use ln::msgs::HandleError; use ln::msgs; use secp256k1::Secp256k1; use secp256k1::key::{PublicKey,SecretKey}; use secp256k1::ecdh::SharedSecret; use rand::{thread_rng,Rng}; use crypto::digest::Digest; use crypto::hkdf::{hkdf_extract,hkdf_expand}; use crypto::sha2::Sha256; use crypto::aead::{AeadEncryptor, AeadDecryptor}; use util::chacha20poly1305rfc::ChaCha20Poly1305RFC; use util::byte_utils; // Sha256("Noise_XK_secp256k1_ChaChaPoly_SHA256") const NOISE_CK: [u8; 32] = [0x26, 0x40, 0xf5, 0x2e, 0xeb, 0xcd, 0x9e, 0x88, 0x29, 0x58, 0x95, 0x1c, 0x79, 0x42, 0x50, 0xee, 0xdb, 0x28, 0x00, 0x2c, 0x05, 0xd7, 0xdc, 0x2e, 0xa0, 0xf1, 0x95, 0x40, 0x60, 0x42, 0xca, 0xf1]; // Sha256(NOISE_CK || "lightning") const NOISE_H: [u8; 32] = [0xd1, 0xfb, 0xf6, 0xde, 0xe4, 0xf6, 0x86, 0xf1, 0x32, 0xfd, 0x70, 0x2c, 0x4a, 0xbf, 0x8f, 0xba, 0x4b, 0xb4, 0x20, 0xd8, 0x9d, 0x2a, 0x04, 0x8a, 0x3c, 0x4f, 0x4c, 0x09, 0x2e, 0x37, 0xb6, 0x76]; pub enum NextNoiseStep { ActOne, ActTwo, ActThree, NoiseComplete, } #[derive(PartialEq)] enum NoiseStep { PreActOne, PostActOne, PostActTwo, // When done swap noise_state for NoiseState::Finished } struct BidirectionalNoiseState { h: [u8; 32], ck: [u8; 32], } enum DirectionalNoiseState { Outbound { ie: SecretKey, }, Inbound { ie: Option, // filled in if state >= PostActOne re: Option, // filled in if state >= PostActTwo temp_k2: Option<[u8; 32]>, // filled in if state >= PostActTwo } } enum NoiseState { InProgress { state: NoiseStep, directional_state: DirectionalNoiseState, bidirectional_state: BidirectionalNoiseState, }, Finished { sk: [u8; 32], sn: u64, sck: [u8; 32], rk: [u8; 32], rn: u64, rck: [u8; 32], } } pub struct PeerChannelEncryptor { secp_ctx: Secp256k1, their_node_id: Option, // filled in for outbound, or inbound after noise_state is Finished noise_state: NoiseState, } impl PeerChannelEncryptor { pub fn new_outbound(their_node_id: PublicKey) -> PeerChannelEncryptor { let mut rng = thread_rng(); let mut key = [0u8; 32]; rng.fill_bytes(&mut key); let secp_ctx = Secp256k1::new(); let sec_key = SecretKey::from_slice(&secp_ctx, &key).unwrap(); //TODO: nicer rng-is-bad error message let mut sha = Sha256::new(); sha.input(&NOISE_H); sha.input(&their_node_id.serialize()[..]); let mut h = [0; 32]; sha.result(&mut h); PeerChannelEncryptor { their_node_id: Some(their_node_id), secp_ctx: secp_ctx, noise_state: NoiseState::InProgress { state: NoiseStep::PreActOne, directional_state: DirectionalNoiseState::Outbound { ie: sec_key, }, bidirectional_state: BidirectionalNoiseState { h: h, ck: NOISE_CK, }, } } } pub fn new_inbound(our_node_secret: &SecretKey) -> PeerChannelEncryptor { let secp_ctx = Secp256k1::new(); let mut sha = Sha256::new(); sha.input(&NOISE_H); let our_node_id = PublicKey::from_secret_key(&secp_ctx, our_node_secret).unwrap(); //TODO: nicer bad-node_secret error message sha.input(&our_node_id.serialize()[..]); let mut h = [0; 32]; sha.result(&mut h); PeerChannelEncryptor { their_node_id: None, secp_ctx: secp_ctx, noise_state: NoiseState::InProgress { state: NoiseStep::PreActOne, directional_state: DirectionalNoiseState::Inbound { ie: None, re: None, temp_k2: None, }, bidirectional_state: BidirectionalNoiseState { h: h, ck: NOISE_CK, }, } } } #[inline] fn encrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], plaintext: &[u8]) { let mut nonce = [0; 12]; nonce[4..].copy_from_slice(&byte_utils::le64_to_array(n)); let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h); let mut tag = [0; 16]; chacha.encrypt(plaintext, &mut res[0..plaintext.len()], &mut tag); res[plaintext.len()..].copy_from_slice(&tag); } #[inline] fn decrypt_with_ad(res: &mut[u8], n: u64, key: &[u8; 32], h: &[u8], cyphertext: &[u8]) -> Result<(), HandleError> { let mut nonce = [0; 12]; nonce[4..].copy_from_slice(&byte_utils::le64_to_array(n)); let mut chacha = ChaCha20Poly1305RFC::new(key, &nonce, h); if !chacha.decrypt(&cyphertext[0..cyphertext.len() - 16], res, &cyphertext[cyphertext.len() - 16..]) { return Err(HandleError{err: "Bad MAC", msg: Some(msgs::ErrorMessage::DisconnectPeer{})}); } Ok(()) } #[inline] fn hkdf(state: &mut BidirectionalNoiseState, ss: SharedSecret) -> [u8; 32] { let mut hkdf = [0; 64]; { let mut prk = [0; 32]; hkdf_extract(Sha256::new(), &state.ck, &ss[..], &mut prk); hkdf_expand(Sha256::new(), &prk, &[0;0], &mut hkdf); } state.ck.copy_from_slice(&hkdf[0..32]); let mut res = [0; 32]; res.copy_from_slice(&hkdf[32..]); res } #[inline] fn outbound_noise_act(secp_ctx: &Secp256k1, state: &mut BidirectionalNoiseState, our_key: &SecretKey, their_key: &PublicKey) -> ([u8; 50], [u8; 32]) { let our_pub = PublicKey::from_secret_key(secp_ctx, &our_key).unwrap(); //TODO: nicer rng-is-bad error message let mut sha = Sha256::new(); sha.input(&state.h); sha.input(&our_pub.serialize()[..]); sha.result(&mut state.h); let ss = SharedSecret::new(secp_ctx, &their_key, &our_key); let temp_k = PeerChannelEncryptor::hkdf(state, ss); let mut res = [0; 50]; res[1..34].copy_from_slice(&our_pub.serialize()[..]); PeerChannelEncryptor::encrypt_with_ad(&mut res[34..], 0, &temp_k, &state.h, &[0; 0]); sha.reset(); sha.input(&state.h); sha.input(&res[34..]); sha.result(&mut state.h); (res, temp_k) } #[inline] fn inbound_noise_act(secp_ctx: &Secp256k1, state: &mut BidirectionalNoiseState, act: &[u8], our_key: &SecretKey) -> Result<(PublicKey, [u8; 32]), HandleError> { assert_eq!(act.len(), 50); if act[0] != 0 { return Err(HandleError{err: "Unknown handshake version number", msg: Some(msgs::ErrorMessage::DisconnectPeer{})}); } let their_pub = match PublicKey::from_slice(secp_ctx, &act[1..34]) { Err(_) => return Err(HandleError{err: "Invalid public key", msg: Some(msgs::ErrorMessage::DisconnectPeer{})}), Ok(key) => key, }; let mut sha = Sha256::new(); sha.input(&state.h); sha.input(&their_pub.serialize()[..]); sha.result(&mut state.h); let ss = SharedSecret::new(secp_ctx, &their_pub, &our_key); let temp_k = PeerChannelEncryptor::hkdf(state, ss); let mut dec = [0; 0]; PeerChannelEncryptor::decrypt_with_ad(&mut dec, 0, &temp_k, &state.h, &act[34..])?; sha.reset(); sha.input(&state.h); sha.input(&act[34..]); sha.result(&mut state.h); Ok((their_pub, temp_k)) } pub fn get_act_one(&mut self) -> [u8; 50] { match self.noise_state { NoiseState::InProgress { ref mut state, ref directional_state, ref mut bidirectional_state } => match directional_state { &DirectionalNoiseState::Outbound { ref ie } => { if *state != NoiseStep::PreActOne { panic!("Requested act at wrong step"); } let (res, _) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &ie, &self.their_node_id.unwrap()); *state = NoiseStep::PostActOne; res }, _ => panic!("Wrong direction for act"), }, _ => panic!("Cannot get act one after noise handshake completes"), } } // Separated for testing: fn process_act_one_with_ephemeral_key(&mut self, act_one: &[u8], our_node_secret: &SecretKey, our_ephemeral: SecretKey) -> Result<[u8; 50], HandleError> { assert_eq!(act_one.len(), 50); match self.noise_state { NoiseState::InProgress { ref mut state, ref mut directional_state, ref mut bidirectional_state } => match directional_state { &mut DirectionalNoiseState::Inbound { ref mut ie, ref mut re, ref mut temp_k2 } => { if *state != NoiseStep::PreActOne { panic!("Requested act at wrong step"); } let (their_pub, _) = PeerChannelEncryptor::inbound_noise_act(&self.secp_ctx, bidirectional_state, act_one, &our_node_secret)?; ie.get_or_insert(their_pub); re.get_or_insert(our_ephemeral); let (res, temp_k) = PeerChannelEncryptor::outbound_noise_act(&self.secp_ctx, bidirectional_state, &re.unwrap(), &ie.unwrap()); *temp_k2 = Some(temp_k); *state = NoiseStep::PostActTwo; Ok(res) }, _ => panic!("Wrong direction for act"), }, _ => panic!("Cannot get act one after noise handshake completes"), } } pub fn process_act_one_with_key(&mut self, act_one: &[u8], our_node_secret: &SecretKey) -> Result<[u8; 50], HandleError> { assert_eq!(act_one.len(), 50); let mut rng = thread_rng(); let mut key = [0u8; 32]; rng.fill_bytes(&mut key); let our_ephemeral_key = SecretKey::from_slice(&self.secp_ctx, &key).unwrap(); //TODO: nicer rng-is-bad error message self.process_act_one_with_ephemeral_key(act_one, our_node_secret, our_ephemeral_key) } pub fn process_act_two(&mut self, act_two: &[u8], our_node_secret: &SecretKey) -> Result<[u8; 66], HandleError> { assert_eq!(act_two.len(), 50); let mut final_hkdf = [0; 64]; let ck; let res: [u8; 66] = match self.noise_state { NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } => match directional_state { &DirectionalNoiseState::Outbound { ref ie } => { if *state != NoiseStep::PostActOne { panic!("Requested act at wrong step"); } let (re, temp_k2) = PeerChannelEncryptor::inbound_noise_act(&self.secp_ctx, bidirectional_state, act_two, &ie)?; let mut res = [0; 66]; let our_node_id = PublicKey::from_secret_key(&self.secp_ctx, &our_node_secret).unwrap(); //TODO: nicer rng-is-bad error message PeerChannelEncryptor::encrypt_with_ad(&mut res[1..50], 1, &temp_k2, &bidirectional_state.h, &our_node_id.serialize()[..]); let mut sha = Sha256::new(); sha.input(&bidirectional_state.h); sha.input(&res[1..50]); sha.result(&mut bidirectional_state.h); let ss = SharedSecret::new(&self.secp_ctx, &re, our_node_secret); let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss); PeerChannelEncryptor::encrypt_with_ad(&mut res[50..], 0, &temp_k, &bidirectional_state.h, &[0; 0]); let mut prk = [0; 32]; hkdf_extract(Sha256::new(), &bidirectional_state.ck, &[0; 0], &mut prk); hkdf_expand(Sha256::new(), &prk, &[0;0], &mut final_hkdf); ck = bidirectional_state.ck.clone(); res }, _ => panic!("Wrong direction for act"), }, _ => panic!("Cannot get act one after noise handshake completes"), }; let mut sk = [0; 32]; let mut rk = [0; 32]; sk.copy_from_slice(&final_hkdf[0..32]); rk.copy_from_slice(&final_hkdf[32..]); self.noise_state = NoiseState::Finished { sk: sk, sn: 0, sck: ck.clone(), rk: rk, rn: 0, rck: ck, }; Ok(res) } pub fn process_act_three(&mut self, act_three: &[u8]) -> Result { assert_eq!(act_three.len(), 66); let mut final_hkdf = [0; 64]; let ck; match self.noise_state { NoiseState::InProgress { ref state, ref directional_state, ref mut bidirectional_state } => match directional_state { &DirectionalNoiseState::Inbound { ie: _, ref re, ref temp_k2 } => { if *state != NoiseStep::PostActTwo { panic!("Requested act at wrong step"); } if act_three[0] != 0 { return Err(HandleError{err: "Unknown handshake version number", msg: Some(msgs::ErrorMessage::DisconnectPeer{})}); } let mut their_node_id = [0; 33]; PeerChannelEncryptor::decrypt_with_ad(&mut their_node_id, 1, &temp_k2.unwrap(), &bidirectional_state.h, &act_three[1..50])?; self.their_node_id = Some(match PublicKey::from_slice(&self.secp_ctx, &their_node_id) { Ok(key) => key, Err(_) => return Err(HandleError{err: "Bad node_id from peer", msg: Some(msgs::ErrorMessage::DisconnectPeer{})}), }); let mut sha = Sha256::new(); sha.input(&bidirectional_state.h); sha.input(&act_three[1..50]); sha.result(&mut bidirectional_state.h); let ss = SharedSecret::new(&self.secp_ctx, &self.their_node_id.unwrap(), &re.unwrap()); let temp_k = PeerChannelEncryptor::hkdf(bidirectional_state, ss); PeerChannelEncryptor::decrypt_with_ad(&mut [0; 0], 0, &temp_k, &bidirectional_state.h, &act_three[50..])?; let mut prk = [0; 32]; hkdf_extract(Sha256::new(), &bidirectional_state.ck, &[0; 0], &mut prk); hkdf_expand(Sha256::new(), &prk, &[0;0], &mut final_hkdf); ck = bidirectional_state.ck.clone(); }, _ => panic!("Wrong direction for act"), }, _ => panic!("Cannot get act one after noise handshake completes"), } let mut rk = [0; 32]; let mut sk = [0; 32]; rk.copy_from_slice(&final_hkdf[0..32]); sk.copy_from_slice(&final_hkdf[32..]); self.noise_state = NoiseState::Finished { sk: sk, sn: 0, sck: ck.clone(), rk: rk, rn: 0, rck: ck, }; Ok(self.their_node_id.unwrap().clone()) } /// Encrypts the given message, returning the encrypted version /// panics if msg.len() > 65535 or Noise handshake has not finished. pub fn encrypt_message(&mut self, msg: &[u8]) -> Vec { if msg.len() > 65535 { panic!("Attempted to encrypt message longer than 65535 bytes!"); } let mut res = Vec::with_capacity(msg.len() + 16*2 + 2); res.resize(msg.len() + 16*2 + 2, 0); match self.noise_state { NoiseState::Finished { ref mut sk, ref mut sn, ref mut sck, rk: _, rn: _, rck: _ } => { if *sn >= 1000 { let mut prk = [0; 32]; hkdf_extract(Sha256::new(), sck, sk, &mut prk); let mut hkdf = [0; 64]; hkdf_expand(Sha256::new(), &prk, &[0;0], &mut hkdf); sck[..].copy_from_slice(&hkdf[0..32]); sk[..].copy_from_slice(&hkdf[32..]); *sn = 0; } Self::encrypt_with_ad(&mut res[0..16+2], *sn, sk, &[0; 0], &byte_utils::be16_to_array(msg.len() as u16)); *sn += 1; Self::encrypt_with_ad(&mut res[16+2..], *sn, sk, &[0; 0], msg); *sn += 1; }, _ => panic!("Tried to encrypt a message prior to noise handshake completion"), } res } /// Decrypts a message length header from the remote peer. /// panics if noise handshake has not yet finished or msg.len() != 18 pub fn decrypt_length_header(&mut self, msg: &[u8]) -> Result { assert_eq!(msg.len(), 16+2); match self.noise_state { NoiseState::Finished { sk: _, sn: _, sck: _, ref mut rk, ref mut rn, ref mut rck } => { if *rn >= 1000 { let mut prk = [0; 32]; hkdf_extract(Sha256::new(), rck, rk, &mut prk); let mut hkdf = [0; 64]; hkdf_expand(Sha256::new(), &prk, &[0;0], &mut hkdf); rck[..].copy_from_slice(&hkdf[0..32]); rk[..].copy_from_slice(&hkdf[32..]); *rn = 0; } let mut res = [0; 2]; Self::decrypt_with_ad(&mut res, *rn, rk, &[0; 0], msg)?; *rn += 1; Ok(byte_utils::slice_to_be16(&res)) }, _ => panic!("Tried to encrypt a message prior to noise handshake completion"), } } /// Decrypts the given message. /// panics if msg.len() > 65535 + 16 pub fn decrypt_message(&mut self, msg: &[u8]) -> Result, HandleError> { if msg.len() > 65535 + 16 { panic!("Attempted to encrypt message longer than 65535 bytes!"); } match self.noise_state { NoiseState::Finished { sk: _, sn: _, sck: _, ref rk, ref mut rn, rck: _ } => { let mut res = Vec::with_capacity(msg.len() - 16); res.resize(msg.len() - 16, 0); Self::decrypt_with_ad(&mut res[..], *rn, rk, &[0; 0], msg)?; *rn += 1; Ok(res) }, _ => panic!("Tried to encrypt a message prior to noise handshake completion"), } } pub fn get_noise_step(&self) -> NextNoiseStep { match self.noise_state { NoiseState::InProgress {ref state, ..} => { match state { &NoiseStep::PreActOne => NextNoiseStep::ActOne, &NoiseStep::PostActOne => NextNoiseStep::ActTwo, &NoiseStep::PostActTwo => NextNoiseStep::ActThree, } }, NoiseState::Finished {..} => NextNoiseStep::NoiseComplete, } } pub fn is_ready_for_encryption(&self) -> bool { match self.noise_state { NoiseState::InProgress {..} => { false }, NoiseState::Finished {..} => { true } } } } #[cfg(test)] mod tests { use secp256k1::Secp256k1; use secp256k1::key::{PublicKey,SecretKey}; use bitcoin::util::misc::hex_bytes; use ln::peer_channel_encryptor::{PeerChannelEncryptor,NoiseState,DirectionalNoiseState}; fn get_outbound_peer_for_initiator_test_vectors() -> PeerChannelEncryptor { let secp_ctx = Secp256k1::new(); let their_node_id = PublicKey::from_slice(&secp_ctx, &hex_bytes("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7").unwrap()[..]).unwrap(); let mut outbound_peer = PeerChannelEncryptor::new_outbound(their_node_id); match outbound_peer.noise_state { NoiseState::InProgress { state: _, ref mut directional_state, bidirectional_state: _ } => { *directional_state = DirectionalNoiseState::Outbound { // overwrite ie... ie: SecretKey::from_slice(&secp_ctx, &hex_bytes("1212121212121212121212121212121212121212121212121212121212121212").unwrap()[..]).unwrap(), }; }, _ => panic!() } assert_eq!(outbound_peer.get_act_one()[..], hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap()[..]); outbound_peer } #[test] fn noise_initiator_test_vectors() { let secp_ctx = Secp256k1::new(); let our_node_id = SecretKey::from_slice(&secp_ctx, &hex_bytes("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap(); { // transport-initiator successful handshake let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors(); let act_two = hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec(); assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap()[..], hex_bytes("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]); match outbound_peer.noise_state { NoiseState::Finished { sk, sn, sck, rk, rn, rck } => { assert_eq!(sk, hex_bytes("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]); assert_eq!(sn, 0); assert_eq!(sck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); assert_eq!(rk, hex_bytes("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]); assert_eq!(rn, 0); assert_eq!(rck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); }, _ => panic!() } } { // transport-initiator act2 short read test // Can't actually test this cause process_act_two requires you pass the right length! } { // transport-initiator act2 bad version test let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors(); let act_two = hex_bytes("0102466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec(); assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err()); } { // transport-initiator act2 bad key serialization test let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors(); let act_two = hex_bytes("0004466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec(); assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err()); } { // transport-initiator act2 bad MAC test let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors(); let act_two = hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730af").unwrap().to_vec(); assert!(outbound_peer.process_act_two(&act_two[..], &our_node_id).is_err()); } } #[test] fn noise_responder_test_vectors() { let secp_ctx = Secp256k1::new(); let our_node_id = SecretKey::from_slice(&secp_ctx, &hex_bytes("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap(); let our_ephemeral = SecretKey::from_slice(&secp_ctx, &hex_bytes("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap(); { // transport-responder successful handshake let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec(); // test vector doesn't specify the initiator static key, but its the same as the one // from trasport-initiator successful handshake assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], hex_bytes("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]); match inbound_peer.noise_state { NoiseState::Finished { sk, sn, sck, rk, rn, rck } => { assert_eq!(sk, hex_bytes("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]); assert_eq!(sn, 0); assert_eq!(sck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); assert_eq!(rk, hex_bytes("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]); assert_eq!(rn, 0); assert_eq!(rck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); }, _ => panic!() } } { // transport-responder act1 short read test // Can't actually test this cause process_act_one requires you pass the right length! } { // transport-responder act1 bad version test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("01036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err()); } { // transport-responder act1 bad key serialization test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one =hex_bytes("00046360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err()); } { // transport-responder act1 bad MAC test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6b").unwrap().to_vec(); assert!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).is_err()); } { // transport-responder act3 bad version test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("01b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec(); assert!(inbound_peer.process_act_three(&act_three[..]).is_err()); } { // transport-responder act3 short read test // Can't actually test this cause process_act_three requires you pass the right length! } { // transport-responder act3 bad MAC for ciphertext test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("00c9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec(); assert!(inbound_peer.process_act_three(&act_three[..]).is_err()); } { // transport-responder act3 bad rs test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("00bfe3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa2235536ad09a8ee351870c2bb7f78b754a26c6cef79a98d25139c856d7efd252c2ae73c").unwrap().to_vec(); assert!(inbound_peer.process_act_three(&act_three[..]).is_err()); } { // transport-responder act3 bad MAC test let mut inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139bb").unwrap().to_vec(); assert!(inbound_peer.process_act_three(&act_three[..]).is_err()); } } #[test] fn message_encryption_decryption_test_vectors() { let secp_ctx = Secp256k1::new(); // We use the same keys as the initiator and responder test vectors, so we copy those tests // here and use them to encrypt. let mut outbound_peer = get_outbound_peer_for_initiator_test_vectors(); { let our_node_id = SecretKey::from_slice(&secp_ctx, &hex_bytes("1111111111111111111111111111111111111111111111111111111111111111").unwrap()[..]).unwrap(); let act_two = hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap().to_vec(); assert_eq!(outbound_peer.process_act_two(&act_two[..], &our_node_id).unwrap()[..], hex_bytes("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap()[..]); match outbound_peer.noise_state { NoiseState::Finished { sk, sn, sck, rk, rn, rck } => { assert_eq!(sk, hex_bytes("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]); assert_eq!(sn, 0); assert_eq!(sck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); assert_eq!(rk, hex_bytes("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]); assert_eq!(rn, 0); assert_eq!(rck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); }, _ => panic!() } } let mut inbound_peer; { // transport-responder successful handshake let our_node_id = SecretKey::from_slice(&secp_ctx, &hex_bytes("2121212121212121212121212121212121212121212121212121212121212121").unwrap()[..]).unwrap(); let our_ephemeral = SecretKey::from_slice(&secp_ctx, &hex_bytes("2222222222222222222222222222222222222222222222222222222222222222").unwrap()[..]).unwrap(); inbound_peer = PeerChannelEncryptor::new_inbound(&our_node_id); let act_one = hex_bytes("00036360e856310ce5d294e8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df6086551151f58b8afe6c195782c6a").unwrap().to_vec(); assert_eq!(inbound_peer.process_act_one_with_ephemeral_key(&act_one[..], &our_node_id, our_ephemeral.clone()).unwrap()[..], hex_bytes("0002466d7fcae563e5cb09a0d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac583c9ef6eafca3f730ae").unwrap()[..]); let act_three = hex_bytes("00b9e3a702e93e3a9948c2ed6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8fc28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba").unwrap().to_vec(); // test vector doesn't specify the initiator static key, but its the same as the one // from trasport-initiator successful handshake assert_eq!(inbound_peer.process_act_three(&act_three[..]).unwrap().serialize()[..], hex_bytes("034f355bdcb7cc0af728ef3cceb9615d90684bb5b2ca5f859ab0f0b704075871aa").unwrap()[..]); match inbound_peer.noise_state { NoiseState::Finished { sk, sn, sck, rk, rn, rck } => { assert_eq!(sk, hex_bytes("bb9020b8965f4df047e07f955f3c4b88418984aadc5cdb35096b9ea8fa5c3442").unwrap()[..]); assert_eq!(sn, 0); assert_eq!(sck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); assert_eq!(rk, hex_bytes("969ab31b4d288cedf6218839b27a3e2140827047f2c0f01bf5c04435d43511a9").unwrap()[..]); assert_eq!(rn, 0); assert_eq!(rck, hex_bytes("919219dbb2920afa8db80f9a51787a840bcf111ed8d588caf9ab4be716e42b01").unwrap()[..]); }, _ => panic!() } } for i in 0..1005 { let msg = [0x68, 0x65, 0x6c, 0x6c, 0x6f]; let res = outbound_peer.encrypt_message(&msg); assert_eq!(res.len(), 5 + 2*16 + 2); let len_header = res[0..2+16].to_vec(); assert_eq!(inbound_peer.decrypt_length_header(&len_header[..]).unwrap() as usize, msg.len()); assert_eq!(inbound_peer.decrypt_message(&res[2+16..]).unwrap()[..], msg[..]); if i == 0 { assert_eq!(res, hex_bytes("cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cbcf25d2f214cf9ea1d95").unwrap()); } else if i == 1 { assert_eq!(res, hex_bytes("72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837d0f0d7ad833b1a256a1").unwrap()); } else if i == 500 { assert_eq!(res, hex_bytes("178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb220f48364f7a4c68bf8").unwrap()); } else if i == 501 { assert_eq!(res, hex_bytes("1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a60ca2c104b56b60e45bd").unwrap()); } else if i == 1000 { assert_eq!(res, hex_bytes("4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3c05c52b76b29b740f09").unwrap()); } else if i == 1001 { assert_eq!(res, hex_bytes("2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e268338b1a16cf4ef2d36").unwrap()); } } } }