// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry //! payments thereafter. use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch}; use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS}; use chain::transaction::OutPoint; use chain::keysinterface::KeysInterface; use ln::channel::EXPIRE_PREV_CONFIG_TICKS; use ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure}; use ln::msgs; use ln::msgs::ChannelMessageHandler; use routing::router::{PaymentParameters, get_route}; use util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider}; use util::test_utils; use util::errors::APIError; use util::enforcing_trait_impls::EnforcingSigner; use util::ser::{ReadableArgs, Writeable}; use io; use bitcoin::{Block, BlockHeader, BlockHash, TxMerkleNode}; use bitcoin::hashes::Hash; use bitcoin::network::constants::Network; use prelude::*; use ln::functional_test_utils::*; #[test] fn retry_single_path_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Rebalance the channel so the retry succeeds. send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); // Mine two blocks (we expire retries after 3, so this will check that we don't expire early) connect_blocks(&nodes[0], 2); // Retry the payment and make sure it succeeds. nodes[0].node.retry_payment(&route, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); } #[test] fn mpp_failure() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id; let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret); fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash); } #[test] fn mpp_retry() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id; route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id; route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id; // Initiate the MPP payment. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 2); // one monitor per path let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); // Pass half of the payment along the success path. let success_path_msgs = events.remove(0); pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None); // Add the HTLC along the first hop. let fail_path_msgs_1 = events.remove(0); let (update_add, commitment_signed) = match fail_path_msgs_1 { MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(update_add_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); (update_add_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add); commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false); // Attempt to forward the payment and complete the 2nd path's failure. expect_pending_htlcs_forwardable!(&nodes[2]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]); let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[2], 1); nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Rebalance the channel so the second half of the payment can succeed. send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); // Make sure it errors as expected given a too-large amount. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) { assert!(err.contains("over total_payment_amt_msat")); } else { panic!("Unexpected error"); } // Make sure it errors as expected given the wrong payment_id. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } // Retry the second half of the payment and make sure it succeeds. let mut path = route.clone(); path.paths.remove(0); nodes[0].node.retry_payment(&path, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } fn do_mpp_receive_timeout(send_partial_mpp: bool) { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id; route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id; route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id; // Initiate the MPP payment. let _ = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 2); // one monitor per path let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); // Pass half of the payment along the first path. pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None); if send_partial_mpp { // Time out the partial MPP for _ in 0..MPP_TIMEOUT_TICKS { nodes[3].node.timer_tick_occurred(); } // Failed HTLC from node 3 -> 1 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]); let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id()); assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1); nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]); check_added_monitors!(nodes[3], 1); commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false); // Failed HTLC from node 1 -> 0 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]); let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]); check_added_monitors!(nodes[1], 1); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..])); } else { // Pass half of the payment along the second path. pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None); // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts for _ in 0..MPP_TIMEOUT_TICKS { nodes[3].node.timer_tick_occurred(); } claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } } #[test] fn mpp_receive_timeout() { do_mpp_receive_timeout(true); do_mpp_receive_timeout(false); } #[test] fn retry_expired_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false); // Mine blocks so the payment will have expired. connect_blocks(&nodes[0], 3); // Retry the payment and make sure it errors as expected. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } } #[test] fn no_pending_leak_on_initial_send_failure() { // In an earlier version of our payment tracking, we'd have a retry entry even when the initial // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a // pending payment forever and never time it out. // Here we test exactly that - retrying a payment when a peer was disconnected on the first // try, and then check that no pending payment is being tracked. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!")); assert!(!nodes[0].node.has_pending_payments()); } fn do_retry_with_no_persist(confirm_before_reload: bool) { // If we send a pending payment and `send_payment` returns success, we should always either // return a payment failure event or a payment success event, and on failure the payment should // be retryable. // // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its // always persisted asynchronously), the ChannelManager has to reload some payment data from // ChannelMonitor(s) in some cases. This tests that reloading. // // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking // which has separate codepaths for "commitment transaction already confirmed" and not. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Serialize the ChannelManager prior to sending payments let nodes_0_serialized = nodes[0].node.encode(); // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time // out and retry. let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000); let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment // which would prevent retry. nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true); // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone(); if confirm_before_reload { mine_transaction(&nodes[0], &as_commitment_tx); nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); } // The ChannelMonitor should always be the latest version, as we're required to persist it // during the `commitment_signed_dance!()`. let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: test_default_channel_config(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; check_added_monitors!(nodes[0], 1); // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and // force-close the channel. check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[0].node.has_pending_payments()); let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_broadcasted_txn.len(), 1); assert_eq!(as_broadcasted_txn[0], as_commitment_tx); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an // error, as the channel has hit the chain. nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap(); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let as_err = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_err.len(), 1); match as_err[0] { MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() }); check_added_monitors!(nodes[1], 1); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); }, _ => panic!("Unexpected event"), } check_closed_broadcast!(nodes[1], false); // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when // we close in a moment. nodes[2].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[2], 1); expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); check_added_monitors!(nodes[1], 1); commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false); if confirm_before_reload { let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone(); nodes[0].node.best_block_updated(&best_block.0.header, best_block.1); } // Create a new channel on which to retry the payment before we fail the payment via the // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us // connecting several blocks while creating the channel (implying time has passed). create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); mine_transaction(&nodes[1], &as_commitment_tx); let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_claim_txn.len(), 1); check_spends!(bs_htlc_claim_txn[0], as_commitment_tx); expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false); if !confirm_before_reload { mine_transaction(&nodes[0], &as_commitment_tx); } mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]); expect_payment_sent!(nodes[0], payment_preimage_1); connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20); let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_htlc_timeout_txn.len(), 2); let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]); check_spends!(first_htlc_timeout_tx, as_commitment_tx); check_spends!(second_htlc_timeout_tx, as_commitment_tx); if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output { confirm_transaction(&nodes[0], &second_htlc_timeout_tx); } else { confirm_transaction(&nodes[0], &first_htlc_timeout_tx); } nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was // reloaded) via a route over the new channel, which work without issue and eventually be // received and claimed at the recipient just like any other payment. let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee // and not the original fee. We also update node[1]'s relevant config as // do_claim_payment_along_route expects us to never overpay. { let mut channel_state = nodes[1].node.channel_state.lock().unwrap(); let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap(); let mut new_config = channel.config(); new_config.forwarding_fee_base_msat += 100_000; channel.update_config(&new_config); new_route.paths[0][0].fee_msat += 100_000; } // Force expiration of the channel's previous config. for _ in 0..EXPIRE_PREV_CONFIG_TICKS { nodes[1].node.timer_tick_occurred(); } assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment nodes[0].node.retry_payment(&new_route, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat)); } #[test] fn retry_with_no_persist() { do_retry_with_no_persist(true); do_retry_with_no_persist(false); } fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) { // Test that an off-chain completed payment is not retryable on restart. This was previously // broken for dust payments, but we test for both dust and non-dust payments. // // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain // output at all. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let mut manually_accept_config = test_default_channel_config(); manually_accept_config.manually_accept_inbound_channels = true; let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]); let first_persister: test_utils::TestPersister; let first_new_chain_monitor: test_utils::TestChainMonitor; let first_nodes_0_deserialized: ChannelManager; let second_persister: test_utils::TestPersister; let second_new_chain_monitor: test_utils::TestChainMonitor; let second_nodes_0_deserialized: ChannelManager; let third_persister: test_utils::TestPersister; let third_new_chain_monitor: test_utils::TestChainMonitor; let third_nodes_0_deserialized: ChannelManager; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); // Because we set nodes[1] to manually accept channels, just open a 0-conf channel. let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None); confirm_transaction(&nodes[0], &funding_tx); confirm_transaction(&nodes[1], &funding_tx); // Ignore the announcement_signatures messages nodes[0].node.get_and_clear_pending_msg_events(); nodes[1].node.get_and_clear_pending_msg_events(); let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; // Serialize the ChannelManager prior to sending payments let mut nodes_0_serialized = nodes[0].node.encode(); let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0; let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 }); // The ChannelMonitor should always be the latest version, as we're required to persist it // during the `commitment_signed_dance!()`. let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new()); macro_rules! reload_node { ($chain_monitor: ident, $chan_manager: ident, $persister: ident) => { { $persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; $chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &$persister, keys_manager); nodes[0].chain_monitor = &$chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut chan_1_monitor = None; let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); if !chan_1_monitor_serialized.0.is_empty() { let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..]; chan_1_monitor = Some(<(BlockHash, ChannelMonitor)>::read( &mut chan_1_monitor_read, keys_manager).unwrap().1); assert!(chan_1_monitor_read.is_empty()); channel_monitors.insert(chan_1_monitor.as_ref().unwrap().get_funding_txo().0, chan_1_monitor.as_mut().unwrap()); } let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = { <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: test_default_channel_config(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; $chan_manager = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); if !chan_1_monitor_serialized.0.is_empty() { let funding_txo = chan_1_monitor.as_ref().unwrap().get_funding_txo().0; assert!(nodes[0].chain_monitor.watch_channel(funding_txo, chan_1_monitor.unwrap()).is_ok()); } nodes[0].node = &$chan_manager; check_added_monitors!(nodes[0], if !chan_1_monitor_serialized.0.is_empty() { 2 } else { 1 }); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); } } } reload_node!(first_new_chain_monitor, first_nodes_0_deserialized, first_persister); // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and // force-close the channel. check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[0].node.has_pending_payments()); assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an // error, as the channel has hit the chain. nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap(); let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap(); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let as_err = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_err.len(), 1); let bs_commitment_tx; match as_err[0] { MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() }); check_added_monitors!(nodes[1], 1); bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); }, _ => panic!("Unexpected event"), } check_closed_broadcast!(nodes[1], false); // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional // incoming HTLCs with the same payment hash later. nodes[2].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[2], 1); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]); // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved // after the commitment transaction, so always connect the commitment transaction. mine_transaction(&nodes[0], &bs_commitment_tx[0]); mine_transaction(&nodes[1], &bs_commitment_tx[0]); if !use_dust { connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32)); connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32)); let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]); assert_eq!(as_htlc_timeout.len(), 1); mine_transaction(&nodes[0], &as_htlc_timeout[0]); // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set. nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); mine_transaction(&nodes[1], &as_htlc_timeout[0]); } // Create a new channel on which to retry the payment before we fail the payment via the // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us // connecting several blocks while creating the channel (implying time has passed). // We do this with a zero-conf channel to avoid connecting blocks as a side-effect. let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs) // confirming, we will fail as it's considered still-pending... let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment // again. We serialize the node first as we'll then test retrying the HTLC after a restart // (which should also still work). connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); // We set mpp_parts_remain to avoid having abandon_payment called expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain()); chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap(); nodes_0_serialized = nodes[0].node.encode(); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok()); assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty()); reload_node!(second_new_chain_monitor, second_nodes_0_deserialized, second_persister); reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures // the payment is not (spuriously) listed as still pending. assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok()); check_added_monitors!(nodes[0], 1); pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret); claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap(); nodes_0_serialized = nodes[0].node.encode(); // Ensure that after reload we cannot retry the payment. reload_node!(third_new_chain_monitor, third_nodes_0_deserialized, third_persister); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); } #[test] fn test_completed_payment_not_retryable_on_reload() { do_test_completed_payment_not_retryable_on_reload(true); do_test_completed_payment_not_retryable_on_reload(false); } fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) { // When a Channel is closed, any outbound HTLCs which were relayed through it are simply // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when // the ChannelMonitor tells it to. // // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // Route a payment, but force-close the channel before the HTLC fulfill message arrives at // nodes[0]. let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000); nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap(); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[1]); check_spends!(node_txn[1], funding_tx); check_spends!(node_txn[2], node_txn[1]); let timeout_txn = vec![node_txn[2].clone()]; nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash, 10_000_000); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]}); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(claim_txn.len(), 3); check_spends!(claim_txn[0], node_txn[1]); check_spends!(claim_txn[1], funding_tx); check_spends!(claim_txn[2], claim_txn[1]); header.prev_blockhash = nodes[0].best_block_hash(); connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]}); if confirm_commitment_tx { connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1); } header.prev_blockhash = nodes[0].best_block_hash(); let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } }; if payment_timeout { assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV! connect_block(&nodes[0], &claim_block); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2); } // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update // returning TemporaryFailure. This should cause the claim event to never make its way to the // ChannelManager. chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear(); chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure)); if payment_timeout { connect_blocks(&nodes[0], 1); } else { connect_block(&nodes[0], &claim_block); } let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 }; let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap() .get_mut(&funding_txo).unwrap().drain().collect(); // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice assert!(mon_updates.len() == 1 || mon_updates.len() == 2); assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); // If we persist the ChannelManager here, we should get the PaymentSent event after // deserialization. let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new()); if !persist_manager_post_event { nodes[0].node.write(&mut chan_manager_serialized).unwrap(); } // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the // payment sent event. chanmon_cfgs[0].persister.set_update_ret(Ok(())); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); for update in mon_updates { nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap(); } if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, false); } else { expect_payment_sent!(nodes[0], payment_preimage); } // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it // twice. if persist_manager_post_event { nodes[0].node.write(&mut chan_manager_serialized).unwrap(); } // Now reload nodes[0]... persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)> ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs { default_config: Default::default(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); check_added_monitors!(nodes[0], 1); nodes[0].node = &nodes_0_deserialized; if persist_manager_post_event { assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } else if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, false); } else { expect_payment_sent!(nodes[0], payment_preimage); } // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of // payment events should kick in, leaving us with no pending events here. let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1; nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn test_dup_htlc_onchain_fails_on_reload() { do_test_dup_htlc_onchain_fails_on_reload(true, true, true); do_test_dup_htlc_onchain_fails_on_reload(true, true, false); do_test_dup_htlc_onchain_fails_on_reload(true, false, false); do_test_dup_htlc_onchain_fails_on_reload(false, true, true); do_test_dup_htlc_onchain_fails_on_reload(false, true, false); do_test_dup_htlc_onchain_fails_on_reload(false, false, false); } #[test] fn test_fulfill_restart_failure() { // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC // again, or fail it, giving us free money. // // Of course probably they won't fail it and give us free money, but because we have code to // handle it, we should test the logic for it anyway. We do that here. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000); // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state // pre-fulfill, which we do by serializing it here. let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new()); nodes[1].node.write(&mut chan_manager_serialized).unwrap(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash, 100_000); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); expect_payment_sent_without_paths!(nodes[0], payment_preimage); // Now reload nodes[1]... persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[1].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager); nodes[1].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let (_, nodes_1_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)> ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs { default_config: Default::default(), keys_manager, fee_estimator: node_cfgs[1].fee_estimator, chain_monitor: nodes[1].chain_monitor, tx_broadcaster: nodes[1].tx_broadcaster.clone(), logger: nodes[1].logger, channel_monitors, }).unwrap() }; nodes_1_deserialized = nodes_1_deserialized_tmp; assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); check_added_monitors!(nodes[1], 1); nodes[1].node = &nodes_1_deserialized; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]); check_added_monitors!(nodes[1], 1); let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false); // nodes[0] shouldn't generate any events here, while it just got a payment failure completion // it had already considered the payment fulfilled, and now they just got free money. assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn get_ldk_payment_preimage() { // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let amt_msat = 60_000; let expiry_secs = 60 * 60; let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap(); let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id()) .with_features(channelmanager::provided_invoice_features()); let scorer = test_utils::TestScorer::with_penalty(0); let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet); let random_seed_bytes = keys_manager.get_secure_random_bytes(); let route = get_route( &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(), Some(&nodes[0].node.list_usable_channels().iter().collect::>()), amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap(); let _payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); // Make sure to use `get_payment_preimage` let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap(); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage)); claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage); } #[test] fn sent_probe_is_probe_of_sending_node() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); // First check we refuse to build a single-hop probe let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000); assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err()); // Then build an actual two-hop probing path let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000); match nodes[0].node.send_probe(route.paths[0].clone()) { Ok((payment_hash, payment_id)) => { assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id)); assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id)); assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id)); }, _ => panic!(), } get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); } #[test] fn successful_probe_yields_event() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); // node[1] -- update_add_htlcs -> node[2] check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[2], 0); commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true); // node[1] <- update_fail_htlcs -- node[2] let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true); // node[0] <- update_fail_htlcs -- node[1] let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[0], 0); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events.drain(..).next().unwrap() { crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); }, _ => panic!(), }; } #[test] fn failed_probe_yields_event() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()); create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id()); let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); // node[0] <- update_fail_htlcs -- node[1] check_added_monitors!(nodes[1], 1); let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); // Skip the PendingHTLCsForwardable event let _events = nodes[1].node.get_and_clear_pending_events(); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]); check_added_monitors!(nodes[0], 0); commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events.drain(..).next().unwrap() { crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); }, _ => panic!(), }; } #[test] fn onchain_failed_probe_yields_event() { // Tests that an attempt to probe over a channel that is eventaully closed results in a failure // event. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let nodes = create_network(3, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2; create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()); let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id()); // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain. let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42); let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap(); // node[0] -- update_add_htlcs -> node[1] check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on // Node A, which after 6 confirmations should result in a probe failure event. let bs_txn = get_local_commitment_txn!(nodes[1], chan_id); confirm_transaction(&nodes[0], &bs_txn[0]); check_closed_broadcast!(&nodes[0], true); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); let mut found_probe_failed = false; for event in events.drain(..) { match event { Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => { assert_eq!(payment_id, ev_pid); assert_eq!(payment_hash, ev_ph); found_probe_failed = true; }, Event::ChannelClosed { .. } => {}, _ => panic!(), } } assert!(found_probe_failed); }