local channelmonitor"), }; res } else { Vec::new() } } fn block_connected(&mut self, txn_matched: &[&Transaction], height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface, fee_estimator: &FeeEstimator)-> (Vec<(Sha256dHash, Vec)>, Vec, Vec<(HTLCSource, Option, PaymentHash)>) { log_trace!(self, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len()); let mut watch_outputs = Vec::new(); let mut spendable_outputs = Vec::new(); let mut htlc_updated = Vec::new(); let mut bump_candidates = Vec::new(); for tx in txn_matched { if tx.input.len() == 1 { // Assuming our keys were not leaked (in which case we're screwed no matter what), // commitment transactions and HTLC transactions will all only ever have one input, // which is an easy way to filter out any potential non-matching txn for lazy // filters. let prevout = &tx.input[0].previous_output; let mut txn: Vec = Vec::new(); let funding_txo = match self.key_storage { Storage::Local { ref funding_info, .. } => { funding_info.clone() } Storage::Watchtower { .. } => { unimplemented!(); } }; if funding_txo.is_none() || (prevout.txid == funding_txo.as_ref().unwrap().0.txid && prevout.vout == funding_txo.as_ref().unwrap().0.index as u32) { if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 { let (remote_txn, new_outputs, mut spendable_output) = self.check_spend_remote_transaction(&tx, height, fee_estimator); txn = remote_txn; spendable_outputs.append(&mut spendable_output); if !new_outputs.1.is_empty() { watch_outputs.push(new_outputs); } if txn.is_empty() { let (local_txn, mut spendable_output, new_outputs) = self.check_spend_local_transaction(&tx, height); spendable_outputs.append(&mut spendable_output); txn = local_txn; if !new_outputs.1.is_empty() { watch_outputs.push(new_outputs); } } } if !funding_txo.is_none() && txn.is_empty() { if let Some(spendable_output) = self.check_spend_closing_transaction(&tx) { spendable_outputs.push(spendable_output); } } } else { if let Some(&(commitment_number, _)) = self.remote_commitment_txn_on_chain.get(&prevout.txid) { let (tx, spendable_output) = self.check_spend_remote_htlc(&tx, commitment_number, height, fee_estimator); if let Some(tx) = tx { txn.push(tx); } if let Some(spendable_output) = spendable_output { spendable_outputs.push(spendable_output); } } } for tx in txn.iter() { log_trace!(self, "Broadcast onchain {}", log_tx!(tx)); broadcaster.broadcast_transaction(tx); } } // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs // can also be resolved in a few other ways which can have more than one output. Thus, // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check. let mut updated = self.is_resolving_htlc_output(&tx, height); if updated.len() > 0 { htlc_updated.append(&mut updated); } // Scan all input to verify is one of the outpoint spent is of interest for us let mut claimed_outputs_material = Vec::new(); for inp in &tx.input { if let Some(ancestor_claimable_txid) = self.claimable_outpoints.get(&inp.previous_output) { // If outpoint has claim request pending on it... if let Some(claim_material) = self.pending_claim_requests.get_mut(&ancestor_claimable_txid.0) { //... we need to verify equality between transaction outpoints and claim request // outpoints to know if transaction is the original claim or a bumped one issued // by us. let mut set_equality = true; if claim_material.per_input_material.len() != tx.input.len() { set_equality = false; } else { for (claim_inp, tx_inp) in claim_material.per_input_material.keys().zip(tx.input.iter()) { if *claim_inp != tx_inp.previous_output { set_equality = false; } } } // If this is our transaction (or our counterparty spent all the outputs // before we could anyway), wait for ANTI_REORG_DELAY and clean the RBF // tracking map. if set_equality { let new_event = OnchainEvent::Claim { claim_request: ancestor_claimable_txid.0.clone() }; match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { if !entry.get().contains(&new_event) { entry.get_mut().push(new_event); } }, hash_map::Entry::Vacant(entry) => { entry.insert(vec![new_event]); } } } else { // If false, generate new claim request with update outpoint set for input in tx.input.iter() { if let Some(input_material) = claim_material.per_input_material.remove(&input.previous_output) { claimed_outputs_material.push((input.previous_output, input_material)); } } //TODO: recompute soonest_timelock to avoid wasting a bit on fees bump_candidates.push((ancestor_claimable_txid.0.clone(), claim_material.clone())); } break; //No need to iterate further, either tx is our or their } else { panic!("Inconsistencies between pending_claim_requests map and claimable_outpoints map"); } } } for (outpoint, input_material) in claimed_outputs_material.drain(..) { let new_event = OnchainEvent::ContentiousOutpoint { outpoint, input_material }; match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { if !entry.get().contains(&new_event) { entry.get_mut().push(new_event); } }, hash_map::Entry::Vacant(entry) => { entry.insert(vec![new_event]); } } } } if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { if self.would_broadcast_at_height(height) { log_trace!(self, "Broadcast onchain {}", log_tx!(cur_local_tx.tx)); broadcaster.broadcast_transaction(&cur_local_tx.tx); match self.key_storage { Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => { let (txs, mut spendable_output, new_outputs, _) = self.broadcast_by_local_state(&cur_local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key), height); spendable_outputs.append(&mut spendable_output); if !new_outputs.is_empty() { watch_outputs.push((cur_local_tx.txid.clone(), new_outputs)); } for tx in txs { log_trace!(self, "Broadcast onchain {}", log_tx!(tx)); broadcaster.broadcast_transaction(&tx); } }, Storage::Watchtower { .. } => { let (txs, mut spendable_output, new_outputs, _) = self.broadcast_by_local_state(&cur_local_tx, &None, &None, height); spendable_outputs.append(&mut spendable_output); if !new_outputs.is_empty() { watch_outputs.push((cur_local_tx.txid.clone(), new_outputs)); } for tx in txs { log_trace!(self, "Broadcast onchain {}", log_tx!(tx)); broadcaster.broadcast_transaction(&tx); } } } } } if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&height) { for ev in events { match ev { OnchainEvent::Claim { claim_request } => { // We may remove a whole set of claim outpoints here, as these one may have been aggregated in a single tx and claimed so atomically self.pending_claim_requests.remove(&claim_request); }, OnchainEvent::HTLCUpdate { htlc_update } => { log_trace!(self, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0)); htlc_updated.push((htlc_update.0, None, htlc_update.1)); }, OnchainEvent::ContentiousOutpoint { outpoint, .. } => { self.claimable_outpoints.remove(&outpoint); } } } } for (ancestor_claim_txid, ref mut cached_claim_datas) in self.pending_claim_requests.iter_mut() { if cached_claim_datas.height_timer == height { bump_candidates.push((ancestor_claim_txid.clone(), cached_claim_datas.clone())); } } for &mut (_, ref mut cached_claim_datas) in bump_candidates.iter_mut() { if let Some((new_timer, new_feerate, bump_tx)) = self.bump_claim_tx(height, &cached_claim_datas, fee_estimator) { cached_claim_datas.height_timer = new_timer; cached_claim_datas.feerate_previous = new_feerate; broadcaster.broadcast_transaction(&bump_tx); } } for (ancestor_claim_txid, cached_claim_datas) in bump_candidates.drain(..) { self.pending_claim_requests.insert(ancestor_claim_txid, cached_claim_datas); } self.last_block_hash = block_hash.clone(); (watch_outputs, spendable_outputs, htlc_updated) } fn block_disconnected(&mut self, height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface, fee_estimator: &FeeEstimator) { let mut bump_candidates = HashMap::new(); if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&(height + ANTI_REORG_DELAY - 1)) { //We may discard: //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected //- our claim tx on a commitment tx output //- resurect outpoint back in its claimable set and regenerate tx for ev in events { match ev { OnchainEvent::ContentiousOutpoint { outpoint, input_material } => { if let Some(ancestor_claimable_txid) = self.claimable_outpoints.get(&outpoint) { if let Some(claim_material) = self.pending_claim_requests.get_mut(&ancestor_claimable_txid.0) { claim_material.per_input_material.insert(outpoint, input_material); // Using a HashMap guarantee us than if we have multiple outpoints getting // resurrected only one bump claim tx is going to be broadcast bump_candidates.insert(ancestor_claimable_txid.clone(), claim_material.clone()); } } }, _ => {}, } } } for (_, claim_material) in bump_candidates.iter_mut() { if let Some((new_timer, new_feerate, bump_tx)) = self.bump_claim_tx(height, &claim_material, fee_estimator) { claim_material.height_timer = new_timer; claim_material.feerate_previous = new_feerate; broadcaster.broadcast_transaction(&bump_tx); } } for (ancestor_claim_txid, claim_material) in bump_candidates.drain() { self.pending_claim_requests.insert(ancestor_claim_txid.0, claim_material); } //TODO: if we implement cross-block aggregated claim transaction we need to refresh set of outpoints and regenerate tx but // right now if one of the outpoint get disconnected, just erase whole pending claim request. let mut remove_request = Vec::new(); self.claimable_outpoints.retain(|_, ref v| if v.1 == height { remove_request.push(v.0.clone()); false } else { true }); for req in remove_request { self.pending_claim_requests.remove(&req); } self.last_block_hash = block_hash.clone(); } pub(super) fn would_broadcast_at_height(&self, height: u32) -> bool { // We need to consider all HTLCs which are: // * in any unrevoked remote commitment transaction, as they could broadcast said // transactions and we'd end up in a race, or // * are in our latest local commitment transaction, as this is the thing we will // broadcast if we go on-chain. // Note that we consider HTLCs which were below dust threshold here - while they don't // strictly imply that we need to fail the channel, we need to go ahead and fail them back // to the source, and if we don't fail the channel we will have to ensure that the next // updates that peer sends us are update_fails, failing the channel if not. It's probably // easier to just fail the channel as this case should be rare enough anyway. macro_rules! scan_commitment { ($htlcs: expr, $local_tx: expr) => { for ref htlc in $htlcs { // For inbound HTLCs which we know the preimage for, we have to ensure we hit the // chain with enough room to claim the HTLC without our counterparty being able to // time out the HTLC first. // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary // concern is being able to claim the corresponding inbound HTLC (on another // channel) before it expires. In fact, we don't even really care if our // counterparty here claims such an outbound HTLC after it expired as long as we // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the // chain when our counterparty is waiting for expiration to off-chain fail an HTLC // we give ourselves a few blocks of headroom after expiration before going // on-chain for an expired HTLC. // Note that, to avoid a potential attack whereby a node delays claiming an HTLC // from us until we've reached the point where we go on-chain with the // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC. // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER // inbound_cltv == height + CLTV_CLAIM_BUFFER // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion) // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA // The final, above, condition is checked for statically in channelmanager // with CHECK_CLTV_EXPIRY_SANITY_2. let htlc_outbound = $local_tx == htlc.offered; if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) || (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) { log_info!(self, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry); return true; } } } } if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx { scan_commitment!(cur_local_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true); } if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage { if let &Some(ref txid) = current_remote_commitment_txid { if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) { scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false); } } if let &Some(ref txid) = prev_remote_commitment_txid { if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) { scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false); } } } false } /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a local /// or remote commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC fn is_resolving_htlc_output(&mut self, tx: &Transaction, height: u32) -> Vec<(HTLCSource, Option, PaymentHash)> { let mut htlc_updated = Vec::new(); 'outer_loop: for input in &tx.input { let mut payment_data = None; let revocation_sig_claim = (input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33) || (input.witness.len() == 3 && input.witness[2].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33); let accepted_preimage_claim = input.witness.len() == 5 && input.witness[4].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT; let offered_preimage_claim = input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT; macro_rules! log_claim { ($tx_info: expr, $local_tx: expr, $htlc: expr, $source_avail: expr) => { // We found the output in question, but aren't failing it backwards // as we have no corresponding source and no valid remote commitment txid // to try a weak source binding with same-hash, same-value still-valid offered HTLC. // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction. let outbound_htlc = $local_tx == $htlc.offered; if ($local_tx && revocation_sig_claim) || (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) { log_error!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!", $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(), if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0), if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" }); } else { log_info!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}", $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(), if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0), if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" }); } } } macro_rules! check_htlc_valid_remote { ($remote_txid: expr, $htlc_output: expr) => { if let &Some(txid) = $remote_txid { for &(ref pending_htlc, ref pending_source) in self.remote_claimable_outpoints.get(&txid).unwrap() { if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat { if let &Some(ref source) = pending_source { log_claim!("revoked remote commitment tx", false, pending_htlc, true); payment_data = Some(((**source).clone(), $htlc_output.payment_hash)); break; } } } } } } macro_rules! scan_commitment { ($htlcs: expr, $tx_info: expr, $local_tx: expr) => { for (ref htlc_output, source_option) in $htlcs { if Some(input.previous_output.vout) == htlc_output.transaction_output_index { if let Some(ref source) = source_option { log_claim!($tx_info, $local_tx, htlc_output, true); // We have a resolution of an HTLC either from one of our latest // local commitment transactions or an unrevoked remote commitment // transaction. This implies we either learned a preimage, the HTLC // has timed out, or we screwed up. In any case, we should now // resolve the source HTLC with the original sender. payment_data = Some(((*source).clone(), htlc_output.payment_hash)); } else if !$local_tx { if let Storage::Local { ref current_remote_commitment_txid, .. } = self.key_storage { check_htlc_valid_remote!(current_remote_commitment_txid, htlc_output); } if payment_data.is_none() { if let Storage::Local { ref prev_remote_commitment_txid, .. } = self.key_storage { check_htlc_valid_remote!(prev_remote_commitment_txid, htlc_output); } } } if payment_data.is_none() { log_claim!($tx_info, $local_tx, htlc_output, false); continue 'outer_loop; } } } } } if let Some(ref current_local_signed_commitment_tx) = self.current_local_signed_commitment_tx { if input.previous_output.txid == current_local_signed_commitment_tx.txid { scan_commitment!(current_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())), "our latest local commitment tx", true); } } if let Some(ref prev_local_signed_commitment_tx) = self.prev_local_signed_commitment_tx { if input.previous_output.txid == prev_local_signed_commitment_tx.txid { scan_commitment!(prev_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())), "our previous local commitment tx", true); } } if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(&input.previous_output.txid) { scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))), "remote commitment tx", false); } // Check that scan_commitment, above, decided there is some source worth relaying an // HTLC resolution backwards to and figure out whether we learned a preimage from it. if let Some((source, payment_hash)) = payment_data { let mut payment_preimage = PaymentPreimage([0; 32]); if accepted_preimage_claim { payment_preimage.0.copy_from_slice(&input.witness[3]); htlc_updated.push((source, Some(payment_preimage), payment_hash)); } else if offered_preimage_claim { payment_preimage.0.copy_from_slice(&input.witness[1]); htlc_updated.push((source, Some(payment_preimage), payment_hash)); } else { log_info!(self, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), height + ANTI_REORG_DELAY - 1); match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { hash_map::Entry::Occupied(mut entry) => { let e = entry.get_mut(); e.retain(|ref event| { match **event { OnchainEvent::HTLCUpdate { ref htlc_update } => { return htlc_update.0 != source }, _ => return true } }); e.push(OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}); } hash_map::Entry::Vacant(entry) => { entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}]); } } } } } htlc_updated } /// Lightning security model (i.e being able to redeem/timeout HTLC or penalize coutnerparty onchain) lays on the assumption of claim transactions getting confirmed before timelock expiration /// (CSV or CLTV following cases). In case of high-fee spikes, claim tx may stuck in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or Child-Pay-For-Parent. fn bump_claim_tx(&self, height: u32, cached_claim_datas: &ClaimTxBumpMaterial, fee_estimator: &FeeEstimator) -> Option<(u32, u64, Transaction)> { if cached_claim_datas.per_input_material.len() == 0 { return None } // But don't prune pending claiming request yet, we may have to resurrect HTLCs let mut inputs = Vec::new(); for outp in cached_claim_datas.per_input_material.keys() { inputs.push(TxIn { previous_output: *outp, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); } let mut bumped_tx = Transaction { version: 2, lock_time: 0, input: inputs, output: vec![TxOut { script_pubkey: self.destination_script.clone(), value: 0 }], }; macro_rules! RBF_bump { ($amount: expr, $old_feerate: expr, $fee_estimator: expr, $predicted_weight: expr) => { { let mut used_feerate; // If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee... let new_fee = if $old_feerate < $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority) { let mut value = $amount; if subtract_high_prio_fee!(self, $fee_estimator, value, $predicted_weight, used_feerate) { // Overflow check is done in subtract_high_prio_fee $amount - value } else { log_trace!(self, "Can't new-estimation bump new claiming tx, amount {} is too small", $amount); return None; } // ...else just increase the previous feerate by 25% (because that's a nice number) } else { let fee = $old_feerate * $predicted_weight / 750; if $amount <= fee { log_trace!(self, "Can't 25% bump new claiming tx, amount {} is too small", $amount); return None; } fee }; let previous_fee = $old_feerate * $predicted_weight / 1000; let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * $predicted_weight / 1000; // BIP 125 Opt-in Full Replace-by-Fee Signaling // * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions. // * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting. let new_fee = if new_fee < previous_fee + min_relay_fee { new_fee + previous_fee + min_relay_fee - new_fee } else { new_fee }; Some((new_fee, new_fee * 1000 / $predicted_weight)) } } } let new_timer = Self::get_height_timer(height, cached_claim_datas.soonest_timelock); let mut inputs_witnesses_weight = 0; let mut amt = 0; for per_outp_material in cached_claim_datas.per_input_material.values() { match per_outp_material { &InputMaterial::Revoked { ref script, ref is_htlc, ref amount, .. } => { inputs_witnesses_weight += Self::get_witnesses_weight(if !is_htlc { &[InputDescriptors::RevokedOutput] } else if script.len() == OFFERED_HTLC_SCRIPT_WEIGHT { &[InputDescriptors::RevokedOfferedHTLC] } else if script.len() == ACCEPTED_HTLC_SCRIPT_WEIGHT { &[InputDescriptors::RevokedReceivedHTLC] } else { &[] }); amt += *amount; }, &InputMaterial::RemoteHTLC { ref preimage, ref amount, .. } => { inputs_witnesses_weight += Self::get_witnesses_weight(if preimage.is_some() { &[InputDescriptors::OfferedHTLC] } else { &[InputDescriptors::ReceivedHTLC] }); amt += *amount; }, &InputMaterial::LocalHTLC { .. } => { return None; } } } let predicted_weight = bumped_tx.get_weight() + inputs_witnesses_weight; let new_feerate; if let Some((new_fee, feerate)) = RBF_bump!(amt, cached_claim_datas.feerate_previous, fee_estimator, predicted_weight as u64) { // If new computed fee is superior at the whole claimable amount burn all in fees if new_fee > amt { bumped_tx.output[0].value = 0; } else { bumped_tx.output[0].value = amt - new_fee; } new_feerate = feerate; } else { return None; } assert!(new_feerate != 0); for (i, (outp, per_outp_material)) in cached_claim_datas.per_input_material.iter().enumerate() { match per_outp_material { &InputMaterial::Revoked { ref script, ref pubkey, ref key, ref is_htlc, ref amount } => { let sighash_parts = bip143::SighashComponents::new(&bumped_tx); let sighash = hash_to_message!(&sighash_parts.sighash_all(&bumped_tx.input[i], &script, *amount)[..]); let sig = self.secp_ctx.sign(&sighash, &key); bumped_tx.input[i].witness.push(sig.serialize_der().to_vec()); bumped_tx.input[i].witness[0].push(SigHashType::All as u8); if *is_htlc { bumped_tx.input[i].witness.push(pubkey.unwrap().clone().serialize().to_vec()); } else { bumped_tx.input[i].witness.push(vec!(1)); } bumped_tx.input[i].witness.push(script.clone().into_bytes()); log_trace!(self, "Going to broadcast bumped Penalty Transaction {} claiming revoked {} output {} from {} with new feerate {}", bumped_tx.txid(), if !is_htlc { "to_local" } else if script.len() == OFFERED_HTLC_SCRIPT_WEIGHT { "offered" } else if script.len() == ACCEPTED_HTLC_SCRIPT_WEIGHT { "received" } else { "" }, outp.vout, outp.txid, new_feerate); }, &InputMaterial::RemoteHTLC { ref script, ref key, ref preimage, ref amount, ref locktime } => { if !preimage.is_some() { bumped_tx.lock_time = *locktime }; let sighash_parts = bip143::SighashComponents::new(&bumped_tx); let sighash = hash_to_message!(&sighash_parts.sighash_all(&bumped_tx.input[i], &script, *amount)[..]); let sig = self.secp_ctx.sign(&sighash, &key); bumped_tx.input[i].witness.push(sig.serialize_der().to_vec()); bumped_tx.input[i].witness[0].push(SigHashType::All as u8); if let &Some(preimage) = preimage { bumped_tx.input[i].witness.push(preimage.clone().0.to_vec()); } else { bumped_tx.input[i].witness.push(vec![0]); } bumped_tx.input[i].witness.push(script.clone().into_bytes()); log_trace!(self, "Going to broadcast bumped Claim Transaction {} claiming remote {} htlc output {} from {} with new feerate {}", bumped_tx.txid(), if preimage.is_some() { "offered" } else { "received" }, outp.vout, outp.txid, new_feerate); }, &InputMaterial::LocalHTLC { .. } => { //TODO : Given that Local Commitment Transaction and HTLC-Timeout/HTLC-Success are counter-signed by peer, we can't // RBF them. Need a Lightning specs change and package relay modification : // https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-November/016518.html return None; } } } assert!(predicted_weight >= bumped_tx.get_weight()); Some((new_timer, new_feerate, bumped_tx)) } } const MAX_ALLOC_SIZE: usize = 64*1024; impl ReadableArgs> for (Sha256dHash, ChannelMonitor) { fn read(reader: &mut R, logger: Arc) -> Result { let secp_ctx = Secp256k1::new(); macro_rules! unwrap_obj { ($key: expr) => { match $key { Ok(res) => res, Err(_) => return Err(DecodeError::InvalidValue), } } } let _ver: u8 = Readable::read(reader)?; let min_ver: u8 = Readable::read(reader)?; if min_ver > SERIALIZATION_VERSION { return Err(DecodeError::UnknownVersion); } let commitment_transaction_number_obscure_factor = >::read(reader)?.0; let key_storage = match >::read(reader)? { 0 => { let revocation_base_key = Readable::read(reader)?; let htlc_base_key = Readable::read(reader)?; let delayed_payment_base_key = Readable::read(reader)?; let payment_base_key = Readable::read(reader)?; let shutdown_pubkey = Readable::read(reader)?; let prev_latest_per_commitment_point = Readable::read(reader)?; let latest_per_commitment_point = Readable::read(reader)?; // Technically this can fail and serialize fail a round-trip, but only for serialization of // barely-init'd ChannelMonitors that we can't do anything with. let outpoint = OutPoint { txid: Readable::read(reader)?, index: Readable::read(reader)?, }; let funding_info = Some((outpoint, Readable::read(reader)?)); let current_remote_commitment_txid = Readable::read(reader)?; let prev_remote_commitment_txid = Readable::read(reader)?; Storage::Local { revocation_base_key, htlc_base_key, delayed_payment_base_key, payment_base_key, shutdown_pubkey, prev_latest_per_commitment_point, latest_per_commitment_point, funding_info, current_remote_commitment_txid, prev_remote_commitment_txid, } }, _ => return Err(DecodeError::InvalidValue), }; let their_htlc_base_key = Some(Readable::read(reader)?); let their_delayed_payment_base_key = Some(Readable::read(reader)?); let their_cur_revocation_points = { let first_idx = >::read(reader)?.0; if first_idx == 0 { None } else { let first_point = Readable::read(reader)?; let second_point_slice: [u8; 33] = Readable::read(reader)?; if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 { Some((first_idx, first_point, None)) } else { Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice))))) } } }; let our_to_self_delay: u16 = Readable::read(reader)?; let their_to_self_delay: Option = Some(Readable::read(reader)?); let mut old_secrets = [([0; 32], 1 << 48); 49]; for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() { *secret = Readable::read(reader)?; *idx = Readable::read(reader)?; } macro_rules! read_htlc_in_commitment { () => { { let offered: bool = Readable::read(reader)?; let amount_msat: u64 = Readable::read(reader)?; let cltv_expiry: u32 = Readable::read(reader)?; let payment_hash: PaymentHash = Readable::read(reader)?; let transaction_output_index: Option = Readable::read(reader)?; HTLCOutputInCommitment { offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index } } } } let remote_claimable_outpoints_len: u64 = Readable::read(reader)?; let mut remote_claimable_outpoints = HashMap::with_capacity(cmp::min(remote_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64)); for _ in 0..remote_claimable_outpoints_len { let txid: Sha256dHash = Readable::read(reader)?; let htlcs_count: u64 = Readable::read(reader)?; let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32)); for _ in 0..htlcs_count { htlcs.push((read_htlc_in_commitment!(), as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o)))); } if let Some(_) = remote_claimable_outpoints.insert(txid, htlcs) { return Err(DecodeError::InvalidValue); } } let remote_commitment_txn_on_chain_len: u64 = Readable::read(reader)?; let mut remote_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(remote_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32)); for _ in 0..remote_commitment_txn_on_chain_len { let txid: Sha256dHash = Readable::read(reader)?; let commitment_number = >::read(reader)?.0; let outputs_count = >::read(reader)?; let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8)); for _ in 0..outputs_count { outputs.push(Readable::read(reader)?); } if let Some(_) = remote_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) { return Err(DecodeError::InvalidValue); } } let remote_hash_commitment_number_len: u64 = Readable::read(reader)?; let mut remote_hash_commitment_number = HashMap::with_capacity(cmp::min(remote_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32)); for _ in 0..remote_hash_commitment_number_len { let payment_hash: PaymentHash = Readable::read(reader)?; let commitment_number = >::read(reader)?.0; if let Some(_) = remote_hash_commitment_number.insert(payment_hash, commitment_number) { return Err(DecodeError::InvalidValue); } } macro_rules! read_local_tx { () => { { let tx = match Transaction::consensus_decode(reader.by_ref()) { Ok(tx) => tx, Err(e) => match e { encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)), _ => return Err(DecodeError::InvalidValue), }, }; if tx.input.is_empty() { // Ensure tx didn't hit the 0-input ambiguity case. return Err(DecodeError::InvalidValue); } let revocation_key = Readable::read(reader)?; let a_htlc_key = Readable::read(reader)?; let b_htlc_key = Readable::read(reader)?; let delayed_payment_key = Readable::read(reader)?; let feerate_per_kw: u64 = Readable::read(reader)?; let htlcs_len: u64 = Readable::read(reader)?; let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0..htlcs_len { let htlc = read_htlc_in_commitment!(); let sigs = match >::read(reader)? { 0 => None, 1 => Some((Readable::read(reader)?, Readable::read(reader)?)), _ => return Err(DecodeError::InvalidValue), }; htlcs.push((htlc, sigs, Readable::read(reader)?)); } LocalSignedTx { txid: tx.txid(), tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw, htlc_outputs: htlcs } } } } let prev_local_signed_commitment_tx = match >::read(reader)? { 0 => None, 1 => { Some(read_local_tx!()) }, _ => return Err(DecodeError::InvalidValue), }; let current_local_signed_commitment_tx = match >::read(reader)? { 0 => None, 1 => { Some(read_local_tx!()) }, _ => return Err(DecodeError::InvalidValue), }; let current_remote_commitment_number = >::read(reader)?.0; let payment_preimages_len: u64 = Readable::read(reader)?; let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32)); for _ in 0..payment_preimages_len { let preimage: PaymentPreimage = Readable::read(reader)?; let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner()); if let Some(_) = payment_preimages.insert(hash, preimage) { return Err(DecodeError::InvalidValue); } } let last_block_hash: Sha256dHash = Readable::read(reader)?; let destination_script = Readable::read(reader)?; let to_remote_rescue = match >::read(reader)? { 0 => None, 1 => { let to_remote_script = Readable::read(reader)?; let local_key = Readable::read(reader)?; Some((to_remote_script, local_key)) } _ => return Err(DecodeError::InvalidValue), }; let pending_claim_requests_len: u64 = Readable::read(reader)?; let mut pending_claim_requests = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0..pending_claim_requests_len { pending_claim_requests.insert(Readable::read(reader)?, Readable::read(reader)?); } let claimable_outpoints_len: u64 = Readable::read(reader)?; let mut claimable_outpoints = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0..claimable_outpoints_len { let outpoint = Readable::read(reader)?; let ancestor_claim_txid = Readable::read(reader)?; let height = Readable::read(reader)?; claimable_outpoints.insert(outpoint, (ancestor_claim_txid, height)); } let waiting_threshold_conf_len: u64 = Readable::read(reader)?; let mut onchain_events_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0..waiting_threshold_conf_len { let height_target = Readable::read(reader)?; let events_len: u64 = Readable::read(reader)?; let mut events = Vec::with_capacity(cmp::min(events_len as usize, MAX_ALLOC_SIZE / 128)); for _ in 0..events_len { let ev = match >::read(reader)? { 0 => { let claim_request = Readable::read(reader)?; OnchainEvent::Claim { claim_request } }, 1 => { let htlc_source = Readable::read(reader)?; let hash = Readable::read(reader)?; OnchainEvent::HTLCUpdate { htlc_update: (htlc_source, hash) } }, 2 => { let outpoint = Readable::read(reader)?; let input_material = Readable::read(reader)?; OnchainEvent::ContentiousOutpoint { outpoint, input_material } } _ => return Err(DecodeError::InvalidValue), }; events.push(ev); } onchain_events_waiting_threshold_conf.insert(height_target, events); } Ok((last_block_hash.clone(), ChannelMonitor { commitment_transaction_number_obscure_factor, key_storage, their_htlc_base_key, their_delayed_payment_base_key, their_cur_revocation_points, our_to_self_delay, their_to_self_delay, old_secrets, remote_claimable_outpoints, remote_commitment_txn_on_chain, remote_hash_commitment_number, prev_local_signed_commitment_tx, current_local_signed_commitment_tx, current_remote_commitment_number, payment_preimages, destination_script, to_remote_rescue, pending_claim_requests, claimable_outpoints, onchain_events_waiting_threshold_conf, last_block_hash, secp_ctx, logger, })) } } #[cfg(test)] mod tests { use bitcoin::blockdata::script::{Script, Builder}; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType}; use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint; use bitcoin::util::bip143; use bitcoin_hashes::Hash; use bitcoin_hashes::sha256::Hash as Sha256; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use bitcoin_hashes::hex::FromHex; use hex; use ln::channelmanager::{PaymentPreimage, PaymentHash}; use ln::channelmonitor::{ChannelMonitor, InputDescriptors}; use ln::chan_utils; use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys}; use util::test_utils::TestLogger; use secp256k1::key::{SecretKey,PublicKey}; use secp256k1::Secp256k1; use rand::{thread_rng,Rng}; use std::sync::Arc; #[test] fn test_per_commitment_storage() { // Test vectors from BOLT 3: let mut secrets: Vec<[u8; 32]> = Vec::new(); let mut monitor: ChannelMonitor; let secp_ctx = Secp256k1::new(); let logger = Arc::new(TestLogger::new()); macro_rules! test_secrets { () => { let mut idx = 281474976710655; for secret in secrets.iter() { assert_eq!(monitor.get_secret(idx).unwrap(), *secret); idx -= 1; } assert_eq!(monitor.get_min_seen_secret(), idx + 1); assert!(monitor.get_secret(idx).is_none()); }; } { // insert_secret correct sequence monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); } { // insert_secret #1 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #2 incorrect (#1 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #3 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #4 incorrect (1,2,3 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #5 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #6 incorrect (5 derived from incorrect) monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #7 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } { // insert_secret #8 incorrect monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); secrets.clear(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap()); monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap()); monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap()); monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap(); test_secrets!(); secrets.push([0; 32]); secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap()); assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0, "Previous secret did not match new one"); } } #[test] fn test_prune_preimages() { let secp_ctx = Secp256k1::new(); let logger = Arc::new(TestLogger::new()); let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()); macro_rules! dummy_keys { () => { { TxCreationKeys { per_commitment_point: dummy_key.clone(), revocation_key: dummy_key.clone(), a_htlc_key: dummy_key.clone(), b_htlc_key: dummy_key.clone(), a_delayed_payment_key: dummy_key.clone(), b_payment_key: dummy_key.clone(), } } } } let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() }; let mut preimages = Vec::new(); { let mut rng = thread_rng(); for _ in 0..20 { let mut preimage = PaymentPreimage([0; 32]); rng.fill_bytes(&mut preimage.0[..]); let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner()); preimages.push((preimage, hash)); } } macro_rules! preimages_slice_to_htlc_outputs { ($preimages_slice: expr) => { { let mut res = Vec::new(); for (idx, preimage) in $preimages_slice.iter().enumerate() { res.push((HTLCOutputInCommitment { offered: true, amount_msat: 0, cltv_expiry: 0, payment_hash: preimage.1.clone(), transaction_output_index: Some(idx as u32), }, None)); } res } } } macro_rules! preimages_to_local_htlcs { ($preimages_slice: expr) => { { let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice); let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect(); res } } } macro_rules! test_preimages_exist { ($preimages_slice: expr, $monitor: expr) => { for preimage in $preimages_slice { assert!($monitor.payment_preimages.contains_key(&preimage.1)); } } } // Prune with one old state and a local commitment tx holding a few overlaps with the // old state. let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone()); monitor.set_their_to_self_delay(10); monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10])); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key); monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key); for &(ref preimage, ref hash) in preimages.iter() { monitor.provide_payment_preimage(hash, preimage); } // Now provide a secret, pruning preimages 10-15 let mut secret = [0; 32]; secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap()); monitor.provide_secret(281474976710655, secret.clone()).unwrap(); assert_eq!(monitor.payment_preimages.len(), 15); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[15..20], monitor); // Now provide a further secret, pruning preimages 15-17 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap()); monitor.provide_secret(281474976710654, secret.clone()).unwrap(); assert_eq!(monitor.payment_preimages.len(), 13); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[17..20], monitor); // Now update local commitment tx info, pruning only element 18 as we still care about the // previous commitment tx's preimages too monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5])); secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap()); monitor.provide_secret(281474976710653, secret.clone()).unwrap(); assert_eq!(monitor.payment_preimages.len(), 12); test_preimages_exist!(&preimages[0..10], monitor); test_preimages_exist!(&preimages[18..20], monitor); // But if we do it again, we'll prune 5-10 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3])); secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap()); monitor.provide_secret(281474976710652, secret.clone()).unwrap(); assert_eq!(monitor.payment_preimages.len(), 5); test_preimages_exist!(&preimages[0..5], monitor); } #[test] fn test_claim_txn_weight_computation() { // We test Claim txn weight, knowing that we want expected weigth and // not actual case to avoid sigs and time-lock delays hell variances. let secp_ctx = Secp256k1::new(); let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap(); let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey); let mut sum_actual_sigs = 0; macro_rules! sign_input { ($sighash_parts: expr, $input: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => { let htlc = HTLCOutputInCommitment { offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false }, amount_msat: 0, cltv_expiry: 2 << 16, payment_hash: PaymentHash([1; 32]), transaction_output_index: Some($idx), }; let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) }; let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeem_script, $amount)[..]); let sig = secp_ctx.sign(&sighash, &privkey); $input.witness.push(sig.serialize_der().to_vec()); $input.witness[0].push(SigHashType::All as u8); sum_actual_sigs += $input.witness[0].len(); if *$input_type == InputDescriptors::RevokedOutput { $input.witness.push(vec!(1)); } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC { $input.witness.push(pubkey.clone().serialize().to_vec()); } else if *$input_type == InputDescriptors::ReceivedHTLC { $input.witness.push(vec![0]); } else { $input.witness.push(PaymentPreimage([1; 32]).0.to_vec()); } $input.witness.push(redeem_script.into_bytes()); println!("witness[0] {}", $input.witness[0].len()); println!("witness[1] {}", $input.witness[1].len()); println!("witness[2] {}", $input.witness[2].len()); } } let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(); let txid = Sha256dHash::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap(); // Justice tx with 1 to_local, 2 revoked offered HTLCs, 1 revoked received HTLCs let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() }; for i in 0..4 { claim_tx.input.push(TxIn { previous_output: BitcoinOutPoint { txid, vout: i, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); } claim_tx.output.push(TxOut { script_pubkey: script_pubkey.clone(), value: 0, }); let base_weight = claim_tx.get_weight(); let sighash_parts = bip143::SighashComponents::new(&claim_tx); let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC]; for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() { sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs); } assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs)); // Claim tx with 1 offered HTLCs, 3 received HTLCs claim_tx.input.clear(); sum_actual_sigs = 0; for i in 0..4 { claim_tx.input.push(TxIn { previous_output: BitcoinOutPoint { txid, vout: i, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); } let base_weight = claim_tx.get_weight(); let sighash_parts = bip143::SighashComponents::new(&claim_tx); let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC]; for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() { sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs); } assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs)); // Justice tx with 1 revoked HTLC-Success tx output claim_tx.input.clear(); sum_actual_sigs = 0; claim_tx.input.push(TxIn { previous_output: BitcoinOutPoint { txid, vout: 0, }, script_sig: Script::new(), sequence: 0xfffffffd, witness: Vec::new(), }); let base_weight = claim_tx.get_weight(); let sighash_parts = bip143::SighashComponents::new(&claim_tx); let inputs_des = vec![InputDescriptors::RevokedOutput]; for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() { sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs); } assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs)); } // Further testing is done in the ChannelManager integration tests. }