// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Functional tests which test for correct behavior across node restarts. use crate::chain::{ChannelMonitorUpdateStatus, Watch}; use crate::chain::chaininterface::LowerBoundedFeeEstimator; use crate::chain::channelmonitor::ChannelMonitor; use crate::chain::keysinterface::EntropySource; use crate::chain::transaction::OutPoint; use crate::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider}; use crate::ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, RecipientOnionFields}; use crate::ln::msgs; use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction}; use crate::util::enforcing_trait_impls::EnforcingSigner; use crate::util::test_utils; use crate::util::errors::APIError; use crate::util::ser::{Writeable, ReadableArgs}; use crate::util::config::UserConfig; use crate::util::string::UntrustedString; use bitcoin::hash_types::BlockHash; use crate::prelude::*; use core::default::Default; use crate::sync::Mutex; use crate::ln::functional_test_utils::*; #[test] fn test_funding_peer_disconnect() { // Test that we can lock in our funding tx while disconnected let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); confirm_transaction(&nodes[0], &tx); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert!(events_1.is_empty()); reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); confirm_transaction(&nodes[1], &tx); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert!(events_2.is_empty()); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap(); let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap(); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap(); let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap(); // nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect. nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let events_3 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let as_channel_ready = match events_3[0] { MessageSendEvent::SendChannelReady { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event {:?}", events_3[0]), }; // nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send // announcement_signatures as well as channel_update. nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish); let events_4 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_4.len(), 3); let chan_id; let bs_channel_ready = match events_4[0] { MessageSendEvent::SendChannelReady { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); chan_id = msg.channel_id; msg.clone() }, _ => panic!("Unexpected event {:?}", events_4[0]), }; let bs_announcement_sigs = match events_4[1] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event {:?}", events_4[1]), }; match events_4[2] { MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event {:?}", events_4[2]), } // Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently // generates a duplicative private channel_update nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready); let events_5 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_5.len(), 1); match events_5[0] { MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event {:?}", events_5[0]), }; // When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its // announcement_signatures. nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready); let events_6 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_6.len(), 1); let as_announcement_sigs = match events_6[0] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event {:?}", events_6[0]), }; expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id()); expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id()); // When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately // broadcast the channel announcement globally, as well as re-send its (now-public) // channel_update. nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs); let events_7 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_7.len(), 1); let (chan_announcement, as_update) = match events_7[0] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { (msg.clone(), update_msg.clone().unwrap()) }, _ => panic!("Unexpected event {:?}", events_7[0]), }; // Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the // same channel_announcement. nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs); let events_8 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_8.len(), 1); let bs_update = match events_8[0] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { assert_eq!(*msg, chan_announcement); update_msg.clone().unwrap() }, _ => panic!("Unexpected event {:?}", events_8[0]), }; // Provide the channel announcement and public updates to the network graph nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap(); nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap(); nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap(); let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000); let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0; claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); // Check that after deserialization and reconnection we can still generate an identical // channel_announcement from the cached signatures. nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } #[test] fn test_no_txn_manager_serialize_deserialize() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); let chan_0_monitor_serialized = get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode(); reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap(); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap(); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready); for node in nodes.iter() { assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap()); node.gossip_sync.handle_channel_update(&as_update).unwrap(); node.gossip_sync.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_manager_serialize_deserialize_events() { // This test makes sure the events field in ChannelManager survives de/serialization let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Start creating a channel, but stop right before broadcasting the funding transaction let channel_value = 100000; let push_msat = 10001; let node_a = nodes.remove(0); let node_b = nodes.remove(0); node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap(); node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id())); node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id())); let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42); node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap(); check_added_monitors!(node_a, 0); node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id())); { let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id()); node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed); { let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } // Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead expect_channel_pending_event(&node_a, &node_b.node.get_our_node_id()); expect_channel_pending_event(&node_b, &node_a.node.get_our_node_id()); nodes.push(node_a); nodes.push(node_b); // Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode(); reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); // After deserializing, make sure the funding_transaction is still held by the channel manager let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 0); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid); // Make sure the channel is functioning as though the de/serialization never happened assert_eq!(nodes[0].node.list_channels().len(), 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap(); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap(); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready); for node in nodes.iter() { assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap()); node.gossip_sync.handle_channel_update(&as_update).unwrap(); node.gossip_sync.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_simple_manager_serialize_deserialize() { let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1).2; let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode(); reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash); claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage); } #[test] fn test_manager_serialize_deserialize_inconsistent_monitor() { // Test deserializing a ChannelManager with an out-of-date ChannelMonitor let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let logger: test_utils::TestLogger; let fee_estimator: test_utils::TestFeeEstimator; let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0).2; let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3); let mut node_0_stale_monitors_serialized = Vec::new(); for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] { let mut writer = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap(); node_0_stale_monitors_serialized.push(writer.0); } let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000); // Serialize the ChannelManager here, but the monitor we keep up-to-date let nodes_0_serialized = nodes[0].node.encode(); route_payment(&nodes[0], &[&nodes[3]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id()); nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id()); // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/ // nodes[3]) let mut node_0_monitors_serialized = Vec::new(); for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] { node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode()); } logger = test_utils::TestLogger::new(); fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) }; persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut node_0_stale_monitors = Vec::new(); for serialized in node_0_stale_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(BlockHash, ChannelMonitor)>::read(&mut read, (keys_manager, keys_manager)).unwrap(); assert!(read.is_empty()); node_0_stale_monitors.push(monitor); } let mut node_0_monitors = Vec::new(); for serialized in node_0_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(BlockHash, ChannelMonitor)>::read(&mut read, (keys_manager, keys_manager)).unwrap(); assert!(read.is_empty()); node_0_monitors.push(monitor); } let mut nodes_0_read = &nodes_0_serialized[..]; if let Err(msgs::DecodeError::InvalidValue) = <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), entropy_source: keys_manager, node_signer: keys_manager, signer_provider: keys_manager, fee_estimator: &fee_estimator, router: &nodes[0].router, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(), }) { } else { panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return"); }; let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = <(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::default(), entropy_source: keys_manager, node_signer: keys_manager, signer_provider: keys_manager, fee_estimator: &fee_estimator, router: nodes[0].router, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: &logger, channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(), }).unwrap(); nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); for monitor in node_0_monitors.drain(..) { assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor), ChannelMonitorUpdateStatus::Completed); check_added_monitors!(nodes[0], 1); } nodes[0].node = &nodes_0_deserialized; check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); { // Channel close should result in a commitment tx nodes[0].node.timer_tick_occurred(); let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 1); check_spends!(txn[0], funding_tx); assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid()); } check_added_monitors!(nodes[0], 1); // nodes[1] and nodes[2] have no lost state with nodes[0]... reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); //... and we can even still claim the payment! claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage); nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap(); let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap(); nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap(); nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish); let mut found_err = false; for msg_event in nodes[0].node.get_and_clear_pending_msg_events() { if let MessageSendEvent::HandleError { ref action, .. } = msg_event { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert_eq!(msg.channel_id, channel_id); assert!(!found_err); found_err = true; }, _ => panic!("Unexpected event!"), } } } assert!(found_err); } fn do_test_data_loss_protect(reconnect_panicing: bool) { // When we get a data_loss_protect proving we're behind, we immediately panic as the // chain::Watch API requirements have been violated (e.g. the user restored from a backup). The // panic message informs the user they should force-close without broadcasting, which is tested // if `reconnect_panicing` is not set. let mut chanmon_cfgs = create_chanmon_cfgs(2); // We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic // during signing due to revoked tx chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true; let persister; let new_chain_monitor; let nodes_0_deserialized; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000); // Cache node A state before any channel update let previous_node_state = nodes[0].node.encode(); let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode(); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id()); reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized); if reconnect_panicing { nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap(); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap(); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); // Check we close channel detecting A is fallen-behind // Check that we sent the warning message when we detected that A has fallen behind, // and give the possibility for A to recover from the warning. nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]); let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned(); assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg)); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); // The node B should not broadcast the transaction to force close the channel! assert!(node_txn.is_empty()); } let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); // Check A panics upon seeing proof it has fallen behind. nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]); return; // By this point we should have panic'ed! } nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap(); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); { let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 0); } for msg in nodes[0].node.get_and_clear_pending_msg_events() { if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg { } else if let MessageSendEvent::HandleError { ref action, .. } = msg { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert_eq!(msg.data, "Channel force-closed"); }, _ => panic!("Unexpected event!"), } } else { panic!("Unexpected event {:?}", msg) } } // after the warning message sent by B, we should not able to // use the channel, or reconnect with success to the channel. assert!(nodes[0].node.list_usable_channels().is_empty()); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: nodes[1].node.init_features(), remote_network_address: None }, true).unwrap(); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap(); let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]); let mut err_msgs_0 = Vec::with_capacity(1); for msg in nodes[0].node.get_and_clear_pending_msg_events() { if let MessageSendEvent::HandleError { ref action, .. } = msg { match action { &ErrorAction::SendErrorMessage { ref msg } => { assert_eq!(msg.data, format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())); err_msgs_0.push(msg.clone()); }, _ => panic!("Unexpected event!"), } } else { panic!("Unexpected event!"); } } assert_eq!(err_msgs_0.len(), 1); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]); assert!(nodes[1].node.list_usable_channels().is_empty()); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", &nodes[1].node.get_our_node_id())) }); check_closed_broadcast!(nodes[1], false); } #[test] #[should_panic] fn test_data_loss_protect_showing_stale_state_panics() { do_test_data_loss_protect(true); } #[test] fn test_force_close_without_broadcast() { do_test_data_loss_protect(false); } #[test] fn test_forwardable_regen() { // Tests that if we reload a ChannelManager while forwards are pending we will regenerate the // PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive // HTLCs. // We test it for both payment receipt and payment forwarding. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2; // First send a payment to nodes[1] let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.send_payment_with_route(&route, payment_hash, RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable_ignore!(nodes[1]); // Next send a payment which is forwarded by nodes[1] let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000); nodes[0].node.send_payment_with_route(&route_2, payment_hash_2, RecipientOnionFields::secret_only(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // There is already a PendingHTLCsForwardable event "pending" so another one will not be // generated assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id()); let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode(); let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode(); reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated // the commitment state. reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 100_000); check_added_monitors!(nodes[1], 1); let mut events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); expect_payment_claimable!(nodes[2], payment_hash_2, payment_secret_2, 200_000); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2); } fn do_test_partial_claim_before_restart(persist_both_monitors: bool) { // Test what happens if a node receives an MPP payment, claims it, but crashes before // persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only // updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still // have the PaymentClaimable event, (b) have one (or two) channel(s) that goes on chain with the // HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does // not have the preimage tied to the still-pending HTLC. // // To get to the correct state, on startup we should propagate the preimage to the // still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor // receiving the preimage without a state update. // // Further, we should generate a `PaymentClaimed` event to inform the user that the payment was // definitely claimed. let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestRouter, &test_utils::TestLogger>; let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0); create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0); let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0).2; let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0).2; // Create an MPP route for 15k sats, more than the default htlc-max of 10% let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000); assert_eq!(route.paths.len(), 2); route.paths.sort_by(|path_a, _| { // Sort the path so that the path through nodes[1] comes first if path_a[0].pubkey == nodes[1].node.get_our_node_id() { core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater } }); nodes[0].node.send_payment_with_route(&route, payment_hash, RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 2); // Send the payment through to nodes[3] *without* clearing the PaymentClaimable event let mut send_events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(send_events.len(), 2); let node_1_msgs = remove_first_msg_event_to_node(&nodes[1].node.get_our_node_id(), &mut send_events); let node_2_msgs = remove_first_msg_event_to_node(&nodes[2].node.get_our_node_id(), &mut send_events); do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_1_msgs, true, false, None); do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), node_2_msgs, true, false, None); // Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s // monitors and ChannelManager, for use later, if we don't want to persist both monitors. let mut original_monitor = test_utils::TestVecWriter(Vec::new()); if !persist_both_monitors { for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() { if outpoint.to_channel_id() == chan_id_not_persisted { assert!(original_monitor.0.is_empty()); nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap(); } } } let original_manager = nodes[3].node.encode(); expect_payment_claimable!(nodes[3], payment_hash, payment_secret, 15_000_000); nodes[3].node.claim_funds(payment_preimage); check_added_monitors!(nodes[3], 2); expect_payment_claimed!(nodes[3], payment_hash, 15_000_000); // Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we // crashed in between the two persistence calls - using one old ChannelMonitor and one new one, // with the old ChannelManager. let mut updated_monitor = test_utils::TestVecWriter(Vec::new()); for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() { if outpoint.to_channel_id() == chan_id_persisted { assert!(updated_monitor.0.is_empty()); nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap(); } } // If `persist_both_monitors` is set, get the second monitor here as well if persist_both_monitors { for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() { if outpoint.to_channel_id() == chan_id_not_persisted { assert!(original_monitor.0.is_empty()); nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap(); } } } // Now restart nodes[3]. reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized); // On startup the preimage should have been copied into the non-persisted monitor: assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash)); assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash)); nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id()); nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id()); // During deserialization, we should have closed one channel and broadcast its latest // commitment transaction. We should also still have the original PaymentClaimable event we // never finished processing. let events = nodes[3].node.get_and_clear_pending_events(); assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 }); if let Event::PaymentClaimable { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); } if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); } if persist_both_monitors { if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); } } // On restart, we should also get a duplicate PaymentClaimed event as we persisted the // ChannelManager prior to handling the original one. if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } = events[if persist_both_monitors { 3 } else { 2 }] { assert_eq!(payment_hash, our_payment_hash); } else { panic!(); } assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 }); if !persist_both_monitors { // If one of the two channels is still live, reveal the payment preimage over it. nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: nodes[2].node.init_features(), remote_network_address: None }, true).unwrap(); let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]); nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: nodes[3].node.init_features(), remote_network_address: None }, false).unwrap(); let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]); nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]); get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id()); assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty()); nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]); // Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC // claim should fly. let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events(); check_added_monitors!(nodes[3], 1); assert_eq!(ds_msgs.len(), 2); if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[0] {} else { panic!(); } let cs_updates = match ds_msgs[1] { MessageSendEvent::UpdateHTLCs { ref updates, .. } => { nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]); check_added_monitors!(nodes[2], 1); let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id()); expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false); commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true); cs_updates } _ => panic!(), }; nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true); expect_payment_sent!(nodes[0], payment_preimage); } } #[test] fn test_partial_claim_before_restart() { do_test_partial_claim_before_restart(false); do_test_partial_claim_before_restart(true); } fn do_forwarded_payment_no_manager_persistence(use_cs_commitment: bool, claim_htlc: bool, use_intercept: bool) { if !use_cs_commitment { assert!(!claim_htlc); } // If we go to forward a payment, and the ChannelMonitor persistence completes, but the // ChannelManager does not, we shouldn't try to forward the payment again, nor should we fail // it back until the ChannelMonitor decides the fate of the HTLC. // This was never an issue, but it may be easy to regress here going forward. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let mut intercept_forwards_config = test_default_channel_config(); intercept_forwards_config.accept_intercept_htlcs = true; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(intercept_forwards_config), None]); let persister; let new_chain_monitor; let nodes_1_deserialized; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2; let intercept_scid = nodes[1].node.get_intercept_scid(); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); if use_intercept { route.paths[0][1].short_channel_id = intercept_scid; } let payment_id = PaymentId(nodes[0].keys_manager.backing.get_secure_random_bytes()); let htlc_expiry = nodes[0].best_block_info().1 + TEST_FINAL_CLTV; nodes[0].node.send_payment_with_route(&route, payment_hash, RecipientOnionFields::secret_only(payment_secret), payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let payment_event = SendEvent::from_node(&nodes[0]); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); // Store the `ChannelManager` before handling the `PendingHTLCsForwardable`/`HTLCIntercepted` // events, expecting either event (and the HTLC itself) to be missing on reload even though its // present when we serialized. let node_encoded = nodes[1].node.encode(); let mut intercept_id = None; let mut expected_outbound_amount_msat = None; if use_intercept { let events = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::HTLCIntercepted { intercept_id: ev_id, expected_outbound_amount_msat: ev_amt, .. } => { intercept_id = Some(ev_id); expected_outbound_amount_msat = Some(ev_amt); }, _ => panic!() } nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_2, nodes[2].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap(); } expect_pending_htlcs_forwardable!(nodes[1]); let payment_event = SendEvent::from_node(&nodes[1]); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg); check_added_monitors!(nodes[2], 1); if claim_htlc { get_monitor!(nodes[2], chan_id_2).provide_payment_preimage(&payment_hash, &payment_preimage, &nodes[2].tx_broadcaster, &LowerBoundedFeeEstimator(nodes[2].fee_estimator), &nodes[2].logger); } assert!(nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty()); let _ = nodes[2].node.get_and_clear_pending_msg_events(); nodes[2].node.force_close_broadcasting_latest_txn(&chan_id_2, &nodes[1].node.get_our_node_id()).unwrap(); let cs_commitment_tx = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(cs_commitment_tx.len(), if claim_htlc { 2 } else { 1 }); check_added_monitors!(nodes[2], 1); check_closed_event!(nodes[2], 1, ClosureReason::HolderForceClosed); check_closed_broadcast!(nodes[2], true); let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode(); let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode(); reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized); // Note that this checks that this is the only event on nodes[1], implying the // `HTLCIntercepted` event has been removed in the `use_intercept` case. check_closed_event!(nodes[1], 1, ClosureReason::OutdatedChannelManager); if use_intercept { // Attempt to forward the HTLC back out over nodes[1]' still-open channel, ensuring we get // a intercept-doesn't-exist error. let forward_err = nodes[1].node.forward_intercepted_htlc(intercept_id.unwrap(), &chan_id_1, nodes[0].node.get_our_node_id(), expected_outbound_amount_msat.unwrap()).unwrap_err(); assert_eq!(forward_err, APIError::APIMisuseError { err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.unwrap().0)) }); } nodes[1].node.timer_tick_occurred(); let bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_commitment_tx.len(), 1); check_added_monitors!(nodes[1], 1); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); if use_cs_commitment { // If we confirm a commitment transaction that has the HTLC on-chain, nodes[1] should wait // for an HTLC-spending transaction before it does anything with the HTLC upstream. confirm_transaction(&nodes[1], &cs_commitment_tx[0]); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); if claim_htlc { confirm_transaction(&nodes[1], &cs_commitment_tx[1]); } else { connect_blocks(&nodes[1], htlc_expiry - nodes[1].best_block_info().1); let bs_htlc_timeout_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_timeout_tx.len(), 1); confirm_transaction(&nodes[1], &bs_htlc_timeout_tx[0]); } } else { confirm_transaction(&nodes[1], &bs_commitment_tx[0]); } if !claim_htlc { expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]); } else { expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], Some(1000), false, true); } check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fulfill_htlcs, update_fail_htlcs, commitment_signed, .. }, .. } => { if claim_htlc { nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]); } else { nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); } commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false); }, _ => panic!("Unexpected event"), } if claim_htlc { expect_payment_sent!(nodes[0], payment_preimage); } else { expect_payment_failed!(nodes[0], payment_hash, false); } } #[test] fn forwarded_payment_no_manager_persistence() { do_forwarded_payment_no_manager_persistence(true, true, false); do_forwarded_payment_no_manager_persistence(true, false, false); do_forwarded_payment_no_manager_persistence(false, false, false); } #[test] fn intercepted_payment_no_manager_persistence() { do_forwarded_payment_no_manager_persistence(true, true, true); do_forwarded_payment_no_manager_persistence(true, false, true); do_forwarded_payment_no_manager_persistence(false, false, true); } #[test] fn removed_payment_no_manager_persistence() { // If an HTLC is failed to us on a channel, and the ChannelMonitor persistence completes, but // the corresponding ChannelManager persistence does not, we need to ensure that the HTLC is // still failed back to the previous hop even though the ChannelMonitor now no longer is aware // of the HTLC. This was previously broken as no attempt was made to figure out which HTLCs // were left dangling when a channel was force-closed due to a stale ChannelManager. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister; let new_chain_monitor; let nodes_1_deserialized; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1).2; let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2).2; let (_, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000); let node_encoded = nodes[1].node.encode(); nodes[2].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[2], 1); let events = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => { nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &update_fail_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[2], commitment_signed, false); }, _ => panic!("Unexpected event"), } let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode(); let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode(); reload_node!(nodes[1], node_encoded, &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized); match nodes[1].node.pop_pending_event().unwrap() { Event::ChannelClosed { ref reason, .. } => { assert_eq!(*reason, ClosureReason::OutdatedChannelManager); }, _ => panic!("Unexpected event"), } // Now that the ChannelManager has force-closed the channel which had the HTLC removed, it is // now forgotten everywhere. The ChannelManager should have, as a side-effect of reload, // learned that the HTLC is gone from the ChannelMonitor and added it to the to-fail-back set. nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id()); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]); check_added_monitors!(nodes[1], 1); let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match &events[0] { MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { update_fail_htlcs, commitment_signed, .. }, .. } => { nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], commitment_signed, false); }, _ => panic!("Unexpected event"), } expect_payment_failed!(nodes[0], payment_hash, false); }