// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Tests that test standing up a network of ChannelManagers, creating channels, sending //! payments/messages between them, and often checking the resulting ChannelMonitors are able to //! claim outputs on-chain. use chain; use chain::{Confirm, Listen, Watch}; use chain::channelmonitor; use chain::channelmonitor::{ChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY}; use chain::transaction::OutPoint; use chain::keysinterface::BaseSign; use ln::{PaymentPreimage, PaymentSecret, PaymentHash}; use ln::channel::{COMMITMENT_TX_BASE_WEIGHT, COMMITMENT_TX_WEIGHT_PER_HTLC}; use ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, RAACommitmentOrder, PaymentSendFailure, BREAKDOWN_TIMEOUT, MIN_CLTV_EXPIRY_DELTA}; use ln::channel::{Channel, ChannelError}; use ln::{chan_utils, onion_utils}; use ln::chan_utils::HTLC_SUCCESS_TX_WEIGHT; use routing::network_graph::{NetworkUpdate, RoutingFees}; use routing::router::{Payee, Route, RouteHop, RouteHint, RouteHintHop, get_route, get_keysend_route}; use routing::scorer::Scorer; use ln::features::{ChannelFeatures, InitFeatures, InvoiceFeatures, NodeFeatures}; use ln::msgs; use ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction}; use util::enforcing_trait_impls::EnforcingSigner; use util::{byte_utils, test_utils}; use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose, ClosureReason}; use util::errors::APIError; use util::ser::{Writeable, ReadableArgs}; use util::config::UserConfig; use bitcoin::hash_types::BlockHash; use bitcoin::blockdata::block::{Block, BlockHeader}; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::Hash; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1::key::{PublicKey,SecretKey}; use regex; use io; use prelude::*; use alloc::collections::BTreeSet; use core::default::Default; use sync::{Arc, Mutex}; use ln::functional_test_utils::*; use ln::chan_utils::CommitmentTransaction; #[test] fn test_insane_channel_opens() { // Stand up a network of 2 nodes let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Instantiate channel parameters where we push the maximum msats given our // funding satoshis let channel_value_sat = 31337; // same as funding satoshis let channel_reserve_satoshis = Channel::::get_holder_selected_channel_reserve_satoshis(channel_value_sat); let push_msat = (channel_value_sat - channel_reserve_satoshis) * 1000; // Have node0 initiate a channel to node1 with aforementioned parameters nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_sat, push_msat, 42, None).unwrap(); // Extract the channel open message from node0 to node1 let open_channel_message = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); // Test helper that asserts we get the correct error string given a mutator // that supposedly makes the channel open message insane let insane_open_helper = |expected_error_str: &str, message_mutator: fn(msgs::OpenChannel) -> msgs::OpenChannel| { nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &message_mutator(open_channel_message.clone())); let msg_events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 1); let expected_regex = regex::Regex::new(expected_error_str).unwrap(); if let MessageSendEvent::HandleError { ref action, .. } = msg_events[0] { match action { &ErrorAction::SendErrorMessage { .. } => { nodes[1].logger.assert_log_regex("lightning::ln::channelmanager".to_string(), expected_regex, 1); }, _ => panic!("unexpected event!"), } } else { assert!(false); } }; use ln::channel::MAX_FUNDING_SATOSHIS; use ln::channelmanager::MAX_LOCAL_BREAKDOWN_TIMEOUT; // Test all mutations that would make the channel open message insane insane_open_helper(format!("Funding must be smaller than {}. It was {}", MAX_FUNDING_SATOSHIS, MAX_FUNDING_SATOSHIS).as_str(), |mut msg| { msg.funding_satoshis = MAX_FUNDING_SATOSHIS; msg }); insane_open_helper("Bogus channel_reserve_satoshis", |mut msg| { msg.channel_reserve_satoshis = msg.funding_satoshis + 1; msg }); insane_open_helper(r"push_msat \d+ was larger than funding value \d+", |mut msg| { msg.push_msat = (msg.funding_satoshis - msg.channel_reserve_satoshis) * 1000 + 1; msg }); insane_open_helper("Peer never wants payout outputs?", |mut msg| { msg.dust_limit_satoshis = msg.funding_satoshis + 1 ; msg }); insane_open_helper(r"Bogus; channel reserve \(\d+\) is less than dust limit \(\d+\)", |mut msg| { msg.dust_limit_satoshis = msg.channel_reserve_satoshis + 1; msg }); insane_open_helper(r"Minimum htlc value \(\d+\) was larger than full channel value \(\d+\)", |mut msg| { msg.htlc_minimum_msat = (msg.funding_satoshis - msg.channel_reserve_satoshis) * 1000; msg }); insane_open_helper("They wanted our payments to be delayed by a needlessly long period", |mut msg| { msg.to_self_delay = MAX_LOCAL_BREAKDOWN_TIMEOUT + 1; msg }); insane_open_helper("0 max_accepted_htlcs makes for a useless channel", |mut msg| { msg.max_accepted_htlcs = 0; msg }); insane_open_helper("max_accepted_htlcs was 484. It must not be larger than 483", |mut msg| { msg.max_accepted_htlcs = 484; msg }); } #[test] fn test_async_inbound_update_fee() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // A B // update_fee -> // send (1) commitment_signed -. // <- update_add_htlc/commitment_signed // send (2) RAA (awaiting remote revoke) -. // (1) commitment_signed is delivered -> // .- send (3) RAA (awaiting remote revoke) // (2) RAA is delivered -> // .- send (4) commitment_signed // <- (3) RAA is delivered // send (5) commitment_signed -. // <- (4) commitment_signed is delivered // send (6) RAA -. // (5) commitment_signed is delivered -> // <- RAA // (6) RAA is delivered -> // First nodes[0] generates an update_fee { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 40000); nodes[1].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg); // (2) let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); // deliver(1), generate (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // nodes[1] is awaiting nodes[0] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack); // deliver (2) let bs_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_update.update_add_htlcs.is_empty()); // (4) assert!(bs_update.update_fulfill_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_malformed_htlcs.is_empty()); // (4) assert!(bs_update.update_fee.is_none()); // (4) check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack); // deliver (3) let as_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_update.update_add_htlcs.is_empty()); // (5) assert!(as_update.update_fulfill_htlcs.is_empty()); // (5) assert!(as_update.update_fail_htlcs.is_empty()); // (5) assert!(as_update.update_fail_malformed_htlcs.is_empty()); // (5) assert!(as_update.update_fee.is_none()); // (5) check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_update.commitment_signed); // deliver (4) let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // only (6) so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_update.commitment_signed); // deliver (5) let bs_second_revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke); check_added_monitors!(nodes[0], 1); let events_2 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PendingHTLCsForwardable {..} => {}, // If we actually processed we'd receive the payment _ => panic!("Unexpected event"), } nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke); // deliver (6) check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_unordered_raa() { // Just the intro to the previous test followed by an out-of-order RAA (which caused a // crash in an earlier version of the update_fee patch) let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // First nodes[0] generates an update_fee { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let update_msg = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, .. }, .. } => { update_fee.as_ref() }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 40000); nodes[1].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg); // (2) let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg); // deliver (2) check_added_monitors!(nodes[1], 1); // We can't continue, sadly, because our (1) now has a bogus signature } #[test] fn test_multi_flight_update_fee() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // A B // update_fee/commitment_signed -> // .- send (1) RAA and (2) commitment_signed // update_fee (never committed) -> // (3) update_fee -> // We have to manually generate the above update_fee, it is allowed by the protocol but we // don't track which updates correspond to which revoke_and_ack responses so we're in // AwaitingRAA mode and will not generate the update_fee yet. // <- (1) RAA delivered // (3) is generated and send (4) CS -. // Note that A cannot generate (4) prior to (1) being delivered as it otherwise doesn't // know the per_commitment_point to use for it. // <- (2) commitment_signed delivered // revoke_and_ack -> // B should send no response here // (4) commitment_signed delivered -> // <- RAA/commitment_signed delivered // revoke_and_ack -> // First nodes[0] generates an update_fee let initial_feerate; { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); initial_feerate = *feerate_lock; *feerate_lock = initial_feerate + 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg_1, commitment_signed_1) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref().unwrap(), commitment_signed) }, _ => panic!("Unexpected event"), }; // Deliver first update_fee/commitment_signed pair, generating (1) and (2): nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg_1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed_1); let (bs_revoke_msg, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // nodes[0] is awaiting a revoke from nodes[1] before it will create a new commitment // transaction: { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock = initial_feerate + 40; } nodes[0].node.timer_tick_occurred(); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Create the (3) update_fee message that nodes[0] will generate before it does... let mut update_msg_2 = msgs::UpdateFee { channel_id: update_msg_1.channel_id.clone(), feerate_per_kw: (initial_feerate + 30) as u32, }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2); update_msg_2.feerate_per_kw = (initial_feerate + 40) as u32; // Deliver (3) nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2); // Deliver (1), generating (3) and (4) nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_msg); let as_second_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); assert!(as_second_update.update_add_htlcs.is_empty()); assert!(as_second_update.update_fulfill_htlcs.is_empty()); assert!(as_second_update.update_fail_htlcs.is_empty()); assert!(as_second_update.update_fail_malformed_htlcs.is_empty()); // Check that the update_fee newly generated matches what we delivered: assert_eq!(as_second_update.update_fee.as_ref().unwrap().channel_id, update_msg_2.channel_id); assert_eq!(as_second_update.update_fee.as_ref().unwrap().feerate_per_kw, update_msg_2.feerate_per_kw); // Deliver (2) commitment_signed nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed); let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); // Delever (4) nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update.commitment_signed); let (bs_second_revoke, bs_second_commitment) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment); let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } fn do_test_1_conf_open(connect_style: ConnectStyle) { // Previously, if the minium_depth config was set to 1, we'd never send a funding_locked. This // tests that we properly send one in that case. let mut alice_config = UserConfig::default(); alice_config.own_channel_config.minimum_depth = 1; alice_config.channel_options.announced_channel = true; alice_config.peer_channel_config_limits.force_announced_channel_preference = false; let mut bob_config = UserConfig::default(); bob_config.own_channel_config.minimum_depth = 1; bob_config.channel_options.announced_channel = true; bob_config.peer_channel_config_limits.force_announced_channel_preference = false; let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(alice_config), Some(bob_config)]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); *nodes[0].connect_style.borrow_mut() = connect_style; let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, InitFeatures::known(), InitFeatures::known()); mine_transaction(&nodes[1], &tx); nodes[0].node.handle_funding_locked(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendFundingLocked, nodes[0].node.get_our_node_id())); mine_transaction(&nodes[0], &tx); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm_second(&nodes[1], &nodes[0]); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); for node in nodes { assert!(node.net_graph_msg_handler.handle_channel_announcement(&announcement).unwrap()); node.net_graph_msg_handler.handle_channel_update(&as_update).unwrap(); node.net_graph_msg_handler.handle_channel_update(&bs_update).unwrap(); } } #[test] fn test_1_conf_open() { do_test_1_conf_open(ConnectStyle::BestBlockFirst); do_test_1_conf_open(ConnectStyle::TransactionsFirst); do_test_1_conf_open(ConnectStyle::FullBlockViaListen); } fn do_test_sanity_on_in_flight_opens(steps: u8) { // Previously, we had issues deserializing channels when we hadn't connected the first block // after creation. To catch that and similar issues, we lean on the Node::drop impl to test // serialization round-trips and simply do steps towards opening a channel and then drop the // Node objects. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); if steps & 0b1000_0000 != 0{ let block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![], }; connect_block(&nodes[0], &block); connect_block(&nodes[1], &block); } if steps & 0x0f == 0 { return; } nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100000, 10001, 42, None).unwrap(); let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); if steps & 0x0f == 1 { return; } nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_channel); let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); if steps & 0x0f == 2 { return; } nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &accept_channel); let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], 100000, 42); if steps & 0x0f == 3 { return; } nodes[0].node.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); check_added_monitors!(nodes[0], 0); let funding_created = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id()); if steps & 0x0f == 4 { return; } nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created); { let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id()); if steps & 0x0f == 5 { return; } nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed); { let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 0); if steps & 0x0f == 6 { return; } create_chan_between_nodes_with_value_confirm_first(&nodes[0], &nodes[1], &tx, 2); if steps & 0x0f == 7 { return; } confirm_transaction_at(&nodes[0], &tx, 2); connect_blocks(&nodes[0], CHAN_CONFIRM_DEPTH); create_chan_between_nodes_with_value_confirm_second(&nodes[1], &nodes[0]); } #[test] fn test_sanity_on_in_flight_opens() { do_test_sanity_on_in_flight_opens(0); do_test_sanity_on_in_flight_opens(0 | 0b1000_0000); do_test_sanity_on_in_flight_opens(1); do_test_sanity_on_in_flight_opens(1 | 0b1000_0000); do_test_sanity_on_in_flight_opens(2); do_test_sanity_on_in_flight_opens(2 | 0b1000_0000); do_test_sanity_on_in_flight_opens(3); do_test_sanity_on_in_flight_opens(3 | 0b1000_0000); do_test_sanity_on_in_flight_opens(4); do_test_sanity_on_in_flight_opens(4 | 0b1000_0000); do_test_sanity_on_in_flight_opens(5); do_test_sanity_on_in_flight_opens(5 | 0b1000_0000); do_test_sanity_on_in_flight_opens(6); do_test_sanity_on_in_flight_opens(6 | 0b1000_0000); do_test_sanity_on_in_flight_opens(7); do_test_sanity_on_in_flight_opens(7 | 0b1000_0000); do_test_sanity_on_in_flight_opens(8); do_test_sanity_on_in_flight_opens(8 | 0b1000_0000); } #[test] fn test_update_fee_vanilla() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 25; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_that_funder_cannot_afford() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let channel_value = 1888; let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, channel_value, 700000, InitFeatures::known(), InitFeatures::known()); let channel_id = chan.2; let feerate = 260; { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock = feerate; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let update_msg = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg.update_fee.unwrap()); commitment_signed_dance!(nodes[1], nodes[0], update_msg.commitment_signed, false); //Confirm that the new fee based on the last local commitment txn is what we expected based on the feerate of 260 set above. //This value results in a fee that is exactly what the funder can afford (277 sat + 1000 sat channel reserve) { let commitment_tx = get_local_commitment_txn!(nodes[1], channel_id)[0].clone(); //We made sure neither party's funds are below the dust limit so -2 non-HTLC txns from number of outputs let num_htlcs = commitment_tx.output.len() - 2; let total_fee: u64 = feerate as u64 * (COMMITMENT_TX_BASE_WEIGHT + (num_htlcs as u64) * COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000; let mut actual_fee = commitment_tx.output.iter().fold(0, |acc, output| acc + output.value); actual_fee = channel_value - actual_fee; assert_eq!(total_fee, actual_fee); } //Add 2 to the previous fee rate to the final fee increases by 1 (with no HTLCs the fee is essentially //fee_rate*(724/1000) so the increment of 1*0.724 is rounded back down) { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock = feerate + 2; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let update2_msg = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update2_msg.update_fee.unwrap()); //While producing the commitment_signed response after handling a received update_fee request the //check to see if the funder, who sent the update_fee request, can afford the new fee (funder_balance >= fee+channel_reserve) //Should produce and error. nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &update2_msg.commitment_signed); nodes[1].logger.assert_log("lightning::ln::channelmanager".to_string(), "Funding remote cannot afford proposed new fee".to_string(), 1); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: String::from("Funding remote cannot afford proposed new fee") }); } #[test] fn test_update_fee_with_fundee_update_add_htlc() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); let (route, our_payment_hash, our_payment_preimage, our_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 800000); // nothing happens since node[1] is in AwaitingRemoteRevoke nodes[1].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); { let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 0); added_monitors.clear(); } assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // node[1] has nothing to do nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg); check_added_monitors!(nodes[1], 1); // AwaitingRemoteRevoke ends here let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(commitment_update.update_add_htlcs.len(), 1); assert_eq!(commitment_update.update_fulfill_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_malformed_htlcs.len(), 0); assert_eq!(commitment_update.update_fee.is_none(), true); nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &commitment_update.update_add_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed); check_added_monitors!(nodes[0], 1); let (revoke, commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &commitment_signed); check_added_monitors!(nodes[1], 1); let revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke); check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[0]); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { .. } => { }, _ => panic!("Unexpected event"), }; claim_payment(&nodes[1], &vec!(&nodes[0])[..], our_payment_preimage); send_payment(&nodes[1], &vec!(&nodes[0])[..], 800000); send_payment(&nodes[0], &vec!(&nodes[1])[..], 800000); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); } #[test] fn test_update_fee() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let channel_id = chan.2; // A B // (1) update_fee/commitment_signed -> // <- (2) revoke_and_ack // .- send (3) commitment_signed // (4) update_fee/commitment_signed -> // .- send (5) revoke_and_ack (no CS as we're awaiting a revoke) // <- (3) commitment_signed delivered // send (6) revoke_and_ack -. // <- (5) deliver revoke_and_ack // (6) deliver revoke_and_ack -> // .- send (7) commitment_signed in response to (4) // <- (7) deliver commitment_signed // revoke_and_ack -> // Create and deliver (1)... let feerate; { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); feerate = *feerate_lock; *feerate_lock = feerate + 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); // Generate (2) and (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let (revoke_msg, commitment_signed_0) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // Deliver (2): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Create and deliver (4)... { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock = feerate + 30; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); check_added_monitors!(nodes[1], 1); // ... creating (5) let revoke_msg = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Handle (3), creating (6): nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed_0); check_added_monitors!(nodes[0], 1); let revoke_msg_0 = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Deliver (5): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Deliver (6), creating (7): nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg_0); let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(commitment_update.update_add_htlcs.is_empty()); assert!(commitment_update.update_fulfill_htlcs.is_empty()); assert!(commitment_update.update_fail_htlcs.is_empty()); assert!(commitment_update.update_fail_malformed_htlcs.is_empty()); assert!(commitment_update.update_fee.is_none()); check_added_monitors!(nodes[1], 1); // Deliver (7) nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed); check_added_monitors!(nodes[0], 1); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(get_feerate!(nodes[0], channel_id), feerate + 30); assert_eq!(get_feerate!(nodes[1], channel_id), feerate + 30); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); } #[test] fn fake_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that payments get routed and transactions broadcast in semi-reasonable ways. let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); // Send some more payments send_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1], &nodes[0])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1])[..], 1000000); // Test failure packets let payment_hash_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], payment_hash_1); // Add a new channel that skips 3 let chan_4 = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 1000000); send_payment(&nodes[2], &vec!(&nodes[3])[..], 1000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); // Do some rebalance loop payments, simultaneously let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), node_features: NodeFeatures::empty(), short_channel_id: chan_2.0.contents.short_channel_id, channel_features: ChannelFeatures::empty(), fee_msat: 0, cltv_expiry_delta: chan_3.0.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), node_features: NodeFeatures::empty(), short_channel_id: chan_3.0.contents.short_channel_id, channel_features: ChannelFeatures::empty(), fee_msat: 0, cltv_expiry_delta: chan_4.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), node_features: NodeFeatures::known(), short_channel_id: chan_4.0.contents.short_channel_id, channel_features: ChannelFeatures::known(), fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_4.1.contents.fee_base_msat as u64 + chan_4.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.0.contents.fee_base_msat as u64 + chan_3.0.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_preimage_1 = send_along_route(&nodes[1], Route { paths: vec![hops], payee: None }, &vec!(&nodes[2], &nodes[3], &nodes[1])[..], 1000000).0; let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), node_features: NodeFeatures::empty(), short_channel_id: chan_4.0.contents.short_channel_id, channel_features: ChannelFeatures::empty(), fee_msat: 0, cltv_expiry_delta: chan_3.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), node_features: NodeFeatures::empty(), short_channel_id: chan_3.0.contents.short_channel_id, channel_features: ChannelFeatures::empty(), fee_msat: 0, cltv_expiry_delta: chan_2.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), node_features: NodeFeatures::known(), short_channel_id: chan_2.0.contents.short_channel_id, channel_features: ChannelFeatures::known(), fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_2.1.contents.fee_base_msat as u64 + chan_2.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.1.contents.fee_base_msat as u64 + chan_3.1.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_hash_2 = send_along_route(&nodes[1], Route { paths: vec![hops], payee: None }, &vec!(&nodes[3], &nodes[2], &nodes[1])[..], 1000000).1; // Claim the rebalances... fail_payment(&nodes[1], &vec!(&nodes[3], &nodes[2], &nodes[1])[..], payment_hash_2); claim_payment(&nodes[1], &vec!(&nodes[2], &nodes[3], &nodes[1])[..], payment_preimage_1); // Add a duplicate new channel from 2 to 4 let chan_5 = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()); // Send some payments across both channels let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; route_over_limit(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 0); nodes[0].logger.assert_log_regex("lightning::ln::channelmanager".to_string(), regex::Regex::new(r"Cannot send value that would put us over the max HTLC value in flight our peer will accept \(\d+\)").unwrap(), 1); //TODO: Test that routes work again here as we've been notified that the channel is full claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_3); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_4); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_5); // Close down the channels... close_channel(&nodes[0], &nodes[1], &chan_1.2, chan_1.3, true); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, false); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[2], 1, ClosureReason::CooperativeClosure); close_channel(&nodes[2], &nodes[3], &chan_3.2, chan_3.3, true); check_closed_event!(nodes[2], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[3], 1, ClosureReason::CooperativeClosure); close_channel(&nodes[1], &nodes[3], &chan_4.2, chan_4.3, false); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[3], 1, ClosureReason::CooperativeClosure); close_channel(&nodes[1], &nodes[3], &chan_5.2, chan_5.3, false); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[3], 1, ClosureReason::CooperativeClosure); } #[test] fn holding_cell_htlc_counting() { // Tests that HTLCs in the holding cell count towards the pending HTLC limits on outbound HTLCs // to ensure we don't end up with HTLCs sitting around in our holding cell for several // commitment dance rounds. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let mut payments = Vec::new(); for _ in 0..::ln::channel::OUR_MAX_HTLCS { let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[2], 100000); nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); payments.push((payment_preimage, payment_hash)); } check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let initial_payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(initial_payment_event.node_id, nodes[2].node.get_our_node_id()); // There is now one HTLC in an outbound commitment transaction and (OUR_MAX_HTLCS - 1) HTLCs in // the holding cell waiting on B's RAA to send. At this point we should not be able to add // another HTLC. let (route, payment_hash_1, _, payment_secret_1) = get_route_and_payment_hash!(nodes[1], nodes[2], 100000); { unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot push more than their max accepted HTLCs \(\d+\)").unwrap().is_match(err))); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot push more than their max accepted HTLCs".to_string(), 1); } // This should also be true if we try to forward a payment. let (route, payment_hash_2, _, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 100000); { nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2)).unwrap(); check_added_monitors!(nodes[0], 1); } let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // We have to forward pending HTLCs twice - once tries to forward the payment forward (and // fails), the second will process the resulting failure and fail the HTLC backward. expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let bs_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], bs_fail_updates.commitment_signed, false, true); expect_payment_failed_with_update!(nodes[0], payment_hash_2, false, chan_2.0.contents.short_channel_id, false); // Now forward all the pending HTLCs and claim them back nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &initial_payment_event.msgs[0]); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &initial_payment_event.commitment_msg); check_added_monitors!(nodes[2], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_revoke_and_ack); check_added_monitors!(nodes[1], 1); let as_updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &bs_commitment_signed); check_added_monitors!(nodes[1], 1); let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); for ref update in as_updates.update_add_htlcs.iter() { nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), update); } nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &as_updates.commitment_signed); check_added_monitors!(nodes[2], 1); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[2], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_revoke_and_ack); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &bs_commitment_signed); check_added_monitors!(nodes[1], 1); let as_final_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_final_raa); check_added_monitors!(nodes[2], 1); expect_pending_htlcs_forwardable!(nodes[2]); let events = nodes[2].node.get_and_clear_pending_events(); assert_eq!(events.len(), payments.len()); for (event, &(_, ref hash)) in events.iter().zip(payments.iter()) { match event { &Event::PaymentReceived { ref payment_hash, .. } => { assert_eq!(*payment_hash, *hash); }, _ => panic!("Unexpected event"), }; } for (preimage, _) in payments.drain(..) { claim_payment(&nodes[1], &[&nodes[2]], preimage); } send_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1000000); } #[test] fn duplicate_htlc_test() { // Test that we accept duplicate payment_hash HTLCs across the network and that // claiming/failing them are all separate and don't affect each other let chanmon_cfgs = create_chanmon_cfgs(6); let node_cfgs = create_node_cfgs(6, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(6, &node_cfgs, &[None, None, None, None, None, None]); let mut nodes = create_network(6, &node_cfgs, &node_chanmgrs); // Create some initial channels to route via 3 to 4/5 from 0/1/2 create_announced_chan_between_nodes(&nodes, 0, 3, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 3, 4, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 3, 5, InitFeatures::known(), InitFeatures::known()); let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], 1000000); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[1], &vec!(&nodes[3])[..], 1000000).0, payment_preimage); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], 1000000).0, payment_preimage); claim_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], payment_preimage); fail_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], payment_hash); claim_payment(&nodes[1], &vec!(&nodes[3])[..], payment_preimage); } #[test] fn test_duplicate_htlc_different_direction_onchain() { // Test that ChannelMonitor doesn't generate 2 preimage txn // when we have 2 HTLCs with same preimage that go across a node // in opposite directions, even with the same payment secret. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[1])[..], 900_000); let (route, _, _, _) = get_route_and_payment_hash!(nodes[1], nodes[0], 800_000); let node_a_payment_secret = nodes[0].node.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap(); send_along_route_with_secret(&nodes[1], route, &[&[&nodes[0]]], 800_000, payment_hash, node_a_payment_secret); // Provide preimage to node 0 by claiming payment nodes[0].node.claim_funds(payment_preimage); check_added_monitors!(nodes[0], 1); // Broadcast node 1 commitment txn let remote_txn = get_local_commitment_txn!(nodes[1], chan_1.2); assert_eq!(remote_txn[0].output.len(), 4); // 1 local, 1 remote, 1 htlc inbound, 1 htlc outbound let mut has_both_htlcs = 0; // check htlcs match ones committed for outp in remote_txn[0].output.iter() { if outp.value == 800_000 / 1000 { has_both_htlcs += 1; } else if outp.value == 900_000 / 1000 { has_both_htlcs += 1; } } assert_eq!(has_both_htlcs, 2); mine_transaction(&nodes[0], &remote_txn[0]); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires // Check we only broadcast 1 timeout tx let claim_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(claim_txn.len(), 8); assert_eq!(claim_txn[1], claim_txn[4]); assert_eq!(claim_txn[2], claim_txn[5]); check_spends!(claim_txn[1], chan_1.3); check_spends!(claim_txn[2], claim_txn[1]); check_spends!(claim_txn[7], claim_txn[1]); assert_eq!(claim_txn[0].input.len(), 1); assert_eq!(claim_txn[3].input.len(), 1); assert_eq!(claim_txn[0].input[0].previous_output, claim_txn[3].input[0].previous_output); assert_eq!(claim_txn[0].input.len(), 1); assert_eq!(claim_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC 1 <--> 0, preimage tx check_spends!(claim_txn[0], remote_txn[0]); assert_eq!(remote_txn[0].output[claim_txn[0].input[0].previous_output.vout as usize].value, 800); assert_eq!(claim_txn[6].input.len(), 1); assert_eq!(claim_txn[6].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // HTLC 0 <--> 1, timeout tx check_spends!(claim_txn[6], remote_txn[0]); assert_eq!(remote_txn[0].output[claim_txn[6].input[0].previous_output.vout as usize].value, 900); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 3); for e in events { match e { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); assert_eq!(msg.data, "Commitment or closing transaction was confirmed on chain."); }, MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[1].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), } } } #[test] fn test_basic_channel_reserve() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let chan_stat = get_channel_value_stat!(nodes[0], chan.2); let channel_reserve = chan_stat.channel_reserve_msat; // The 2* and +1 are for the fee spike reserve. let commit_tx_fee = 2 * commit_tx_fee_msat(get_feerate!(nodes[0], chan.2), 1 + 1); let max_can_send = 5000000 - channel_reserve - commit_tx_fee; let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], max_can_send + 1); let err = nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).err().unwrap(); match err { PaymentSendFailure::AllFailedRetrySafe(ref fails) => { match &fails[0] { &APIError::ChannelUnavailable{ref err} => assert!(regex::Regex::new(r"Cannot send value that would put our balance under counterparty-announced channel reserve value \(\d+\)").unwrap().is_match(err)), _ => panic!("Unexpected error variant"), } }, _ => panic!("Unexpected error variant"), } assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send value that would put our balance under counterparty-announced channel reserve value".to_string(), 1); send_payment(&nodes[0], &vec![&nodes[1]], max_can_send); } #[test] fn test_fee_spike_violation_fails_htlc() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 3460001); // Need to manually create the update_add_htlc message to go around the channel reserve check in send_htlc() let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&[42; 32]).expect("RNG is bad!"); let cur_height = nodes[1].node.best_block.read().unwrap().height() + 1; let onion_keys = onion_utils::construct_onion_keys(&secp_ctx, &route.paths[0], &session_priv).unwrap(); let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 3460001, &Some(payment_secret), cur_height, &None).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &payment_hash); let msg = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 0, amount_msat: htlc_msat, payment_hash: payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet, }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg); // Now manually create the commitment_signed message corresponding to the update_add // nodes[0] just sent. In the code for construction of this message, "local" refers // to the sender of the message, and "remote" refers to the receiver. let feerate_per_kw = get_feerate!(nodes[0], chan.2); const INITIAL_COMMITMENT_NUMBER: u64 = (1 << 48) - 1; // Get the EnforcingSigner for each channel, which will be used to (1) get the keys // needed to sign the new commitment tx and (2) sign the new commitment tx. let (local_revocation_basepoint, local_htlc_basepoint, local_secret, next_local_point, local_funding) = { let chan_lock = nodes[0].node.channel_state.lock().unwrap(); let local_chan = chan_lock.by_id.get(&chan.2).unwrap(); let chan_signer = local_chan.get_signer(); // Make the signer believe we validated another commitment, so we can release the secret chan_signer.get_enforcement_state().last_holder_commitment -= 1; let pubkeys = chan_signer.pubkeys(); (pubkeys.revocation_basepoint, pubkeys.htlc_basepoint, chan_signer.release_commitment_secret(INITIAL_COMMITMENT_NUMBER), chan_signer.get_per_commitment_point(INITIAL_COMMITMENT_NUMBER - 2, &secp_ctx), chan_signer.pubkeys().funding_pubkey) }; let (remote_delayed_payment_basepoint, remote_htlc_basepoint, remote_point, remote_funding) = { let chan_lock = nodes[1].node.channel_state.lock().unwrap(); let remote_chan = chan_lock.by_id.get(&chan.2).unwrap(); let chan_signer = remote_chan.get_signer(); let pubkeys = chan_signer.pubkeys(); (pubkeys.delayed_payment_basepoint, pubkeys.htlc_basepoint, chan_signer.get_per_commitment_point(INITIAL_COMMITMENT_NUMBER - 1, &secp_ctx), chan_signer.pubkeys().funding_pubkey) }; // Assemble the set of keys we can use for signatures for our commitment_signed message. let commit_tx_keys = chan_utils::TxCreationKeys::derive_new(&secp_ctx, &remote_point, &remote_delayed_payment_basepoint, &remote_htlc_basepoint, &local_revocation_basepoint, &local_htlc_basepoint).unwrap(); // Build the remote commitment transaction so we can sign it, and then later use the // signature for the commitment_signed message. let local_chan_balance = 1313; let accepted_htlc_info = chan_utils::HTLCOutputInCommitment { offered: false, amount_msat: 3460001, cltv_expiry: htlc_cltv, payment_hash, transaction_output_index: Some(1), }; let commitment_number = INITIAL_COMMITMENT_NUMBER - 1; let res = { let local_chan_lock = nodes[0].node.channel_state.lock().unwrap(); let local_chan = local_chan_lock.by_id.get(&chan.2).unwrap(); let local_chan_signer = local_chan.get_signer(); let commitment_tx = CommitmentTransaction::new_with_auxiliary_htlc_data( commitment_number, 95000, local_chan_balance, false, local_funding, remote_funding, commit_tx_keys.clone(), feerate_per_kw, &mut vec![(accepted_htlc_info, ())], &local_chan.channel_transaction_parameters.as_counterparty_broadcastable() ); local_chan_signer.sign_counterparty_commitment(&commitment_tx, &secp_ctx).unwrap() }; let commit_signed_msg = msgs::CommitmentSigned { channel_id: chan.2, signature: res.0, htlc_signatures: res.1 }; // Send the commitment_signed message to the nodes[1]. nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &commit_signed_msg); let _ = nodes[1].node.get_and_clear_pending_msg_events(); // Send the RAA to nodes[1]. let raa_msg = msgs::RevokeAndACK { channel_id: chan.2, per_commitment_secret: local_secret, next_per_commitment_point: next_local_point }; nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &raa_msg); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); // Make sure the HTLC failed in the way we expect. match events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fail_htlcs, .. }, .. } => { assert_eq!(update_fail_htlcs.len(), 1); update_fail_htlcs[0].clone() }, _ => panic!("Unexpected event"), }; nodes[1].logger.assert_log("lightning::ln::channel".to_string(), format!("Attempting to fail HTLC due to fee spike buffer violation in channel {}. Rebalancing is required.", ::hex::encode(raa_msg.channel_id)), 1); check_added_monitors!(nodes[1], 2); } #[test] fn test_chan_reserve_violation_outbound_htlc_inbound_chan() { let mut chanmon_cfgs = create_chanmon_cfgs(2); // Set the fee rate for the channel very high, to the point where the fundee // sending any above-dust amount would result in a channel reserve violation. // In this test we check that we would be prevented from sending an HTLC in // this situation. let feerate_per_kw = 253; chanmon_cfgs[0].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(feerate_per_kw) }; chanmon_cfgs[1].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(feerate_per_kw) }; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let mut push_amt = 100_000_000; push_amt -= feerate_per_kw as u64 * (COMMITMENT_TX_BASE_WEIGHT + COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000 * 1000; push_amt -= Channel::::get_holder_selected_channel_reserve_satoshis(100_000) * 1000; let _ = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, push_amt, InitFeatures::known(), InitFeatures::known()); // Sending exactly enough to hit the reserve amount should be accepted let (_, _, _) = route_payment(&nodes[1], &[&nodes[0]], 1_000_000); // However one more HTLC should be significantly over the reserve amount and fail. let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 1_000_000); unwrap_send_err!(nodes[1].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Cannot send value that would put counterparty balance under holder-announced channel reserve value")); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].logger.assert_log("lightning::ln::channelmanager".to_string(), "Cannot send value that would put counterparty balance under holder-announced channel reserve value".to_string(), 1); } #[test] fn test_chan_reserve_violation_inbound_htlc_outbound_channel() { let mut chanmon_cfgs = create_chanmon_cfgs(2); // Set the fee rate for the channel very high, to the point where the funder // receiving 1 update_add_htlc would result in them closing the channel due // to channel reserve violation. This close could also happen if the fee went // up a more realistic amount, but many HTLCs were outstanding at the time of // the update_add_htlc. chanmon_cfgs[0].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(6000) }; chanmon_cfgs[1].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(6000) }; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 1000); // Need to manually create the update_add_htlc message to go around the channel reserve check in send_htlc() let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&[42; 32]).unwrap(); let cur_height = nodes[1].node.best_block.read().unwrap().height() + 1; let onion_keys = onion_utils::construct_onion_keys(&secp_ctx, &route.paths[0], &session_priv).unwrap(); let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 1000, &Some(payment_secret), cur_height, &None).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &payment_hash); let msg = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 1, amount_msat: htlc_msat + 1, payment_hash: payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet, }; nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &msg); // Check that the payment failed and the channel is closed in response to the malicious UpdateAdd. nodes[0].logger.assert_log("lightning::ln::channelmanager".to_string(), "Cannot accept HTLC that would put our balance under counterparty-announced channel reserve value".to_string(), 1); assert_eq!(nodes[0].node.list_channels().len(), 0); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert_eq!(err_msg.data, "Cannot accept HTLC that would put our balance under counterparty-announced channel reserve value"); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "Cannot accept HTLC that would put our balance under counterparty-announced channel reserve value".to_string() }); } #[test] fn test_chan_reserve_dust_inbound_htlcs_outbound_chan() { // Test that if we receive many dust HTLCs over an outbound channel, they don't count when // calculating our commitment transaction fee (this was previously broken). let mut chanmon_cfgs = create_chanmon_cfgs(2); let feerate_per_kw = 253; chanmon_cfgs[0].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(feerate_per_kw) }; chanmon_cfgs[1].fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(feerate_per_kw) }; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Set nodes[0]'s balance such that they will consider any above-dust received HTLC to be a // channel reserve violation (so their balance is channel reserve (1000 sats) + commitment // transaction fee with 0 HTLCs (183 sats)). let mut push_amt = 100_000_000; push_amt -= feerate_per_kw as u64 * (COMMITMENT_TX_BASE_WEIGHT) / 1000 * 1000; push_amt -= Channel::::get_holder_selected_channel_reserve_satoshis(100_000) * 1000; create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, push_amt, InitFeatures::known(), InitFeatures::known()); let dust_amt = crate::ln::channel::MIN_CHAN_DUST_LIMIT_SATOSHIS * 1000 + feerate_per_kw as u64 * HTLC_SUCCESS_TX_WEIGHT / 1000 * 1000 - 1; // In the previous code, routing this dust payment would cause nodes[0] to perceive a channel // reserve violation even though it's a dust HTLC and therefore shouldn't count towards the // commitment transaction fee. let (_, _, _) = route_payment(&nodes[1], &[&nodes[0]], dust_amt); // One more than the dust amt should fail, however. let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], dust_amt + 1); unwrap_send_err!(nodes[1].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Cannot send value that would put counterparty balance under holder-announced channel reserve value")); } #[test] fn test_chan_reserve_dust_inbound_htlcs_inbound_chan() { // Test that if we receive many dust HTLCs over an inbound channel, they don't count when // calculating our counterparty's commitment transaction fee (this was previously broken). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 98000000, InitFeatures::known(), InitFeatures::known()); let payment_amt = 46000; // Dust amount // In the previous code, these first four payments would succeed. let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); // Then these next 5 would be interpreted by nodes[1] as violating the fee spike buffer. let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); // And this last payment previously resulted in nodes[1] closing on its inbound-channel // counterparty, because it counted all the previous dust HTLCs against nodes[0]'s commitment // transaction fee and therefore perceived this next payment as a channel reserve violation. let (_, _, _) = route_payment(&nodes[0], &[&nodes[1]], payment_amt); } #[test] fn test_chan_reserve_violation_inbound_htlc_inbound_chan() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let _ = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let feemsat = 239; let total_routing_fee_msat = (nodes.len() - 2) as u64 * feemsat; let chan_stat = get_channel_value_stat!(nodes[0], chan.2); let feerate = get_feerate!(nodes[0], chan.2); // Add a 2* and +1 for the fee spike reserve. let commit_tx_fee_2_htlc = 2*commit_tx_fee_msat(feerate, 2 + 1); let recv_value_1 = (chan_stat.value_to_self_msat - chan_stat.channel_reserve_msat - total_routing_fee_msat - commit_tx_fee_2_htlc)/2; let amt_msat_1 = recv_value_1 + total_routing_fee_msat; // Add a pending HTLC. let (route_1, our_payment_hash_1, _, our_payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat_1); let payment_event_1 = { nodes[0].node.send_payment(&route_1, our_payment_hash_1, &Some(our_payment_secret_1)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event_1.msgs[0]); // Attempt to trigger a channel reserve violation --> payment failure. let commit_tx_fee_2_htlcs = commit_tx_fee_msat(feerate, 2); let recv_value_2 = chan_stat.value_to_self_msat - amt_msat_1 - chan_stat.channel_reserve_msat - total_routing_fee_msat - commit_tx_fee_2_htlcs + 1; let amt_msat_2 = recv_value_2 + total_routing_fee_msat; let (route_2, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], amt_msat_2); // Need to manually create the update_add_htlc message to go around the channel reserve check in send_htlc() let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&[42; 32]).unwrap(); let cur_height = nodes[0].node.best_block.read().unwrap().height() + 1; let onion_keys = onion_utils::construct_onion_keys(&secp_ctx, &route_2.paths[0], &session_priv).unwrap(); let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route_2.paths[0], recv_value_2, &None, cur_height, &None).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &our_payment_hash_1); let msg = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 1, amount_msat: htlc_msat + 1, payment_hash: our_payment_hash_1, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet, }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg); // Check that the payment failed and the channel is closed in response to the malicious UpdateAdd. nodes[1].logger.assert_log("lightning::ln::channelmanager".to_string(), "Remote HTLC add would put them under remote reserve value".to_string(), 1); assert_eq!(nodes[1].node.list_channels().len(), 1); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert_eq!(err_msg.data, "Remote HTLC add would put them under remote reserve value"); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "Remote HTLC add would put them under remote reserve value".to_string() }); } #[test] fn test_inbound_outbound_capacity_is_not_zero() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _ = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let channels0 = node_chanmgrs[0].list_channels(); let channels1 = node_chanmgrs[1].list_channels(); assert_eq!(channels0.len(), 1); assert_eq!(channels1.len(), 1); let reserve = Channel::::get_holder_selected_channel_reserve_satoshis(100000); assert_eq!(channels0[0].inbound_capacity_msat, 95000000 - reserve*1000); assert_eq!(channels1[0].outbound_capacity_msat, 95000000 - reserve*1000); assert_eq!(channels0[0].outbound_capacity_msat, 100000 * 1000 - 95000000 - reserve*1000); assert_eq!(channels1[0].inbound_capacity_msat, 100000 * 1000 - 95000000 - reserve*1000); } fn commit_tx_fee_msat(feerate: u32, num_htlcs: u64) -> u64 { (COMMITMENT_TX_BASE_WEIGHT + num_htlcs * COMMITMENT_TX_WEIGHT_PER_HTLC) * feerate as u64 / 1000 * 1000 } #[test] fn test_channel_reserve_holding_cell_htlcs() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); // When this test was written, the default base fee floated based on the HTLC count. // It is now fixed, so we simply set the fee to the expected value here. let mut config = test_default_channel_config(); config.channel_options.forwarding_fee_base_msat = 239; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[Some(config.clone()), Some(config.clone()), Some(config.clone())]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 190000, 1001, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 190000, 1001, InitFeatures::known(), InitFeatures::known()); let mut stat01 = get_channel_value_stat!(nodes[0], chan_1.2); let mut stat11 = get_channel_value_stat!(nodes[1], chan_1.2); let mut stat12 = get_channel_value_stat!(nodes[1], chan_2.2); let mut stat22 = get_channel_value_stat!(nodes[2], chan_2.2); macro_rules! expect_forward { ($node: expr) => {{ let mut events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); check_added_monitors!($node, 1); let payment_event = SendEvent::from_event(events.remove(0)); payment_event }} } let feemsat = 239; // set above let total_fee_msat = (nodes.len() - 2) as u64 * feemsat; let feerate = get_feerate!(nodes[0], chan_1.2); let recv_value_0 = stat01.counterparty_max_htlc_value_in_flight_msat - total_fee_msat; // attempt to send amt_msat > their_max_htlc_value_in_flight_msat { let (mut route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_0); route.paths[0].last_mut().unwrap().fee_msat += 1; assert!(route.paths[0].iter().rev().skip(1).all(|h| h.fee_msat == feemsat)); unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot send value that would put us over the max HTLC value in flight our peer will accept \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send value that would put us over the max HTLC value in flight our peer will accept".to_string(), 1); } // channel reserve is bigger than their_max_htlc_value_in_flight_msat so loop to deplete // nodes[0]'s wealth loop { let amt_msat = recv_value_0 + total_fee_msat; // 3 for the 3 HTLCs that will be sent, 2* and +1 for the fee spike reserve. // Also, ensure that each payment has enough to be over the dust limit to // ensure it'll be included in each commit tx fee calculation. let commit_tx_fee_all_htlcs = 2*commit_tx_fee_msat(feerate, 3 + 1); let ensure_htlc_amounts_above_dust_buffer = 3 * (stat01.counterparty_dust_limit_msat + 1000); if stat01.value_to_self_msat < stat01.channel_reserve_msat + commit_tx_fee_all_htlcs + ensure_htlc_amounts_above_dust_buffer + amt_msat { break; } send_payment(&nodes[0], &vec![&nodes[1], &nodes[2]][..], recv_value_0); let (stat01_, stat11_, stat12_, stat22_) = ( get_channel_value_stat!(nodes[0], chan_1.2), get_channel_value_stat!(nodes[1], chan_1.2), get_channel_value_stat!(nodes[1], chan_2.2), get_channel_value_stat!(nodes[2], chan_2.2), ); assert_eq!(stat01_.value_to_self_msat, stat01.value_to_self_msat - amt_msat); assert_eq!(stat11_.value_to_self_msat, stat11.value_to_self_msat + amt_msat); assert_eq!(stat12_.value_to_self_msat, stat12.value_to_self_msat - (amt_msat - feemsat)); assert_eq!(stat22_.value_to_self_msat, stat22.value_to_self_msat + (amt_msat - feemsat)); stat01 = stat01_; stat11 = stat11_; stat12 = stat12_; stat22 = stat22_; } // adding pending output. // 2* and +1 HTLCs on the commit tx fee for the fee spike reserve. // The reason we're dividing by two here is as follows: the dividend is the total outbound liquidity // after fees, the channel reserve, and the fee spike buffer are removed. We eventually want to // divide this quantity into 3 portions, that will each be sent in an HTLC. This allows us // to test channel channel reserve policy at the edges of what amount is sendable, i.e. // cases where 1 msat over X amount will cause a payment failure, but anything less than // that can be sent successfully. So, dividing by two is a somewhat arbitrary way of getting // the amount of the first of these aforementioned 3 payments. The reason we split into 3 payments // is to test the behavior of the holding cell with respect to channel reserve and commit tx fee // policy. let commit_tx_fee_2_htlcs = 2*commit_tx_fee_msat(feerate, 2 + 1); let recv_value_1 = (stat01.value_to_self_msat - stat01.channel_reserve_msat - total_fee_msat - commit_tx_fee_2_htlcs)/2; let amt_msat_1 = recv_value_1 + total_fee_msat; let (route_1, our_payment_hash_1, our_payment_preimage_1, our_payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_1); let payment_event_1 = { nodes[0].node.send_payment(&route_1, our_payment_hash_1, &Some(our_payment_secret_1)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event_1.msgs[0]); // channel reserve test with htlc pending output > 0 let recv_value_2 = stat01.value_to_self_msat - amt_msat_1 - stat01.channel_reserve_msat - total_fee_msat - commit_tx_fee_2_htlcs; { let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_2 + 1); unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot send value that would put our balance under counterparty-announced channel reserve value \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); } // split the rest to test holding cell let commit_tx_fee_3_htlcs = 2*commit_tx_fee_msat(feerate, 3 + 1); let additional_htlc_cost_msat = commit_tx_fee_3_htlcs - commit_tx_fee_2_htlcs; let recv_value_21 = recv_value_2/2 - additional_htlc_cost_msat/2; let recv_value_22 = recv_value_2 - recv_value_21 - total_fee_msat - additional_htlc_cost_msat; { let stat = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat.value_to_self_msat - (stat.pending_outbound_htlcs_amount_msat + recv_value_21 + recv_value_22 + total_fee_msat + total_fee_msat + commit_tx_fee_3_htlcs), stat.channel_reserve_msat); } // now see if they go through on both sides let (route_21, our_payment_hash_21, our_payment_preimage_21, our_payment_secret_21) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_21); // but this will stuck in the holding cell nodes[0].node.send_payment(&route_21, our_payment_hash_21, &Some(our_payment_secret_21)).unwrap(); check_added_monitors!(nodes[0], 0); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 0); // test with outbound holding cell amount > 0 { let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_22+1); unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot send value that would put our balance under counterparty-announced channel reserve value \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send value that would put our balance under counterparty-announced channel reserve value".to_string(), 2); } let (route_22, our_payment_hash_22, our_payment_preimage_22, our_payment_secret_22) = get_route_and_payment_hash!(nodes[0], nodes[2], recv_value_22); // this will also stuck in the holding cell nodes[0].node.send_payment(&route_22, our_payment_hash_22, &Some(our_payment_secret_22)).unwrap(); check_added_monitors!(nodes[0], 0); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // flush the pending htlc nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event_1.commitment_msg); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // the pending htlc should be promoted to committed nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_revoke_and_ack); check_added_monitors!(nodes[0], 1); let commitment_update_2 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &as_commitment_signed); let bs_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &bs_revoke_and_ack); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_11 = expect_forward!(nodes[1]); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_11.msgs[0]); commitment_signed_dance!(nodes[2], nodes[1], payment_event_11.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); expect_payment_received!(nodes[2], our_payment_hash_1, our_payment_secret_1, recv_value_1); // flush the htlcs in the holding cell assert_eq!(commitment_update_2.update_add_htlcs.len(), 2); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[0]); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[1]); commitment_signed_dance!(nodes[1], nodes[0], &commitment_update_2.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_3 = expect_forward!(nodes[1]); assert_eq!(payment_event_3.msgs.len(), 2); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[0]); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[1]); commitment_signed_dance!(nodes[2], nodes[1], &payment_event_3.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); let events = nodes[2].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentReceived { ref payment_hash, ref purpose, amt } => { assert_eq!(our_payment_hash_21, *payment_hash); assert_eq!(recv_value_21, amt); match &purpose { PaymentPurpose::InvoicePayment { payment_preimage, payment_secret, .. } => { assert!(payment_preimage.is_none()); assert_eq!(our_payment_secret_21, *payment_secret); }, _ => panic!("expected PaymentPurpose::InvoicePayment") } }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentReceived { ref payment_hash, ref purpose, amt } => { assert_eq!(our_payment_hash_22, *payment_hash); assert_eq!(recv_value_22, amt); match &purpose { PaymentPurpose::InvoicePayment { payment_preimage, payment_secret, .. } => { assert!(payment_preimage.is_none()); assert_eq!(our_payment_secret_22, *payment_secret); }, _ => panic!("expected PaymentPurpose::InvoicePayment") } }, _ => panic!("Unexpected event"), } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_1); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_21); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_22); let commit_tx_fee_0_htlcs = 2*commit_tx_fee_msat(feerate, 1); let recv_value_3 = commit_tx_fee_2_htlcs - commit_tx_fee_0_htlcs - total_fee_msat; send_payment(&nodes[0], &vec![&nodes[1], &nodes[2]][..], recv_value_3); let commit_tx_fee_1_htlc = 2*commit_tx_fee_msat(feerate, 1 + 1); let expected_value_to_self = stat01.value_to_self_msat - (recv_value_1 + total_fee_msat) - (recv_value_21 + total_fee_msat) - (recv_value_22 + total_fee_msat) - (recv_value_3 + total_fee_msat); let stat0 = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat0.value_to_self_msat, expected_value_to_self); assert_eq!(stat0.value_to_self_msat, stat0.channel_reserve_msat + commit_tx_fee_1_htlc); let stat2 = get_channel_value_stat!(nodes[2], chan_2.2); assert_eq!(stat2.value_to_self_msat, stat22.value_to_self_msat + recv_value_1 + recv_value_21 + recv_value_22 + recv_value_3); } #[test] fn channel_reserve_in_flight_removes() { // In cases where one side claims an HTLC, it thinks it has additional available funds that it // can send to its counterparty, but due to update ordering, the other side may not yet have // considered those HTLCs fully removed. // This tests that we don't count HTLCs which will not be included in the next remote // commitment transaction towards the reserve value (as it implies no commitment transaction // will be generated which violates the remote reserve value). // This was broken previously, and discovered by the chanmon_fail_consistency fuzz test. // To test this we: // * route two HTLCs from A to B (note that, at a high level, this test is checking that, when // you consider the values of both of these HTLCs, B may not send an HTLC back to A, but if // you only consider the value of the first HTLC, it may not), // * start routing a third HTLC from A to B, // * claim the first two HTLCs (though B will generate an update_fulfill for one, and put // the other claim in its holding cell, as it immediately goes into AwaitingRAA), // * deliver the first fulfill from B // * deliver the update_add and an RAA from A, resulting in B freeing the second holding cell // claim, // * deliver A's response CS and RAA. // This results in A having the second HTLC in AwaitingRemovedRemoteRevoke, but B having // removed it fully. B now has the push_msat plus the first two HTLCs in value. // * Now B happily sends another HTLC, potentially violating its reserve value from A's point // of view (if A counts the AwaitingRemovedRemoteRevoke HTLC). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let b_chan_values = get_channel_value_stat!(nodes[1], chan_1.2); // Route the first two HTLCs. let (payment_preimage_1, _, _) = route_payment(&nodes[0], &[&nodes[1]], b_chan_values.channel_reserve_msat - b_chan_values.value_to_self_msat - 10000); let (payment_preimage_2, _, _) = route_payment(&nodes[0], &[&nodes[1]], 20000); // Start routing the third HTLC (this is just used to get everyone in the right state). let (route, payment_hash_3, payment_preimage_3, payment_secret_3) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); let send_1 = { nodes[0].node.send_payment(&route, payment_hash_3, &Some(payment_secret_3)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; // Now claim both of the first two HTLCs on B's end, putting B in AwaitingRAA and generating an // initial fulfill/CS. assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let bs_removes = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); // This claim goes in B's holding cell, allowing us to have a pending B->A RAA which does not // remove the second HTLC when we send the HTLC back from B to A. assert!(nodes[1].node.claim_funds(payment_preimage_2)); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_removes.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_removes.commitment_signed); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); expect_payment_sent!(nodes[0], payment_preimage_1); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &send_1.msgs[0]); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &send_1.commitment_msg); check_added_monitors!(nodes[1], 1); // B is already AwaitingRAA, so cant generate a CS here let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[1], 1); let bs_cs = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // The second HTLCis removed, but as A is in AwaitingRAA it can't generate a CS here, so the // RAA that B generated above doesn't fully resolve the second HTLC from A's point of view. // However, the RAA A generates here *does* fully resolve the HTLC from B's point of view (as A // can no longer broadcast a commitment transaction with it and B has the preimage so can go // on-chain as necessary). nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_cs.update_fulfill_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_cs.commitment_signed); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); expect_payment_sent!(nodes[0], payment_preimage_2); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], payment_hash_3, payment_secret_3, 100000); // Note that as this RAA was generated before the delivery of the update_fulfill it shouldn't // resolve the second HTLC from A's point of view. nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // Now that B doesn't have the second RAA anymore, but A still does, send a payment from B back // to A to ensure that A doesn't count the almost-removed HTLC in update_add processing. let (route, payment_hash_4, payment_preimage_4, payment_secret_4) = get_route_and_payment_hash!(nodes[1], nodes[0], 10000); let send_2 = { nodes[1].node.send_payment(&route, payment_hash_4, &Some(payment_secret_4)).unwrap(); check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &send_2.msgs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &send_2.commitment_msg); check_added_monitors!(nodes[0], 1); let as_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // Now just resolve all the outstanding messages/HTLCs for completeness... nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa); check_added_monitors!(nodes[0], 1); let as_cs = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs.commitment_signed); check_added_monitors!(nodes[1], 1); let bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_raa); check_added_monitors!(nodes[0], 1); expect_pending_htlcs_forwardable!(nodes[0]); expect_payment_received!(nodes[0], payment_hash_4, payment_secret_4, 10000); claim_payment(&nodes[1], &[&nodes[0]], payment_preimage_4); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_3); } #[test] fn channel_monitor_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that ChannelMonitor is able to recover from various states. let chanmon_cfgs = create_chanmon_cfgs(5); let node_cfgs = create_node_cfgs(5, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(5, &node_cfgs, &[None, None, None, None, None]); let nodes = create_network(5, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()); let chan_4 = create_announced_chan_between_nodes(&nodes, 3, 4, InitFeatures::known(), InitFeatures::known()); // Make sure all nodes are at the same starting height connect_blocks(&nodes[0], 4*CHAN_CONFIRM_DEPTH + 1 - nodes[0].best_block_info().1); connect_blocks(&nodes[1], 4*CHAN_CONFIRM_DEPTH + 1 - nodes[1].best_block_info().1); connect_blocks(&nodes[2], 4*CHAN_CONFIRM_DEPTH + 1 - nodes[2].best_block_info().1); connect_blocks(&nodes[3], 4*CHAN_CONFIRM_DEPTH + 1 - nodes[3].best_block_info().1); connect_blocks(&nodes[4], 4*CHAN_CONFIRM_DEPTH + 1 - nodes[4].best_block_info().1); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); // Simple case with no pending HTLCs: nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), true); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], false); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_1, None, HTLCType::NONE); assert_eq!(node_txn.len(), 1); mine_transaction(&nodes[0], &node_txn[0]); check_added_monitors!(nodes[0], 1); test_txn_broadcast(&nodes[0], &chan_1, None, HTLCType::NONE); } check_closed_broadcast!(nodes[0], true); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); check_closed_event!(nodes[1], 1, ClosureReason::DisconnectedPeer); // One pending HTLC is discarded by the force-close: let payment_preimage_1 = route_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 3000000).0; // Simple case of one pending HTLC to HTLC-Timeout (note that the HTLC-Timeout is not // broadcasted until we reach the timelock time). nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), true); check_closed_broadcast!(nodes[1], false); check_added_monitors!(nodes[1], 1); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_2, None, HTLCType::NONE); connect_blocks(&nodes[1], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + MIN_CLTV_EXPIRY_DELTA as u32 + 1); test_txn_broadcast(&nodes[1], &chan_2, None, HTLCType::TIMEOUT); mine_transaction(&nodes[2], &node_txn[0]); check_added_monitors!(nodes[2], 1); test_txn_broadcast(&nodes[2], &chan_2, None, HTLCType::NONE); } check_closed_broadcast!(nodes[2], true); assert_eq!(nodes[1].node.list_channels().len(), 0); assert_eq!(nodes[2].node.list_channels().len(), 1); check_closed_event!(nodes[1], 1, ClosureReason::DisconnectedPeer); check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed); macro_rules! claim_funds { ($node: expr, $prev_node: expr, $preimage: expr) => { { assert!($node.node.claim_funds($preimage)); check_added_monitors!($node, 1); let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(*node_id, $prev_node.node.get_our_node_id()); }, _ => panic!("Unexpected event"), }; } } } // nodes[3] gets the preimage, but nodes[2] already disconnected, resulting in a nodes[2] // HTLC-Timeout and a nodes[3] claim against it (+ its own announces) nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), true); check_added_monitors!(nodes[2], 1); check_closed_broadcast!(nodes[2], false); let node2_commitment_txid; { let node_txn = test_txn_broadcast(&nodes[2], &chan_3, None, HTLCType::NONE); connect_blocks(&nodes[2], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + MIN_CLTV_EXPIRY_DELTA as u32 + 1); test_txn_broadcast(&nodes[2], &chan_3, None, HTLCType::TIMEOUT); node2_commitment_txid = node_txn[0].txid(); // Claim the payment on nodes[3], giving it knowledge of the preimage claim_funds!(nodes[3], nodes[2], payment_preimage_1); mine_transaction(&nodes[3], &node_txn[0]); check_added_monitors!(nodes[3], 1); check_preimage_claim(&nodes[3], &node_txn); } check_closed_broadcast!(nodes[3], true); assert_eq!(nodes[2].node.list_channels().len(), 0); assert_eq!(nodes[3].node.list_channels().len(), 1); check_closed_event!(nodes[2], 1, ClosureReason::DisconnectedPeer); check_closed_event!(nodes[3], 1, ClosureReason::CommitmentTxConfirmed); // Drop the ChannelMonitor for the previous channel to avoid it broadcasting transactions and // confusing us in the following tests. let chan_3_mon = nodes[3].chain_monitor.chain_monitor.remove_monitor(&OutPoint { txid: chan_3.3.txid(), index: 0 }); // One pending HTLC to time out: let payment_preimage_2 = route_payment(&nodes[3], &vec!(&nodes[4])[..], 3000000).0; // CLTV expires at TEST_FINAL_CLTV + 1 (current height) + 1 (added in send_payment for // buffer space). let (close_chan_update_1, close_chan_update_2) = { connect_blocks(&nodes[3], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); let events = nodes[3].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); let close_chan_update_1 = match events[0] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { msg.clone() }, _ => panic!("Unexpected event"), }; match events[1] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { .. }, node_id } => { assert_eq!(node_id, nodes[4].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } check_added_monitors!(nodes[3], 1); // Clear bumped claiming txn spending node 2 commitment tx. Bumped txn are generated after reaching some height timer. { let mut node_txn = nodes[3].tx_broadcaster.txn_broadcasted.lock().unwrap(); node_txn.retain(|tx| { if tx.input[0].previous_output.txid == node2_commitment_txid { false } else { true } }); } let node_txn = test_txn_broadcast(&nodes[3], &chan_4, None, HTLCType::TIMEOUT); // Claim the payment on nodes[4], giving it knowledge of the preimage claim_funds!(nodes[4], nodes[3], payment_preimage_2); connect_blocks(&nodes[4], TEST_FINAL_CLTV - CLTV_CLAIM_BUFFER + 2); let events = nodes[4].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); let close_chan_update_2 = match events[0] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { msg.clone() }, _ => panic!("Unexpected event"), }; match events[1] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { .. }, node_id } => { assert_eq!(node_id, nodes[3].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } check_added_monitors!(nodes[4], 1); test_txn_broadcast(&nodes[4], &chan_4, None, HTLCType::SUCCESS); mine_transaction(&nodes[4], &node_txn[0]); check_preimage_claim(&nodes[4], &node_txn); (close_chan_update_1, close_chan_update_2) }; nodes[3].net_graph_msg_handler.handle_channel_update(&close_chan_update_2).unwrap(); nodes[4].net_graph_msg_handler.handle_channel_update(&close_chan_update_1).unwrap(); assert_eq!(nodes[3].node.list_channels().len(), 0); assert_eq!(nodes[4].node.list_channels().len(), 0); nodes[3].chain_monitor.chain_monitor.watch_channel(OutPoint { txid: chan_3.3.txid(), index: 0 }, chan_3_mon).unwrap(); check_closed_event!(nodes[3], 1, ClosureReason::CommitmentTxConfirmed); check_closed_event!(nodes[4], 1, ClosureReason::CommitmentTxConfirmed); } #[test] fn test_justice_tx() { // Test justice txn built on revoked HTLC-Success tx, against both sides let mut alice_config = UserConfig::default(); alice_config.channel_options.announced_channel = true; alice_config.peer_channel_config_limits.force_announced_channel_preference = false; alice_config.own_channel_config.our_to_self_delay = 6 * 24 * 5; let mut bob_config = UserConfig::default(); bob_config.channel_options.announced_channel = true; bob_config.peer_channel_config_limits.force_announced_channel_preference = false; bob_config.own_channel_config.our_to_self_delay = 6 * 24 * 3; let user_cfgs = [Some(alice_config), Some(bob_config)]; let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &user_cfgs); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some new channels: let chan_5 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // A pending HTLC which will be revoked: let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; // Get the will-be-revoked local txn from nodes[0] let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_5.2); assert_eq!(revoked_local_txn.len(), 2); // First commitment tx, then HTLC tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_5.3.txid()); assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to 0 are present assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout // Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_3); { mine_transaction(&nodes[1], &revoked_local_txn[0]); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); // ChannelMonitor: penalty tx, ChannelManager: local commitment tx assert_eq!(node_txn[0].input.len(), 2); // We should claim the revoked output and the HTLC output check_spends!(node_txn[0], revoked_local_txn[0]); node_txn.swap_remove(0); node_txn.truncate(1); } check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); test_txn_broadcast(&nodes[1], &chan_5, None, HTLCType::NONE); mine_transaction(&nodes[0], &revoked_local_txn[0]); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires // Verify broadcast of revoked HTLC-timeout let node_txn = test_txn_broadcast(&nodes[0], &chan_5, Some(revoked_local_txn[0].clone()), HTLCType::TIMEOUT); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); // Broadcast revoked HTLC-timeout on node 1 mine_transaction(&nodes[1], &node_txn[1]); test_revoked_htlc_claim_txn_broadcast(&nodes[1], node_txn[1].clone(), revoked_local_txn[0].clone()); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); // We test justice_tx build by A on B's revoked HTLC-Success tx // Create some new channels: let chan_6 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); node_txn.clear(); } // A pending HTLC which will be revoked: let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; // Get the will-be-revoked local txn from B let revoked_local_txn = get_local_commitment_txn!(nodes[1], chan_6.2); assert_eq!(revoked_local_txn.len(), 1); // Only commitment tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_6.3.txid()); assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to A are present // Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_4); { mine_transaction(&nodes[0], &revoked_local_txn[0]); { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); //ChannelMonitor: penalty tx, ChannelManager: local commitment tx assert_eq!(node_txn[0].input.len(), 1); // We claim the received HTLC output check_spends!(node_txn[0], revoked_local_txn[0]); node_txn.swap_remove(0); } check_added_monitors!(nodes[0], 1); test_txn_broadcast(&nodes[0], &chan_6, None, HTLCType::NONE); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = test_txn_broadcast(&nodes[1], &chan_6, Some(revoked_local_txn[0].clone()), HTLCType::SUCCESS); check_added_monitors!(nodes[1], 1); mine_transaction(&nodes[0], &node_txn[1]); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); test_revoked_htlc_claim_txn_broadcast(&nodes[0], node_txn[1].clone(), revoked_local_txn[0].clone()); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn revoked_output_claim() { // Simple test to ensure a node will claim a revoked output when a stale remote commitment // transaction is broadcast by its counterparty let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // node[0] is gonna to revoke an old state thus node[1] should be able to claim the revoked output let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(revoked_local_txn.len(), 1); // Only output is the full channel value back to nodes[0]: assert_eq!(revoked_local_txn[0].output.len(), 1); // Send a payment through, updating everyone's latest commitment txn send_payment(&nodes[0], &vec!(&nodes[1])[..], 5000000); // Inform nodes[1] that nodes[0] broadcast a stale tx mine_transaction(&nodes[1], &revoked_local_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); // ChannelMonitor: justice tx against revoked to_local output, ChannelManager: local commitment tx check_spends!(node_txn[0], revoked_local_txn[0]); check_spends!(node_txn[1], chan_1.3); // Inform nodes[0] that a watchtower cheated on its behalf, so it will force-close the chan mine_transaction(&nodes[0], &revoked_local_txn[0]); get_announce_close_broadcast_events(&nodes, 0, 1); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); } #[test] fn claim_htlc_outputs_shared_tx() { // Node revoked old state, htlcs haven't time out yet, claim them in shared justice tx let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some new channel: let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let (_payment_preimage_2, payment_hash_2, _) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000); // Get the will-be-revoked local txn from node[0] let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(revoked_local_txn.len(), 2); // commitment tx + 1 HTLC-Timeout tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // HTLC-Timeout check_spends!(revoked_local_txn[1], revoked_local_txn[0]); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { mine_transaction(&nodes[0], &revoked_local_txn[0]); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[1], payment_hash_2, true); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); // ChannelMonitor: penalty tx, ChannelManager: local commitment assert_eq!(node_txn[0].input.len(), 3); // Claim the revoked output + both revoked HTLC outputs check_spends!(node_txn[0], revoked_local_txn[0]); let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[0].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[1].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[2].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC // Next nodes[1] broadcasts its current local tx state: assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].previous_output.txid, chan_1.3.txid()); //Spending funding tx unique txouput, tx broadcasted by ChannelManager } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn claim_htlc_outputs_single_tx() { // Node revoked old state, htlcs have timed out, claim each of them in separated justice tx let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx, but this // time as two different claim transactions as we're gonna to timeout htlc with given a high current height let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let (_payment_preimage_2, payment_hash_2, _payment_secret_2) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000); // Get the will-be-revoked local txn from node[0] let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { confirm_transaction_at(&nodes[0], &revoked_local_txn[0], 100); check_added_monitors!(nodes[0], 1); confirm_transaction_at(&nodes[1], &revoked_local_txn[0], 100); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let mut events = nodes[0].node.get_and_clear_pending_events(); expect_pending_htlcs_forwardable_from_events!(nodes[0], events[0..1], true); match events[1] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {} _ => panic!("Unexpected event"), } connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[1], payment_hash_2, true); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 9); // ChannelMonitor: justice tx revoked offered htlc, justice tx revoked received htlc, justice tx revoked to_local (3) // ChannelManager: local commmitment + local HTLC-timeout (2) // ChannelMonitor: bumped justice tx, after one increase, bumps on HTLC aren't generated not being substantial anymore, bump on revoked to_local isn't generated due to more room for expiration (2) // ChannelMonitor: local commitment + local HTLC-timeout (2) // Check the pair local commitment and HTLC-timeout broadcast due to HTLC expiration assert_eq!(node_txn[0].input.len(), 1); check_spends!(node_txn[0], chan_1.3); assert_eq!(node_txn[1].input.len(), 1); let witness_script = node_txn[1].input[0].witness.last().unwrap(); assert_eq!(witness_script.len(), OFFERED_HTLC_SCRIPT_WEIGHT); //Spending an offered htlc output check_spends!(node_txn[1], node_txn[0]); // Justice transactions are indices 1-2-4 assert_eq!(node_txn[2].input.len(), 1); assert_eq!(node_txn[3].input.len(), 1); assert_eq!(node_txn[4].input.len(), 1); check_spends!(node_txn[2], revoked_local_txn[0]); check_spends!(node_txn[3], revoked_local_txn[0]); check_spends!(node_txn[4], revoked_local_txn[0]); let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[2].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[3].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[4].input[0].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), OFFERED_HTLC_SCRIPT_WEIGHT); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // revoked received HTLC } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn test_htlc_on_chain_success() { // Test that in case of a unilateral close onchain, we detect the state of output and pass // the preimage backward accordingly. So here we test that ChannelManager is // broadcasting the right event to other nodes in payment path. // We test with two HTLCs simultaneously as that was not handled correctly in the past. // A --------------------> B ----------------------> C (preimage) // First, C should claim the HTLC outputs via HTLC-Success when its own latest local // commitment transaction was broadcast. // Then, B should learn the preimage from said transactions, attempting to claim backwards // towards B. // B should be able to claim via preimage if A then broadcasts its local tx. // Finally, when A sees B's latest local commitment transaction it should be able to claim // the HTLC outputs via the preimage it learned (which, once confirmed should generate a // PaymentSent event). let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); // Ensure all nodes are at the same height let node_max_height = nodes.iter().map(|node| node.blocks.lock().unwrap().len()).max().unwrap() as u32; connect_blocks(&nodes[0], node_max_height - nodes[0].best_block_info().1); connect_blocks(&nodes[1], node_max_height - nodes[1].best_block_info().1); connect_blocks(&nodes[2], node_max_height - nodes[2].best_block_info().1); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (our_payment_preimage, payment_hash_1, _payment_secret) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let (our_payment_preimage_2, payment_hash_2, _payment_secret_2) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); // Broadcast legit commitment tx from C on B's chain // Broadcast HTLC Success transaction by C on received output from C's commitment tx on B's chain let commitment_tx = get_local_commitment_txn!(nodes[2], chan_2.2); assert_eq!(commitment_tx.len(), 1); check_spends!(commitment_tx[0], chan_2.3); nodes[2].node.claim_funds(our_payment_preimage); nodes[2].node.claim_funds(our_payment_preimage_2); check_added_monitors!(nodes[2], 2); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); mine_transaction(&nodes[2], &commitment_tx[0]); check_closed_broadcast!(nodes[2], true); check_added_monitors!(nodes[2], 1); check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 3 (commitment tx, 2*htlc-success tx), ChannelMonitor : 2 (2 * HTLC-Success tx) assert_eq!(node_txn.len(), 5); assert_eq!(node_txn[0], node_txn[3]); assert_eq!(node_txn[1], node_txn[4]); assert_eq!(node_txn[2], commitment_tx[0]); check_spends!(node_txn[0], commitment_tx[0]); check_spends!(node_txn[1], commitment_tx[0]); assert_eq!(node_txn[0].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[1].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_eq!(node_txn[0].lock_time, 0); assert_eq!(node_txn[1].lock_time, 0); // Verify that B's ChannelManager is able to extract preimage from HTLC Success tx and pass it backward let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; connect_block(&nodes[1], &Block { header, txdata: node_txn}); connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires { let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0.txid, chan_2.3.txid()); added_monitors.clear(); } let forwarded_events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(forwarded_events.len(), 3); match forwarded_events[0] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {} _ => panic!("Unexpected event"), } if let Event::PaymentForwarded { fee_earned_msat: Some(1000), claim_from_onchain_tx: true } = forwarded_events[1] { } else { panic!(); } if let Event::PaymentForwarded { fee_earned_msat: Some(1000), claim_from_onchain_tx: true } = forwarded_events[2] { } else { panic!(); } let events = nodes[1].node.get_and_clear_pending_msg_events(); { let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 2); assert_eq!(added_monitors[0].0.txid, chan_1.3.txid()); assert_eq!(added_monitors[1].0.txid, chan_1.3.txid()); added_monitors.clear(); } assert_eq!(events.len(), 3); match events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { .. }, node_id: _ } => {}, _ => panic!("Unexpected event"), } match events[2] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; macro_rules! check_tx_local_broadcast { ($node: expr, $htlc_offered: expr, $commitment_tx: expr, $chan_tx: expr) => { { let mut node_txn = $node.tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); // Node[1]: ChannelManager: 3 (commitment tx, 2*HTLC-Timeout tx), ChannelMonitor: 2 (timeout tx) // Node[0]: ChannelManager: 3 (commtiemtn tx, 2*HTLC-Timeout tx), ChannelMonitor: 2 HTLC-timeout check_spends!(node_txn[1], $commitment_tx); check_spends!(node_txn[2], $commitment_tx); assert_ne!(node_txn[1].lock_time, 0); assert_ne!(node_txn[2].lock_time, 0); if $htlc_offered { assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[2].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert!(node_txn[2].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output } else { assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[2].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(node_txn[1].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment assert!(node_txn[2].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment } check_spends!(node_txn[0], $chan_tx); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 71); node_txn.clear(); } } } // nodes[1] now broadcasts its own local state as a fallback, suggesting an alternate // commitment transaction with a corresponding HTLC-Timeout transactions, as well as a // timeout-claim of the output that nodes[2] just claimed via success. check_tx_local_broadcast!(nodes[1], false, commitment_tx[0], chan_2.3); // Broadcast legit commitment tx from A on B's chain // Broadcast preimage tx by B on offered output from A commitment tx on A's chain let node_a_commitment_tx = get_local_commitment_txn!(nodes[0], chan_1.2); check_spends!(node_a_commitment_tx[0], chan_1.3); mine_transaction(&nodes[1], &node_a_commitment_tx[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(node_txn.len(), 6); // ChannelManager : 3 (commitment tx + HTLC-Sucess * 2), ChannelMonitor : 3 (HTLC-Success, 2* RBF bumps of above HTLC txn) let commitment_spend = if node_txn[0].input[0].previous_output.txid == node_a_commitment_tx[0].txid() { check_spends!(node_txn[1], commitment_tx[0]); check_spends!(node_txn[2], commitment_tx[0]); assert_ne!(node_txn[1].input[0].previous_output.vout, node_txn[2].input[0].previous_output.vout); &node_txn[0] } else { check_spends!(node_txn[0], commitment_tx[0]); check_spends!(node_txn[1], commitment_tx[0]); assert_ne!(node_txn[0].input[0].previous_output.vout, node_txn[1].input[0].previous_output.vout); &node_txn[2] }; check_spends!(commitment_spend, node_a_commitment_tx[0]); assert_eq!(commitment_spend.input.len(), 2); assert_eq!(commitment_spend.input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(commitment_spend.input[1].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(commitment_spend.lock_time, 0); assert!(commitment_spend.output[0].script_pubkey.is_v0_p2wpkh()); // direct payment check_spends!(node_txn[3], chan_1.3); assert_eq!(node_txn[3].input[0].witness.clone().last().unwrap().len(), 71); check_spends!(node_txn[4], node_txn[3]); check_spends!(node_txn[5], node_txn[3]); // We don't bother to check that B can claim the HTLC output on its commitment tx here as // we already checked the same situation with A. // Verify that A's ChannelManager is able to extract preimage from preimage tx and generate PaymentSent let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; connect_block(&nodes[0], &Block { header, txdata: vec![node_a_commitment_tx[0].clone(), commitment_spend.clone()] }); connect_blocks(&nodes[0], TEST_FINAL_CLTV + MIN_CLTV_EXPIRY_DELTA as u32 - 1); // Confirm blocks until the HTLC expires check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 3); let mut first_claimed = false; for event in events { match event { Event::PaymentSent { payment_id: _, payment_preimage, payment_hash } => { if payment_preimage == our_payment_preimage && payment_hash == payment_hash_1 { assert!(!first_claimed); first_claimed = true; } else { assert_eq!(payment_preimage, our_payment_preimage_2); assert_eq!(payment_hash, payment_hash_2); } }, Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {}, _ => panic!("Unexpected event"), } } check_tx_local_broadcast!(nodes[0], true, node_a_commitment_tx[0], chan_1.3); } fn do_test_htlc_on_chain_timeout(connect_style: ConnectStyle) { // Test that in case of a unilateral close onchain, we detect the state of output and // timeout the HTLC backward accordingly. So here we test that ChannelManager is // broadcasting the right event to other nodes in payment path. // A ------------------> B ----------------------> C (timeout) // B's commitment tx C's commitment tx // \ \ // B's HTLC timeout tx B's timeout tx let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); *nodes[0].connect_style.borrow_mut() = connect_style; *nodes[1].connect_style.borrow_mut() = connect_style; *nodes[2].connect_style.borrow_mut() = connect_style; // Create some intial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); // Rebalance the network a bit by relaying one payment thorugh all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (_payment_preimage, payment_hash, _payment_secret) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); // Broadcast legit commitment tx from C on B's chain let commitment_tx = get_local_commitment_txn!(nodes[2], chan_2.2); check_spends!(commitment_tx[0], chan_2.3); nodes[2].node.fail_htlc_backwards(&payment_hash); check_added_monitors!(nodes[2], 0); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let events = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(!update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[1].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; mine_transaction(&nodes[2], &commitment_tx[0]); check_closed_broadcast!(nodes[2], true); check_added_monitors!(nodes[2], 1); check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 (commitment tx) assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan_2.3); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), 71); // Broadcast timeout transaction by B on received output from C's commitment tx on B's chain // Verify that B's ChannelManager is able to detect that HTLC is timeout by its own tx and react backward in consequence connect_blocks(&nodes[1], 200 - nodes[2].best_block_info().1); mine_transaction(&nodes[1], &commitment_tx[0]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let timeout_tx; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 5); // ChannelManager : 2 (commitment tx, HTLC-Timeout tx), ChannelMonitor : 2 (local commitment tx + HTLC-timeout), 1 timeout tx assert_eq!(node_txn[0], node_txn[3]); assert_eq!(node_txn[1], node_txn[4]); check_spends!(node_txn[2], commitment_tx[0]); assert_eq!(node_txn[2].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[0], chan_2.3); check_spends!(node_txn[1], node_txn[0]); assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), 71); assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); timeout_tx = node_txn[2].clone(); node_txn.clear(); } mine_transaction(&nodes[1], &timeout_tx); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); { // B will rebroadcast a fee-bumped timeout transaction here. let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], commitment_tx[0]); } connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); { // B may rebroadcast its own holder commitment transaction here, as a safeguard against // some incredibly unlikely partial-eclipse-attack scenarios. That said, because the // original commitment_tx[0] (also spending chan_2.3) has reached ANTI_REORG_DELAY B really // shouldn't broadcast anything here, and in some connect style scenarios we do not. let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); if node_txn.len() == 1 { check_spends!(node_txn[0], chan_2.3); } else { assert_eq!(node_txn.len(), 0); } } expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(!update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; // Broadcast legit commitment tx from B on A's chain let commitment_tx = get_local_commitment_txn!(nodes[1], chan_1.2); check_spends!(commitment_tx[0], chan_1.3); mine_transaction(&nodes[0], &commitment_tx[0]); connect_blocks(&nodes[0], TEST_FINAL_CLTV + MIN_CLTV_EXPIRY_DELTA as u32 - 1); // Confirm blocks until the HTLC expires check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 1 commitment tx, ChannelMonitor : 1 timeout tx assert_eq!(node_txn.len(), 2); check_spends!(node_txn[0], chan_1.3); assert_eq!(node_txn[0].clone().input[0].witness.last().unwrap().len(), 71); check_spends!(node_txn[1], commitment_tx[0]); assert_eq!(node_txn[1].clone().input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); } #[test] fn test_htlc_on_chain_timeout() { do_test_htlc_on_chain_timeout(ConnectStyle::BestBlockFirstSkippingBlocks); do_test_htlc_on_chain_timeout(ConnectStyle::TransactionsFirstSkippingBlocks); do_test_htlc_on_chain_timeout(ConnectStyle::FullBlockViaListen); } #[test] fn test_simple_commitment_revoked_fail_backward() { // Test that in case of a revoked commitment tx, we detect the resolution of output by justice tx // and fail backward accordingly. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (payment_preimage, _payment_hash, _payment_secret) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000); // Get the will-be-revoked local txn from nodes[2] let revoked_local_txn = get_local_commitment_txn!(nodes[2], chan_2.2); // Revoke the old state claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 3000000); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true); expect_payment_failed_with_update!(nodes[0], payment_hash, false, chan_2.0.contents.short_channel_id, true); }, _ => panic!("Unexpected event"), } } fn do_test_commitment_revoked_fail_backward_exhaustive(deliver_bs_raa: bool, use_dust: bool, no_to_remote: bool) { // Test that if our counterparty broadcasts a revoked commitment transaction we fail all // pending HTLCs on that channel backwards even if the HTLCs aren't present in our latest // commitment transaction anymore. // To do this, we have the peer which will broadcast a revoked commitment transaction send // a number of update_fail/commitment_signed updates without ever sending the RAA in // response to our commitment_signed. This is somewhat misbehavior-y, though not // technically disallowed and we should probably handle it reasonably. // Note that this is pretty exhaustive as an outbound HTLC which we haven't yet // failed/fulfilled backwards must be in at least one of the latest two remote commitment // transactions: // * Once we move it out of our holding cell/add it, we will immediately include it in a // commitment_signed (implying it will be in the latest remote commitment transaction). // * Once they remove it, we will send a (the first) commitment_signed without the HTLC, // and once they revoke the previous commitment transaction (allowing us to send a new // commitment_signed) we will be free to fail/fulfill the HTLC backwards. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (payment_preimage, _payment_hash, _payment_secret) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], if no_to_remote { 10_000 } else { 3_000_000 }); // Get the will-be-revoked local txn from nodes[2] let revoked_local_txn = get_local_commitment_txn!(nodes[2], chan_2.2); assert_eq!(revoked_local_txn[0].output.len(), if no_to_remote { 1 } else { 2 }); // Revoke the old state claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); let value = if use_dust { // The dust limit applied to HTLC outputs considers the fee of the HTLC transaction as // well, so HTLCs at exactly the dust limit will not be included in commitment txn. nodes[2].node.channel_state.lock().unwrap().by_id.get(&chan_2.2).unwrap().holder_dust_limit_satoshis * 1000 } else { 3000000 }; let (_, first_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); let (_, second_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); let (_, third_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], value); assert!(nodes[2].node.fail_htlc_backwards(&first_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); let bs_raa = commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, false, true, false, true); // Drop the last RAA from 3 -> 2 assert!(nodes[2].node.fail_htlc_backwards(&second_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed); check_added_monitors!(nodes[1], 1); // Note that nodes[1] is in AwaitingRAA, so won't send a CS let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[2], 1); assert!(nodes[2].node.fail_htlc_backwards(&third_payment_hash)); expect_pending_htlcs_forwardable!(nodes[2]); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fee.is_none()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); // At this point first_payment_hash has dropped out of the latest two commitment // transactions that nodes[1] is tracking... nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &updates.commitment_signed); check_added_monitors!(nodes[1], 1); // Note that nodes[1] is (still) in AwaitingRAA, so won't send a CS let as_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[2].node.get_our_node_id()); nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_raa); check_added_monitors!(nodes[2], 1); // Add a fourth HTLC, this one will get sequestered away in nodes[1]'s holding cell waiting // on nodes[2]'s RAA. let (route, fourth_payment_hash, _, fourth_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[2], 1000000); nodes[1].node.send_payment(&route, fourth_payment_hash, &Some(fourth_payment_secret)).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); check_added_monitors!(nodes[1], 0); if deliver_bs_raa { nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &bs_raa); // One monitor for the new revocation preimage, no second on as we won't generate a new // commitment transaction for nodes[0] until process_pending_htlc_forwards(). check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; // Deliberately don't process the pending fail-back so they all fail back at once after // block connection just like the !deliver_bs_raa case } let mut failed_htlcs = HashSet::new(); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_added_monitors!(nodes[1], 1); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), if deliver_bs_raa { 2 } else { 3 }); match events[0] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => { }, _ => panic!("Unexepected event"), } match events[1] { Event::PaymentPathFailed { ref payment_hash, .. } => { assert_eq!(*payment_hash, fourth_payment_hash); }, _ => panic!("Unexpected event"), } if !deliver_bs_raa { match events[2] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; } nodes[1].node.process_pending_htlc_forwards(); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), if deliver_bs_raa { 4 } else { 3 }); match events[if deliver_bs_raa { 1 } else { 0 }] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { .. } } => {}, _ => panic!("Unexpected event"), } match events[if deliver_bs_raa { 2 } else { 1 }] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, ref data } }, node_id: _ } => { assert_eq!(channel_id, chan_2.2); assert_eq!(data.as_str(), "Commitment or closing transaction was confirmed on chain."); }, _ => panic!("Unexpected event"), } if deliver_bs_raa { match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert_eq!(nodes[2].node.get_our_node_id(), *node_id); assert_eq!(update_add_htlcs.len(), 1); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); }, _ => panic!("Unexpected event"), } } match events[if deliver_bs_raa { 3 } else { 2 }] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref commitment_signed, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 3); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[1]); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[2]); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 3); match events[0] { Event::PaymentPathFailed { ref payment_hash, rejected_by_dest: _, ref network_update, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); // If we delivered B's RAA we got an unknown preimage error, not something // that we should update our routing table for. if !deliver_bs_raa { assert!(network_update.is_some()); } }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentPathFailed { ref payment_hash, rejected_by_dest: _, ref network_update, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); assert!(network_update.is_some()); }, _ => panic!("Unexpected event"), } match events[2] { Event::PaymentPathFailed { ref payment_hash, rejected_by_dest: _, ref network_update, .. } => { assert!(failed_htlcs.insert(payment_hash.0)); assert!(network_update.is_some()); }, _ => panic!("Unexpected event"), } }, _ => panic!("Unexpected event"), } assert!(failed_htlcs.contains(&first_payment_hash.0)); assert!(failed_htlcs.contains(&second_payment_hash.0)); assert!(failed_htlcs.contains(&third_payment_hash.0)); } #[test] fn test_commitment_revoked_fail_backward_exhaustive_a() { do_test_commitment_revoked_fail_backward_exhaustive(false, true, false); do_test_commitment_revoked_fail_backward_exhaustive(true, true, false); do_test_commitment_revoked_fail_backward_exhaustive(false, false, false); do_test_commitment_revoked_fail_backward_exhaustive(true, false, false); } #[test] fn test_commitment_revoked_fail_backward_exhaustive_b() { do_test_commitment_revoked_fail_backward_exhaustive(false, true, true); do_test_commitment_revoked_fail_backward_exhaustive(true, true, true); do_test_commitment_revoked_fail_backward_exhaustive(false, false, true); do_test_commitment_revoked_fail_backward_exhaustive(true, false, true); } #[test] fn fail_backward_pending_htlc_upon_channel_failure() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 500_000_000, InitFeatures::known(), InitFeatures::known()); // Alice -> Bob: Route a payment but without Bob sending revoke_and_ack. { let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 50_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let payment_event = { let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); } // Alice -> Bob: Route another payment but now Alice waits for Bob's earlier revoke_and_ack. let (route, failed_payment_hash, _, failed_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 50_000); { nodes[0].node.send_payment(&route, failed_payment_hash, &Some(failed_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 0); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); } // Alice <- Bob: Send a malformed update_add_htlc so Alice fails the channel. { let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 50_000); let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&[42; 32]).unwrap(); let current_height = nodes[1].node.best_block.read().unwrap().height() + 1; let (onion_payloads, _amount_msat, cltv_expiry) = onion_utils::build_onion_payloads(&route.paths[0], 50_000, &Some(payment_secret), current_height, &None).unwrap(); let onion_keys = onion_utils::construct_onion_keys(&secp_ctx, &route.paths[0], &session_priv).unwrap(); let onion_routing_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &payment_hash); // Send a 0-msat update_add_htlc to fail the channel. let update_add_htlc = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 0, amount_msat: 0, payment_hash, cltv_expiry, onion_routing_packet, }; nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &update_add_htlc); } let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); // Check that Alice fails backward the pending HTLC from the second payment. match events[0] { Event::PaymentPathFailed { payment_hash, .. } => { assert_eq!(payment_hash, failed_payment_hash); }, _ => panic!("Unexpected event"), } match events[1] { Event::ChannelClosed { reason: ClosureReason::ProcessingError { ref err }, .. } => { assert_eq!(err, "Remote side tried to send a 0-msat HTLC"); }, _ => panic!("Unexpected event {:?}", events[1]), } check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); } #[test] fn test_htlc_ignore_latest_remote_commitment() { // Test that HTLC transactions spending the latest remote commitment transaction are simply // ignored if we cannot claim them. This originally tickled an invalid unwrap(). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); route_payment(&nodes[0], &[&nodes[1]], 10000000); nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap(); connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[1]); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[0].clone(), node_txn[1].clone()]}); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); // Duplicate the connect_block call since this may happen due to other listeners // registering new transactions header.prev_blockhash = header.block_hash(); connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[0].clone(), node_txn[2].clone()]}); } #[test] fn test_force_close_fail_back() { // Check which HTLCs are failed-backwards on channel force-closure let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, our_payment_preimage, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1000000); let mut payment_event = { nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); let mut events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); check_added_monitors!(nodes[1], 1); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg); check_added_monitors!(nodes[2], 1); let (_, _) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); // nodes[2] now has the latest commitment transaction, but hasn't revoked its previous // state or updated nodes[1]' state. Now force-close and broadcast that commitment/HTLC // transaction and ensure nodes[1] doesn't fail-backwards (this was originally a bug!). nodes[2].node.force_close_channel(&payment_event.commitment_msg.channel_id).unwrap(); check_closed_broadcast!(nodes[2], true); check_added_monitors!(nodes[2], 1); check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed); let tx = { let mut node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); // Note that we don't bother broadcasting the HTLC-Success transaction here as we don't // have a use for it unless nodes[2] learns the preimage somehow, the funds will go // back to nodes[1] upon timeout otherwise. assert_eq!(node_txn.len(), 1); node_txn.remove(0) }; mine_transaction(&nodes[1], &tx); // Note no UpdateHTLCs event here from nodes[1] to nodes[0]! check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); // Now check that if we add the preimage to ChannelMonitor it broadcasts our HTLC-Success.. { get_monitor!(nodes[2], payment_event.commitment_msg.channel_id) .provide_payment_preimage(&our_payment_hash, &our_payment_preimage, &node_cfgs[2].tx_broadcaster, &node_cfgs[2].fee_estimator, &node_cfgs[2].logger); } mine_transaction(&nodes[2], &tx); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].previous_output.txid, tx.txid()); assert_eq!(node_txn[0].lock_time, 0); // Must be an HTLC-Success assert_eq!(node_txn[0].input[0].witness.len(), 5); // Must be an HTLC-Success check_spends!(node_txn[0], tx); } #[test] fn test_dup_events_on_peer_disconnect() { // Test that if we receive a duplicative update_fulfill_htlc message after a reconnect we do // not generate a corresponding duplicative PaymentSent event. This did not use to be the case // as we used to generate the event immediately upon receipt of the payment preimage in the // update_fulfill_htlc message. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 1000000).0; assert!(nodes[1].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[1], 1); let claim_msgs = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &claim_msgs.update_fulfill_htlcs[0]); expect_payment_sent!(nodes[0], payment_preimage); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (false, false)); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn test_simple_peer_disconnect() { // Test that we can reconnect when there are no lost messages let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_2 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_2); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_1); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let (payment_preimage_3, payment_hash_3, _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000); let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; let payment_hash_6 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], true, payment_preimage_3); fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], true, payment_hash_5); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (false, false)); { let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentSent { payment_id: _, payment_preimage, payment_hash } => { assert_eq!(payment_preimage, payment_preimage_3); assert_eq!(payment_hash, payment_hash_3); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentPathFailed { payment_hash, rejected_by_dest, .. } => { assert_eq!(payment_hash, payment_hash_5); assert!(rejected_by_dest); }, _ => panic!("Unexpected event"), } } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_4); fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_6); } fn do_test_drop_messages_peer_disconnect(messages_delivered: u8, simulate_broken_lnd: bool) { // Test that we can reconnect when in-flight HTLC updates get dropped let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let mut as_funding_locked = None; if messages_delivered == 0 { let (funding_locked, _, _) = create_chan_between_nodes_with_value_a(&nodes[0], &nodes[1], 100000, 10001, InitFeatures::known(), InitFeatures::known()); as_funding_locked = Some(funding_locked); // nodes[1] doesn't receive the funding_locked message (it'll be re-sent on reconnect) // Note that we store it so that if we're running with `simulate_broken_lnd` we can deliver // it before the channel_reestablish message. } else { create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); } let (route, payment_hash_1, payment_preimage_1, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); let payment_event = { nodes[0].node.send_payment(&route, payment_hash_1, &Some(payment_secret_1)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; assert_eq!(nodes[1].node.get_our_node_id(), payment_event.node_id); if messages_delivered < 2 { // Drop the payment_event messages, and let them get re-generated in reconnect_nodes! } else { nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); if messages_delivered >= 3 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg); check_added_monitors!(nodes[1], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); if messages_delivered >= 4 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); if messages_delivered >= 5 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); if messages_delivered >= 6 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 3 { if simulate_broken_lnd { // lnd has a long-standing bug where they send a funding_locked prior to a // channel_reestablish if you reconnect prior to funding_locked time. // // Here we simulate that behavior, delivering a funding_locked immediately on // reconnect. Note that we don't bother skipping the now-duplicate funding_locked sent // in `reconnect_nodes` but we currently don't fail based on that. // // See-also nodes[1].node.handle_funding_locked(&nodes[0].node.get_our_node_id(), &as_funding_locked.as_ref().unwrap().0); } // Even if the funding_locked messages get exchanged, as long as nothing further was // received on either side, both sides will need to resend them. reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 3 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (-1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 4 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (-1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 5 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 6 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } let events_1 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 1); match events_1[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.process_pending_htlc_forwards(); let events_2 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PaymentReceived { ref payment_hash, ref purpose, amt } => { assert_eq!(payment_hash_1, *payment_hash); assert_eq!(amt, 1000000); match &purpose { PaymentPurpose::InvoicePayment { payment_preimage, payment_secret, .. } => { assert!(payment_preimage.is_none()); assert_eq!(payment_secret_1, *payment_secret); }, _ => panic!("expected PaymentPurpose::InvoicePayment") } }, _ => panic!("Unexpected event"), } nodes[1].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[1], 1); let events_3 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let (update_fulfill_htlc, commitment_signed) = match events_3[0] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); (updates.update_fulfill_htlcs[0].clone(), updates.commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; if messages_delivered >= 1 { nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlc); let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { payment_id: _, ref payment_preimage, ref payment_hash } => { assert_eq!(payment_preimage_1, *payment_preimage); assert_eq!(payment_hash_1, *payment_hash); }, _ => panic!("Unexpected event"), } if messages_delivered >= 2 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed); check_added_monitors!(nodes[0], 1); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); if messages_delivered >= 3 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); if messages_delivered >= 4 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); if messages_delivered >= 5 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 2 { reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (false, false)); if messages_delivered < 1 { let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { payment_id: _, ref payment_preimage, ref payment_hash } => { assert_eq!(payment_preimage_1, *payment_preimage); assert_eq!(payment_hash_1, *payment_hash); }, _ => panic!("Unexpected event"), } } else { assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); } } else if messages_delivered == 2 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, -1), (0, 0), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 3 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, -1), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 4 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 5 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Channel should still work fine... let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); let payment_preimage_2 = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0; claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_drop_messages_peer_disconnect_a() { do_test_drop_messages_peer_disconnect(0, true); do_test_drop_messages_peer_disconnect(0, false); do_test_drop_messages_peer_disconnect(1, false); do_test_drop_messages_peer_disconnect(2, false); } #[test] fn test_drop_messages_peer_disconnect_b() { do_test_drop_messages_peer_disconnect(3, false); do_test_drop_messages_peer_disconnect(4, false); do_test_drop_messages_peer_disconnect(5, false); do_test_drop_messages_peer_disconnect(6, false); } #[test] fn test_funding_peer_disconnect() { // Test that we can lock in our funding tx while disconnected let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, InitFeatures::known(), InitFeatures::known()); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); confirm_transaction(&nodes[0], &tx); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); let chan_id; assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); chan_id = msg.channel_id; }, _ => panic!("Unexpected event"), } reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); confirm_transaction(&nodes[1], &tx); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 2); let funding_locked = match events_2[0] { MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }; let bs_announcement_sigs = match events_2[1] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }; reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[0].node.handle_funding_locked(&nodes[1].node.get_our_node_id(), &funding_locked); nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs); let events_3 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 2); let as_announcement_sigs = match events_3[0] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }; let (as_announcement, as_update) = match events_3[1] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { (msg.clone(), update_msg.clone()) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs); let events_4 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_4.len(), 1); let (_, bs_update) = match events_4[0] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { (msg.clone(), update_msg.clone()) }, _ => panic!("Unexpected event"), }; nodes[0].net_graph_msg_handler.handle_channel_announcement(&as_announcement).unwrap(); nodes[0].net_graph_msg_handler.handle_channel_update(&bs_update).unwrap(); nodes[0].net_graph_msg_handler.handle_channel_update(&as_update).unwrap(); let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0; claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); // Check that after deserialization and reconnection we can still generate an identical // channel_announcement from the cached signatures. nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; check_added_monitors!(nodes[0], 1); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // as_announcement should be re-generated exactly by broadcast_node_announcement. nodes[0].node.broadcast_node_announcement([0, 0, 0], [0; 32], Vec::new()); let msgs = nodes[0].node.get_and_clear_pending_msg_events(); let mut found_announcement = false; for event in msgs.iter() { match event { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, .. } => { if *msg == as_announcement { found_announcement = true; } }, MessageSendEvent::BroadcastNodeAnnouncement { .. } => {}, _ => panic!("Unexpected event"), } } assert!(found_announcement); } #[test] fn test_drop_messages_peer_disconnect_dual_htlc() { // Test that we can handle reconnecting when both sides of a channel have pending // commitment_updates when we disconnect. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (payment_preimage_1, payment_hash_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); // Now try to send a second payment which will fail to send let (route, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, payment_hash_2, &Some(payment_secret_2)).unwrap(); check_added_monitors!(nodes[0], 1); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); match events_2[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]); let events_3 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentSent { payment_id: _, ref payment_preimage, ref payment_hash } => { assert_eq!(*payment_preimage, payment_preimage_1); assert_eq!(*payment_hash, payment_hash_1); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed); let _ = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); }, _ => panic!("Unexpected event"), } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); let as_resp = handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); let bs_resp = handle_chan_reestablish_msgs!(nodes[1], nodes[0]); assert!(as_resp.0.is_none()); assert!(bs_resp.0.is_none()); assert!(bs_resp.1.is_none()); assert!(bs_resp.2.is_none()); assert!(as_resp.3 == RAACommitmentOrder::CommitmentFirst); assert_eq!(as_resp.2.as_ref().unwrap().update_add_htlcs.len(), 1); assert!(as_resp.2.as_ref().unwrap().update_fulfill_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_malformed_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().update_add_htlcs[0]); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().commitment_signed); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), as_resp.1.as_ref().unwrap()); let bs_second_commitment_signed = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_second_commitment_signed.update_add_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack); let as_commitment_signed = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_commitment_signed.update_add_htlcs.is_empty()); assert!(as_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(as_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment_signed.commitment_signed); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed.commitment_signed); let bs_second_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); expect_pending_htlcs_forwardable!(nodes[1]); let events_5 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_5.len(), 1); match events_5[0] { Event::PaymentReceived { ref payment_hash, ref purpose, .. } => { assert_eq!(payment_hash_2, *payment_hash); match &purpose { PaymentPurpose::InvoicePayment { payment_preimage, payment_secret, .. } => { assert!(payment_preimage.is_none()); assert_eq!(payment_secret_2, *payment_secret); }, _ => panic!("expected PaymentPurpose::InvoicePayment") } }, _ => panic!("Unexpected event"), } nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke_and_ack); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } fn do_test_htlc_timeout(send_partial_mpp: bool) { // If the user fails to claim/fail an HTLC within the HTLC CLTV timeout we fail it for them // to avoid our counterparty failing the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let our_payment_hash = if send_partial_mpp { let (route, our_payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100000); // Use the utility function send_payment_along_path to send the payment with MPP data which // indicates there are more HTLCs coming. let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match. let payment_id = PaymentId([42; 32]); nodes[0].node.send_payment_along_path(&route.paths[0], &route.payee, &our_payment_hash, &Some(payment_secret), 200000, cur_height, payment_id, &None).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); // Now do the relevant commitment_signed/RAA dances along the path, noting that the final // hop should *not* yet generate any PaymentReceived event(s). pass_along_path(&nodes[0], &[&nodes[1]], 100000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None); our_payment_hash } else { route_payment(&nodes[0], &[&nodes[1]], 100000).1 }; let mut block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![], }; connect_block(&nodes[0], &block); connect_block(&nodes[1], &block); let block_count = TEST_FINAL_CLTV + CHAN_CONFIRM_DEPTH + 2 - CLTV_CLAIM_BUFFER - LATENCY_GRACE_PERIOD_BLOCKS; for _ in CHAN_CONFIRM_DEPTH + 2..block_count { block.header.prev_blockhash = block.block_hash(); connect_block(&nodes[0], &block); connect_block(&nodes[1], &block); } expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let htlc_timeout_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_timeout_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_timeout_updates.update_fail_htlcs.len(), 1); assert!(htlc_timeout_updates.update_fail_malformed_htlcs.is_empty()); assert!(htlc_timeout_updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_timeout_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_timeout_updates.commitment_signed, false); // 100_000 msat as u64, followed by the height at which we failed back above let mut expected_failure_data = byte_utils::be64_to_array(100_000).to_vec(); expected_failure_data.extend_from_slice(&byte_utils::be32_to_array(block_count - 1)); expect_payment_failed!(nodes[0], our_payment_hash, true, 0x4000 | 15, &expected_failure_data[..]); } #[test] fn test_htlc_timeout() { do_test_htlc_timeout(true); do_test_htlc_timeout(false); } fn do_test_holding_cell_htlc_add_timeouts(forwarded_htlc: bool) { // Tests that HTLCs in the holding cell are timed out after the requisite number of blocks. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); // Make sure all nodes are at the same starting height connect_blocks(&nodes[0], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[0].best_block_info().1); connect_blocks(&nodes[1], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[1].best_block_info().1); connect_blocks(&nodes[2], 2*CHAN_CONFIRM_DEPTH + 1 - nodes[2].best_block_info().1); // Route a first payment to get the 1 -> 2 channel in awaiting_raa... let (route, first_payment_hash, _, first_payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[2], 100000); { nodes[1].node.send_payment(&route, first_payment_hash, &Some(first_payment_secret)).unwrap(); } assert_eq!(nodes[1].node.get_and_clear_pending_msg_events().len(), 1); check_added_monitors!(nodes[1], 1); // Now attempt to route a second payment, which should be placed in the holding cell let sending_node = if forwarded_htlc { &nodes[0] } else { &nodes[1] }; let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(sending_node, nodes[2], 100000); sending_node.node.send_payment(&route, second_payment_hash, &Some(second_payment_secret)).unwrap(); if forwarded_htlc { check_added_monitors!(nodes[0], 1); let payment_event = SendEvent::from_event(nodes[0].node.get_and_clear_pending_msg_events().remove(0)); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); } check_added_monitors!(nodes[1], 0); connect_blocks(&nodes[1], TEST_FINAL_CLTV - CLTV_CLAIM_BUFFER - LATENCY_GRACE_PERIOD_BLOCKS); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); connect_blocks(&nodes[1], 1); if forwarded_htlc { expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let fail_commit = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(fail_commit.len(), 1); match fail_commit[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fail_htlcs, ref commitment_signed, .. }, .. } => { nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, true, true); }, _ => unreachable!(), } expect_payment_failed_with_update!(nodes[0], second_payment_hash, false, chan_2.0.contents.short_channel_id, false); } else { expect_payment_failed!(nodes[1], second_payment_hash, true); } } #[test] fn test_holding_cell_htlc_add_timeouts() { do_test_holding_cell_htlc_add_timeouts(false); do_test_holding_cell_htlc_add_timeouts(true); } #[test] fn test_no_txn_manager_serialize_deserialize() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let logger: test_utils::TestLogger; let fee_estimator: test_utils::TestFeeEstimator; let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, InitFeatures::known(), InitFeatures::known()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()) .write(&mut chan_0_monitor_serialized).unwrap(); logger = test_utils::TestLogger::new(); fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let config = UserConfig::default(); let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: config, keys_manager, fee_estimator: &fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; assert_eq!(nodes[0].node.list_channels().len(), 1); check_added_monitors!(nodes[0], 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); for node in nodes.iter() { assert!(node.net_graph_msg_handler.handle_channel_announcement(&announcement).unwrap()); node.net_graph_msg_handler.handle_channel_update(&as_update).unwrap(); node.net_graph_msg_handler.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_manager_serialize_deserialize_events() { // This test makes sure the events field in ChannelManager survives de/serialization let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let fee_estimator: test_utils::TestFeeEstimator; let persister: test_utils::TestPersister; let logger: test_utils::TestLogger; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Start creating a channel, but stop right before broadcasting the funding transaction let channel_value = 100000; let push_msat = 10001; let a_flags = InitFeatures::known(); let b_flags = InitFeatures::known(); let node_a = nodes.remove(0); let node_b = nodes.remove(0); node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap(); node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), a_flags, &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id())); node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), b_flags, &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id())); let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, channel_value, 42); node_a.node.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); check_added_monitors!(node_a, 0); node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id())); { let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id()); node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed); { let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead nodes.push(node_a); nodes.push(node_b); // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], bs_funding_signed.channel_id).write(&mut chan_0_monitor_serialized).unwrap(); fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; logger = test_utils::TestLogger::new(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let config = UserConfig::default(); let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: config, keys_manager, fee_estimator: &fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; // After deserializing, make sure the funding_transaction is still held by the channel manager let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 0); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid); // Make sure the channel is functioning as though the de/serialization never happened assert_eq!(nodes[0].node.list_channels().len(), 1); check_added_monitors!(nodes[0], 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); for node in nodes.iter() { assert!(node.net_graph_msg_handler.handle_channel_announcement(&announcement).unwrap()); node.net_graph_msg_handler.handle_channel_update(&as_update).unwrap(); node.net_graph_msg_handler.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_simple_manager_serialize_deserialize() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let logger: test_utils::TestLogger; let fee_estimator: test_utils::TestFeeEstimator; let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2; let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); logger = test_utils::TestLogger::new(); fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), keys_manager, fee_estimator: &fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; check_added_monitors!(nodes[0], 1); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash); claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage); } #[test] fn test_manager_serialize_deserialize_inconsistent_monitor() { // Test deserializing a ChannelManager with an out-of-date ChannelMonitor let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let logger: test_utils::TestLogger; let fee_estimator: test_utils::TestFeeEstimator; let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0, InitFeatures::known(), InitFeatures::known()).2; let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3, InitFeatures::known(), InitFeatures::known()); let mut node_0_stale_monitors_serialized = Vec::new(); for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] { let mut writer = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap(); node_0_stale_monitors_serialized.push(writer.0); } let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000); // Serialize the ChannelManager here, but the monitor we keep up-to-date let nodes_0_serialized = nodes[0].node.encode(); route_payment(&nodes[0], &[&nodes[3]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/ // nodes[3]) let mut node_0_monitors_serialized = Vec::new(); for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] { let mut writer = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap(); node_0_monitors_serialized.push(writer.0); } logger = test_utils::TestLogger::new(); fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut node_0_stale_monitors = Vec::new(); for serialized in node_0_stale_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(BlockHash, ChannelMonitor)>::read(&mut read, keys_manager).unwrap(); assert!(read.is_empty()); node_0_stale_monitors.push(monitor); } let mut node_0_monitors = Vec::new(); for serialized in node_0_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(BlockHash, ChannelMonitor)>::read(&mut read, keys_manager).unwrap(); assert!(read.is_empty()); node_0_monitors.push(monitor); } let mut nodes_0_read = &nodes_0_serialized[..]; if let Err(msgs::DecodeError::InvalidValue) = <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), keys_manager, fee_estimator: &fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(), }) { } else { panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return"); }; let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), keys_manager, fee_estimator: &fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(), }).unwrap(); nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); { // Channel close should result in a commitment tx let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 1); check_spends!(txn[0], funding_tx); assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid()); } for monitor in node_0_monitors.drain(..) { assert!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor).is_ok()); check_added_monitors!(nodes[0], 1); } nodes[0].node = &nodes_0_deserialized; check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); // nodes[1] and nodes[2] have no lost state with nodes[0]... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); //... and we can even still claim the payment! claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage); nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish = get_event_msg!(nodes[3], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish); let msg_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 1); if let MessageSendEvent::HandleError { ref action, .. } = msg_events[0] { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert_eq!(msg.channel_id, channel_id); }, _ => panic!("Unexpected event!"), } } } macro_rules! check_spendable_outputs { ($node: expr, $keysinterface: expr) => { { let mut events = $node.chain_monitor.chain_monitor.get_and_clear_pending_events(); let mut txn = Vec::new(); let mut all_outputs = Vec::new(); let secp_ctx = Secp256k1::new(); for event in events.drain(..) { match event { Event::SpendableOutputs { mut outputs } => { for outp in outputs.drain(..) { txn.push($keysinterface.backing.spend_spendable_outputs(&[&outp], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &secp_ctx).unwrap()); all_outputs.push(outp); } }, _ => panic!("Unexpected event"), }; } if all_outputs.len() > 1 { if let Ok(tx) = $keysinterface.backing.spend_spendable_outputs(&all_outputs.iter().map(|a| a).collect::>(), Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &secp_ctx) { txn.push(tx); } } txn } } } #[test] fn test_claim_sizeable_push_msat() { // Incidentally test SpendableOutput event generation due to detection of to_local output on commitment tx let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 99000000, InitFeatures::known(), InitFeatures::known()); nodes[1].node.force_close_channel(&chan.2).unwrap(); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan.3); assert_eq!(node_txn[0].output.len(), 2); // We can't force trimming of to_remote output as channel_reserve_satoshis block us to do so at channel opening mine_transaction(&nodes[1], &node_txn[0]); connect_blocks(&nodes[1], BREAKDOWN_TIMEOUT as u32 - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); assert_eq!(spend_txn[0].input.len(), 1); check_spends!(spend_txn[0], node_txn[0]); assert_eq!(spend_txn[0].input[0].sequence, BREAKDOWN_TIMEOUT as u32); } #[test] fn test_claim_on_remote_sizeable_push_msat() { // Same test as previous, just test on remote commitment tx, as per_commitment_point registration changes following you're funder/fundee and // to_remote output is encumbered by a P2WPKH let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 99000000, InitFeatures::known(), InitFeatures::known()); nodes[0].node.force_close_channel(&chan.2).unwrap(); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan.3); assert_eq!(node_txn[0].output.len(), 2); // We can't force trimming of to_remote output as channel_reserve_satoshis block us to do so at channel opening mine_transaction(&nodes[1], &node_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], node_txn[0]); } #[test] fn test_claim_on_remote_revoked_sizeable_push_msat() { // Same test as previous, just test on remote revoked commitment tx, as per_commitment_point registration changes following you're funder/fundee and // to_remote output is encumbered by a P2WPKH let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 59000000, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); mine_transaction(&nodes[1], &node_txn[0]); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 3); check_spends!(spend_txn[0], revoked_local_txn[0]); // to_remote output on revoked remote commitment_tx check_spends!(spend_txn[1], node_txn[0]); check_spends!(spend_txn[2], revoked_local_txn[0], node_txn[0]); // Both outputs } #[test] fn test_static_spendable_outputs_preimage_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let commitment_tx = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(commitment_tx[0].input.len(), 1); assert_eq!(commitment_tx[0].input[0].previous_output.txid, chan_1.3.txid()); // Settle A's commitment tx on B's chain assert!(nodes[1].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[1], 1); mine_transaction(&nodes[1], &commitment_tx[0]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } // Check B's monitor was able to send back output descriptor event for preimage tx on A's commitment tx let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelManager : 2 (local commitment tx + HTLC-Success), ChannelMonitor: preimage tx assert_eq!(node_txn.len(), 3); check_spends!(node_txn[0], commitment_tx[0]); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], chan_1.3); check_spends!(node_txn[2], node_txn[1]); mine_transaction(&nodes[1], &node_txn[0]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], node_txn[0]); } #[test] fn test_static_spendable_outputs_timeout_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // Rebalance the network a bit by relaying one payment through all the channels ... send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let (_, our_payment_hash, _) = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3_000_000); let commitment_tx = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(commitment_tx[0].input.len(), 1); assert_eq!(commitment_tx[0].input[0].previous_output.txid, chan_1.3.txid()); // Settle A's commitment tx on B' chain mine_transaction(&nodes[1], &commitment_tx[0]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires // Check B's monitor was able to send back output descriptor event for timeout tx on A's commitment tx let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 2); // ChannelManager : 1 local commitent tx, ChannelMonitor: timeout tx check_spends!(node_txn[0], chan_1.3.clone()); check_spends!(node_txn[1], commitment_tx[0].clone()); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); mine_transaction(&nodes[1], &node_txn[1]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[1], our_payment_hash, true); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 3); // SpendableOutput: remote_commitment_tx.to_remote, timeout_tx.output check_spends!(spend_txn[0], commitment_tx[0]); check_spends!(spend_txn[1], node_txn[1]); check_spends!(spend_txn[2], node_txn[1], commitment_tx[0]); // All outputs } #[test] fn test_static_spendable_outputs_justice_tx_revoked_commitment_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); assert_eq!(node_txn[0].input.len(), 2); check_spends!(node_txn[0], revoked_local_txn[0]); mine_transaction(&nodes[1], &node_txn[0]); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], node_txn[0]); } #[test] fn test_static_spendable_outputs_justice_tx_revoked_htlc_timeout_tx() { let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); // A will generate HTLC-Timeout from revoked commitment tx mine_transaction(&nodes[0], &revoked_local_txn[0]); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires let revoked_htlc_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(revoked_htlc_txn.len(), 2); check_spends!(revoked_htlc_txn[0], chan_1.3); assert_eq!(revoked_htlc_txn[1].input.len(), 1); assert_eq!(revoked_htlc_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(revoked_htlc_txn[1], revoked_local_txn[0]); assert_ne!(revoked_htlc_txn[1].lock_time, 0); // HTLC-Timeout // B will generate justice tx from A's revoked commitment/HTLC tx let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![revoked_local_txn[0].clone(), revoked_htlc_txn[1].clone()] }); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); // ChannelMonitor: bogus justice tx, justice tx on revoked outputs, ChannelManager: local commitment tx // The first transaction generated is bogus - it spends both outputs of revoked_local_txn[0] // including the one already spent by revoked_htlc_txn[1]. That's OK, we'll spend with valid // transactions next... assert_eq!(node_txn[0].input.len(), 3); check_spends!(node_txn[0], revoked_local_txn[0], revoked_htlc_txn[1]); assert_eq!(node_txn[1].input.len(), 2); check_spends!(node_txn[1], revoked_local_txn[0], revoked_htlc_txn[1]); if node_txn[1].input[1].previous_output.txid == revoked_htlc_txn[1].txid() { assert_ne!(node_txn[1].input[0].previous_output, revoked_htlc_txn[1].input[0].previous_output); } else { assert_eq!(node_txn[1].input[0].previous_output.txid, revoked_htlc_txn[1].txid()); assert_ne!(node_txn[1].input[1].previous_output, revoked_htlc_txn[1].input[0].previous_output); } assert_eq!(node_txn[2].input.len(), 1); check_spends!(node_txn[2], chan_1.3); mine_transaction(&nodes[1], &node_txn[1]); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); // Check B's ChannelMonitor was able to generate the right spendable output descriptor let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); assert_eq!(spend_txn[0].input.len(), 1); check_spends!(spend_txn[0], node_txn[1]); } #[test] fn test_static_spendable_outputs_justice_tx_revoked_htlc_success_tx() { let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let revoked_local_txn = get_local_commitment_txn!(nodes[1], chan_1.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); // The to-be-revoked commitment tx should have one HTLC and one to_remote output assert_eq!(revoked_local_txn[0].output.len(), 2); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); // B will generate HTLC-Success from revoked commitment tx mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let revoked_htlc_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(revoked_htlc_txn.len(), 2); assert_eq!(revoked_htlc_txn[0].input.len(), 1); assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(revoked_htlc_txn[0], revoked_local_txn[0]); // Check that the unspent (of two) outputs on revoked_local_txn[0] is a P2WPKH: let unspent_local_txn_output = revoked_htlc_txn[0].input[0].previous_output.vout as usize ^ 1; assert_eq!(revoked_local_txn[0].output[unspent_local_txn_output].script_pubkey.len(), 2 + 20); // P2WPKH // A will generate justice tx from B's revoked commitment/HTLC tx let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header, txdata: vec![revoked_local_txn[0].clone(), revoked_htlc_txn[0].clone()] }); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); // ChannelMonitor: justice tx on revoked commitment, justice tx on revoked HTLC-success, ChannelManager: local commitment tx // The first transaction generated is bogus - it spends both outputs of revoked_local_txn[0] // including the one already spent by revoked_htlc_txn[0]. That's OK, we'll spend with valid // transactions next... assert_eq!(node_txn[0].input.len(), 2); check_spends!(node_txn[0], revoked_local_txn[0], revoked_htlc_txn[0]); if node_txn[0].input[1].previous_output.txid == revoked_htlc_txn[0].txid() { assert_eq!(node_txn[0].input[0].previous_output, revoked_htlc_txn[0].input[0].previous_output); } else { assert_eq!(node_txn[0].input[0].previous_output.txid, revoked_htlc_txn[0].txid()); assert_eq!(node_txn[0].input[1].previous_output, revoked_htlc_txn[0].input[0].previous_output); } assert_eq!(node_txn[1].input.len(), 1); check_spends!(node_txn[1], revoked_htlc_txn[0]); check_spends!(node_txn[2], chan_1.3); mine_transaction(&nodes[0], &node_txn[1]); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); // Note that nodes[0]'s tx_broadcaster is still locked, so if we get here the channelmonitor // didn't try to generate any new transactions. // Check A's ChannelMonitor was able to generate the right spendable output descriptor let spend_txn = check_spendable_outputs!(nodes[0], node_cfgs[0].keys_manager); assert_eq!(spend_txn.len(), 3); assert_eq!(spend_txn[0].input.len(), 1); check_spends!(spend_txn[0], revoked_local_txn[0]); // spending to_remote output from revoked local tx assert_ne!(spend_txn[0].input[0].previous_output, revoked_htlc_txn[0].input[0].previous_output); check_spends!(spend_txn[1], node_txn[1]); // spending justice tx output on the htlc success tx check_spends!(spend_txn[2], revoked_local_txn[0], node_txn[1]); // Both outputs } #[test] fn test_onchain_to_onchain_claim() { // Test that in case of channel closure, we detect the state of output and claim HTLC // on downstream peer's remote commitment tx. // First, have C claim an HTLC against its own latest commitment transaction. // Then, broadcast these to B, which should update the monitor downstream on the A<->B // channel. // Finally, check that B will claim the HTLC output if A's latest commitment transaction // gets broadcast. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); // Ensure all nodes are at the same height let node_max_height = nodes.iter().map(|node| node.blocks.lock().unwrap().len()).max().unwrap() as u32; connect_blocks(&nodes[0], node_max_height - nodes[0].best_block_info().1); connect_blocks(&nodes[1], node_max_height - nodes[1].best_block_info().1); connect_blocks(&nodes[2], node_max_height - nodes[2].best_block_info().1); // Rebalance the network a bit by relaying one payment through all the channels ... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 8000000); let (payment_preimage, _payment_hash, _payment_secret) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3000000); let commitment_tx = get_local_commitment_txn!(nodes[2], chan_2.2); check_spends!(commitment_tx[0], chan_2.3); nodes[2].node.claim_funds(payment_preimage); check_added_monitors!(nodes[2], 1); let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); mine_transaction(&nodes[2], &commitment_tx[0]); check_closed_broadcast!(nodes[2], true); check_added_monitors!(nodes[2], 1); check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed); let c_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // ChannelManager : 2 (commitment tx, HTLC-Success tx), ChannelMonitor : 1 (HTLC-Success tx) assert_eq!(c_txn.len(), 3); assert_eq!(c_txn[0], c_txn[2]); assert_eq!(commitment_tx[0], c_txn[1]); check_spends!(c_txn[1], chan_2.3); check_spends!(c_txn[2], c_txn[1]); assert_eq!(c_txn[1].input[0].witness.clone().last().unwrap().len(), 71); assert_eq!(c_txn[2].input[0].witness.clone().last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert!(c_txn[0].output[0].script_pubkey.is_v0_p2wsh()); // revokeable output assert_eq!(c_txn[0].lock_time, 0); // Success tx // So we broadcast C's commitment tx and HTLC-Success on B's chain, we should successfully be able to extract preimage and update downstream monitor let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; connect_block(&nodes[1], &Block { header, txdata: vec![c_txn[1].clone(), c_txn[2].clone()]}); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {} _ => panic!("Unexpected event"), } match events[1] { Event::PaymentForwarded { fee_earned_msat, claim_from_onchain_tx } => { assert_eq!(fee_earned_msat, Some(1000)); assert_eq!(claim_from_onchain_tx, true); }, _ => panic!("Unexpected event"), } { let mut b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelMonitor: claim tx assert_eq!(b_txn.len(), 1); check_spends!(b_txn[0], chan_2.3); // B local commitment tx, issued by ChannelManager b_txn.clear(); } check_added_monitors!(nodes[1], 1); let msg_events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 3); match msg_events[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } match msg_events[1] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { .. }, node_id: _ } => {}, _ => panic!("Unexpected event"), } match msg_events[2] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert_eq!(nodes[0].node.get_our_node_id(), *node_id); }, _ => panic!("Unexpected event"), }; // Broadcast A's commitment tx on B's chain to see if we are able to claim inbound HTLC with our HTLC-Success tx let commitment_tx = get_local_commitment_txn!(nodes[0], chan_1.2); mine_transaction(&nodes[1], &commitment_tx[0]); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let b_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelMonitor: HTLC-Success tx, ChannelManager: local commitment tx + HTLC-Success tx assert_eq!(b_txn.len(), 3); check_spends!(b_txn[1], chan_1.3); check_spends!(b_txn[2], b_txn[1]); check_spends!(b_txn[0], commitment_tx[0]); assert_eq!(b_txn[0].input[0].witness.clone().last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert!(b_txn[0].output[0].script_pubkey.is_v0_p2wpkh()); // direct payment assert_eq!(b_txn[0].lock_time, 0); // Success tx check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); } #[test] fn test_duplicate_payment_hash_one_failure_one_success() { // Topology : A --> B --> C --> D // We route 2 payments with same hash between B and C, one will be timeout, the other successfully claim // Note that because C will refuse to generate two payment secrets for the same payment hash, // we forward one of the payments onwards to D. let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); // When this test was written, the default base fee floated based on the HTLC count. // It is now fixed, so we simply set the fee to the expected value here. let mut config = test_default_channel_config(); config.channel_options.forwarding_fee_base_msat = 196; let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[Some(config.clone()), Some(config.clone()), Some(config.clone()), Some(config.clone())]); let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()); let node_max_height = nodes.iter().map(|node| node.blocks.lock().unwrap().len()).max().unwrap() as u32; connect_blocks(&nodes[0], node_max_height - nodes[0].best_block_info().1); connect_blocks(&nodes[1], node_max_height - nodes[1].best_block_info().1); connect_blocks(&nodes[2], node_max_height - nodes[2].best_block_info().1); connect_blocks(&nodes[3], node_max_height - nodes[3].best_block_info().1); let (our_payment_preimage, duplicate_payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 900000); let payment_secret = nodes[3].node.create_inbound_payment_for_hash(duplicate_payment_hash, None, 7200, 0).unwrap(); // We reduce the final CLTV here by a somewhat arbitrary constant to keep it under the one-byte // script push size limit so that the below script length checks match // ACCEPTED_HTLC_SCRIPT_WEIGHT. let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[3], vec![], 900000, TEST_FINAL_CLTV - 40); send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[2], &nodes[3]]], 900000, duplicate_payment_hash, payment_secret); let commitment_txn = get_local_commitment_txn!(nodes[2], chan_2.2); assert_eq!(commitment_txn[0].input.len(), 1); check_spends!(commitment_txn[0], chan_2.3); mine_transaction(&nodes[1], &commitment_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], TEST_FINAL_CLTV - 40 + MIN_CLTV_EXPIRY_DELTA as u32 - 1); // Confirm blocks until the HTLC expires let htlc_timeout_tx; { // Extract one of the two HTLC-Timeout transaction let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // ChannelMonitor: timeout tx * 3, ChannelManager: local commitment tx assert_eq!(node_txn.len(), 4); check_spends!(node_txn[0], chan_2.3); check_spends!(node_txn[1], commitment_txn[0]); assert_eq!(node_txn[1].input.len(), 1); check_spends!(node_txn[2], commitment_txn[0]); assert_eq!(node_txn[2].input.len(), 1); assert_eq!(node_txn[1].input[0].previous_output, node_txn[2].input[0].previous_output); check_spends!(node_txn[3], commitment_txn[0]); assert_ne!(node_txn[1].input[0].previous_output, node_txn[3].input[0].previous_output); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[2].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(node_txn[3].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); htlc_timeout_tx = node_txn[1].clone(); } nodes[2].node.claim_funds(our_payment_preimage); mine_transaction(&nodes[2], &commitment_txn[0]); check_added_monitors!(nodes[2], 2); check_closed_event!(nodes[2], 1, ClosureReason::CommitmentTxConfirmed); let events = nodes[2].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } let htlc_success_txn: Vec<_> = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(htlc_success_txn.len(), 5); // ChannelMonitor: HTLC-Success txn (*2 due to 2-HTLC outputs), ChannelManager: local commitment tx + HTLC-Success txn (*2 due to 2-HTLC outputs) check_spends!(htlc_success_txn[0], commitment_txn[0]); check_spends!(htlc_success_txn[1], commitment_txn[0]); assert_eq!(htlc_success_txn[0].input.len(), 1); assert_eq!(htlc_success_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(htlc_success_txn[1].input.len(), 1); assert_eq!(htlc_success_txn[1].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_ne!(htlc_success_txn[0].input[0].previous_output, htlc_success_txn[1].input[0].previous_output); assert_eq!(htlc_success_txn[2], commitment_txn[0]); assert_eq!(htlc_success_txn[3], htlc_success_txn[0]); assert_eq!(htlc_success_txn[4], htlc_success_txn[1]); assert_ne!(htlc_success_txn[0].input[0].previous_output, htlc_timeout_tx.input[0].previous_output); mine_transaction(&nodes[1], &htlc_timeout_tx); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_pending_htlcs_forwardable!(nodes[1]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); let first_htlc_id = htlc_updates.update_fail_htlcs[0].htlc_id; assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); { commitment_signed_dance!(nodes[0], nodes[1], &htlc_updates.commitment_signed, false, true); } expect_payment_failed_with_update!(nodes[0], duplicate_payment_hash, false, chan_2.0.contents.short_channel_id, true); // Solve 2nd HTLC by broadcasting on B's chain HTLC-Success Tx from C // Note that the fee paid is effectively double as the HTLC value (including the nodes[1] fee // and nodes[2] fee) is rounded down and then claimed in full. mine_transaction(&nodes[1], &htlc_success_txn[0]); expect_payment_forwarded!(nodes[1], Some(196*2), true); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert_ne!(updates.update_fulfill_htlcs[0].htlc_id, first_htlc_id); assert!(updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], &updates.commitment_signed, false); let events = nodes[0].node.get_and_clear_pending_events(); match events[0] { Event::PaymentSent { payment_id: _, ref payment_preimage, ref payment_hash } => { assert_eq!(*payment_preimage, our_payment_preimage); assert_eq!(*payment_hash, duplicate_payment_hash); } _ => panic!("Unexpected event"), } } #[test] fn test_dynamic_spendable_outputs_local_htlc_success_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9000000).0; let local_txn = get_local_commitment_txn!(nodes[1], chan_1.2); assert_eq!(local_txn.len(), 1); assert_eq!(local_txn[0].input.len(), 1); check_spends!(local_txn[0], chan_1.3); // Give B knowledge of preimage to be able to generate a local HTLC-Success Tx nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); mine_transaction(&nodes[1], &local_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let events = nodes[1].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexepected event"), } let node_tx = { let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[2]); assert_eq!(node_txn[1], local_txn[0]); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[0], local_txn[0]); node_txn[0].clone() }; mine_transaction(&nodes[1], &node_tx); connect_blocks(&nodes[1], BREAKDOWN_TIMEOUT as u32 - 1); // Verify that B is able to spend its own HTLC-Success tx thanks to spendable output event given back by its ChannelMonitor let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); assert_eq!(spend_txn[0].input.len(), 1); check_spends!(spend_txn[0], node_tx); assert_eq!(spend_txn[0].input[0].sequence, BREAKDOWN_TIMEOUT as u32); } fn do_test_fail_backwards_unrevoked_remote_announce(deliver_last_raa: bool, announce_latest: bool) { // Test that we fail backwards the full set of HTLCs we need to when remote broadcasts an // unrevoked commitment transaction. // This includes HTLCs which were below the dust threshold as well as HTLCs which were awaiting // a remote RAA before they could be failed backwards (and combinations thereof). // We also test duplicate-hash HTLCs by adding two nodes on each side of the target nodes which // use the same payment hashes. // Thus, we use a six-node network: // // A \ / E // - C - D - // B / \ F // And test where C fails back to A/B when D announces its latest commitment transaction let chanmon_cfgs = create_chanmon_cfgs(6); let node_cfgs = create_node_cfgs(6, &chanmon_cfgs); // When this test was written, the default base fee floated based on the HTLC count. // It is now fixed, so we simply set the fee to the expected value here. let mut config = test_default_channel_config(); config.channel_options.forwarding_fee_base_msat = 196; let node_chanmgrs = create_node_chanmgrs(6, &node_cfgs, &[Some(config.clone()), Some(config.clone()), Some(config.clone()), Some(config.clone()), Some(config.clone()), Some(config.clone())]); let nodes = create_network(6, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let chan = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 3, 4, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes(&nodes, 3, 5, InitFeatures::known(), InitFeatures::known()); // Rebalance and check output sanity... send_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 500000); send_payment(&nodes[1], &[&nodes[2], &nodes[3], &nodes[5]], 500000); assert_eq!(get_local_commitment_txn!(nodes[3], chan.2)[0].output.len(), 2); let ds_dust_limit = nodes[3].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().holder_dust_limit_satoshis; // 0th HTLC: let (_, payment_hash_1, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee // 1st HTLC: let (_, payment_hash_2, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee let (route, _, _, _) = get_route_and_payment_hash!(nodes[1], nodes[5], ds_dust_limit*1000); // 2nd HTLC: send_along_route_with_secret(&nodes[1], route.clone(), &[&[&nodes[2], &nodes[3], &nodes[5]]], ds_dust_limit*1000, payment_hash_1, nodes[5].node.create_inbound_payment_for_hash(payment_hash_1, None, 7200, 0).unwrap()); // not added < dust limit + HTLC tx fee // 3rd HTLC: send_along_route_with_secret(&nodes[1], route, &[&[&nodes[2], &nodes[3], &nodes[5]]], ds_dust_limit*1000, payment_hash_2, nodes[5].node.create_inbound_payment_for_hash(payment_hash_2, None, 7200, 0).unwrap()); // not added < dust limit + HTLC tx fee // 4th HTLC: let (_, payment_hash_3, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); // 5th HTLC: let (_, payment_hash_4, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); let (route, _, _, _) = get_route_and_payment_hash!(nodes[1], nodes[5], 1000000); // 6th HTLC: send_along_route_with_secret(&nodes[1], route.clone(), &[&[&nodes[2], &nodes[3], &nodes[5]]], 1000000, payment_hash_3, nodes[5].node.create_inbound_payment_for_hash(payment_hash_3, None, 7200, 0).unwrap()); // 7th HTLC: send_along_route_with_secret(&nodes[1], route, &[&[&nodes[2], &nodes[3], &nodes[5]]], 1000000, payment_hash_4, nodes[5].node.create_inbound_payment_for_hash(payment_hash_4, None, 7200, 0).unwrap()); // 8th HTLC: let (_, payment_hash_5, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], 1000000); // 9th HTLC: let (route, _, _, _) = get_route_and_payment_hash!(nodes[1], nodes[5], ds_dust_limit*1000); send_along_route_with_secret(&nodes[1], route, &[&[&nodes[2], &nodes[3], &nodes[5]]], ds_dust_limit*1000, payment_hash_5, nodes[5].node.create_inbound_payment_for_hash(payment_hash_5, None, 7200, 0).unwrap()); // not added < dust limit + HTLC tx fee // 10th HTLC: let (_, payment_hash_6, _) = route_payment(&nodes[0], &[&nodes[2], &nodes[3], &nodes[4]], ds_dust_limit*1000); // not added < dust limit + HTLC tx fee // 11th HTLC: let (route, _, _, _) = get_route_and_payment_hash!(nodes[1], nodes[5], 1000000); send_along_route_with_secret(&nodes[1], route, &[&[&nodes[2], &nodes[3], &nodes[5]]], 1000000, payment_hash_6, nodes[5].node.create_inbound_payment_for_hash(payment_hash_6, None, 7200, 0).unwrap()); // Double-check that six of the new HTLC were added // We now have six HTLCs pending over the dust limit and six HTLCs under the dust limit (ie, // with to_local and to_remote outputs, 8 outputs and 6 HTLCs not included). assert_eq!(get_local_commitment_txn!(nodes[3], chan.2).len(), 1); assert_eq!(get_local_commitment_txn!(nodes[3], chan.2)[0].output.len(), 8); // Now fail back three of the over-dust-limit and three of the under-dust-limit payments in one go. // Fail 0th below-dust, 4th above-dust, 8th above-dust, 10th below-dust HTLCs assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_1)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_3)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_5)); assert!(nodes[4].node.fail_htlc_backwards(&payment_hash_6)); check_added_monitors!(nodes[4], 0); expect_pending_htlcs_forwardable!(nodes[4]); check_added_monitors!(nodes[4], 1); let four_removes = get_htlc_update_msgs!(nodes[4], nodes[3].node.get_our_node_id()); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[0]); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[1]); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[2]); nodes[3].node.handle_update_fail_htlc(&nodes[4].node.get_our_node_id(), &four_removes.update_fail_htlcs[3]); commitment_signed_dance!(nodes[3], nodes[4], four_removes.commitment_signed, false); // Fail 3rd below-dust and 7th above-dust HTLCs assert!(nodes[5].node.fail_htlc_backwards(&payment_hash_2)); assert!(nodes[5].node.fail_htlc_backwards(&payment_hash_4)); check_added_monitors!(nodes[5], 0); expect_pending_htlcs_forwardable!(nodes[5]); check_added_monitors!(nodes[5], 1); let two_removes = get_htlc_update_msgs!(nodes[5], nodes[3].node.get_our_node_id()); nodes[3].node.handle_update_fail_htlc(&nodes[5].node.get_our_node_id(), &two_removes.update_fail_htlcs[0]); nodes[3].node.handle_update_fail_htlc(&nodes[5].node.get_our_node_id(), &two_removes.update_fail_htlcs[1]); commitment_signed_dance!(nodes[3], nodes[5], two_removes.commitment_signed, false); let ds_prev_commitment_tx = get_local_commitment_txn!(nodes[3], chan.2); expect_pending_htlcs_forwardable!(nodes[3]); check_added_monitors!(nodes[3], 1); let six_removes = get_htlc_update_msgs!(nodes[3], nodes[2].node.get_our_node_id()); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[0]); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[1]); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[2]); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[3]); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[4]); nodes[2].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &six_removes.update_fail_htlcs[5]); if deliver_last_raa { commitment_signed_dance!(nodes[2], nodes[3], six_removes.commitment_signed, false); } else { let _cs_last_raa = commitment_signed_dance!(nodes[2], nodes[3], six_removes.commitment_signed, false, true, false, true); } // D's latest commitment transaction now contains 1st + 2nd + 9th HTLCs (implicitly, they're // below the dust limit) and the 5th + 6th + 11th HTLCs. It has failed back the 0th, 3rd, 4th, // 7th, 8th, and 10th, but as we haven't yet delivered the final RAA to C, the fails haven't // propagated back to A/B yet (and D has two unrevoked commitment transactions). // // We now broadcast the latest commitment transaction, which *should* result in failures for // the 0th, 1st, 2nd, 3rd, 4th, 7th, 8th, 9th, and 10th HTLCs, ie all the below-dust HTLCs and // the non-broadcast above-dust HTLCs. // // Alternatively, we may broadcast the previous commitment transaction, which should only // result in failures for the below-dust HTLCs, ie the 0th, 1st, 2nd, 3rd, 9th, and 10th HTLCs. let ds_last_commitment_tx = get_local_commitment_txn!(nodes[3], chan.2); if announce_latest { mine_transaction(&nodes[2], &ds_last_commitment_tx[0]); } else { mine_transaction(&nodes[2], &ds_prev_commitment_tx[0]); } let events = nodes[2].node.get_and_clear_pending_events(); let close_event = if deliver_last_raa { assert_eq!(events.len(), 2); events[1].clone() } else { assert_eq!(events.len(), 1); events[0].clone() }; match close_event { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {} _ => panic!("Unexpected event"), } connect_blocks(&nodes[2], ANTI_REORG_DELAY - 1); check_closed_broadcast!(nodes[2], true); if deliver_last_raa { expect_pending_htlcs_forwardable_from_events!(nodes[2], events[0..1], true); } else { expect_pending_htlcs_forwardable!(nodes[2]); } check_added_monitors!(nodes[2], 3); let cs_msgs = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(cs_msgs.len(), 2); let mut a_done = false; for msg in cs_msgs { match msg { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { // Both under-dust HTLCs and the one above-dust HTLC that we had already failed // should be failed-backwards here. let target = if *node_id == nodes[0].node.get_our_node_id() { // If announce_latest, expect 0th, 1st, 4th, 8th, 10th HTLCs, else only 0th, 1st, 10th below-dust HTLCs for htlc in &updates.update_fail_htlcs { assert!(htlc.htlc_id == 1 || htlc.htlc_id == 2 || htlc.htlc_id == 6 || if announce_latest { htlc.htlc_id == 3 || htlc.htlc_id == 5 } else { false }); } assert_eq!(updates.update_fail_htlcs.len(), if announce_latest { 5 } else { 3 }); assert!(!a_done); a_done = true; &nodes[0] } else { // If announce_latest, expect 2nd, 3rd, 7th, 9th HTLCs, else only 2nd, 3rd, 9th below-dust HTLCs for htlc in &updates.update_fail_htlcs { assert!(htlc.htlc_id == 1 || htlc.htlc_id == 2 || htlc.htlc_id == 5 || if announce_latest { htlc.htlc_id == 4 } else { false }); } assert_eq!(*node_id, nodes[1].node.get_our_node_id()); assert_eq!(updates.update_fail_htlcs.len(), if announce_latest { 4 } else { 3 }); &nodes[1] }; target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[1]); target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[2]); if announce_latest { target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[3]); if *node_id == nodes[0].node.get_our_node_id() { target.node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[4]); } } commitment_signed_dance!(target, nodes[2], updates.commitment_signed, false, true); }, _ => panic!("Unexpected event"), } } let as_events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(as_events.len(), if announce_latest { 5 } else { 3 }); let mut as_failds = HashSet::new(); let mut as_updates = 0; for event in as_events.iter() { if let &Event::PaymentPathFailed { ref payment_hash, ref rejected_by_dest, ref network_update, .. } = event { assert!(as_failds.insert(*payment_hash)); if *payment_hash != payment_hash_2 { assert_eq!(*rejected_by_dest, deliver_last_raa); } else { assert!(!rejected_by_dest); } if network_update.is_some() { as_updates += 1; } } else { panic!("Unexpected event"); } } assert!(as_failds.contains(&payment_hash_1)); assert!(as_failds.contains(&payment_hash_2)); if announce_latest { assert!(as_failds.contains(&payment_hash_3)); assert!(as_failds.contains(&payment_hash_5)); } assert!(as_failds.contains(&payment_hash_6)); let bs_events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(bs_events.len(), if announce_latest { 4 } else { 3 }); let mut bs_failds = HashSet::new(); let mut bs_updates = 0; for event in bs_events.iter() { if let &Event::PaymentPathFailed { ref payment_hash, ref rejected_by_dest, ref network_update, .. } = event { assert!(bs_failds.insert(*payment_hash)); if *payment_hash != payment_hash_1 && *payment_hash != payment_hash_5 { assert_eq!(*rejected_by_dest, deliver_last_raa); } else { assert!(!rejected_by_dest); } if network_update.is_some() { bs_updates += 1; } } else { panic!("Unexpected event"); } } assert!(bs_failds.contains(&payment_hash_1)); assert!(bs_failds.contains(&payment_hash_2)); if announce_latest { assert!(bs_failds.contains(&payment_hash_4)); } assert!(bs_failds.contains(&payment_hash_5)); // For each HTLC which was not failed-back by normal process (ie deliver_last_raa), we should // get a NetworkUpdate. A should have gotten 4 HTLCs which were failed-back due to // unknown-preimage-etc, B should have gotten 2. Thus, in the // announce_latest && deliver_last_raa case, we should have 5-4=1 and 4-2=2 NetworkUpdates. assert_eq!(as_updates, if deliver_last_raa { 1 } else if !announce_latest { 3 } else { 5 }); assert_eq!(bs_updates, if deliver_last_raa { 2 } else if !announce_latest { 3 } else { 4 }); } #[test] fn test_fail_backwards_latest_remote_announce_a() { do_test_fail_backwards_unrevoked_remote_announce(false, true); } #[test] fn test_fail_backwards_latest_remote_announce_b() { do_test_fail_backwards_unrevoked_remote_announce(true, true); } #[test] fn test_fail_backwards_previous_remote_announce() { do_test_fail_backwards_unrevoked_remote_announce(false, false); // Note that true, true doesn't make sense as it implies we announce a revoked state, which is // tested for in test_commitment_revoked_fail_backward_exhaustive() } #[test] fn test_dynamic_spendable_outputs_local_htlc_timeout_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (_, our_payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9000000); let local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(local_txn[0].input.len(), 1); check_spends!(local_txn[0], chan_1.3); // Timeout HTLC on A's chain and so it can generate a HTLC-Timeout tx mine_transaction(&nodes[0], &local_txn[0]); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires let htlc_timeout = { let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); check_spends!(node_txn[0], chan_1.3); assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], local_txn[0]); node_txn[1].clone() }; mine_transaction(&nodes[0], &htlc_timeout); connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1); expect_payment_failed!(nodes[0], our_payment_hash, true); // Verify that A is able to spend its own HTLC-Timeout tx thanks to spendable output event given back by its ChannelMonitor let spend_txn = check_spendable_outputs!(nodes[0], node_cfgs[0].keys_manager); assert_eq!(spend_txn.len(), 3); check_spends!(spend_txn[0], local_txn[0]); assert_eq!(spend_txn[1].input.len(), 1); check_spends!(spend_txn[1], htlc_timeout); assert_eq!(spend_txn[1].input[0].sequence, BREAKDOWN_TIMEOUT as u32); assert_eq!(spend_txn[2].input.len(), 2); check_spends!(spend_txn[2], local_txn[0], htlc_timeout); assert!(spend_txn[2].input[0].sequence == BREAKDOWN_TIMEOUT as u32 || spend_txn[2].input[1].sequence == BREAKDOWN_TIMEOUT as u32); } #[test] fn test_key_derivation_params() { // This test is a copy of test_dynamic_spendable_outputs_local_htlc_timeout_tx, with // a key manager rotation to test that key_derivation_params returned in DynamicOutputP2WSH // let us re-derive the channel key set to then derive a delayed_payment_key. let chanmon_cfgs = create_chanmon_cfgs(3); // We manually create the node configuration to backup the seed. let seed = [42; 32]; let keys_manager = test_utils::TestKeysInterface::new(&seed, Network::Testnet); let chain_monitor = test_utils::TestChainMonitor::new(Some(&chanmon_cfgs[0].chain_source), &chanmon_cfgs[0].tx_broadcaster, &chanmon_cfgs[0].logger, &chanmon_cfgs[0].fee_estimator, &chanmon_cfgs[0].persister, &keys_manager); let node = NodeCfg { chain_source: &chanmon_cfgs[0].chain_source, logger: &chanmon_cfgs[0].logger, tx_broadcaster: &chanmon_cfgs[0].tx_broadcaster, fee_estimator: &chanmon_cfgs[0].fee_estimator, chain_monitor, keys_manager: &keys_manager, node_seed: seed, features: InitFeatures::known() }; let mut node_cfgs = create_node_cfgs(3, &chanmon_cfgs); node_cfgs.remove(0); node_cfgs.insert(0, node); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels // Create a dummy channel to advance index by one and thus test re-derivation correctness // for node 0 let chan_0 = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); assert_ne!(chan_0.3.output[0].script_pubkey, chan_1.3.output[0].script_pubkey); // Ensure all nodes are at the same height let node_max_height = nodes.iter().map(|node| node.blocks.lock().unwrap().len()).max().unwrap() as u32; connect_blocks(&nodes[0], node_max_height - nodes[0].best_block_info().1); connect_blocks(&nodes[1], node_max_height - nodes[1].best_block_info().1); connect_blocks(&nodes[2], node_max_height - nodes[2].best_block_info().1); let (_, our_payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9000000); let local_txn_0 = get_local_commitment_txn!(nodes[0], chan_0.2); let local_txn_1 = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(local_txn_1[0].input.len(), 1); check_spends!(local_txn_1[0], chan_1.3); // We check funding pubkey are unique let (from_0_funding_key_0, from_0_funding_key_1) = (PublicKey::from_slice(&local_txn_0[0].input[0].witness[3][2..35]), PublicKey::from_slice(&local_txn_0[0].input[0].witness[3][36..69])); let (from_1_funding_key_0, from_1_funding_key_1) = (PublicKey::from_slice(&local_txn_1[0].input[0].witness[3][2..35]), PublicKey::from_slice(&local_txn_1[0].input[0].witness[3][36..69])); if from_0_funding_key_0 == from_1_funding_key_0 || from_0_funding_key_0 == from_1_funding_key_1 || from_0_funding_key_1 == from_1_funding_key_0 || from_0_funding_key_1 == from_1_funding_key_1 { panic!("Funding pubkeys aren't unique"); } // Timeout HTLC on A's chain and so it can generate a HTLC-Timeout tx mine_transaction(&nodes[0], &local_txn_1[0]); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); let htlc_timeout = { let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], local_txn_1[0]); node_txn[1].clone() }; mine_transaction(&nodes[0], &htlc_timeout); connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1); expect_payment_failed!(nodes[0], our_payment_hash, true); // Verify that A is able to spend its own HTLC-Timeout tx thanks to spendable output event given back by its ChannelMonitor let new_keys_manager = test_utils::TestKeysInterface::new(&seed, Network::Testnet); let spend_txn = check_spendable_outputs!(nodes[0], new_keys_manager); assert_eq!(spend_txn.len(), 3); check_spends!(spend_txn[0], local_txn_1[0]); assert_eq!(spend_txn[1].input.len(), 1); check_spends!(spend_txn[1], htlc_timeout); assert_eq!(spend_txn[1].input[0].sequence, BREAKDOWN_TIMEOUT as u32); assert_eq!(spend_txn[2].input.len(), 2); check_spends!(spend_txn[2], local_txn_1[0], htlc_timeout); assert!(spend_txn[2].input[0].sequence == BREAKDOWN_TIMEOUT as u32 || spend_txn[2].input[1].sequence == BREAKDOWN_TIMEOUT as u32); } #[test] fn test_static_output_closing_tx() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let closing_tx = close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true).2; mine_transaction(&nodes[0], &closing_tx); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[0], node_cfgs[0].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], closing_tx); mine_transaction(&nodes[1], &closing_tx); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); let spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], closing_tx); } fn do_htlc_claim_local_commitment_only(use_dust: bool) { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (our_payment_preimage, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], if use_dust { 50000 } else { 3000000 }); // Claim the payment, but don't deliver A's commitment_signed, resulting in the HTLC only being // present in B's local commitment transaction, but none of A's commitment transactions. assert!(nodes[1].node.claim_funds(our_payment_preimage)); check_added_monitors!(nodes[1], 1); let bs_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_updates.update_fulfill_htlcs[0]); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { payment_id: _, payment_preimage, payment_hash } => { assert_eq!(payment_preimage, our_payment_preimage); assert_eq!(payment_hash, our_payment_hash); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let as_updates = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_updates.0); check_added_monitors!(nodes[1], 1); let starting_block = nodes[1].best_block_info(); let mut block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: starting_block.0, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![], }; for _ in starting_block.1 + 1..TEST_FINAL_CLTV - CLTV_CLAIM_BUFFER + starting_block.1 + 2 { connect_block(&nodes[1], &block); block.header.prev_blockhash = block.block_hash(); } test_txn_broadcast(&nodes[1], &chan, None, if use_dust { HTLCType::NONE } else { HTLCType::SUCCESS }); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); } fn do_htlc_claim_current_remote_commitment_only(use_dust: bool) { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], if use_dust { 50000 } else { 3000000 }); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let _as_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // As far as A is concerned, the HTLC is now present only in the latest remote commitment // transaction, however it is not in A's latest local commitment, so we can just broadcast that // to "time out" the HTLC. let starting_block = nodes[1].best_block_info(); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: starting_block.0, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; for _ in starting_block.1 + 1..TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + starting_block.1 + 2 { connect_block(&nodes[0], &Block { header, txdata: Vec::new()}); header.prev_blockhash = header.block_hash(); } test_txn_broadcast(&nodes[0], &chan, None, HTLCType::NONE); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); } fn do_htlc_claim_previous_remote_commitment_only(use_dust: bool, check_revoke_no_close: bool) { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // Fail the payment, but don't deliver A's final RAA, resulting in the HTLC only being present // in B's previous (unrevoked) commitment transaction, but none of A's commitment transactions. // Also optionally test that we *don't* fail the channel in case the commitment transaction was // actually revoked. let htlc_value = if use_dust { 50000 } else { 3000000 }; let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], htlc_value); assert!(nodes[1].node.fail_htlc_backwards(&our_payment_hash)); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let bs_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &bs_updates.update_fail_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_updates.commitment_signed); check_added_monitors!(nodes[0], 1); let as_updates = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_updates.0); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_updates.1); check_added_monitors!(nodes[1], 1); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); if check_revoke_no_close { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack); check_added_monitors!(nodes[0], 1); } let starting_block = nodes[1].best_block_info(); let mut block = Block { header: BlockHeader { version: 0x20000000, prev_blockhash: starting_block.0, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }, txdata: vec![], }; for _ in starting_block.1 + 1..TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + CHAN_CONFIRM_DEPTH + 2 { connect_block(&nodes[0], &block); block.header.prev_blockhash = block.block_hash(); } if !check_revoke_no_close { test_txn_broadcast(&nodes[0], &chan, None, HTLCType::NONE); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); } else { expect_payment_failed!(nodes[0], our_payment_hash, true); } } // Test that we close channels on-chain when broadcastable HTLCs reach their timeout window. // There are only a few cases to test here: // * its not really normative behavior, but we test that below-dust HTLCs "included" in // broadcastable commitment transactions result in channel closure, // * its included in an unrevoked-but-previous remote commitment transaction, // * its included in the latest remote or local commitment transactions. // We test each of the three possible commitment transactions individually and use both dust and // non-dust HTLCs. // Note that we don't bother testing both outbound and inbound HTLC failures for each case, and we // assume they are handled the same across all six cases, as both outbound and inbound failures are // tested for at least one of the cases in other tests. #[test] fn htlc_claim_single_commitment_only_a() { do_htlc_claim_local_commitment_only(true); do_htlc_claim_local_commitment_only(false); do_htlc_claim_current_remote_commitment_only(true); do_htlc_claim_current_remote_commitment_only(false); } #[test] fn htlc_claim_single_commitment_only_b() { do_htlc_claim_previous_remote_commitment_only(true, false); do_htlc_claim_previous_remote_commitment_only(false, false); do_htlc_claim_previous_remote_commitment_only(true, true); do_htlc_claim_previous_remote_commitment_only(false, true); } #[test] #[should_panic] fn bolt2_open_channel_sending_node_checks_part1() { //This test needs to be on its own as we are catching a panic let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); //Force duplicate channel ids for node in nodes.iter() { *node.keys_manager.override_channel_id_priv.lock().unwrap() = Some([0; 32]); } // BOLT #2 spec: Sending node must ensure temporary_channel_id is unique from any other channel ID with the same peer. let channel_value_satoshis=10000; let push_msat=10001; nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).unwrap(); let node0_to_1_send_open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &node0_to_1_send_open_channel); //Create a second channel with a channel_id collision assert!(nodes[0].node.create_channel(nodes[0].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).is_err()); } #[test] fn bolt2_open_channel_sending_node_checks_part2() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // BOLT #2 spec: Sending node must set funding_satoshis to less than 2^24 satoshis let channel_value_satoshis=2^24; let push_msat=10001; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).is_err()); // BOLT #2 spec: Sending node must set push_msat to equal or less than 1000 * funding_satoshis let channel_value_satoshis=10000; // Test when push_msat is equal to 1000 * funding_satoshis. let push_msat=1000*channel_value_satoshis+1; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).is_err()); // BOLT #2 spec: Sending node must set set channel_reserve_satoshis greater than or equal to dust_limit_satoshis let channel_value_satoshis=10000; let push_msat=10001; assert!(nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).is_ok()); //Create a valid channel let node0_to_1_send_open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert!(node0_to_1_send_open_channel.channel_reserve_satoshis>=node0_to_1_send_open_channel.dust_limit_satoshis); // BOLT #2 spec: Sending node must set undefined bits in channel_flags to 0 // Only the least-significant bit of channel_flags is currently defined resulting in channel_flags only having one of two possible states 0 or 1 assert!(node0_to_1_send_open_channel.channel_flags<=1); // BOLT #2 spec: Sending node should set to_self_delay sufficient to ensure the sender can irreversibly spend a commitment transaction output, in case of misbehaviour by the receiver. assert!(BREAKDOWN_TIMEOUT>0); assert!(node0_to_1_send_open_channel.to_self_delay==BREAKDOWN_TIMEOUT); // BOLT #2 spec: Sending node must ensure the chain_hash value identifies the chain it wishes to open the channel within. let chain_hash=genesis_block(Network::Testnet).header.block_hash(); assert_eq!(node0_to_1_send_open_channel.chain_hash,chain_hash); // BOLT #2 spec: Sending node must set funding_pubkey, revocation_basepoint, htlc_basepoint, payment_basepoint, and delayed_payment_basepoint to valid DER-encoded, compressed, secp256k1 pubkeys. assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.funding_pubkey.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.revocation_basepoint.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.htlc_basepoint.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.payment_point.serialize()).is_ok()); assert!(PublicKey::from_slice(&node0_to_1_send_open_channel.delayed_payment_basepoint.serialize()).is_ok()); } #[test] fn bolt2_open_channel_sane_dust_limit() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let channel_value_satoshis=1000000; let push_msat=10001; nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), channel_value_satoshis, push_msat, 42, None).unwrap(); let mut node0_to_1_send_open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); node0_to_1_send_open_channel.dust_limit_satoshis = 547; node0_to_1_send_open_channel.channel_reserve_satoshis = 100001; nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &node0_to_1_send_open_channel); let events = nodes[1].node.get_and_clear_pending_msg_events(); let err_msg = match events[0] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { ref msg }, node_id: _ } => { msg.clone() }, _ => panic!("Unexpected event"), }; assert_eq!(err_msg.data, "dust_limit_satoshis (547) is greater than the implementation limit (546)"); } // Test that if we fail to send an HTLC that is being freed from the holding cell, and the HTLC // originated from our node, its failure is surfaced to the user. We trigger this failure to // free the HTLC by increasing our fee while the HTLC is in the holding cell such that the HTLC // is no longer affordable once it's freed. #[test] fn test_fail_holding_cell_htlc_upon_free() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); // First nodes[0] generates an update_fee, setting the channel's // pending_update_fee. { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 20; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let (update_msg, commitment_signed) = match events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); let mut chan_stat = get_channel_value_stat!(nodes[0], chan.2); let channel_reserve = chan_stat.channel_reserve_msat; let feerate = get_feerate!(nodes[0], chan.2); // 2* and +1 HTLCs on the commit tx fee calculation for the fee spike reserve. let max_can_send = 5000000 - channel_reserve - 2*commit_tx_fee_msat(feerate, 1 + 1); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], max_can_send); // Send a payment which passes reserve checks but gets stuck in the holding cell. nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); chan_stat = get_channel_value_stat!(nodes[0], chan.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, max_can_send); // Flush the pending fee update. nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let (as_revoke_and_ack, _) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_revoke_and_ack); check_added_monitors!(nodes[0], 1); // Upon receipt of the RAA, there will be an attempt to resend the holding cell // HTLC, but now that the fee has been raised the payment will now fail, causing // us to surface its failure to the user. chan_stat = get_channel_value_stat!(nodes[0], chan.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, 0); nodes[0].logger.assert_log("lightning::ln::channel".to_string(), format!("Freeing holding cell with 1 HTLC updates in channel {}", hex::encode(chan.2)), 1); let failure_log = format!("Failed to send HTLC with payment_hash {} due to Cannot send value that would put our balance under counterparty-announced channel reserve value ({}) in channel {}", hex::encode(our_payment_hash.0), chan_stat.channel_reserve_msat, hex::encode(chan.2)); nodes[0].logger.assert_log("lightning::ln::channel".to_string(), failure_log.to_string(), 1); // Check that the payment failed to be sent out. let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match &events[0] { &Event::PaymentPathFailed { ref payment_hash, ref rejected_by_dest, ref network_update, ref all_paths_failed, path: _, ref short_channel_id, retry: _, ref error_code, ref error_data } => { assert_eq!(our_payment_hash.clone(), *payment_hash); assert_eq!(*rejected_by_dest, false); assert_eq!(*all_paths_failed, true); assert_eq!(*network_update, None); assert_eq!(*short_channel_id, None); assert_eq!(*error_code, None); assert_eq!(*error_data, None); }, _ => panic!("Unexpected event"), } } // Test that if multiple HTLCs are released from the holding cell and one is // valid but the other is no longer valid upon release, the valid HTLC can be // successfully completed while the other one fails as expected. #[test] fn test_free_and_fail_holding_cell_htlcs() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); // First nodes[0] generates an update_fee, setting the channel's // pending_update_fee. { let mut feerate_lock = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 200; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let (update_msg, commitment_signed) = match events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()); let mut chan_stat = get_channel_value_stat!(nodes[0], chan.2); let channel_reserve = chan_stat.channel_reserve_msat; let feerate = get_feerate!(nodes[0], chan.2); // 2* and +1 HTLCs on the commit tx fee calculation for the fee spike reserve. let amt_1 = 20000; let amt_2 = 5000000 - channel_reserve - 2*commit_tx_fee_msat(feerate, 2 + 1) - amt_1; let (route_1, payment_hash_1, payment_preimage_1, payment_secret_1) = get_route_and_payment_hash!(nodes[0], nodes[1], amt_1); let (route_2, payment_hash_2, _, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[1], amt_2); // Send 2 payments which pass reserve checks but get stuck in the holding cell. nodes[0].node.send_payment(&route_1, payment_hash_1, &Some(payment_secret_1)).unwrap(); chan_stat = get_channel_value_stat!(nodes[0], chan.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, amt_1); nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2)).unwrap(); chan_stat = get_channel_value_stat!(nodes[0], chan.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, amt_1 + amt_2); // Flush the pending fee update. nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed); let (revoke_and_ack, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_and_ack); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed); check_added_monitors!(nodes[0], 2); // Upon receipt of the RAA, there will be an attempt to resend the holding cell HTLCs, // but now that the fee has been raised the second payment will now fail, causing us // to surface its failure to the user. The first payment should succeed. chan_stat = get_channel_value_stat!(nodes[0], chan.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, 0); nodes[0].logger.assert_log("lightning::ln::channel".to_string(), format!("Freeing holding cell with 2 HTLC updates in channel {}", hex::encode(chan.2)), 1); let failure_log = format!("Failed to send HTLC with payment_hash {} due to Cannot send value that would put our balance under counterparty-announced channel reserve value ({}) in channel {}", hex::encode(payment_hash_2.0), chan_stat.channel_reserve_msat, hex::encode(chan.2)); nodes[0].logger.assert_log("lightning::ln::channel".to_string(), failure_log.to_string(), 1); // Check that the second payment failed to be sent out. let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match &events[0] { &Event::PaymentPathFailed { ref payment_hash, ref rejected_by_dest, ref network_update, ref all_paths_failed, path: _, ref short_channel_id, retry: _, ref error_code, ref error_data } => { assert_eq!(payment_hash_2.clone(), *payment_hash); assert_eq!(*rejected_by_dest, false); assert_eq!(*all_paths_failed, true); assert_eq!(*network_update, None); assert_eq!(*short_channel_id, None); assert_eq!(*error_code, None); assert_eq!(*error_data, None); }, _ => panic!("Unexpected event"), } // Complete the first payment and the RAA from the fee update. let (payment_event, send_raa_event) = { let mut msgs = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(msgs.len(), 2); (SendEvent::from_event(msgs.remove(0)), msgs.remove(0)) }; let raa = match send_raa_event { MessageSendEvent::SendRevokeAndACK { msg, .. } => msg, _ => panic!("Unexpected event"), }; nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &raa); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PendingHTLCsForwardable { .. } => {}, _ => panic!("Unexpected event"), } nodes[1].node.process_pending_htlc_forwards(); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { .. } => {}, _ => panic!("Unexpected event"), } nodes[1].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[1], 1); let update_msgs = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_msgs.update_fulfill_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], update_msgs.commitment_signed, false, true); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { payment_id: _, ref payment_preimage, ref payment_hash } => { assert_eq!(*payment_preimage, payment_preimage_1); assert_eq!(*payment_hash, payment_hash_1); } _ => panic!("Unexpected event"), } } // Test that if we fail to forward an HTLC that is being freed from the holding cell that the // HTLC is failed backwards. We trigger this failure to forward the freed HTLC by increasing // our fee while the HTLC is in the holding cell such that the HTLC is no longer affordable // once it's freed. #[test] fn test_fail_holding_cell_htlc_upon_free_multihop() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); // When this test was written, the default base fee floated based on the HTLC count. // It is now fixed, so we simply set the fee to the expected value here. let mut config = test_default_channel_config(); config.channel_options.forwarding_fee_base_msat = 196; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[Some(config.clone()), Some(config.clone()), Some(config.clone())]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_0_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let chan_1_2 = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); // First nodes[1] generates an update_fee, setting the channel's // pending_update_fee. { let mut feerate_lock = chanmon_cfgs[1].fee_estimator.sat_per_kw.lock().unwrap(); *feerate_lock += 20; } nodes[1].node.timer_tick_occurred(); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let (update_msg, commitment_signed) = match events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_update_fee(&nodes[1].node.get_our_node_id(), update_msg.unwrap()); let mut chan_stat = get_channel_value_stat!(nodes[0], chan_0_1.2); let channel_reserve = chan_stat.channel_reserve_msat; let feerate = get_feerate!(nodes[0], chan_0_1.2); // Send a payment which passes reserve checks but gets stuck in the holding cell. let feemsat = 239; let total_routing_fee_msat = (nodes.len() - 2) as u64 * feemsat; let max_can_send = 5000000 - channel_reserve - 2*commit_tx_fee_msat(feerate, 1 + 1) - total_routing_fee_msat; let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], max_can_send); let payment_event = { nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); chan_stat = get_channel_value_stat!(nodes[1], chan_1_2.2); assert_eq!(chan_stat.holding_cell_outbound_amount_msat, max_can_send); // Flush the pending fee update. nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed); let (raa, commitment_signed) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[2], 1); nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &raa); nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &commitment_signed); check_added_monitors!(nodes[1], 2); // A final RAA message is generated to finalize the fee update. let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let raa_msg = match &events[0] { &MessageSendEvent::SendRevokeAndACK { ref msg, .. } => { msg.clone() }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &raa_msg); check_added_monitors!(nodes[2], 1); assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty()); // nodes[1]'s ChannelManager will now signal that we have HTLC forwards to process. let process_htlc_forwards_event = nodes[1].node.get_and_clear_pending_events(); assert_eq!(process_htlc_forwards_event.len(), 1); match &process_htlc_forwards_event[0] { &Event::PendingHTLCsForwardable { .. } => {}, _ => panic!("Unexpected event"), } // In response, we call ChannelManager's process_pending_htlc_forwards nodes[1].node.process_pending_htlc_forwards(); check_added_monitors!(nodes[1], 1); // This causes the HTLC to be failed backwards. let fail_event = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(fail_event.len(), 1); let (fail_msg, commitment_signed) = match &fail_event[0] { &MessageSendEvent::UpdateHTLCs { ref updates, .. } => { assert_eq!(updates.update_add_htlcs.len(), 0); assert_eq!(updates.update_fulfill_htlcs.len(), 0); assert_eq!(updates.update_fail_malformed_htlcs.len(), 0); assert_eq!(updates.update_fail_htlcs.len(), 1); (updates.update_fail_htlcs[0].clone(), updates.commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; // Pass the failure messages back to nodes[0]. nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_msg); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed); // Complete the HTLC failure+removal process. let (raa, commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &raa); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &commitment_signed); check_added_monitors!(nodes[1], 2); let final_raa_event = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(final_raa_event.len(), 1); let raa = match &final_raa_event[0] { &MessageSendEvent::SendRevokeAndACK { ref msg, .. } => msg.clone(), _ => panic!("Unexpected event"), }; nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &raa); expect_payment_failed_with_update!(nodes[0], our_payment_hash, false, chan_1_2.0.contents.short_channel_id, false); check_added_monitors!(nodes[0], 1); } // BOLT 2 Requirements for the Sender when constructing and sending an update_add_htlc message. // BOLT 2 Requirement: MUST NOT offer amount_msat it cannot pay for in the remote commitment transaction at the current feerate_per_kw (see "Updating Fees") while maintaining its channel reserve. //TODO: I don't believe this is explicitly enforced when sending an HTLC but as the Fee aspect of the BOLT specs is in flux leaving this as a TODO. #[test] fn test_update_add_htlc_bolt2_sender_value_below_minimum_msat() { //BOLT2 Requirement: MUST NOT offer amount_msat below the receiving node's htlc_minimum_msat (same validation check catches both of these) let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (mut route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); route.paths[0][0].fee_msat = 100; unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot send less than their minimum HTLC value \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send less than their minimum HTLC value".to_string(), 1); } #[test] fn test_update_add_htlc_bolt2_sender_zero_value_msat() { //BOLT2 Requirement: MUST offer amount_msat greater than 0. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (mut route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); route.paths[0][0].fee_msat = 0; unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Cannot send 0-msat HTLC")); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send 0-msat HTLC".to_string(), 1); } #[test] fn test_update_add_htlc_bolt2_receiver_zero_value_msat() { //BOLT2 Requirement: MUST offer amount_msat greater than 0. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = 0; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); nodes[1].logger.assert_log("lightning::ln::channelmanager".to_string(), "Remote side tried to send a 0-msat HTLC".to_string(), 1); check_closed_broadcast!(nodes[1], true).unwrap(); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "Remote side tried to send a 0-msat HTLC".to_string() }); } #[test] fn test_update_add_htlc_bolt2_sender_cltv_expiry_too_high() { //BOLT 2 Requirement: MUST set cltv_expiry less than 500000000. //It is enforced when constructing a route. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 0, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], vec![], 100000000, 500000001); unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::RouteError { ref err }, assert_eq!(err, &"Channel CLTV overflowed?")); } #[test] fn test_update_add_htlc_bolt2_sender_exceed_max_htlc_num_and_htlc_id_increment() { //BOLT 2 Requirement: if result would be offering more than the remote's max_accepted_htlcs HTLCs, in the remote commitment transaction: MUST NOT add an HTLC. //BOLT 2 Requirement: for the first HTLC it offers MUST set id to 0. //BOLT 2 Requirement: MUST increase the value of id by 1 for each successive offer. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 0, InitFeatures::known(), InitFeatures::known()); let max_accepted_htlcs = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().counterparty_max_accepted_htlcs as u64; for i in 0..max_accepted_htlcs { let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); let payment_event = { nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); if let MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate{ update_add_htlcs: ref htlcs, .. }, } = events[0] { assert_eq!(htlcs[0].htlc_id, i); } else { assert!(false); } SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], our_payment_hash, our_payment_secret, 100000); } let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100000); unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot push more than their max accepted HTLCs \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot push more than their max accepted HTLCs".to_string(), 1); } #[test] fn test_update_add_htlc_bolt2_sender_exceed_max_htlc_value_in_flight() { //BOLT 2 Requirement: if the sum of total offered HTLCs would exceed the remote's max_htlc_value_in_flight_msat: MUST NOT add an HTLC. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let channel_value = 100000; let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, channel_value, 0, InitFeatures::known(), InitFeatures::known()); let max_in_flight = get_channel_value_stat!(nodes[0], chan.2).counterparty_max_htlc_value_in_flight_msat; send_payment(&nodes[0], &vec!(&nodes[1])[..], max_in_flight); let (mut route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], max_in_flight); // Manually create a route over our max in flight (which our router normally automatically // limits us to. route.paths[0][0].fee_msat = max_in_flight + 1; unwrap_send_err!(nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert!(regex::Regex::new(r"Cannot send value that would put us over the max HTLC value in flight our peer will accept \(\d+\)").unwrap().is_match(err))); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Cannot send value that would put us over the max HTLC value in flight our peer will accept".to_string(), 1); send_payment(&nodes[0], &[&nodes[1]], max_in_flight); } // BOLT 2 Requirements for the Receiver when handling an update_add_htlc message. #[test] fn test_update_add_htlc_bolt2_receiver_check_amount_received_more_than_min() { //BOLT2 Requirement: receiving an amount_msat equal to 0, OR less than its own htlc_minimum_msat -> SHOULD fail the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let htlc_minimum_msat: u64; { let chan_lock = nodes[0].node.channel_state.lock().unwrap(); let channel = chan_lock.by_id.get(&chan.2).unwrap(); htlc_minimum_msat = channel.get_holder_htlc_minimum_msat(); } let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], htlc_minimum_msat); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = htlc_minimum_msat-1; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert!(regex::Regex::new(r"Remote side tried to send less than our minimum HTLC value\. Lower limit: \(\d+\)\. Actual: \(\d+\)").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_add_htlc_bolt2_receiver_sender_can_afford_amount_sent() { //BOLT2 Requirement: receiving an amount_msat that the sending node cannot afford at the current feerate_per_kw (while maintaining its channel reserve): SHOULD fail the channel let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let chan_stat = get_channel_value_stat!(nodes[0], chan.2); let channel_reserve = chan_stat.channel_reserve_msat; let feerate = get_feerate!(nodes[0], chan.2); // The 2* and +1 are for the fee spike reserve. let commit_tx_fee_outbound = 2 * commit_tx_fee_msat(feerate, 1 + 1); let max_can_send = 5000000 - channel_reserve - commit_tx_fee_outbound; let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], max_can_send); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); // Even though channel-initiator senders are required to respect the fee_spike_reserve, // at this time channel-initiatee receivers are not required to enforce that senders // respect the fee_spike_reserve. updates.update_add_htlcs[0].amount_msat = max_can_send + commit_tx_fee_outbound + 1; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert_eq!(err_msg.data, "Remote HTLC add would put them under remote reserve value"); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_add_htlc_bolt2_receiver_check_max_htlc_limit() { //BOLT 2 Requirement: if a sending node adds more than its max_accepted_htlcs HTLCs to its local commitment transaction: SHOULD fail the channel //BOLT 2 Requirement: MUST allow multiple HTLCs with the same payment_hash. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 3999999); let session_priv = SecretKey::from_slice(&[42; 32]).unwrap(); let cur_height = nodes[0].node.best_block.read().unwrap().height() + 1; let onion_keys = onion_utils::construct_onion_keys(&Secp256k1::signing_only(), &route.paths[0], &session_priv).unwrap(); let (onion_payloads, _htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route.paths[0], 3999999, &Some(our_payment_secret), cur_height, &None).unwrap(); let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, [0; 32], &our_payment_hash); let mut msg = msgs::UpdateAddHTLC { channel_id: chan.2, htlc_id: 0, amount_msat: 1000, payment_hash: our_payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet.clone(), }; for i in 0..super::channel::OUR_MAX_HTLCS { msg.htlc_id = i as u64; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg); } msg.htlc_id = (super::channel::OUR_MAX_HTLCS) as u64; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert!(regex::Regex::new(r"Remote tried to push more than our max accepted HTLCs \(\d+\)").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_add_htlc_bolt2_receiver_check_max_in_flight_msat() { //OR adds more than its max_htlc_value_in_flight_msat worth of offered HTLCs to its local commitment transaction: SHOULD fail the channel let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].amount_msat = get_channel_value_stat!(nodes[1], chan.2).counterparty_max_htlc_value_in_flight_msat + 1; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert!(regex::Regex::new("Remote HTLC add would put them over our max HTLC value").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_add_htlc_bolt2_receiver_check_cltv_expiry() { //BOLT2 Requirement: if sending node sets cltv_expiry to greater or equal to 500000000: SHOULD fail the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 95000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].cltv_expiry = 500000000; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert_eq!(err_msg.data,"Remote provided CLTV expiry in seconds instead of block height"); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_add_htlc_bolt2_receiver_check_repeated_id_ignore() { //BOLT 2 requirement: if the sender did not previously acknowledge the commitment of that HTLC: MUST ignore a repeated id value after a reconnection. // We test this by first testing that that repeated HTLCs pass commitment signature checks // after disconnect and that non-sequential htlc_ids result in a channel failure. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); //Disconnect and Reconnect nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); handle_chan_reestablish_msgs!(nodes[1], nodes[0]); //Resend HTLC nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert_eq!(updates.commitment_signed.htlc_signatures.len(), 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &updates.commitment_signed); check_added_monitors!(nodes[1], 1); let _bs_responses = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); assert!(nodes[1].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[1], true).unwrap(); assert!(regex::Regex::new(r"Remote skipped HTLC ID \(skipped ID: \d+\)").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_update_fulfill_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, our_payment_preimage, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); let update_msg = msgs::UpdateFulfillHTLC{ channel_id: chan.2, htlc_id: 0, payment_preimage: our_payment_preimage, }; nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert!(regex::Regex::new(r"Remote tried to fulfill/fail HTLC \(\d+\) before it had been committed").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_update_fail_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); let update_msg = msgs::UpdateFailHTLC{ channel_id: chan.2, htlc_id: 0, reason: msgs::OnionErrorPacket { data: Vec::new()}, }; nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert!(regex::Regex::new(r"Remote tried to fulfill/fail HTLC \(\d+\) before it had been committed").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_update_fail_malformed_htlc_before_commitment() { //BOLT 2 Requirement: until the corresponding HTLC is irrevocably committed in both sides' commitment transactions: MUST NOT send an update_fulfill_htlc, update_fail_htlc, or update_fail_malformed_htlc. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); let update_msg = msgs::UpdateFailMalformedHTLC{ channel_id: chan.2, htlc_id: 0, sha256_of_onion: [1; 32], failure_code: 0x8000, }; nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert!(regex::Regex::new(r"Remote tried to fulfill/fail HTLC \(\d+\) before it had been committed").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_incorrect_htlc_id() { //BOLT 2 Requirement: A receiving node: if the id does not correspond to an HTLC in its current commitment transaction MUST fail the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let our_payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 100000).0; nodes[1].node.claim_funds(our_payment_preimage); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut update_fulfill_msg: msgs::UpdateFulfillHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); update_fulfill_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_fulfill_msg.htlc_id = 1; nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert_eq!(err_msg.data, "Remote tried to fulfill/fail an HTLC we couldn't find"); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_wrong_preimage() { //BOLT 2 Requirement: A receiving node: if the payment_preimage value in update_fulfill_htlc doesn't SHA256 hash to the corresponding HTLC payment_hash MUST fail the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let our_payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 100000).0; nodes[1].node.claim_funds(our_payment_preimage); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut update_fulfill_msg: msgs::UpdateFulfillHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); update_fulfill_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_fulfill_msg.payment_preimage = PaymentPreimage([1; 32]); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert!(regex::Regex::new(r"Remote tried to fulfill HTLC \(\d+\) with an incorrect preimage").unwrap().is_match(err_msg.data.as_str())); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_missing_badonion_bit_for_malformed_htlc_message() { //BOLT 2 Requirement: A receiving node: if the BADONION bit in failure_code is not set for update_fail_malformed_htlc MUST fail the channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); updates.update_add_htlcs[0].onion_routing_packet.version = 1; //Produce a malformed HTLC message nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false, true); let events = nodes[1].node.get_and_clear_pending_msg_events(); let mut update_msg: msgs::UpdateFailMalformedHTLC = { match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fail_malformed_htlcs.len(), 1); assert!(update_fee.is_none()); update_fail_malformed_htlcs[0].clone() }, _ => panic!("Unexpected event"), } }; update_msg.failure_code &= !0x8000; nodes[0].node.handle_update_fail_malformed_htlc(&nodes[1].node.get_our_node_id(), &update_msg); assert!(nodes[0].node.list_channels().is_empty()); let err_msg = check_closed_broadcast!(nodes[0], true).unwrap(); assert_eq!(err_msg.data, "Got update_fail_malformed_htlc with BADONION not set"); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: err_msg.data }); } #[test] fn test_update_fulfill_htlc_bolt2_after_malformed_htlc_message_must_forward_update_fail_htlc() { //BOLT 2 Requirement: a receiving node which has an outgoing HTLC canceled by update_fail_malformed_htlc: // * MUST return an error in the update_fail_htlc sent to the link which originally sent the HTLC, using the failure_code given and setting the data to sha256_of_onion. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 1000000, 1000000, InitFeatures::known(), InitFeatures::known()); let (route, our_payment_hash, _, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100000); //First hop let mut payment_event = { nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); let mut events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); check_added_monitors!(nodes[1], 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); //Second Hop payment_event.msgs[0].onion_routing_packet.version = 1; //Produce a malformed HTLC message nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[2], 0); commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false, true); let events_3 = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let update_msg : (msgs::UpdateFailMalformedHTLC, msgs::CommitmentSigned) = { match events_3[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(update_fail_malformed_htlcs.len(), 1); assert!(update_fee.is_none()); (update_fail_malformed_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), } }; nodes[1].node.handle_update_fail_malformed_htlc(&nodes[2].node.get_our_node_id(), &update_msg.0); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[2], update_msg.1, false, true); expect_pending_htlcs_forwardable!(nodes[1]); let events_4 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_4.len(), 1); //Confirm that handlinge the update_malformed_htlc message produces an update_fail_htlc message to be forwarded back along the route match events_4[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); }, _ => panic!("Unexpected event"), }; check_added_monitors!(nodes[1], 1); } fn do_test_failure_delay_dust_htlc_local_commitment(announce_latest: bool) { // Dust-HTLC failure updates must be delayed until failure-trigger tx (in this case local commitment) reach ANTI_REORG_DELAY // We can have at most two valid local commitment tx, so both cases must be covered, and both txs must be checked to get them all as // HTLC could have been removed from lastest local commitment tx but still valid until we get remote RAA let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan =create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let bs_dust_limit = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().holder_dust_limit_satoshis; // We route 2 dust-HTLCs between A and B let (_, payment_hash_1, _) = route_payment(&nodes[0], &[&nodes[1]], bs_dust_limit*1000); let (_, payment_hash_2, _) = route_payment(&nodes[0], &[&nodes[1]], bs_dust_limit*1000); route_payment(&nodes[0], &[&nodes[1]], 1000000); // Cache one local commitment tx as previous let as_prev_commitment_tx = get_local_commitment_txn!(nodes[0], chan.2); // Fail one HTLC to prune it in the will-be-latest-local commitment tx assert!(nodes[1].node.fail_htlc_backwards(&payment_hash_2)); check_added_monitors!(nodes[1], 0); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let remove = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &remove.update_fail_htlcs[0]); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &remove.commitment_signed); check_added_monitors!(nodes[0], 1); // Cache one local commitment tx as lastest let as_last_commitment_tx = get_local_commitment_txn!(nodes[0], chan.2); let events = nodes[0].node.get_and_clear_pending_msg_events(); match events[0] { MessageSendEvent::SendRevokeAndACK { node_id, .. } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::UpdateHTLCs { node_id, .. } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } assert_ne!(as_prev_commitment_tx, as_last_commitment_tx); // Fail the 2 dust-HTLCs, move their failure in maturation buffer (htlc_updated_waiting_threshold_conf) if announce_latest { mine_transaction(&nodes[0], &as_last_commitment_tx[0]); } else { mine_transaction(&nodes[0], &as_prev_commitment_tx[0]); } check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 0); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); let events = nodes[0].node.get_and_clear_pending_events(); // Only 2 PaymentPathFailed events should show up, over-dust HTLC has to be failed by timeout tx assert_eq!(events.len(), 2); let mut first_failed = false; for event in events { match event { Event::PaymentPathFailed { payment_hash, .. } => { if payment_hash == payment_hash_1 { assert!(!first_failed); first_failed = true; } else { assert_eq!(payment_hash, payment_hash_2); } } _ => panic!("Unexpected event"), } } } #[test] fn test_failure_delay_dust_htlc_local_commitment() { do_test_failure_delay_dust_htlc_local_commitment(true); do_test_failure_delay_dust_htlc_local_commitment(false); } fn do_test_sweep_outbound_htlc_failure_update(revoked: bool, local: bool) { // Outbound HTLC-failure updates must be cancelled if we get a reorg before we reach ANTI_REORG_DELAY. // Broadcast of revoked remote commitment tx, trigger failure-update of dust/non-dust HTLCs // Broadcast of remote commitment tx, trigger failure-update of dust-HTLCs // Broadcast of timeout tx on remote commitment tx, trigger failure-udate of non-dust HTLCs // Broadcast of local commitment tx, trigger failure-update of dust-HTLCs // Broadcast of HTLC-timeout tx on local commitment tx, trigger failure-update of non-dust HTLCs let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let bs_dust_limit = nodes[1].node.channel_state.lock().unwrap().by_id.get(&chan.2).unwrap().holder_dust_limit_satoshis; let (_payment_preimage_1, dust_hash, _payment_secret_1) = route_payment(&nodes[0], &[&nodes[1]], bs_dust_limit*1000); let (_payment_preimage_2, non_dust_hash, _payment_secret_2) = route_payment(&nodes[0], &[&nodes[1]], 1000000); let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan.2); let bs_commitment_tx = get_local_commitment_txn!(nodes[1], chan.2); // We revoked bs_commitment_tx if revoked { let (payment_preimage_3, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_3); } let mut timeout_tx = Vec::new(); if local { // We fail dust-HTLC 1 by broadcast of local commitment tx mine_transaction(&nodes[0], &as_commitment_tx[0]); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], dust_hash, true); connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS - ANTI_REORG_DELAY); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 0); timeout_tx.push(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[1].clone()); assert_eq!(timeout_tx[0].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); // We fail non-dust-HTLC 2 by broadcast of local HTLC-timeout tx on local commitment tx assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 0); mine_transaction(&nodes[0], &timeout_tx[0]); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], non_dust_hash, true); } else { // We fail dust-HTLC 1 by broadcast of remote commitment tx. If revoked, fail also non-dust HTLC mine_transaction(&nodes[0], &bs_commitment_tx[0]); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 0); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires timeout_tx.push(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[1].clone()); if !revoked { expect_payment_failed!(nodes[0], dust_hash, true); assert_eq!(timeout_tx[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); // We fail non-dust-HTLC 2 by broadcast of local timeout tx on remote commitment tx mine_transaction(&nodes[0], &timeout_tx[0]); assert_eq!(nodes[0].node.get_and_clear_pending_events().len(), 0); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], non_dust_hash, true); } else { // If revoked, both dust & non-dust HTLCs should have been failed after ANTI_REORG_DELAY confs of revoked // commitment tx let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); let first; match events[0] { Event::PaymentPathFailed { payment_hash, .. } => { if payment_hash == dust_hash { first = true; } else { first = false; } }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentPathFailed { payment_hash, .. } => { if first { assert_eq!(payment_hash, non_dust_hash); } else { assert_eq!(payment_hash, dust_hash); } }, _ => panic!("Unexpected event"), } } } } #[test] fn test_sweep_outbound_htlc_failure_update() { do_test_sweep_outbound_htlc_failure_update(false, true); do_test_sweep_outbound_htlc_failure_update(false, false); do_test_sweep_outbound_htlc_failure_update(true, false); } #[test] fn test_user_configurable_csv_delay() { // We test our channel constructors yield errors when we pass them absurd csv delay let mut low_our_to_self_config = UserConfig::default(); low_our_to_self_config.own_channel_config.our_to_self_delay = 6; let mut high_their_to_self_config = UserConfig::default(); high_their_to_self_config.peer_channel_config_limits.their_to_self_delay = 100; let user_cfgs = [Some(high_their_to_self_config.clone()), None]; let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &user_cfgs); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // We test config.our_to_self > BREAKDOWN_TIMEOUT is enforced in Channel::new_outbound() if let Err(error) = Channel::new_outbound(&&test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }, &nodes[0].keys_manager, nodes[1].node.get_our_node_id(), &InitFeatures::known(), 1000000, 1000000, 0, &low_our_to_self_config) { match error { APIError::APIMisuseError { err } => { assert!(regex::Regex::new(r"Configured with an unreasonable our_to_self_delay \(\d+\) putting user funds at risks").unwrap().is_match(err.as_str())); }, _ => panic!("Unexpected event"), } } else { assert!(false) } // We test config.our_to_self > BREAKDOWN_TIMEOUT is enforced in Channel::new_from_req() nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 1000000, 1000000, 42, None).unwrap(); let mut open_channel = get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id()); open_channel.to_self_delay = 200; if let Err(error) = Channel::new_from_req(&&test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }, &nodes[0].keys_manager, nodes[1].node.get_our_node_id(), &InitFeatures::known(), &open_channel, 0, &low_our_to_self_config) { match error { ChannelError::Close(err) => { assert!(regex::Regex::new(r"Configured with an unreasonable our_to_self_delay \(\d+\) putting user funds at risks").unwrap().is_match(err.as_str())); }, _ => panic!("Unexpected event"), } } else { assert!(false); } // We test msg.to_self_delay <= config.their_to_self_delay is enforced in Chanel::accept_channel() nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1000000, 1000000, 42, None).unwrap(); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id())); let mut accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); accept_channel.to_self_delay = 200; nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &accept_channel); let reason_msg; if let MessageSendEvent::HandleError { ref action, .. } = nodes[0].node.get_and_clear_pending_msg_events()[0] { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert!(regex::Regex::new(r"They wanted our payments to be delayed by a needlessly long period\. Upper limit: \d+\. Actual: \d+").unwrap().is_match(msg.data.as_str())); reason_msg = msg.data.clone(); }, _ => { panic!(); } } } else { panic!(); } check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: reason_msg }); // We test msg.to_self_delay <= config.their_to_self_delay is enforced in Channel::new_from_req() nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 1000000, 1000000, 42, None).unwrap(); let mut open_channel = get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id()); open_channel.to_self_delay = 200; if let Err(error) = Channel::new_from_req(&&test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }, &nodes[0].keys_manager, nodes[1].node.get_our_node_id(), &InitFeatures::known(), &open_channel, 0, &high_their_to_self_config) { match error { ChannelError::Close(err) => { assert!(regex::Regex::new(r"They wanted our payments to be delayed by a needlessly long period\. Upper limit: \d+\. Actual: \d+").unwrap().is_match(err.as_str())); }, _ => panic!("Unexpected event"), } } else { assert!(false); } } #[test] fn test_data_loss_protect() { // We want to be sure that : // * we don't broadcast our Local Commitment Tx in case of fallen behind // (but this is not quite true - we broadcast during Drop because chanmon is out of sync with chanmgr) // * we close channel in case of detecting other being fallen behind // * we are able to claim our own outputs thanks to to_remote being static // TODO: this test is incomplete and the data_loss_protect implementation is incomplete - see issue #775 let persister; let logger; let fee_estimator; let tx_broadcaster; let chain_source; let mut chanmon_cfgs = create_chanmon_cfgs(2); // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic // during signing due to revoked tx chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let keys_manager = &chanmon_cfgs[0].keys_manager; let monitor; let node_state_0; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, InitFeatures::known(), InitFeatures::known()); // Cache node A state before any channel update let previous_node_state = nodes[0].node.encode(); let mut previous_chain_monitor_state = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan.2).write(&mut previous_chain_monitor_state).unwrap(); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Restore node A from previous state logger = test_utils::TestLogger::with_id(format!("node {}", 0)); let mut chain_monitor = <(BlockHash, ChannelMonitor)>::read(&mut io::Cursor::new(previous_chain_monitor_state.0), keys_manager).unwrap().1; chain_source = test_utils::TestChainSource::new(Network::Testnet); tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))}; fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; persister = test_utils::TestPersister::new(); monitor = test_utils::TestChainMonitor::new(Some(&chain_source), &tx_broadcaster, &logger, &fee_estimator, &persister, keys_manager); node_state_0 = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(OutPoint { txid: chan.3.txid(), index: 0 }, &mut chain_monitor); <(BlockHash, ChannelManager)>::read(&mut io::Cursor::new(previous_node_state), ChannelManagerReadArgs { keys_manager: keys_manager, fee_estimator: &fee_estimator, chain_monitor: &monitor, logger: &logger, tx_broadcaster: &tx_broadcaster, default_config: UserConfig::default(), channel_monitors, }).unwrap().1 }; nodes[0].node = &node_state_0; assert!(monitor.watch_channel(OutPoint { txid: chan.3.txid(), index: 0 }, chain_monitor).is_ok()); nodes[0].chain_monitor = &monitor; nodes[0].chain_source = &chain_source; check_added_monitors!(nodes[0], 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); // Check we don't broadcast any transactions following learning of per_commitment_point from B nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]); check_added_monitors!(nodes[0], 1); { let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(node_txn.len(), 0); } let mut reestablish_1 = Vec::with_capacity(1); for msg in nodes[0].node.get_and_clear_pending_msg_events() { if let MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } = msg { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); reestablish_1.push(msg.clone()); } else if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg { } else if let MessageSendEvent::HandleError { ref action, .. } = msg { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert_eq!(msg.data, "We have fallen behind - we have received proof that if we broadcast remote is going to claim our funds - we can't do any automated broadcasting"); }, _ => panic!("Unexpected event!"), } } else { panic!("Unexpected event") } } // Check we close channel detecting A is fallen-behind nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "Peer attempted to reestablish channel with a very old local commitment transaction".to_string() }); assert_eq!(check_closed_broadcast!(nodes[1], true).unwrap().data, "Peer attempted to reestablish channel with a very old local commitment transaction"); check_added_monitors!(nodes[1], 1); // Check A is able to claim to_remote output let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); assert_eq!(node_txn.len(), 1); check_spends!(node_txn[0], chan.3); assert_eq!(node_txn[0].output.len(), 2); mine_transaction(&nodes[0], &node_txn[0]); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "We have fallen behind - we have received proof that if we broadcast remote is going to claim our funds - we can\'t do any automated broadcasting".to_string() }); let spend_txn = check_spendable_outputs!(nodes[0], node_cfgs[0].keys_manager); assert_eq!(spend_txn.len(), 1); check_spends!(spend_txn[0], node_txn[0]); } #[test] fn test_check_htlc_underpaying() { // Send payment through A -> B but A is maliciously // sending a probe payment (i.e less than expected value0 // to B, B should refuse payment. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let scorer = Scorer::new(0); let payee = Payee::new(nodes[1].node.get_our_node_id()).with_features(InvoiceFeatures::known()); let route = get_route(&nodes[0].node.get_our_node_id(), &payee, &nodes[0].net_graph_msg_handler.network_graph, None, 10_000, TEST_FINAL_CLTV, nodes[0].logger, &scorer).unwrap(); let (_, our_payment_hash, _) = get_payment_preimage_hash!(nodes[0]); let our_payment_secret = nodes[1].node.create_inbound_payment_for_hash(our_payment_hash, Some(100_000), 7200, 0).unwrap(); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // Note that we first have to wait a random delay before processing the receipt of the HTLC, // and then will wait a second random delay before failing the HTLC back: expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); // Node 3 is expecting payment of 100_000 but received 10_000, // it should fail htlc like we didn't know the preimage. nodes[1].node.process_pending_htlc_forwards(); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let (update_fail_htlc, commitment_signed) = match events[0] { MessageSendEvent::UpdateHTLCs { node_id: _ , updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); (update_fail_htlcs[0].clone(), commitment_signed) }, _ => panic!("Unexpected event"), }; check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlc); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false, true); // 10_000 msat as u64, followed by a height of CHAN_CONFIRM_DEPTH as u32 let mut expected_failure_data = byte_utils::be64_to_array(10_000).to_vec(); expected_failure_data.extend_from_slice(&byte_utils::be32_to_array(CHAN_CONFIRM_DEPTH)); expect_payment_failed!(nodes[0], our_payment_hash, true, 0x4000|15, &expected_failure_data[..]); } #[test] fn test_announce_disable_channels() { // Create 2 channels between A and B. Disconnect B. Call timer_tick_occurred and check for generated // ChannelUpdate. Reconnect B, reestablish and check there is non-generated ChannelUpdate. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let short_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let short_id_2 = create_announced_chan_between_nodes(&nodes, 1, 0, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let short_id_3 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; // Disconnect peers nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.timer_tick_occurred(); // Enabled -> DisabledStaged nodes[0].node.timer_tick_occurred(); // DisabledStaged -> Disabled let msg_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 3); let mut chans_disabled: HashSet = [short_id_1, short_id_2, short_id_3].iter().map(|a| *a).collect(); for e in msg_events { match e { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { assert_eq!(msg.contents.flags & (1<<1), 1<<1); // The "channel disabled" bit should be set // Check that each channel gets updated exactly once if !chans_disabled.remove(&msg.contents.short_channel_id) { panic!("Generated ChannelUpdate for wrong chan!"); } }, _ => panic!("Unexpected event"), } } // Reconnect peers nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 3); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 3); // Reestablish chan_1 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); handle_chan_reestablish_msgs!(nodes[1], nodes[0]); // Reestablish chan_2 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[1]); handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[1]); handle_chan_reestablish_msgs!(nodes[1], nodes[0]); // Reestablish chan_3 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[2]); handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[2]); handle_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[0].node.timer_tick_occurred(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.timer_tick_occurred(); let msg_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(msg_events.len(), 3); chans_disabled = [short_id_1, short_id_2, short_id_3].iter().map(|a| *a).collect(); for e in msg_events { match e { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { assert_eq!(msg.contents.flags & (1<<1), 0); // The "channel disabled" bit should be off // Check that each channel gets updated exactly once if !chans_disabled.remove(&msg.contents.short_channel_id) { panic!("Generated ChannelUpdate for wrong chan!"); } }, _ => panic!("Unexpected event"), } } } #[test] fn test_priv_forwarding_rejection() { // If we have a private channel with outbound liquidity, and // UserConfig::accept_forwards_to_priv_channels is set to false, we should reject any attempts // to forward through that channel. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let mut no_announce_cfg = test_default_channel_config(); no_announce_cfg.channel_options.announced_channel = false; no_announce_cfg.accept_forwards_to_priv_channels = false; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(no_announce_cfg), None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 500_000_000, InitFeatures::known(), InitFeatures::known()).2; // Note that the create_*_chan functions in utils requires announcement_signatures, which we do // not send for private channels. nodes[1].node.create_channel(nodes[2].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap(); let open_channel = get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[2].node.get_our_node_id()); nodes[2].node.handle_open_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &open_channel); let accept_channel = get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_accept_channel(&nodes[2].node.get_our_node_id(), InitFeatures::known(), &accept_channel); let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[1], 1_000_000, 42); nodes[1].node.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); nodes[2].node.handle_funding_created(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendFundingCreated, nodes[2].node.get_our_node_id())); check_added_monitors!(nodes[2], 1); let cs_funding_signed = get_event_msg!(nodes[2], MessageSendEvent::SendFundingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_funding_signed(&nodes[2].node.get_our_node_id(), &cs_funding_signed); check_added_monitors!(nodes[1], 1); let conf_height = core::cmp::max(nodes[1].best_block_info().1 + 1, nodes[2].best_block_info().1 + 1); confirm_transaction_at(&nodes[1], &tx, conf_height); connect_blocks(&nodes[1], CHAN_CONFIRM_DEPTH - 1); confirm_transaction_at(&nodes[2], &tx, conf_height); connect_blocks(&nodes[2], CHAN_CONFIRM_DEPTH - 1); let as_funding_locked = get_event_msg!(nodes[1], MessageSendEvent::SendFundingLocked, nodes[2].node.get_our_node_id()); nodes[1].node.handle_funding_locked(&nodes[2].node.get_our_node_id(), &get_event_msg!(nodes[2], MessageSendEvent::SendFundingLocked, nodes[1].node.get_our_node_id())); get_event_msg!(nodes[1], MessageSendEvent::SendChannelUpdate, nodes[2].node.get_our_node_id()); nodes[2].node.handle_funding_locked(&nodes[1].node.get_our_node_id(), &as_funding_locked); get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[1].node.get_our_node_id()); assert!(nodes[0].node.list_usable_channels()[0].is_public); assert_eq!(nodes[1].node.list_usable_channels().len(), 2); assert!(!nodes[2].node.list_usable_channels()[0].is_public); // We should always be able to forward through nodes[1] as long as its out through a public // channel: send_payment(&nodes[2], &[&nodes[1], &nodes[0]], 10_000); // ... however, if we send to nodes[2], we will have to pass the private channel from nodes[1] // to nodes[2], which should be rejected: let route_hint = RouteHint(vec![RouteHintHop { src_node_id: nodes[1].node.get_our_node_id(), short_channel_id: nodes[2].node.list_channels()[0].short_channel_id.unwrap(), fees: RoutingFees { base_msat: 1000, proportional_millionths: 0 }, cltv_expiry_delta: MIN_CLTV_EXPIRY_DELTA, htlc_minimum_msat: None, htlc_maximum_msat: None, }]); let last_hops = vec![route_hint]; let (route, our_payment_hash, our_payment_preimage, our_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], last_hops, 10_000, TEST_FINAL_CLTV); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let payment_event = SendEvent::from_event(nodes[0].node.get_and_clear_pending_msg_events().remove(0)); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true); let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_fail_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_fail_updates.update_fail_htlcs.len(), 1); assert!(htlc_fail_updates.update_fail_malformed_htlcs.is_empty()); assert!(htlc_fail_updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, true, true); expect_payment_failed_with_update!(nodes[0], our_payment_hash, false, nodes[2].node.list_channels()[0].short_channel_id.unwrap(), true); // Now disconnect nodes[1] from its peers and restart with accept_forwards_to_priv_channels set // to true. Sadly there is currently no way to change it at runtime. nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); let nodes_1_serialized = nodes[1].node.encode(); let mut monitor_a_serialized = test_utils::TestVecWriter(Vec::new()); let mut monitor_b_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[1], chan_id_1).write(&mut monitor_a_serialized).unwrap(); get_monitor!(nodes[1], cs_funding_signed.channel_id).write(&mut monitor_b_serialized).unwrap(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[1].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager); nodes[1].chain_monitor = &new_chain_monitor; let mut monitor_a_read = &monitor_a_serialized.0[..]; let mut monitor_b_read = &monitor_b_serialized.0[..]; let (_, mut monitor_a) = <(BlockHash, ChannelMonitor)>::read(&mut monitor_a_read, keys_manager).unwrap(); let (_, mut monitor_b) = <(BlockHash, ChannelMonitor)>::read(&mut monitor_b_read, keys_manager).unwrap(); assert!(monitor_a_read.is_empty()); assert!(monitor_b_read.is_empty()); no_announce_cfg.accept_forwards_to_priv_channels = true; let mut nodes_1_read = &nodes_1_serialized[..]; let (_, nodes_1_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(monitor_a.get_funding_txo().0, &mut monitor_a); channel_monitors.insert(monitor_b.get_funding_txo().0, &mut monitor_b); <(BlockHash, ChannelManager)>::read(&mut nodes_1_read, ChannelManagerReadArgs { default_config: no_announce_cfg, keys_manager, fee_estimator: node_cfgs[1].fee_estimator, chain_monitor: nodes[1].chain_monitor, tx_broadcaster: nodes[1].tx_broadcaster.clone(), logger: nodes[1].logger, channel_monitors, }).unwrap() }; assert!(nodes_1_read.is_empty()); nodes_1_deserialized = nodes_1_deserialized_tmp; assert!(nodes[1].chain_monitor.watch_channel(monitor_a.get_funding_txo().0, monitor_a).is_ok()); assert!(nodes[1].chain_monitor.watch_channel(monitor_b.get_funding_txo().0, monitor_b).is_ok()); check_added_monitors!(nodes[1], 2); nodes[1].node = &nodes_1_deserialized; nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known() }); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let as_reestablish = get_event_msg!(nodes[0], MessageSendEvent::SendChannelReestablish, nodes[1].node.get_our_node_id()); let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); get_event_msg!(nodes[0], MessageSendEvent::SendChannelUpdate, nodes[1].node.get_our_node_id()); get_event_msg!(nodes[1], MessageSendEvent::SendChannelUpdate, nodes[0].node.get_our_node_id()); nodes[1].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known() }); nodes[2].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::empty() }); let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[2].node.get_our_node_id()); let cs_reestablish = get_event_msg!(nodes[2], MessageSendEvent::SendChannelReestablish, nodes[1].node.get_our_node_id()); nodes[2].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); nodes[1].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &cs_reestablish); get_event_msg!(nodes[1], MessageSendEvent::SendChannelUpdate, nodes[2].node.get_our_node_id()); get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[1].node.get_our_node_id()); nodes[0].node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], 10_000, our_payment_hash, our_payment_secret); claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], our_payment_preimage); } #[test] fn test_bump_penalty_txn_on_revoked_commitment() { // In case of penalty txn with too low feerates for getting into mempools, RBF-bump them to be sure // we're able to claim outputs on revoked commitment transaction before timelocks expiration let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 59000000, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let (route,_, _, _) = get_route_and_payment_hash!(nodes[1], nodes[0], vec![], 3000000, 30); send_along_route(&nodes[1], route, &vec!(&nodes[0])[..], 3000000); let revoked_txn = get_local_commitment_txn!(nodes[0], chan.2); // Revoked commitment txn with 4 outputs : to_local, to_remote, 1 outgoing HTLC, 1 incoming HTLC assert_eq!(revoked_txn[0].output.len(), 4); assert_eq!(revoked_txn[0].input.len(), 1); assert_eq!(revoked_txn[0].input[0].previous_output.txid, chan.3.txid()); let revoked_txid = revoked_txn[0].txid(); let mut penalty_sum = 0; for outp in revoked_txn[0].output.iter() { if outp.script_pubkey.is_v0_p2wsh() { penalty_sum += outp.value; } } // Connect blocks to change height_timer range to see if we use right soonest_timelock let header_114 = connect_blocks(&nodes[1], 14); // Actually revoke tx by claiming a HTLC claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: header_114, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![revoked_txn[0].clone()] }); check_added_monitors!(nodes[1], 1); // One or more justice tx should have been broadcast, check it let penalty_1; let feerate_1; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); // justice tx (broadcasted from ChannelMonitor) + local commitment tx assert_eq!(node_txn[0].input.len(), 3); // Penalty txn claims to_local, offered_htlc and received_htlc outputs assert_eq!(node_txn[0].output.len(), 1); check_spends!(node_txn[0], revoked_txn[0]); let fee_1 = penalty_sum - node_txn[0].output[0].value; feerate_1 = fee_1 * 1000 / node_txn[0].get_weight() as u64; penalty_1 = node_txn[0].txid(); node_txn.clear(); }; // After exhaustion of height timer, a new bumped justice tx should have been broadcast, check it connect_blocks(&nodes[1], 15); let mut penalty_2 = penalty_1; let mut feerate_2 = 0; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); if node_txn[0].input[0].previous_output.txid == revoked_txid { assert_eq!(node_txn[0].input.len(), 3); // Penalty txn claims to_local, offered_htlc and received_htlc outputs assert_eq!(node_txn[0].output.len(), 1); check_spends!(node_txn[0], revoked_txn[0]); penalty_2 = node_txn[0].txid(); // Verify new bumped tx is different from last claiming transaction, we don't want spurrious rebroadcast assert_ne!(penalty_2, penalty_1); let fee_2 = penalty_sum - node_txn[0].output[0].value; feerate_2 = fee_2 * 1000 / node_txn[0].get_weight() as u64; // Verify 25% bump heuristic assert!(feerate_2 * 100 >= feerate_1 * 125); node_txn.clear(); } } assert_ne!(feerate_2, 0); // After exhaustion of height timer for a 2nd time, a new bumped justice tx should have been broadcast, check it connect_blocks(&nodes[1], 1); let penalty_3; let mut feerate_3 = 0; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); if node_txn[0].input[0].previous_output.txid == revoked_txid { assert_eq!(node_txn[0].input.len(), 3); // Penalty txn claims to_local, offered_htlc and received_htlc outputs assert_eq!(node_txn[0].output.len(), 1); check_spends!(node_txn[0], revoked_txn[0]); penalty_3 = node_txn[0].txid(); // Verify new bumped tx is different from last claiming transaction, we don't want spurrious rebroadcast assert_ne!(penalty_3, penalty_2); let fee_3 = penalty_sum - node_txn[0].output[0].value; feerate_3 = fee_3 * 1000 / node_txn[0].get_weight() as u64; // Verify 25% bump heuristic assert!(feerate_3 * 100 >= feerate_2 * 125); node_txn.clear(); } } assert_ne!(feerate_3, 0); nodes[1].node.get_and_clear_pending_events(); nodes[1].node.get_and_clear_pending_msg_events(); } #[test] fn test_bump_penalty_txn_on_revoked_htlcs() { // In case of penalty txn with too low feerates for getting into mempools, RBF-bump them to sure // we're able to claim outputs on revoked HTLC transactions before timelocks expiration let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 59000000, InitFeatures::known(), InitFeatures::known()); // Lock HTLC in both directions (using a slightly lower CLTV delay to provide timely RBF bumps) let payee = Payee::new(nodes[1].node.get_our_node_id()).with_features(InvoiceFeatures::known()); let scorer = Scorer::new(0); let route = get_route(&nodes[0].node.get_our_node_id(), &payee, &nodes[0].net_graph_msg_handler.network_graph, None, 3_000_000, 50, nodes[0].logger, &scorer).unwrap(); let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 3_000_000).0; let payee = Payee::new(nodes[0].node.get_our_node_id()).with_features(InvoiceFeatures::known()); let route = get_route(&nodes[1].node.get_our_node_id(), &payee, &nodes[1].net_graph_msg_handler.network_graph, None, 3_000_000, 50, nodes[0].logger, &scorer).unwrap(); send_along_route(&nodes[1], route, &[&nodes[0]], 3_000_000); let revoked_local_txn = get_local_commitment_txn!(nodes[1], chan.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan.3.txid()); // Revoke local commitment tx claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; // B will generate both revoked HTLC-timeout/HTLC-preimage txn from revoked commitment tx connect_block(&nodes[1], &Block { header, txdata: vec![revoked_local_txn[0].clone()] }); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[1], 49); // Confirm blocks until the HTLC expires (note CLTV was explicitly 50 above) let revoked_htlc_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(revoked_htlc_txn.len(), 3); check_spends!(revoked_htlc_txn[1], chan.3); assert_eq!(revoked_htlc_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); assert_eq!(revoked_htlc_txn[0].input.len(), 1); check_spends!(revoked_htlc_txn[0], revoked_local_txn[0]); assert_eq!(revoked_htlc_txn[2].input.len(), 1); assert_eq!(revoked_htlc_txn[2].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(revoked_htlc_txn[2].output.len(), 1); check_spends!(revoked_htlc_txn[2], revoked_local_txn[0]); // Broadcast set of revoked txn on A let hash_128 = connect_blocks(&nodes[0], 40); let header_11 = BlockHeader { version: 0x20000000, prev_blockhash: hash_128, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_11, txdata: vec![revoked_local_txn[0].clone()] }); let header_129 = BlockHeader { version: 0x20000000, prev_blockhash: header_11.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_129, txdata: vec![revoked_htlc_txn[0].clone(), revoked_htlc_txn[2].clone()] }); let events = nodes[0].node.get_and_clear_pending_events(); expect_pending_htlcs_forwardable_from_events!(nodes[0], events[0..1], true); match events[1] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {} _ => panic!("Unexpected event"), } let first; let feerate_1; let penalty_txn; { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 5); // 3 penalty txn on revoked commitment tx + A commitment tx + 1 penalty tnx on revoked HTLC txn // Verify claim tx are spending revoked HTLC txn // node_txn 0-2 each spend a separate revoked output from revoked_local_txn[0] // Note that node_txn[0] and node_txn[1] are bogus - they double spend the revoked_htlc_txn // which are included in the same block (they are broadcasted because we scan the // transactions linearly and generate claims as we go, they likely should be removed in the // future). assert_eq!(node_txn[0].input.len(), 1); check_spends!(node_txn[0], revoked_local_txn[0]); assert_eq!(node_txn[1].input.len(), 1); check_spends!(node_txn[1], revoked_local_txn[0]); assert_eq!(node_txn[2].input.len(), 1); check_spends!(node_txn[2], revoked_local_txn[0]); // Each of the three justice transactions claim a separate (single) output of the three // available, which we check here: assert_ne!(node_txn[0].input[0].previous_output, node_txn[1].input[0].previous_output); assert_ne!(node_txn[0].input[0].previous_output, node_txn[2].input[0].previous_output); assert_ne!(node_txn[1].input[0].previous_output, node_txn[2].input[0].previous_output); assert_eq!(node_txn[0].input[0].previous_output, revoked_htlc_txn[0].input[0].previous_output); assert_eq!(node_txn[1].input[0].previous_output, revoked_htlc_txn[2].input[0].previous_output); // node_txn[3] is the local commitment tx broadcast just because (and somewhat in case of // reorgs, though its not clear its ever worth broadcasting conflicting txn like this when // a remote commitment tx has already been confirmed). check_spends!(node_txn[3], chan.3); // node_txn[4] spends the revoked outputs from the revoked_htlc_txn (which only have one // output, checked above). assert_eq!(node_txn[4].input.len(), 2); assert_eq!(node_txn[4].output.len(), 1); check_spends!(node_txn[4], revoked_htlc_txn[0], revoked_htlc_txn[2]); first = node_txn[4].txid(); // Store both feerates for later comparison let fee_1 = revoked_htlc_txn[0].output[0].value + revoked_htlc_txn[2].output[0].value - node_txn[4].output[0].value; feerate_1 = fee_1 * 1000 / node_txn[4].get_weight() as u64; penalty_txn = vec![node_txn[2].clone()]; node_txn.clear(); } // Connect one more block to see if bumped penalty are issued for HTLC txn let header_130 = BlockHeader { version: 0x20000000, prev_blockhash: header_129.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_130, txdata: penalty_txn }); let header_131 = BlockHeader { version: 0x20000000, prev_blockhash: header_130.block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_131, txdata: Vec::new() }); { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); // 2 bumped penalty txn on revoked commitment tx check_spends!(node_txn[0], revoked_local_txn[0]); check_spends!(node_txn[1], revoked_local_txn[0]); // Note that these are both bogus - they spend outputs already claimed in block 129: if node_txn[0].input[0].previous_output == revoked_htlc_txn[0].input[0].previous_output { assert_eq!(node_txn[1].input[0].previous_output, revoked_htlc_txn[2].input[0].previous_output); } else { assert_eq!(node_txn[0].input[0].previous_output, revoked_htlc_txn[2].input[0].previous_output); assert_eq!(node_txn[1].input[0].previous_output, revoked_htlc_txn[0].input[0].previous_output); } node_txn.clear(); }; // Few more blocks to confirm penalty txn connect_blocks(&nodes[0], 4); assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty()); let header_144 = connect_blocks(&nodes[0], 9); let node_txn = { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); assert_eq!(node_txn[0].input.len(), 2); check_spends!(node_txn[0], revoked_htlc_txn[0], revoked_htlc_txn[2]); // Verify bumped tx is different and 25% bump heuristic assert_ne!(first, node_txn[0].txid()); let fee_2 = revoked_htlc_txn[0].output[0].value + revoked_htlc_txn[2].output[0].value - node_txn[0].output[0].value; let feerate_2 = fee_2 * 1000 / node_txn[0].get_weight() as u64; assert!(feerate_2 * 100 > feerate_1 * 125); let txn = vec![node_txn[0].clone()]; node_txn.clear(); txn }; // Broadcast claim txn and confirm blocks to avoid further bumps on this outputs let header_145 = BlockHeader { version: 0x20000000, prev_blockhash: header_144, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_145, txdata: node_txn }); connect_blocks(&nodes[0], 20); { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); // We verify than no new transaction has been broadcast because previously // we were buggy on this exact behavior by not tracking for monitoring remote HTLC outputs (see #411) // which means we wouldn't see a spend of them by a justice tx and bumped justice tx // were generated forever instead of safe cleaning after confirmation and ANTI_REORG_SAFE_DELAY blocks. // Enforce spending of revoked htlc output by claiming transaction remove request as expected and dry // up bumped justice generation. assert_eq!(node_txn.len(), 0); node_txn.clear(); } check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); } #[test] fn test_bump_penalty_txn_on_remote_commitment() { // In case of claim txn with too low feerates for getting into mempools, RBF-bump them to be sure // we're able to claim outputs on remote commitment transaction before timelocks expiration // Create 2 HTLCs // Provide preimage for one // Check aggregation let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 59000000, InitFeatures::known(), InitFeatures::known()); let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000).0; // Remote commitment txn with 4 outputs : to_local, to_remote, 1 outgoing HTLC, 1 incoming HTLC let remote_txn = get_local_commitment_txn!(nodes[0], chan.2); assert_eq!(remote_txn[0].output.len(), 4); assert_eq!(remote_txn[0].input.len(), 1); assert_eq!(remote_txn[0].input[0].previous_output.txid, chan.3.txid()); // Claim a HTLC without revocation (provide B monitor with preimage) nodes[1].node.claim_funds(payment_preimage); mine_transaction(&nodes[1], &remote_txn[0]); check_added_monitors!(nodes[1], 2); connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1); // Confirm blocks until the HTLC expires // One or more claim tx should have been broadcast, check it let timeout; let preimage; let preimage_bump; let feerate_timeout; let feerate_preimage; { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); // 9 transactions including: // 1*2 ChannelManager local broadcasts of commitment + HTLC-Success // 1*3 ChannelManager local broadcasts of commitment + HTLC-Success + HTLC-Timeout // 2 * HTLC-Success (one RBF bump we'll check later) // 1 * HTLC-Timeout assert_eq!(node_txn.len(), 8); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[6].input.len(), 1); check_spends!(node_txn[0], remote_txn[0]); check_spends!(node_txn[6], remote_txn[0]); assert_eq!(node_txn[0].input[0].previous_output, node_txn[3].input[0].previous_output); preimage_bump = node_txn[3].clone(); check_spends!(node_txn[1], chan.3); check_spends!(node_txn[2], node_txn[1]); assert_eq!(node_txn[1], node_txn[4]); assert_eq!(node_txn[2], node_txn[5]); timeout = node_txn[6].txid(); let index = node_txn[6].input[0].previous_output.vout; let fee = remote_txn[0].output[index as usize].value - node_txn[6].output[0].value; feerate_timeout = fee * 1000 / node_txn[6].get_weight() as u64; preimage = node_txn[0].txid(); let index = node_txn[0].input[0].previous_output.vout; let fee = remote_txn[0].output[index as usize].value - node_txn[0].output[0].value; feerate_preimage = fee * 1000 / node_txn[0].get_weight() as u64; node_txn.clear(); }; assert_ne!(feerate_timeout, 0); assert_ne!(feerate_preimage, 0); // After exhaustion of height timer, new bumped claim txn should have been broadcast, check it connect_blocks(&nodes[1], 15); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(preimage_bump.input.len(), 1); check_spends!(node_txn[0], remote_txn[0]); check_spends!(preimage_bump, remote_txn[0]); let index = preimage_bump.input[0].previous_output.vout; let fee = remote_txn[0].output[index as usize].value - preimage_bump.output[0].value; let new_feerate = fee * 1000 / preimage_bump.get_weight() as u64; assert!(new_feerate * 100 > feerate_timeout * 125); assert_ne!(timeout, preimage_bump.txid()); let index = node_txn[0].input[0].previous_output.vout; let fee = remote_txn[0].output[index as usize].value - node_txn[0].output[0].value; let new_feerate = fee * 1000 / node_txn[0].get_weight() as u64; assert!(new_feerate * 100 > feerate_preimage * 125); assert_ne!(preimage, node_txn[0].txid()); node_txn.clear(); } nodes[1].node.get_and_clear_pending_events(); nodes[1].node.get_and_clear_pending_msg_events(); } #[test] fn test_counterparty_raa_skip_no_crash() { // Previously, if our counterparty sent two RAAs in a row without us having provided a // commitment transaction, we would have happily carried on and provided them the next // commitment transaction based on one RAA forward. This would probably eventually have led to // channel closure, but it would not have resulted in funds loss. Still, our // EnforcingSigner would have panicked as it doesn't like jumps into the future. Here, we // check simply that the channel is closed in response to such an RAA, but don't check whether // we decide to punish our counterparty for revoking their funds (as we don't currently // implement that). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let channel_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2; let mut guard = nodes[0].node.channel_state.lock().unwrap(); let keys = guard.by_id.get_mut(&channel_id).unwrap().get_signer(); const INITIAL_COMMITMENT_NUMBER: u64 = (1 << 48) - 1; // Make signer believe we got a counterparty signature, so that it allows the revocation keys.get_enforcement_state().last_holder_commitment -= 1; let per_commitment_secret = keys.release_commitment_secret(INITIAL_COMMITMENT_NUMBER); // Must revoke without gaps keys.get_enforcement_state().last_holder_commitment -= 1; keys.release_commitment_secret(INITIAL_COMMITMENT_NUMBER - 1); keys.get_enforcement_state().last_holder_commitment -= 1; let next_per_commitment_point = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&keys.release_commitment_secret(INITIAL_COMMITMENT_NUMBER - 2)).unwrap()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &msgs::RevokeAndACK { channel_id, per_commitment_secret, next_per_commitment_point }); assert_eq!(check_closed_broadcast!(nodes[1], true).unwrap().data, "Received an unexpected revoke_and_ack"); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "Received an unexpected revoke_and_ack".to_string() }); } #[test] fn test_bump_txn_sanitize_tracking_maps() { // Sanitizing pendning_claim_request and claimable_outpoints used to be buggy, // verify we clean then right after expiration of ANTI_REORG_DELAY. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 59000000, InitFeatures::known(), InitFeatures::known()); // Lock HTLC in both directions let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9_000_000).0; route_payment(&nodes[1], &vec!(&nodes[0])[..], 9_000_000).0; let revoked_local_txn = get_local_commitment_txn!(nodes[1], chan.2); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan.3.txid()); // Revoke local commitment tx claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage); // Broadcast set of revoked txn on A connect_blocks(&nodes[0], TEST_FINAL_CLTV + 2 - CHAN_CONFIRM_DEPTH); expect_pending_htlcs_forwardable_ignore!(nodes[0]); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 0); mine_transaction(&nodes[0], &revoked_local_txn[0]); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); let penalty_txn = { let mut node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 4); //ChannelMonitor: justice txn * 3, ChannelManager: local commitment tx check_spends!(node_txn[0], revoked_local_txn[0]); check_spends!(node_txn[1], revoked_local_txn[0]); check_spends!(node_txn[2], revoked_local_txn[0]); let penalty_txn = vec![node_txn[0].clone(), node_txn[1].clone(), node_txn[2].clone()]; node_txn.clear(); penalty_txn }; let header_130 = BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_130, txdata: penalty_txn }); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); { let monitor = nodes[0].chain_monitor.chain_monitor.get_monitor(OutPoint { txid: chan.3.txid(), index: 0 }).unwrap(); assert!(monitor.inner.lock().unwrap().onchain_tx_handler.pending_claim_requests.is_empty()); assert!(monitor.inner.lock().unwrap().onchain_tx_handler.claimable_outpoints.is_empty()); } } #[test] fn test_override_channel_config() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Node0 initiates a channel to node1 using the override config. let mut override_config = UserConfig::default(); override_config.own_channel_config.our_to_self_delay = 200; nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 16_000_000, 12_000_000, 42, Some(override_config)).unwrap(); // Assert the channel created by node0 is using the override config. let res = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert_eq!(res.channel_flags, 0); assert_eq!(res.to_self_delay, 200); } #[test] fn test_override_0msat_htlc_minimum() { let mut zero_config = UserConfig::default(); zero_config.own_channel_config.our_htlc_minimum_msat = 0; let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(zero_config.clone())]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 16_000_000, 12_000_000, 42, Some(zero_config)).unwrap(); let res = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); assert_eq!(res.htlc_minimum_msat, 1); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &res); let res = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); assert_eq!(res.htlc_minimum_msat, 1); } #[test] fn test_simple_mpp() { // Simple test of sending a multi-path payment. let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } #[test] fn test_preimage_storage() { // Simple test of payment preimage storage allowing no client-side storage to claim payments let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; { let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(100_000), 7200, 42); let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); } // Note that after leaving the above scope we have no knowledge of any arguments or return // values from previous calls. expect_pending_htlcs_forwardable!(nodes[1]); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { ref purpose, .. } => { match &purpose { PaymentPurpose::InvoicePayment { payment_preimage, user_payment_id, .. } => { assert_eq!(*user_payment_id, 42); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage.unwrap()); }, _ => panic!("expected PaymentPurpose::InvoicePayment") } }, _ => panic!("Unexpected event"), } } #[test] fn test_secret_timeout() { // Simple test of payment secret storage time outs let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let (payment_hash, payment_secret_1) = nodes[1].node.create_inbound_payment(Some(100_000), 2, 0); // We should fail to register the same payment hash twice, at least until we've connected a // block with time 7200 + CHAN_CONFIRM_DEPTH + 1. if let Err(APIError::APIMisuseError { err }) = nodes[1].node.create_inbound_payment_for_hash(payment_hash, Some(100_000), 2, 0) { assert_eq!(err, "Duplicate payment hash"); } else { panic!(); } let mut block = { let node_1_blocks = nodes[1].blocks.lock().unwrap(); Block { header: BlockHeader { version: 0x2000000, prev_blockhash: node_1_blocks.last().unwrap().0.block_hash(), merkle_root: Default::default(), time: node_1_blocks.len() as u32 + 7200, bits: 42, nonce: 42 }, txdata: vec![], } }; connect_block(&nodes[1], &block); if let Err(APIError::APIMisuseError { err }) = nodes[1].node.create_inbound_payment_for_hash(payment_hash, Some(100_000), 2, 0) { assert_eq!(err, "Duplicate payment hash"); } else { panic!(); } // If we then connect the second block, we should be able to register the same payment hash // again with a different user_payment_id (this time getting a new payment secret). block.header.prev_blockhash = block.header.block_hash(); block.header.time += 1; connect_block(&nodes[1], &block); let our_payment_secret = nodes[1].node.create_inbound_payment_for_hash(payment_hash, Some(100_000), 2, 42).unwrap(); assert_ne!(payment_secret_1, our_payment_secret); { let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.send_payment(&route, payment_hash, &Some(our_payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); } // Note that after leaving the above scope we have no knowledge of any arguments or return // values from previous calls. expect_pending_htlcs_forwardable!(nodes[1]); let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { purpose: PaymentPurpose::InvoicePayment { payment_preimage, payment_secret, user_payment_id }, .. } => { assert!(payment_preimage.is_none()); assert_eq!(user_payment_id, 42); assert_eq!(payment_secret, our_payment_secret); // We don't actually have the payment preimage with which to claim this payment! }, _ => panic!("Unexpected event"), } } #[test] fn test_bad_secret_hash() { // Simple test of unregistered payment hash/invalid payment secret handling let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let random_payment_hash = PaymentHash([42; 32]); let random_payment_secret = PaymentSecret([43; 32]); let (our_payment_hash, our_payment_secret) = nodes[1].node.create_inbound_payment(Some(100_000), 2, 0); let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); // All the below cases should end up being handled exactly identically, so we macro the // resulting events. macro_rules! handle_unknown_invalid_payment_data { () => { check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // We have to forward pending HTLCs once to process the receipt of the HTLC and then // again to process the pending backwards-failure of the HTLC expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); // We should fail the payment back let mut events = nodes[1].node.get_and_clear_pending_msg_events(); match events.pop().unwrap() { MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. } } => { nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false); }, _ => panic!("Unexpected event"), } } } let expected_error_code = 0x4000|15; // incorrect_or_unknown_payment_details // Error data is the HTLC value (100,000) and current block height let expected_error_data = [0, 0, 0, 0, 0, 1, 0x86, 0xa0, 0, 0, 0, CHAN_CONFIRM_DEPTH as u8]; // Send a payment with the right payment hash but the wrong payment secret nodes[0].node.send_payment(&route, our_payment_hash, &Some(random_payment_secret)).unwrap(); handle_unknown_invalid_payment_data!(); expect_payment_failed!(nodes[0], our_payment_hash, true, expected_error_code, expected_error_data); // Send a payment with a random payment hash, but the right payment secret nodes[0].node.send_payment(&route, random_payment_hash, &Some(our_payment_secret)).unwrap(); handle_unknown_invalid_payment_data!(); expect_payment_failed!(nodes[0], random_payment_hash, true, expected_error_code, expected_error_data); // Send a payment with a random payment hash and random payment secret nodes[0].node.send_payment(&route, random_payment_hash, &Some(random_payment_secret)).unwrap(); handle_unknown_invalid_payment_data!(); expect_payment_failed!(nodes[0], random_payment_hash, true, expected_error_code, expected_error_data); } #[test] fn test_update_err_monitor_lockdown() { // Our monitor will lock update of local commitment transaction if a broadcastion condition // has been fulfilled (either force-close from Channel or block height requiring a HTLC- // timeout). Trying to update monitor after lockdown should return a ChannelMonitorUpdateErr. // // This scenario may happen in a watchtower setup, where watchtower process a block height // triggering a timeout while a slow-block-processing ChannelManager receives a local signed // commitment at same time. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channel let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let outpoint = OutPoint { txid: chan_1.3.txid(), index: 0 }; // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 10_000_000); // Route a HTLC from node 0 to node 1 (but don't settle) let preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 9_000_000).0; // Copy ChainMonitor to simulate a watchtower and update block height of node 0 until its ChannelMonitor timeout HTLC onchain let chain_source = test_utils::TestChainSource::new(Network::Testnet); let logger = test_utils::TestLogger::with_id(format!("node {}", 0)); let persister = test_utils::TestPersister::new(); let watchtower = { let monitor = nodes[0].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap(); let mut w = test_utils::TestVecWriter(Vec::new()); monitor.write(&mut w).unwrap(); let new_monitor = <(BlockHash, channelmonitor::ChannelMonitor)>::read( &mut io::Cursor::new(&w.0), &test_utils::OnlyReadsKeysInterface {}).unwrap().1; assert!(new_monitor == *monitor); let watchtower = test_utils::TestChainMonitor::new(Some(&chain_source), &chanmon_cfgs[0].tx_broadcaster, &logger, &chanmon_cfgs[0].fee_estimator, &persister, &node_cfgs[0].keys_manager); assert!(watchtower.watch_channel(outpoint, new_monitor).is_ok()); watchtower }; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; // Make the tx_broadcaster aware of enough blocks that it doesn't think we're violating // transaction lock time requirements here. chanmon_cfgs[0].tx_broadcaster.blocks.lock().unwrap().resize(200, (header, 0)); watchtower.chain_monitor.block_connected(&Block { header, txdata: vec![] }, 200); // Try to update ChannelMonitor assert!(nodes[1].node.claim_funds(preimage)); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]); if let Some(ref mut channel) = nodes[0].node.channel_state.lock().unwrap().by_id.get_mut(&chan_1.2) { if let Ok((_, _, update)) = channel.commitment_signed(&updates.commitment_signed, &node_cfgs[0].logger) { if let Err(_) = watchtower.chain_monitor.update_channel(outpoint, update.clone()) {} else { assert!(false); } if let Ok(_) = nodes[0].chain_monitor.update_channel(outpoint, update) {} else { assert!(false); } } else { assert!(false); } } else { assert!(false); }; // Our local monitor is in-sync and hasn't processed yet timeout check_added_monitors!(nodes[0], 1); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); } #[test] fn test_concurrent_monitor_claim() { // Watchtower A receives block, broadcasts state N, then channel receives new state N+1, // sending it to both watchtowers, Bob accepts N+1, then receives block and broadcasts // the latest state N+1, Alice rejects state N+1, but Bob has already broadcast it, // state N+1 confirms. Alice claims output from state N+1. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channel let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let outpoint = OutPoint { txid: chan_1.3.txid(), index: 0 }; // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 10_000_000); // Route a HTLC from node 0 to node 1 (but don't settle) route_payment(&nodes[0], &vec!(&nodes[1])[..], 9_000_000).0; // Copy ChainMonitor to simulate watchtower Alice and update block height her ChannelMonitor timeout HTLC onchain let chain_source = test_utils::TestChainSource::new(Network::Testnet); let logger = test_utils::TestLogger::with_id(format!("node {}", "Alice")); let persister = test_utils::TestPersister::new(); let watchtower_alice = { let monitor = nodes[0].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap(); let mut w = test_utils::TestVecWriter(Vec::new()); monitor.write(&mut w).unwrap(); let new_monitor = <(BlockHash, channelmonitor::ChannelMonitor)>::read( &mut io::Cursor::new(&w.0), &test_utils::OnlyReadsKeysInterface {}).unwrap().1; assert!(new_monitor == *monitor); let watchtower = test_utils::TestChainMonitor::new(Some(&chain_source), &chanmon_cfgs[0].tx_broadcaster, &logger, &chanmon_cfgs[0].fee_estimator, &persister, &node_cfgs[0].keys_manager); assert!(watchtower.watch_channel(outpoint, new_monitor).is_ok()); watchtower }; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; // Make the tx_broadcaster aware of enough blocks that it doesn't think we're violating // transaction lock time requirements here. chanmon_cfgs[0].tx_broadcaster.blocks.lock().unwrap().resize((CHAN_CONFIRM_DEPTH + 1 + TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS) as usize, (header, 0)); watchtower_alice.chain_monitor.block_connected(&Block { header, txdata: vec![] }, CHAN_CONFIRM_DEPTH + 1 + TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS); // Watchtower Alice should have broadcast a commitment/HTLC-timeout { let mut txn = chanmon_cfgs[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 2); txn.clear(); } // Copy ChainMonitor to simulate watchtower Bob and make it receive a commitment update first. let chain_source = test_utils::TestChainSource::new(Network::Testnet); let logger = test_utils::TestLogger::with_id(format!("node {}", "Bob")); let persister = test_utils::TestPersister::new(); let watchtower_bob = { let monitor = nodes[0].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap(); let mut w = test_utils::TestVecWriter(Vec::new()); monitor.write(&mut w).unwrap(); let new_monitor = <(BlockHash, channelmonitor::ChannelMonitor)>::read( &mut io::Cursor::new(&w.0), &test_utils::OnlyReadsKeysInterface {}).unwrap().1; assert!(new_monitor == *monitor); let watchtower = test_utils::TestChainMonitor::new(Some(&chain_source), &chanmon_cfgs[0].tx_broadcaster, &logger, &chanmon_cfgs[0].fee_estimator, &persister, &node_cfgs[0].keys_manager); assert!(watchtower.watch_channel(outpoint, new_monitor).is_ok()); watchtower }; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; watchtower_bob.chain_monitor.block_connected(&Block { header, txdata: vec![] }, CHAN_CONFIRM_DEPTH + TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS); // Route another payment to generate another update with still previous HTLC pending let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 3000000); { nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); } check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(updates.update_add_htlcs.len(), 1); nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &updates.update_add_htlcs[0]); if let Some(ref mut channel) = nodes[0].node.channel_state.lock().unwrap().by_id.get_mut(&chan_1.2) { if let Ok((_, _, update)) = channel.commitment_signed(&updates.commitment_signed, &node_cfgs[0].logger) { // Watchtower Alice should already have seen the block and reject the update if let Err(_) = watchtower_alice.chain_monitor.update_channel(outpoint, update.clone()) {} else { assert!(false); } if let Ok(_) = watchtower_bob.chain_monitor.update_channel(outpoint, update.clone()) {} else { assert!(false); } if let Ok(_) = nodes[0].chain_monitor.update_channel(outpoint, update) {} else { assert!(false); } } else { assert!(false); } } else { assert!(false); }; // Our local monitor is in-sync and hasn't processed yet timeout check_added_monitors!(nodes[0], 1); //// Provide one more block to watchtower Bob, expect broadcast of commitment and HTLC-Timeout let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; watchtower_bob.chain_monitor.block_connected(&Block { header, txdata: vec![] }, CHAN_CONFIRM_DEPTH + 1 + TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS); // Watchtower Bob should have broadcast a commitment/HTLC-timeout let bob_state_y; { let mut txn = chanmon_cfgs[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 2); bob_state_y = txn[0].clone(); txn.clear(); }; // We confirm Bob's state Y on Alice, she should broadcast a HTLC-timeout let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; watchtower_alice.chain_monitor.block_connected(&Block { header, txdata: vec![bob_state_y.clone()] }, CHAN_CONFIRM_DEPTH + 2 + TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS); { let htlc_txn = chanmon_cfgs[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); // We broadcast twice the transaction, once due to the HTLC-timeout, once due // the onchain detection of the HTLC output assert_eq!(htlc_txn.len(), 2); check_spends!(htlc_txn[0], bob_state_y); check_spends!(htlc_txn[1], bob_state_y); } } #[test] fn test_pre_lockin_no_chan_closed_update() { // Test that if a peer closes a channel in response to a funding_created message we don't // generate a channel update (as the channel cannot appear on chain without a funding_signed // message). // // Doing so would imply a channel monitor update before the initial channel monitor // registration, violating our API guarantees. // // Previously, full_stack_target managed to hit this case by opening then closing a channel, // then opening a second channel with the same funding output as the first (which is not // rejected because the first channel does not exist in the ChannelManager) and closing it // before receiving funding_signed. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create an initial channel nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100000, 10001, 42, None).unwrap(); let mut open_chan_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_chan_msg); let accept_chan_msg = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id()); nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &accept_chan_msg); // Move the first channel through the funding flow... let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], 100000, 42); nodes[0].node.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); check_added_monitors!(nodes[0], 0); let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id()); let channel_id = ::chain::transaction::OutPoint { txid: funding_created_msg.funding_txid, index: funding_created_msg.funding_output_index }.to_channel_id(); nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &msgs::ErrorMessage { channel_id, data: "Hi".to_owned() }); assert!(nodes[0].chain_monitor.added_monitors.lock().unwrap().is_empty()); check_closed_event!(nodes[0], 2, ClosureReason::CounterpartyForceClosed { peer_msg: "Hi".to_string() }, true); } #[test] fn test_htlc_no_detection() { // This test is a mutation to underscore the detection logic bug we had // before #653. HTLC value routed is above the remaining balance, thus // inverting HTLC and `to_remote` output. HTLC will come second and // it wouldn't be seen by pre-#653 detection as we were enumerate()'ing // on a watched outputs vector (Vec) thus implicitly relying on // outputs order detection for correct spending children filtring. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); send_payment(&nodes[0], &vec!(&nodes[1])[..], 1_000_000); let (_, our_payment_hash, _) = route_payment(&nodes[0], &vec!(&nodes[1])[..], 2_000_000); let local_txn = get_local_commitment_txn!(nodes[0], chan_1.2); assert_eq!(local_txn[0].input.len(), 1); assert_eq!(local_txn[0].output.len(), 3); check_spends!(local_txn[0], chan_1.3); // Timeout HTLC on A's chain and so it can generate a HTLC-Timeout tx let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header, txdata: vec![local_txn[0].clone()] }); // We deliberately connect the local tx twice as this should provoke a failure calling // this test before #653 fix. chain::Listen::block_connected(&nodes[0].chain_monitor.chain_monitor, &Block { header, txdata: vec![local_txn[0].clone()] }, nodes[0].best_block_info().1 + 1); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); let htlc_timeout = { let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); check_spends!(node_txn[1], local_txn[0]); node_txn[1].clone() }; let header_201 = BlockHeader { version: 0x20000000, prev_blockhash: nodes[0].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[0], &Block { header: header_201, txdata: vec![htlc_timeout.clone()] }); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], our_payment_hash, true); } fn do_test_onchain_htlc_settlement_after_close(broadcast_alice: bool, go_onchain_before_fulfill: bool) { // If we route an HTLC, then learn the HTLC's preimage after the upstream channel has been // force-closed, we must claim that HTLC on-chain. (Given an HTLC forwarded from Alice --> Bob --> // Carol, Alice would be the upstream node, and Carol the downstream.) // // Steps of the test: // 1) Alice sends a HTLC to Carol through Bob. // 2) Carol doesn't settle the HTLC. // 3) If broadcast_alice is true, Alice force-closes her channel with Bob. Else Bob force closes. // Steps 4 and 5 may be reordered depending on go_onchain_before_fulfill. // 4) Bob sees the Alice's commitment on his chain or vice versa. An offered output is present // but can't be claimed as Bob doesn't have yet knowledge of the preimage. // 5) Carol release the preimage to Bob off-chain. // 6) Bob claims the offered output on the broadcasted commitment. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_ab = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 10001, InitFeatures::known(), InitFeatures::known()); // Steps (1) and (2): // Send an HTLC Alice --> Bob --> Carol, but Carol doesn't settle the HTLC back. let (payment_preimage, _payment_hash, _payment_secret) = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), 3_000_000); // Check that Alice's commitment transaction now contains an output for this HTLC. let alice_txn = get_local_commitment_txn!(nodes[0], chan_ab.2); check_spends!(alice_txn[0], chan_ab.3); assert_eq!(alice_txn[0].output.len(), 2); check_spends!(alice_txn[1], alice_txn[0]); // 2nd transaction is a non-final HTLC-timeout assert_eq!(alice_txn[1].input[0].witness.last().unwrap().len(), OFFERED_HTLC_SCRIPT_WEIGHT); assert_eq!(alice_txn.len(), 2); // Steps (3) and (4): // If `go_onchain_before_fufill`, broadcast the relevant commitment transaction and check that Bob // responds by (1) broadcasting a channel update and (2) adding a new ChannelMonitor. let mut force_closing_node = 0; // Alice force-closes if !broadcast_alice { force_closing_node = 1; } // Bob force-closes nodes[force_closing_node].node.force_close_channel(&chan_ab.2).unwrap(); check_closed_broadcast!(nodes[force_closing_node], true); check_added_monitors!(nodes[force_closing_node], 1); check_closed_event!(nodes[force_closing_node], 1, ClosureReason::HolderForceClosed); if go_onchain_before_fulfill { let txn_to_broadcast = match broadcast_alice { true => alice_txn.clone(), false => get_local_commitment_txn!(nodes[1], chan_ab.2) }; let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; connect_block(&nodes[1], &Block { header, txdata: vec![txn_to_broadcast[0].clone()]}); let mut bob_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); if broadcast_alice { check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); } assert_eq!(bob_txn.len(), 1); check_spends!(bob_txn[0], chan_ab.3); } // Step (5): // Carol then claims the funds and sends an update_fulfill message to Bob, and they go through the // process of removing the HTLC from their commitment transactions. assert!(nodes[2].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[2], 1); let carol_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); assert!(carol_updates.update_add_htlcs.is_empty()); assert!(carol_updates.update_fail_htlcs.is_empty()); assert!(carol_updates.update_fail_malformed_htlcs.is_empty()); assert!(carol_updates.update_fee.is_none()); assert_eq!(carol_updates.update_fulfill_htlcs.len(), 1); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &carol_updates.update_fulfill_htlcs[0]); expect_payment_forwarded!(nodes[1], if go_onchain_before_fulfill || force_closing_node == 1 { None } else { Some(1000) }, false); // If Alice broadcasted but Bob doesn't know yet, here he prepares to tell her about the preimage. if !go_onchain_before_fulfill && broadcast_alice { let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, .. } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), }; } nodes[1].node.handle_commitment_signed(&nodes[2].node.get_our_node_id(), &carol_updates.commitment_signed); // One monitor update for the preimage to update the Bob<->Alice channel, one monitor update // Carol<->Bob's updated commitment transaction info. check_added_monitors!(nodes[1], 2); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); let bob_revocation = match events[0] { MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[2].node.get_our_node_id()); (*msg).clone() }, _ => panic!("Unexpected event"), }; let bob_updates = match events[1] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, nodes[2].node.get_our_node_id()); (*updates).clone() }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bob_revocation); check_added_monitors!(nodes[2], 1); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bob_updates.commitment_signed); check_added_monitors!(nodes[2], 1); let events = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let carol_revocation = match events[0] { MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); (*msg).clone() }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_revoke_and_ack(&nodes[2].node.get_our_node_id(), &carol_revocation); check_added_monitors!(nodes[1], 1); // If this test requires the force-closed channel to not be on-chain until after the fulfill, // here's where we put said channel's commitment tx on-chain. let mut txn_to_broadcast = alice_txn.clone(); if !broadcast_alice { txn_to_broadcast = get_local_commitment_txn!(nodes[1], chan_ab.2); } if !go_onchain_before_fulfill { let header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42}; connect_block(&nodes[1], &Block { header, txdata: vec![txn_to_broadcast[0].clone()]}); // If Bob was the one to force-close, he will have already passed these checks earlier. if broadcast_alice { check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); } let mut bob_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); if broadcast_alice { // In `connect_block()`, the ChainMonitor and ChannelManager are separately notified about a // new block being connected. The ChannelManager being notified triggers a monitor update, // which triggers broadcasting our commitment tx and an HTLC-claiming tx. The ChainMonitor // being notified triggers the HTLC-claiming tx redundantly, resulting in 3 total txs being // broadcasted. assert_eq!(bob_txn.len(), 3); check_spends!(bob_txn[1], chan_ab.3); } else { assert_eq!(bob_txn.len(), 2); check_spends!(bob_txn[0], chan_ab.3); } } // Step (6): // Finally, check that Bob broadcasted a preimage-claiming transaction for the HTLC output on the // broadcasted commitment transaction. { let bob_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); if go_onchain_before_fulfill { // Bob should now have an extra broadcasted tx, for the preimage-claiming transaction. assert_eq!(bob_txn.len(), 2); } let script_weight = match broadcast_alice { true => OFFERED_HTLC_SCRIPT_WEIGHT, false => ACCEPTED_HTLC_SCRIPT_WEIGHT }; // If Alice force-closed and Bob didn't receive her commitment transaction until after he // received Carol's fulfill, he broadcasts the HTLC-output-claiming transaction first. Else if // Bob force closed or if he found out about Alice's commitment tx before receiving Carol's // fulfill, then he broadcasts the HTLC-output-claiming transaction second. if broadcast_alice && !go_onchain_before_fulfill { check_spends!(bob_txn[0], txn_to_broadcast[0]); assert_eq!(bob_txn[0].input[0].witness.last().unwrap().len(), script_weight); } else { check_spends!(bob_txn[1], txn_to_broadcast[0]); assert_eq!(bob_txn[1].input[0].witness.last().unwrap().len(), script_weight); } } } #[test] fn test_onchain_htlc_settlement_after_close() { do_test_onchain_htlc_settlement_after_close(true, true); do_test_onchain_htlc_settlement_after_close(false, true); // Technically redundant, but may as well do_test_onchain_htlc_settlement_after_close(true, false); do_test_onchain_htlc_settlement_after_close(false, false); } #[test] fn test_duplicate_chan_id() { // Test that if a given peer tries to open a channel with the same channel_id as one that is // already open we reject it and keep the old channel. // // Previously, full_stack_target managed to figure out that if you tried to open two channels // with the same funding output (ie post-funding channel_id), we'd create a monitor update for // the existing channel when we detect the duplicate new channel, screwing up our monitor // updating logic for the existing channel. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create an initial channel nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100000, 10001, 42, None).unwrap(); let mut open_chan_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_chan_msg); nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id())); // Try to create a second channel with the same temporary_channel_id as the first and check // that it is rejected. nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_chan_msg); { let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { ref msg }, node_id } => { // Technically, at this point, nodes[1] would be justified in thinking both the // first (valid) and second (invalid) channels are closed, given they both have // the same non-temporary channel_id. However, currently we do not, so we just // move forward with it. assert_eq!(msg.channel_id, open_chan_msg.temporary_channel_id); assert_eq!(node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } } // Move the first channel through the funding flow... let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], 100000, 42); nodes[0].node.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap(); check_added_monitors!(nodes[0], 0); let mut funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id()); nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg); { let mut added_monitors = nodes[1].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let funding_signed_msg = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id()); let funding_outpoint = ::chain::transaction::OutPoint { txid: funding_created_msg.funding_txid, index: funding_created_msg.funding_output_index }; let channel_id = funding_outpoint.to_channel_id(); // Now we have the first channel past funding_created (ie it has a txid-based channel_id, not a // temporary one). // First try to open a second channel with a temporary channel id equal to the txid-based one. // Technically this is allowed by the spec, but we don't support it and there's little reason // to. Still, it shouldn't cause any other issues. open_chan_msg.temporary_channel_id = channel_id; nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_chan_msg); { let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { ref msg }, node_id } => { // Technically, at this point, nodes[1] would be justified in thinking both // channels are closed, but currently we do not, so we just move forward with it. assert_eq!(msg.channel_id, open_chan_msg.temporary_channel_id); assert_eq!(node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } } // Now try to create a second channel which has a duplicate funding output. nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100000, 10001, 42, None).unwrap(); let open_chan_2_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id()); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &open_chan_2_msg); nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id())); create_funding_transaction(&nodes[0], 100000, 42); // Get and check the FundingGenerationReady event let funding_created = { let mut a_channel_lock = nodes[0].node.channel_state.lock().unwrap(); let mut as_chan = a_channel_lock.by_id.get_mut(&open_chan_2_msg.temporary_channel_id).unwrap(); let logger = test_utils::TestLogger::new(); as_chan.get_outbound_funding_created(tx.clone(), funding_outpoint, &&logger).unwrap() }; check_added_monitors!(nodes[0], 0); nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created); // At this point we'll try to add a duplicate channel monitor, which will be rejected, but // still needs to be cleared here. check_added_monitors!(nodes[1], 1); // ...still, nodes[1] will reject the duplicate channel. { let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::HandleError { action: ErrorAction::SendErrorMessage { ref msg }, node_id } => { // Technically, at this point, nodes[1] would be justified in thinking both // channels are closed, but currently we do not, so we just move forward with it. assert_eq!(msg.channel_id, channel_id); assert_eq!(node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } } // finally, finish creating the original channel and send a payment over it to make sure // everything is functional. nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed_msg); { let mut added_monitors = nodes[0].chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 0); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &as_update, &bs_update); send_payment(&nodes[0], &[&nodes[1]], 8000000); } #[test] fn test_error_chans_closed() { // Test that we properly handle error messages, closing appropriate channels. // // Prior to #787 we'd allow a peer to make us force-close a channel we had with a different // peer. The "real" fix for that is to index channels with peers_ids, however in the mean time // we can test various edge cases around it to ensure we don't regress. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Create some initial channels let chan_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); let chan_2 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); let chan_3 = create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100000, 10001, InitFeatures::known(), InitFeatures::known()); assert_eq!(nodes[0].node.list_usable_channels().len(), 3); assert_eq!(nodes[1].node.list_usable_channels().len(), 2); assert_eq!(nodes[2].node.list_usable_channels().len(), 1); // Closing a channel from a different peer has no effect nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &msgs::ErrorMessage { channel_id: chan_3.2, data: "ERR".to_owned() }); assert_eq!(nodes[0].node.list_usable_channels().len(), 3); // Closing one channel doesn't impact others nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &msgs::ErrorMessage { channel_id: chan_2.2, data: "ERR".to_owned() }); check_added_monitors!(nodes[0], 1); check_closed_broadcast!(nodes[0], false); check_closed_event!(nodes[0], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "ERR".to_string() }); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); assert_eq!(nodes[0].node.list_usable_channels().len(), 2); assert!(nodes[0].node.list_usable_channels()[0].channel_id == chan_1.2 || nodes[0].node.list_usable_channels()[1].channel_id == chan_1.2); assert!(nodes[0].node.list_usable_channels()[0].channel_id == chan_3.2 || nodes[0].node.list_usable_channels()[1].channel_id == chan_3.2); // A null channel ID should close all channels let _chan_4 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &msgs::ErrorMessage { channel_id: [0; 32], data: "ERR".to_owned() }); check_added_monitors!(nodes[0], 2); check_closed_event!(nodes[0], 2, ClosureReason::CounterpartyForceClosed { peer_msg: "ERR".to_string() }); let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); match events[0] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { assert_eq!(msg.contents.flags & 2, 2); }, _ => panic!("Unexpected event"), } match events[1] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { assert_eq!(msg.contents.flags & 2, 2); }, _ => panic!("Unexpected event"), } // Note that at this point users of a standard PeerHandler will end up calling // peer_disconnected with no_connection_possible set to false, duplicating the // close-all-channels logic. That's OK, we don't want to end up not force-closing channels for // users with their own peer handling logic. We duplicate the call here, however. assert_eq!(nodes[0].node.list_usable_channels().len(), 1); assert!(nodes[0].node.list_usable_channels()[0].channel_id == chan_3.2); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), true); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); assert!(nodes[0].node.list_usable_channels()[0].channel_id == chan_3.2); } #[test] fn test_invalid_funding_tx() { // Test that we properly handle invalid funding transactions sent to us from a peer. // // Previously, all other major lightning implementations had failed to properly sanitize // funding transactions from their counterparties, leading to a multi-implementation critical // security vulnerability (though we always sanitized properly, we've previously had // un-released crashes in the sanitization process). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 10_000, 42, None).unwrap(); nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), InitFeatures::known(), &get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id())); nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), InitFeatures::known(), &get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id())); let (temporary_channel_id, mut tx, _) = create_funding_transaction(&nodes[0], 100_000, 42); for output in tx.output.iter_mut() { // Make the confirmed funding transaction have a bogus script_pubkey output.script_pubkey = bitcoin::Script::new(); } nodes[0].node.funding_transaction_generated_unchecked(&temporary_channel_id, tx.clone(), 0).unwrap(); nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id())); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id())); check_added_monitors!(nodes[0], 1); let events_1 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 0); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0], tx); nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); confirm_transaction_at(&nodes[1], &tx, 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); check_added_monitors!(nodes[1], 1); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); if let MessageSendEvent::HandleError { node_id, action } = &events_2[0] { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); if let msgs::ErrorAction::SendErrorMessage { msg } = action { assert_eq!(msg.data, "funding tx had wrong script/value or output index"); } else { panic!(); } } else { panic!(); } assert_eq!(nodes[1].node.list_channels().len(), 0); } fn do_test_tx_confirmed_skipping_blocks_immediate_broadcast(test_height_before_timelock: bool) { // In the first version of the chain::Confirm interface, after a refactor was made to not // broadcast CSV-locked transactions until their CSV lock is up, we wouldn't reliably broadcast // transactions after a `transactions_confirmed` call. Specifically, if the chain, provided via // `best_block_updated` is at height N, and a transaction output which we wish to spend at // height N-1 (due to a CSV to height N-1) is provided at height N, we will not broadcast the // spending transaction until height N+1 (or greater). This was due to the way // `ChannelMonitor::transactions_confirmed` worked, only checking if we should broadcast a // spending transaction at the height the input transaction was confirmed at, not whether we // should broadcast a spending transaction at the current height. // A second, similar, issue involved failing HTLCs backwards - because we only provided the // height at which transactions were confirmed to `OnchainTx::update_claims_view`, it wasn't // aware that the anti-reorg-delay had, in fact, already expired, waiting to fail-backwards // until we learned about an additional block. // // As an additional check, if `test_height_before_timelock` is set, we instead test that we // aren't broadcasting transactions too early (ie not broadcasting them at all). let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); *nodes[0].connect_style.borrow_mut() = ConnectStyle::BestBlockFirstSkippingBlocks; create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (chan_announce, _, channel_id, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000); nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.force_close_channel(&channel_id).unwrap(); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed); check_added_monitors!(nodes[1], 1); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 1); let conf_height = nodes[1].best_block_info().1; if !test_height_before_timelock { connect_blocks(&nodes[1], 24 * 6); } nodes[1].chain_monitor.chain_monitor.transactions_confirmed( &nodes[1].get_block_header(conf_height), &[(0, &node_txn[0])], conf_height); if test_height_before_timelock { // If we confirmed the close transaction, but timelocks have not yet expired, we should not // generate any events or broadcast any transactions assert!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); } else { // We should broadcast an HTLC transaction spending our funding transaction first let spending_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(spending_txn.len(), 2); assert_eq!(spending_txn[0], node_txn[0]); check_spends!(spending_txn[1], node_txn[0]); // We should also generate a SpendableOutputs event with the to_self output (as its // timelock is up). let descriptor_spend_txn = check_spendable_outputs!(nodes[1], node_cfgs[1].keys_manager); assert_eq!(descriptor_spend_txn.len(), 1); // If we also discover that the HTLC-Timeout transaction was confirmed some time ago, we // should immediately fail-backwards the HTLC to the previous hop, without waiting for an // additional block built on top of the current chain. nodes[1].chain_monitor.chain_monitor.transactions_confirmed( &nodes[1].get_block_header(conf_height + 1), &[(0, &spending_txn[1])], conf_height + 1); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert_eq!(updates.update_fail_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true); expect_payment_failed_with_update!(nodes[0], payment_hash, false, chan_announce.contents.short_channel_id, true); } } #[test] fn test_tx_confirmed_skipping_blocks_immediate_broadcast() { do_test_tx_confirmed_skipping_blocks_immediate_broadcast(false); do_test_tx_confirmed_skipping_blocks_immediate_broadcast(true); } #[test] fn test_forwardable_regen() { // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive // HTLCs. // We test it for both payment receipt and payment forwarding. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()).2; // First send a payment to nodes[1] let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable_ignore!(nodes[1]); // Next send a payment which is forwarded by nodes[1] let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000); nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // There is already a PendingHTLCsForwardable event "pending" so another one will not be // generated assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); let nodes_1_serialized = nodes[1].node.encode(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[1], chan_id_1).write(&mut chan_0_monitor_serialized).unwrap(); get_monitor!(nodes[1], chan_id_2).write(&mut chan_1_monitor_serialized).unwrap(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[1].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager); nodes[1].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..]; let (_, mut chan_1_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_1_monitor_read, keys_manager).unwrap(); assert!(chan_1_monitor_read.is_empty()); let mut nodes_1_read = &nodes_1_serialized[..]; let (_, nodes_1_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); channel_monitors.insert(chan_1_monitor.get_funding_txo().0, &mut chan_1_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_1_read, ChannelManagerReadArgs { default_config: UserConfig::default(), keys_manager, fee_estimator: node_cfgs[1].fee_estimator, chain_monitor: nodes[1].chain_monitor, tx_broadcaster: nodes[1].tx_broadcaster.clone(), logger: nodes[1].logger, channel_monitors, }).unwrap() }; nodes_1_deserialized = nodes_1_deserialized_tmp; assert!(nodes_1_read.is_empty()); assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); assert!(nodes[1].chain_monitor.watch_channel(chan_1_monitor.get_funding_txo().0, chan_1_monitor).is_ok()); nodes[1].node = &nodes_1_deserialized; check_added_monitors!(nodes[1], 2); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Note that nodes[1] and nodes[2] resend their funding_locked here since they haven't updated // the commitment state. reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_received!(nodes[1], payment_hash, payment_secret, 100_000); check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); expect_payment_received!(nodes[2], payment_hash_2, payment_secret_2, 200_000); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2); } #[test] fn test_keysend_payments_to_public_node() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let _chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100000, 10001, InitFeatures::known(), InitFeatures::known()); let network_graph = &nodes[0].net_graph_msg_handler.network_graph; let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); let scorer = Scorer::new(0); let route = get_keysend_route( &payer_pubkey, &network_graph, &payee_pubkey, None, &vec![], 10000, 40, nodes[0].logger, &scorer ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(test_preimage)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let event = events.pop().unwrap(); let path = vec![&nodes[1]]; pass_along_path(&nodes[0], &path, 10000, payment_hash, None, event, true, Some(test_preimage)); claim_payment(&nodes[0], &path, test_preimage); } #[test] fn test_keysend_payments_to_private_node() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let payer_pubkey = nodes[0].node.get_our_node_id(); let payee_pubkey = nodes[1].node.get_our_node_id(); nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() }); nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() }); let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known()); let network_graph = &nodes[0].net_graph_msg_handler.network_graph; let first_hops = nodes[0].node.list_usable_channels(); let scorer = Scorer::new(0); let route = get_keysend_route( &payer_pubkey, &network_graph, &payee_pubkey, Some(&first_hops.iter().collect::>()), &vec![], 10000, 40, nodes[0].logger, &scorer ).unwrap(); let test_preimage = PaymentPreimage([42; 32]); let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(test_preimage)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let event = events.pop().unwrap(); let path = vec![&nodes[1]]; pass_along_path(&nodes[0], &path, 10000, payment_hash, None, event, true, Some(test_preimage)); claim_payment(&nodes[0], &path, test_preimage); }