use secp256k1::key::{SecretKey,PublicKey}; use ln::msgs; use ln::msgs::{MsgEncodable,MsgDecodable}; use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep}; use util::byte_utils; use util::events::{EventsProvider,Event}; use std::collections::{HashMap,LinkedList}; use std::sync::{Arc, Mutex}; use std::{cmp,error,mem,hash,fmt}; pub struct MessageHandler { pub chan_handler: Arc, pub route_handler: Arc, } /// Provides an object which can be used to send data to and which uniquely identifies a connection /// to a remote host. You will need to be able to generate multiple of these which meet Eq and /// implement Hash to meet the PeerManager API. /// For efficiency, Clone should be relatively cheap for this type. /// You probably want to just extend an int and put a file descriptor in a struct and implement /// send_data. pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone { /// Attempts to send some data from the given Vec starting at the given offset to the peer. /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected. /// Note that in the disconnected case, a disconnect_event must still fire and further write /// attempts may occur until that time. /// If the returned size is smaller than data.len() - write_offset, a write_available event must /// trigger the next time more data can be written. Additionally, until the a send_data event /// completes fully, no further read_events should trigger on the same peer! /// If a read_event on this descriptor had previously returned true (indicating that read /// events should be paused to prevent DoS in the send buffer), resume_read may be set /// indicating that read events on this descriptor should resume. A resume_read of false does /// *not* imply that further read events should be paused. fn send_data(&mut self, data: &Vec, write_offset: usize, resume_read: bool) -> usize; } /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and /// generate no further read/write_events for the descriptor, only triggering a single /// disconnect_event (unless it was provided in response to a new_*_connection event, in which case /// no such disconnect_event must be generated and the socket be silently disconencted). pub struct PeerHandleError { no_connection_possible: bool, } impl fmt::Debug for PeerHandleError { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { formatter.write_str("Peer Sent Invalid Data") } } impl fmt::Display for PeerHandleError { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { formatter.write_str("Peer Sent Invalid Data") } } impl error::Error for PeerHandleError { fn description(&self) -> &str { "Peer Sent Invalid Data" } } struct Peer { channel_encryptor: PeerChannelEncryptor, outbound: bool, their_node_id: Option, their_global_features: Option, their_local_features: Option, pending_outbound_buffer: LinkedList>, pending_outbound_buffer_first_msg_offset: usize, awaiting_write_event: bool, pending_read_buffer: Vec, pending_read_buffer_pos: usize, pending_read_is_header: bool, } struct PeerHolder { peers: HashMap, /// Only add to this set when noise completes: node_id_to_descriptor: HashMap, } pub struct PeerManager { message_handler: MessageHandler, peers: Mutex>, pending_events: Mutex>, our_node_secret: SecretKey, } macro_rules! encode_msg { ($msg: expr, $msg_code: expr) => { { let just_msg = $msg.encode(); let mut encoded_msg = Vec::with_capacity(just_msg.len() + 2); encoded_msg.extend_from_slice(&byte_utils::be16_to_array($msg_code)); encoded_msg.extend_from_slice(&just_msg[..]); encoded_msg } } } /// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds. /// PeerIds may repeat, but only after disconnect_event() has been called. impl PeerManager { pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey) -> PeerManager { PeerManager { message_handler: message_handler, peers: Mutex::new(PeerHolder { peers: HashMap::new(), node_id_to_descriptor: HashMap::new() }), pending_events: Mutex::new(Vec::new()), our_node_secret: our_node_secret, } } /// Indicates a new outbound connection has been established to a node with the given node_id. /// Note that if an Err is returned here you MUST NOT call disconnect_event for the new /// descriptor but must disconnect the connection immediately. /// Returns some bytes to send to the remote node. /// Panics if descriptor is duplicative with some other descriptor which has not yet has a /// disconnect_event. pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result, PeerHandleError> { let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone()); let res = peer_encryptor.get_act_one().to_vec(); let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes let mut peers = self.peers.lock().unwrap(); if peers.peers.insert(descriptor, Peer { channel_encryptor: peer_encryptor, outbound: true, their_node_id: Some(their_node_id), their_global_features: None, their_local_features: None, pending_outbound_buffer: LinkedList::new(), pending_outbound_buffer_first_msg_offset: 0, awaiting_write_event: false, pending_read_buffer: pending_read_buffer, pending_read_buffer_pos: 0, pending_read_is_header: false, }).is_some() { panic!("PeerManager driver duplicated descriptors!"); }; Ok(res) } /// Indicates a new inbound connection has been established. /// May refuse the connection by returning an Err, but will never write bytes to the remote end /// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT /// call disconnect_event for the new descriptor but must disconnect the connection /// immediately. /// Panics if descriptor is duplicative with some other descriptor which has not yet has a /// disconnect_event. pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> { let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret); let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes let mut peers = self.peers.lock().unwrap(); if peers.peers.insert(descriptor, Peer { channel_encryptor: peer_encryptor, outbound: false, their_node_id: None, their_global_features: None, their_local_features: None, pending_outbound_buffer: LinkedList::new(), pending_outbound_buffer_first_msg_offset: 0, awaiting_write_event: false, pending_read_buffer: pending_read_buffer, pending_read_buffer_pos: 0, pending_read_is_header: false, }).is_some() { panic!("PeerManager driver duplicated descriptors!"); }; Ok(()) } fn do_attempt_write_data(descriptor: &mut Descriptor, peer: &mut Peer) { while !peer.awaiting_write_event { if { let next_buff = match peer.pending_outbound_buffer.front() { None => return, Some(buff) => buff, }; let should_be_reading = peer.pending_outbound_buffer.len() < 10; let data_sent = descriptor.send_data(next_buff, peer.pending_outbound_buffer_first_msg_offset, should_be_reading); peer.pending_outbound_buffer_first_msg_offset += data_sent; if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false } } { peer.pending_outbound_buffer_first_msg_offset = 0; peer.pending_outbound_buffer.pop_front(); } else { peer.awaiting_write_event = true; } } } /// Indicates that there is room to write data to the given socket descriptor. /// May return an Err to indicate that the connection should be closed. /// Will most likely call send_data on the descriptor passed in (or the descriptor handed into /// new_*_connection) before returning. Thus, be very careful with reentrancy issues! The /// invariants around calling write_event in case a write did not fully complete must still /// hold - be ready to call write_event again if a write call generated here isn't sufficient! /// Panics if the descriptor was not previously registered in a new_*_connection event. pub fn write_event(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> { let mut peers = self.peers.lock().unwrap(); match peers.peers.get_mut(descriptor) { None => panic!("Descriptor for write_event is not already known to PeerManager"), Some(peer) => { peer.awaiting_write_event = false; Self::do_attempt_write_data(descriptor, peer); } }; Ok(()) } /// Indicates that data was read from the given socket descriptor. /// May return an Err to indicate that the connection should be closed. /// Will very likely call send_data on the descriptor passed in (or a descriptor handed into /// new_*_connection) before returning. Thus, be very careful with reentrancy issues! The /// invariants around calling write_event in case a write did not fully complete must still /// hold. Note that this function will often call send_data on many peers before returning, not /// just this peer! /// If Ok(true) is returned, further read_events should not be triggered until a write_event on /// this file descriptor has resume_read set (preventing DoS issues in the send buffer). Note /// that this must be true even if a send_data call with resume_read=true was made during the /// course of this function! /// Panics if the descriptor was not previously registered in a new_*_connection event. pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: Vec) -> Result { match self.do_read_event(peer_descriptor, data) { Ok(res) => Ok(res), Err(e) => { self.disconnect_event_internal(peer_descriptor, e.no_connection_possible); Err(e) } } } fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: Vec) -> Result { let pause_read = { let mut peers = self.peers.lock().unwrap(); let (should_insert_node_id, pause_read) = match peers.peers.get_mut(peer_descriptor) { None => panic!("Descriptor for read_event is not already known to PeerManager"), Some(peer) => { assert!(peer.pending_read_buffer.len() > 0); assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos); let mut insert_node_id = None; let mut read_pos = 0; while read_pos < data.len() { { let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos); peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]); read_pos += data_to_copy; peer.pending_read_buffer_pos += data_to_copy; } if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() { peer.pending_read_buffer_pos = 0; macro_rules! encode_and_send_msg { ($msg: expr, $msg_code: expr) => { peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg, $msg_code)[..])); } } macro_rules! try_potential_handleerror { ($thing: expr) => { match $thing { Ok(x) => x, Err(e) => { // TODO: Log e.err if let Some(action) = e.msg { match action { msgs::ErrorAction::UpdateFailHTLC { msg } => { encode_and_send_msg!(msg, 131); continue; }, msgs::ErrorAction::DisconnectPeer {} => { return Err(PeerHandleError{ no_connection_possible: false }); }, } } else { return Err(PeerHandleError{ no_connection_possible: false }); } } }; } } macro_rules! try_potential_decodeerror { ($thing: expr) => { match $thing { Ok(x) => x, Err(_e) => { //TODO: Handle e? return Err(PeerHandleError{ no_connection_possible: false }); } }; } } let next_step = peer.channel_encryptor.get_noise_step(); match next_step { NextNoiseStep::ActOne => { let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_key(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec(); peer.pending_outbound_buffer.push_back(act_two); peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long }, NextNoiseStep::ActTwo => { let act_three = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec(); peer.pending_outbound_buffer.push_back(act_three); peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes peer.pending_read_is_header = true; insert_node_id = Some(peer.their_node_id.unwrap()); encode_and_send_msg!(msgs::Init { global_features: msgs::GlobalFeatures::new(), local_features: msgs::LocalFeatures::new(), }, 16); }, NextNoiseStep::ActThree => { let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..])); peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes peer.pending_read_is_header = true; peer.their_node_id = Some(their_node_id); insert_node_id = Some(peer.their_node_id.unwrap()); }, NextNoiseStep::NoiseComplete => { if peer.pending_read_is_header { let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..])); peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16); peer.pending_read_buffer.resize(msg_len as usize + 16, 0); if msg_len < 2 { // Need at least the message type tag return Err(PeerHandleError{ no_connection_possible: false }); } peer.pending_read_is_header = false; } else { let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..])); assert!(msg_data.len() >= 2); // Reset read buffer peer.pending_read_buffer = [0; 18].to_vec(); peer.pending_read_is_header = true; let msg_type = byte_utils::slice_to_be16(&msg_data[0..2]); if msg_type != 16 && peer.their_global_features.is_none() { // Need an init message as first message return Err(PeerHandleError{ no_connection_possible: false }); } match msg_type { // Connection control: 16 => { let msg = try_potential_decodeerror!(msgs::Init::decode(&msg_data[2..])); if msg.global_features.requires_unknown_bits() { return Err(PeerHandleError{ no_connection_possible: true }); } if msg.local_features.requires_unknown_bits() { return Err(PeerHandleError{ no_connection_possible: true }); } peer.their_global_features = Some(msg.global_features); peer.their_local_features = Some(msg.local_features); if !peer.outbound { encode_and_send_msg!(msgs::Init { global_features: msgs::GlobalFeatures::new(), local_features: msgs::LocalFeatures::new(), }, 16); } }, 17 => { // Error msg }, 18 => { }, // ping 19 => { }, // pong // Channel control: 32 => { let msg = try_potential_decodeerror!(msgs::OpenChannel::decode(&msg_data[2..])); let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), &msg)); encode_and_send_msg!(resp, 33); }, 33 => { let msg = try_potential_decodeerror!(msgs::AcceptChannel::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), &msg)); }, 34 => { let msg = try_potential_decodeerror!(msgs::FundingCreated::decode(&msg_data[2..])); let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg)); encode_and_send_msg!(resp, 35); }, 35 => { let msg = try_potential_decodeerror!(msgs::FundingSigned::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg)); }, 36 => { let msg = try_potential_decodeerror!(msgs::FundingLocked::decode(&msg_data[2..])); let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg)); match resp_option { Some(resp) => encode_and_send_msg!(resp, 259), None => {}, } }, 38 => { let msg = try_potential_decodeerror!(msgs::Shutdown::decode(&msg_data[2..])); let resp_options = try_potential_handleerror!(self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg)); if let Some(resp) = resp_options.0 { encode_and_send_msg!(resp, 38); } if let Some(resp) = resp_options.1 { encode_and_send_msg!(resp, 39); } }, 39 => { let msg = try_potential_decodeerror!(msgs::ClosingSigned::decode(&msg_data[2..])); let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg)); if let Some(resp) = resp_option { encode_and_send_msg!(resp, 39); } }, 128 => { let msg = try_potential_decodeerror!(msgs::UpdateAddHTLC::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg)); }, 130 => { let msg = try_potential_decodeerror!(msgs::UpdateFulfillHTLC::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg)); }, 131 => { let msg = try_potential_decodeerror!(msgs::UpdateFailHTLC::decode(&msg_data[2..])); let chan_update = try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg)); if let Some(update) = chan_update { self.message_handler.route_handler.handle_htlc_fail_channel_update(&update); } }, 135 => { let msg = try_potential_decodeerror!(msgs::UpdateFailMalformedHTLC::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg)); }, 132 => { let msg = try_potential_decodeerror!(msgs::CommitmentSigned::decode(&msg_data[2..])); let resps = try_potential_handleerror!(self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg)); encode_and_send_msg!(resps.0, 133); if let Some(resp) = resps.1 { encode_and_send_msg!(resp, 132); } }, 133 => { let msg = try_potential_decodeerror!(msgs::RevokeAndACK::decode(&msg_data[2..])); let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg)); match resp_option { Some(resps) => { for resp in resps.update_add_htlcs { encode_and_send_msg!(resp, 128); } for resp in resps.update_fulfill_htlcs { encode_and_send_msg!(resp, 130); } for resp in resps.update_fail_htlcs { encode_and_send_msg!(resp, 131); } encode_and_send_msg!(resps.commitment_signed, 132); }, None => {}, } }, 134 => { let msg = try_potential_decodeerror!(msgs::UpdateFee::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg)); }, 136 => { }, // TODO: channel_reestablish // Routing control: 259 => { let msg = try_potential_decodeerror!(msgs::AnnouncementSignatures::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg)); }, 256 => { let msg = try_potential_decodeerror!(msgs::ChannelAnnouncement::decode(&msg_data[2..])); let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_announcement(&msg)); if should_forward { // TODO: forward msg along to all our other peers! } }, 257 => { let msg = try_potential_decodeerror!(msgs::NodeAnnouncement::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.route_handler.handle_node_announcement(&msg)); }, 258 => { let msg = try_potential_decodeerror!(msgs::ChannelUpdate::decode(&msg_data[2..])); try_potential_handleerror!(self.message_handler.route_handler.handle_channel_update(&msg)); }, _ => { if (msg_type & 1) == 0 { return Err(PeerHandleError{ no_connection_possible: true }); } }, } } } } } } Self::do_attempt_write_data(peer_descriptor, peer); (insert_node_id /* should_insert_node_id */, peer.pending_outbound_buffer.len() > 10) // pause_read } }; match should_insert_node_id { Some(node_id) => { peers.node_id_to_descriptor.insert(node_id, peer_descriptor.clone()); }, None => {} }; pause_read }; self.process_events(); Ok(pause_read) } /// Checks for any events generated by our handlers and processes them. May be needed after eg /// calls to ChannelManager::process_pending_htlc_forward. pub fn process_events(&self) { let mut upstream_events = Vec::new(); { // TODO: There are some DoS attacks here where you can flood someone's outbound send // buffer by doing things like announcing channels on another node. We should be willing to // drop optional-ish messages when send buffers get full! let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_events(); let mut peers = self.peers.lock().unwrap(); for event in events_generated.drain(..) { macro_rules! get_peer_for_forwarding { ($node_id: expr, $handle_no_such_peer: block) => { { let descriptor = match peers.node_id_to_descriptor.get($node_id) { Some(descriptor) => descriptor.clone(), None => { $handle_no_such_peer; continue; }, }; match peers.peers.get_mut(&descriptor) { Some(peer) => { (descriptor, peer) }, None => panic!("Inconsistent peers set state!"), } } } } match event { Event::FundingGenerationReady {..} => { /* Hand upstream */ }, Event::FundingBroadcastSafe {..} => { /* Hand upstream */ }, Event::PaymentReceived {..} => { /* Hand upstream */ }, Event::PaymentSent {..} => { /* Hand upstream */ }, Event::PaymentFailed {..} => { /* Hand upstream */ }, Event::PendingHTLCsForwardable {..} => { //TODO: Handle upstream in some confused form so that upstream just knows //to call us somehow? }, Event::SendFundingCreated { ref node_id, ref msg } => { let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { //TODO: generate a DiscardFunding event indicating to the wallet that //they should just throw away this funding transaction }); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 34))); Self::do_attempt_write_data(&mut descriptor, peer); continue; }, Event::SendFundingLocked { ref node_id, ref msg, ref announcement_sigs } => { let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { //TODO: Do whatever we're gonna do for handling dropped messages }); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 36))); match announcement_sigs { &Some(ref announce_msg) => peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(announce_msg, 259))), &None => {}, } Self::do_attempt_write_data(&mut descriptor, peer); continue; }, Event::SendHTLCs { ref node_id, ref msgs, ref commitment_msg } => { let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { //TODO: Do whatever we're gonna do for handling dropped messages }); for msg in msgs { peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 128))); } peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_msg, 132))); Self::do_attempt_write_data(&mut descriptor, peer); continue; }, Event::SendFulfillHTLC { ref node_id, ref msg, ref commitment_msg } => { let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { //TODO: Do whatever we're gonna do for handling dropped messages }); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 130))); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_msg, 132))); Self::do_attempt_write_data(&mut descriptor, peer); continue; }, Event::SendFailHTLC { ref node_id, ref msg, ref commitment_msg } => { let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { //TODO: Do whatever we're gonna do for handling dropped messages }); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 131))); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_msg, 132))); Self::do_attempt_write_data(&mut descriptor, peer); continue; }, Event::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() { let encoded_msg = encode_msg!(msg, 256); let encoded_update_msg = encode_msg!(update_msg, 258); for (ref descriptor, ref mut peer) in peers.peers.iter_mut() { if !peer.channel_encryptor.is_ready_for_encryption() { continue } match peer.their_node_id { None => continue, Some(their_node_id) => { if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 { continue } } } peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..])); peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..])); Self::do_attempt_write_data(&mut (*descriptor).clone(), peer); } } continue; }, Event::BroadcastChannelUpdate { ref msg } => { if self.message_handler.route_handler.handle_channel_update(msg).is_ok() { let encoded_msg = encode_msg!(msg, 258); for (ref descriptor, ref mut peer) in peers.peers.iter_mut() { if !peer.channel_encryptor.is_ready_for_encryption() { continue } peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..])); Self::do_attempt_write_data(&mut (*descriptor).clone(), peer); } } continue; }, } upstream_events.push(event); } } let mut pending_events = self.pending_events.lock().unwrap(); for event in upstream_events.drain(..) { pending_events.push(event); } } /// Indicates that the given socket descriptor's connection is now closed. /// This must be called even if a PeerHandleError was given for a read_event or write_event, /// but must NOT be called if a PeerHandleError was provided out of a new_*_connection event! /// Panics if the descriptor was not previously registered in a successful new_*_connection event. pub fn disconnect_event(&self, descriptor: &Descriptor) { self.disconnect_event_internal(descriptor, false); } fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) { let mut peers = self.peers.lock().unwrap(); let peer_option = peers.peers.remove(descriptor); match peer_option { None => panic!("Descriptor for disconnect_event is not already known to PeerManager"), Some(peer) => { match peer.their_node_id { Some(node_id) => { peers.node_id_to_descriptor.remove(&node_id); self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible); }, None => {} } } }; } } impl EventsProvider for PeerManager { fn get_and_clear_pending_events(&self) -> Vec { let mut pending_events = self.pending_events.lock().unwrap(); let mut ret = Vec::new(); mem::swap(&mut ret, &mut *pending_events); ret } }