//! The top-level channel management and payment tracking stuff lives here. //! //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those //! upon reconnect to the relevant peer(s). //! //! It does not manage routing logic (see ln::router for that) nor does it manage constructing //! on-chain transactions (it only monitors the chain to watch for any force-closes that might //! imply it needs to fail HTLCs/payments/channels it manages). use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::transaction::Transaction; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::network::serialize::BitcoinHash; use bitcoin::util::hash::Sha256dHash; use secp256k1::key::{SecretKey,PublicKey}; use secp256k1::{Secp256k1,Message}; use secp256k1::ecdh::SharedSecret; use secp256k1; use chain::chaininterface::{BroadcasterInterface,ChainListener,ChainWatchInterface,FeeEstimator}; use chain::transaction::OutPoint; use ln::channel::{Channel, ChannelError}; use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, ManyChannelMonitor, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS}; use ln::router::{Route,RouteHop}; use ln::msgs; use ln::msgs::{ChannelMessageHandler, DecodeError, HandleError}; use chain::keysinterface::KeysInterface; use util::config::UserConfig; use util::{byte_utils, events, internal_traits, rng}; use util::sha2::Sha256; use util::ser::{Readable, ReadableArgs, Writeable, Writer}; use util::chacha20poly1305rfc::ChaCha20; use util::logger::Logger; use util::errors::APIError; use crypto; use crypto::mac::{Mac,MacResult}; use crypto::hmac::Hmac; use crypto::digest::Digest; use crypto::symmetriccipher::SynchronousStreamCipher; use std::{cmp, ptr, mem}; use std::collections::{HashMap, hash_map, HashSet}; use std::io::Cursor; use std::sync::{Arc, Mutex, MutexGuard, RwLock}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::time::{Instant,Duration}; /// We hold various information about HTLC relay in the HTLC objects in Channel itself: /// /// Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should /// forward the HTLC with information it will give back to us when it does so, or if it should Fail /// the HTLC with the relevant message for the Channel to handle giving to the remote peer. /// /// When a Channel forwards an HTLC to its peer, it will give us back the PendingForwardHTLCInfo /// which we will use to construct an outbound HTLC, with a relevant HTLCSource::PreviousHopData /// filled in to indicate where it came from (which we can use to either fail-backwards or fulfill /// the HTLC backwards along the relevant path). /// Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is /// our payment, which we can use to decode errors or inform the user that the payment was sent. mod channel_held_info { use ln::msgs; use ln::router::Route; use secp256k1::key::SecretKey; /// Stores the info we will need to send when we want to forward an HTLC onwards #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub struct PendingForwardHTLCInfo { pub(super) onion_packet: Option, pub(super) incoming_shared_secret: [u8; 32], pub(super) payment_hash: [u8; 32], pub(super) short_channel_id: u64, pub(super) amt_to_forward: u64, pub(super) outgoing_cltv_value: u32, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub enum HTLCFailureMsg { Relay(msgs::UpdateFailHTLC), Malformed(msgs::UpdateFailMalformedHTLC), } /// Stores whether we can't forward an HTLC or relevant forwarding info #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub enum PendingHTLCStatus { Forward(PendingForwardHTLCInfo), Fail(HTLCFailureMsg), } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone)] pub struct HTLCPreviousHopData { pub(super) short_channel_id: u64, pub(super) htlc_id: u64, pub(super) incoming_packet_shared_secret: [u8; 32], } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone)] pub enum HTLCSource { PreviousHopData(HTLCPreviousHopData), OutboundRoute { route: Route, session_priv: SecretKey, /// Technically we can recalculate this from the route, but we cache it here to avoid /// doing a double-pass on route when we get a failure back first_hop_htlc_msat: u64, }, } #[cfg(test)] impl HTLCSource { pub fn dummy() -> Self { HTLCSource::OutboundRoute { route: Route { hops: Vec::new() }, session_priv: SecretKey::from_slice(&::secp256k1::Secp256k1::without_caps(), &[1; 32]).unwrap(), first_hop_htlc_msat: 0, } } } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(crate) enum HTLCFailReason { ErrorPacket { err: msgs::OnionErrorPacket, }, Reason { failure_code: u16, data: Vec, } } } pub(super) use self::channel_held_info::*; struct MsgHandleErrInternal { err: msgs::HandleError, needs_channel_force_close: bool, } impl MsgHandleErrInternal { #[inline] fn send_err_msg_no_close(err: &'static str, channel_id: [u8; 32]) -> Self { Self { err: HandleError { err, action: Some(msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err.to_string() }, }), }, needs_channel_force_close: false, } } #[inline] fn send_err_msg_close_chan(err: &'static str, channel_id: [u8; 32]) -> Self { Self { err: HandleError { err, action: Some(msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err.to_string() }, }), }, needs_channel_force_close: true, } } #[inline] fn from_maybe_close(err: msgs::HandleError) -> Self { Self { err, needs_channel_force_close: true } } #[inline] fn from_no_close(err: msgs::HandleError) -> Self { Self { err, needs_channel_force_close: false } } #[inline] fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Ignore(msg) => HandleError { err: msg, action: Some(msgs::ErrorAction::IgnoreError), }, ChannelError::Close(msg) => HandleError { err: msg, action: Some(msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg.to_string() }, }), }, }, needs_channel_force_close: false, } } #[inline] fn from_chan_maybe_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Ignore(msg) => HandleError { err: msg, action: Some(msgs::ErrorAction::IgnoreError), }, ChannelError::Close(msg) => HandleError { err: msg, action: Some(msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg.to_string() }, }), }, }, needs_channel_force_close: true, } } } /// Pass to fail_htlc_backwwards to indicate the reason to fail the payment /// after a PaymentReceived event. #[derive(PartialEq)] pub enum PaymentFailReason { /// Indicate the preimage for payment_hash is not known after a PaymentReceived event PreimageUnknown, /// Indicate the payment amount is incorrect ( received is < expected or > 2*expected ) after a PaymentReceived event AmountMismatch, } /// We hold back HTLCs we intend to relay for a random interval in the range (this, 5*this). This /// provides some limited amount of privacy. Ideally this would range from somewhere like 1 second /// to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly. We could /// probably increase this significantly. const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u32 = 50; struct HTLCForwardInfo { prev_short_channel_id: u64, prev_htlc_id: u64, forward_info: PendingForwardHTLCInfo, } /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should /// be sent in the order they appear in the return value, however sometimes the order needs to be /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order /// they were originally sent). In those cases, this enum is also returned. #[derive(Clone, PartialEq)] pub(super) enum RAACommitmentOrder { /// Send the CommitmentUpdate messages first CommitmentFirst, /// Send the RevokeAndACK message first RevokeAndACKFirst, } struct ChannelHolder { by_id: HashMap<[u8; 32], Channel>, short_to_id: HashMap, next_forward: Instant, /// short channel id -> forward infos. Key of 0 means payments received /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about there existing a channel with the short id here, nor the short /// ids in the PendingForwardHTLCInfo! forward_htlcs: HashMap>, /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the channels given here actually existing anymore by the time you /// go to read them! claimable_htlcs: HashMap<[u8; 32], Vec>, /// Messages to send to peers - pushed to in the same lock that they are generated in (except /// for broadcast messages, where ordering isn't as strict). pending_msg_events: Vec, } struct MutChannelHolder<'a> { by_id: &'a mut HashMap<[u8; 32], Channel>, short_to_id: &'a mut HashMap, next_forward: &'a mut Instant, forward_htlcs: &'a mut HashMap>, claimable_htlcs: &'a mut HashMap<[u8; 32], Vec>, pending_msg_events: &'a mut Vec, } impl ChannelHolder { fn borrow_parts(&mut self) -> MutChannelHolder { MutChannelHolder { by_id: &mut self.by_id, short_to_id: &mut self.short_to_id, next_forward: &mut self.next_forward, forward_htlcs: &mut self.forward_htlcs, claimable_htlcs: &mut self.claimable_htlcs, pending_msg_events: &mut self.pending_msg_events, } } } #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))] const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height"; /// Manager which keeps track of a number of channels and sends messages to the appropriate /// channel, also tracking HTLC preimages and forwarding onion packets appropriately. /// /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through /// to individual Channels. /// /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for /// all peers during write/read (though does not modify this instance, only the instance being /// serialized). This will result in any channels which have not yet exchanged funding_created (ie /// called funding_transaction_generated for outbound channels). /// /// Note that you can be a bit lazier about writing out ChannelManager than you can be with /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before /// returning from ManyChannelMonitor::add_update_monitor, with ChannelManagers, writing updates /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during /// the serialization process). If the deserialized version is out-of-date compared to the /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees). /// /// Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call /// block_connected() to step towards your best block) upon deserialization before using the /// object! pub struct ChannelManager { default_configuration: UserConfig, genesis_hash: Sha256dHash, fee_estimator: Arc, monitor: Arc, chain_monitor: Arc, tx_broadcaster: Arc, latest_block_height: AtomicUsize, last_block_hash: Mutex, secp_ctx: Secp256k1, channel_state: Mutex, our_network_key: SecretKey, pending_events: Mutex>, /// Used when we have to take a BIG lock to make sure everything is self-consistent. /// Essentially just when we're serializing ourselves out. /// Taken first everywhere where we are making changes before any other locks. total_consistency_lock: RwLock<()>, keys_manager: Arc, logger: Arc, } /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound /// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER, /// ie the node we forwarded the payment on to should always have enough room to reliably time out /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the /// CLTV_CLAIM_BUFFER point (we static assert that its at least 3 blocks more). const CLTV_EXPIRY_DELTA: u16 = 6 * 24 * 2; //TODO? const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO? // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + 2*HTLC_FAIL_TIMEOUT_BLOCKS, ie that // if the next-hop peer fails the HTLC within HTLC_FAIL_TIMEOUT_BLOCKS then we'll still have // HTLC_FAIL_TIMEOUT_BLOCKS left to fail it backwards ourselves before hitting the // CLTV_CLAIM_BUFFER point and failing the channel on-chain to time out the HTLC. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - 2*HTLC_FAIL_TIMEOUT_BLOCKS - CLTV_CLAIM_BUFFER; // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See // ChannelMontior::would_broadcast_at_height for a description of why this is needed. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - HTLC_FAIL_TIMEOUT_BLOCKS - 2*CLTV_CLAIM_BUFFER; macro_rules! secp_call { ( $res: expr, $err: expr ) => { match $res { Ok(key) => key, Err(_) => return Err($err), } }; } struct OnionKeys { #[cfg(test)] shared_secret: SharedSecret, #[cfg(test)] blinding_factor: [u8; 32], ephemeral_pubkey: PublicKey, rho: [u8; 32], mu: [u8; 32], } /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels pub struct ChannelDetails { /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes, /// thereafter this is the txid of the funding transaction xor the funding transaction output). /// Note that this means this value is *not* persistent - it can change once during the /// lifetime of the channel. pub channel_id: [u8; 32], /// The position of the funding transaction in the chain. None if the funding transaction has /// not yet been confirmed and the channel fully opened. pub short_channel_id: Option, /// The node_id of our counterparty pub remote_network_id: PublicKey, /// The value, in satoshis, of this channel as appears in the funding output pub channel_value_satoshis: u64, /// The user_id passed in to create_channel, or 0 if the channel was inbound. pub user_id: u64, } impl ChannelManager { /// Constructs a new ChannelManager to hold several channels and route between them. /// /// This is the main "logic hub" for all channel-related actions, and implements /// ChannelMessageHandler. /// /// Non-proportional fees are fixed according to our risk using the provided fee estimator. /// /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`! pub fn new(network: Network, feeest: Arc, monitor: Arc, chain_monitor: Arc, tx_broadcaster: Arc, logger: Arc,keys_manager: Arc, config: UserConfig) -> Result, secp256k1::Error> { let secp_ctx = Secp256k1::new(); let res = Arc::new(ChannelManager { default_configuration: config.clone(), genesis_hash: genesis_block(network).header.bitcoin_hash(), fee_estimator: feeest.clone(), monitor: monitor.clone(), chain_monitor, tx_broadcaster, latest_block_height: AtomicUsize::new(0), //TODO: Get an init value last_block_hash: Mutex::new(Default::default()), secp_ctx, channel_state: Mutex::new(ChannelHolder{ by_id: HashMap::new(), short_to_id: HashMap::new(), next_forward: Instant::now(), forward_htlcs: HashMap::new(), claimable_htlcs: HashMap::new(), pending_msg_events: Vec::new(), }), our_network_key: keys_manager.get_node_secret(), pending_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), keys_manager, logger, }); let weak_res = Arc::downgrade(&res); res.chain_monitor.register_listener(weak_res); Ok(res) } /// Creates a new outbound channel to the given remote node and with the given value. /// /// user_id will be provided back as user_channel_id in FundingGenerationReady and /// FundingBroadcastSafe events to allow tracking of which events correspond with which /// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you /// may wish to avoid using 0 for user_id here. /// /// If successful, will generate a SendOpenChannel message event, so you should probably poll /// PeerManager::process_events afterwards. /// /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000. pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64) -> Result<(), APIError> { if channel_value_satoshis < 1000 { return Err(APIError::APIMisuseError { err: "channel_value must be at least 1000 satoshis" }); } let channel = Channel::new_outbound(&*self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, Arc::clone(&self.logger), &self.default_configuration)?; let res = channel.get_open_channel(self.genesis_hash.clone(), &*self.fee_estimator); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => { if cfg!(feature = "fuzztarget") { return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG" }); } else { panic!("RNG is bad???"); } }, hash_map::Entry::Vacant(entry) => { entry.insert(channel); } } channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: their_network_key, msg: res, }); Ok(()) } /// Gets the list of open channels, in random order. See ChannelDetail field documentation for /// more information. pub fn list_channels(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter() { res.push(ChannelDetails { channel_id: (*channel_id).clone(), short_channel_id: channel.get_short_channel_id(), remote_network_id: channel.get_their_node_id(), channel_value_satoshis: channel.get_value_satoshis(), user_id: channel.get_user_id(), }); } res } /// Gets the list of usable channels, in random order. Useful as an argument to /// Router::get_route to ensure non-announced channels are used. pub fn list_usable_channels(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter() { // Note we use is_live here instead of usable which leads to somewhat confused // internal/external nomenclature, but that's ok cause that's probably what the user // really wanted anyway. if channel.is_live() { res.push(ChannelDetails { channel_id: (*channel_id).clone(), short_channel_id: channel.get_short_channel_id(), remote_network_id: channel.get_their_node_id(), channel_value_satoshis: channel.get_value_satoshis(), user_id: channel.get_user_id(), }); } } res } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// May generate a SendShutdown message event on success, which should be relayed. pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { let _ = self.total_consistency_lock.read().unwrap(); let (mut failed_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?; channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: chan_entry.get().get_their_node_id(), msg: shutdown_msg }); if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (failed_htlcs, Some(chan_entry.remove_entry().1)) } else { (failed_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel"}) } }; for htlc_source in failed_htlcs.drain(..) { // unknown_next_peer...I dunno who that is anymore.... self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }); } let chan_update = if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { Some(update) } else { None } } else { None }; if let Some(update) = chan_update { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(()) } #[inline] fn finish_force_close_channel(&self, shutdown_res: (Vec, Vec<(HTLCSource, [u8; 32])>)) { let (local_txn, mut failed_htlcs) = shutdown_res; for htlc_source in failed_htlcs.drain(..) { // unknown_next_peer...I dunno who that is anymore.... self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }); } for tx in local_txn { self.tx_broadcaster.broadcast_transaction(&tx); } //TODO: We need to have a way where outbound HTLC claims can result in us claiming the //now-on-chain HTLC output for ourselves (and, thereafter, passing the HTLC backwards). //TODO: We need to handle monitoring of pending offered HTLCs which just hit the chain and //may be claimed, resulting in us claiming the inbound HTLCs (and back-failing after //timeouts are hit and our claims confirm). //TODO: In any case, we need to make sure we remove any pending htlc tracking (via //fail_backwards or claim_funds) eventually for all HTLCs that were in the channel } /// Force closes a channel, immediately broadcasting the latest local commitment transaction to /// the chain and rejecting new HTLCs on the given channel. pub fn force_close_channel(&self, channel_id: &[u8; 32]) { let _ = self.total_consistency_lock.read().unwrap(); let mut chan = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); if let Some(chan) = channel_state.by_id.remove(channel_id) { if let Some(short_id) = chan.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } chan } else { return; } }; self.finish_force_close_channel(chan.force_shutdown()); if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } /// Force close all channels, immediately broadcasting the latest local commitment transaction /// for each to the chain and rejecting new HTLCs on each. pub fn force_close_all_channels(&self) { for chan in self.list_channels() { self.force_close_channel(&chan.channel_id); } } fn handle_monitor_update_fail(&self, mut channel_state_lock: MutexGuard, channel_id: &[u8; 32], err: ChannelMonitorUpdateErr, reason: RAACommitmentOrder) { match err { ChannelMonitorUpdateErr::PermanentFailure => { let mut chan = { let channel_state = channel_state_lock.borrow_parts(); let chan = channel_state.by_id.remove(channel_id).expect("monitor_update_failed must be called within the same lock as the channel get!"); if let Some(short_id) = chan.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } chan }; mem::drop(channel_state_lock); self.finish_force_close_channel(chan.force_shutdown()); if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } }, ChannelMonitorUpdateErr::TemporaryFailure => { let channel = channel_state_lock.by_id.get_mut(channel_id).expect("monitor_update_failed must be called within the same lock as the channel get!"); channel.monitor_update_failed(reason); }, } } #[inline] fn gen_rho_mu_from_shared_secret(shared_secret: &[u8]) -> ([u8; 32], [u8; 32]) { assert_eq!(shared_secret.len(), 32); ({ let mut hmac = Hmac::new(Sha256::new(), &[0x72, 0x68, 0x6f]); // rho hmac.input(&shared_secret[..]); let mut res = [0; 32]; hmac.raw_result(&mut res); res }, { let mut hmac = Hmac::new(Sha256::new(), &[0x6d, 0x75]); // mu hmac.input(&shared_secret[..]); let mut res = [0; 32]; hmac.raw_result(&mut res); res }) } #[inline] fn gen_um_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] { assert_eq!(shared_secret.len(), 32); let mut hmac = Hmac::new(Sha256::new(), &[0x75, 0x6d]); // um hmac.input(&shared_secret[..]); let mut res = [0; 32]; hmac.raw_result(&mut res); res } #[inline] fn gen_ammag_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] { assert_eq!(shared_secret.len(), 32); let mut hmac = Hmac::new(Sha256::new(), &[0x61, 0x6d, 0x6d, 0x61, 0x67]); // ammag hmac.input(&shared_secret[..]); let mut res = [0; 32]; hmac.raw_result(&mut res); res } // can only fail if an intermediary hop has an invalid public key or session_priv is invalid #[inline] fn construct_onion_keys_callback (secp_ctx: &Secp256k1, route: &Route, session_priv: &SecretKey, mut callback: FType) -> Result<(), secp256k1::Error> { let mut blinded_priv = session_priv.clone(); let mut blinded_pub = PublicKey::from_secret_key(secp_ctx, &blinded_priv); for hop in route.hops.iter() { let shared_secret = SharedSecret::new(secp_ctx, &hop.pubkey, &blinded_priv); let mut sha = Sha256::new(); sha.input(&blinded_pub.serialize()[..]); sha.input(&shared_secret[..]); let mut blinding_factor = [0u8; 32]; sha.result(&mut blinding_factor); let ephemeral_pubkey = blinded_pub; blinded_priv.mul_assign(secp_ctx, &SecretKey::from_slice(secp_ctx, &blinding_factor)?)?; blinded_pub = PublicKey::from_secret_key(secp_ctx, &blinded_priv); callback(shared_secret, blinding_factor, ephemeral_pubkey, hop); } Ok(()) } // can only fail if an intermediary hop has an invalid public key or session_priv is invalid fn construct_onion_keys(secp_ctx: &Secp256k1, route: &Route, session_priv: &SecretKey) -> Result, secp256k1::Error> { let mut res = Vec::with_capacity(route.hops.len()); Self::construct_onion_keys_callback(secp_ctx, route, session_priv, |shared_secret, _blinding_factor, ephemeral_pubkey, _| { let (rho, mu) = ChannelManager::gen_rho_mu_from_shared_secret(&shared_secret[..]); res.push(OnionKeys { #[cfg(test)] shared_secret, #[cfg(test)] blinding_factor: _blinding_factor, ephemeral_pubkey, rho, mu, }); })?; Ok(res) } /// returns the hop data, as well as the first-hop value_msat and CLTV value we should send. fn build_onion_payloads(route: &Route, starting_htlc_offset: u32) -> Result<(Vec, u64, u32), APIError> { let mut cur_value_msat = 0u64; let mut cur_cltv = starting_htlc_offset; let mut last_short_channel_id = 0; let mut res: Vec = Vec::with_capacity(route.hops.len()); internal_traits::test_no_dealloc::(None); unsafe { res.set_len(route.hops.len()); } for (idx, hop) in route.hops.iter().enumerate().rev() { // First hop gets special values so that it can check, on receipt, that everything is // exactly as it should be (and the next hop isn't trying to probe to find out if we're // the intended recipient). let value_msat = if cur_value_msat == 0 { hop.fee_msat } else { cur_value_msat }; let cltv = if cur_cltv == starting_htlc_offset { hop.cltv_expiry_delta + starting_htlc_offset } else { cur_cltv }; res[idx] = msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: last_short_channel_id, amt_to_forward: value_msat, outgoing_cltv_value: cltv, }, hmac: [0; 32], }; cur_value_msat += hop.fee_msat; if cur_value_msat >= 21000000 * 100000000 * 1000 { return Err(APIError::RouteError{err: "Channel fees overflowed?!"}); } cur_cltv += hop.cltv_expiry_delta as u32; if cur_cltv >= 500000000 { return Err(APIError::RouteError{err: "Channel CLTV overflowed?!"}); } last_short_channel_id = hop.short_channel_id; } Ok((res, cur_value_msat, cur_cltv)) } #[inline] fn shift_arr_right(arr: &mut [u8; 20*65]) { unsafe { ptr::copy(arr[0..].as_ptr(), arr[65..].as_mut_ptr(), 19*65); } for i in 0..65 { arr[i] = 0; } } #[inline] fn xor_bufs(dst: &mut[u8], src: &[u8]) { assert_eq!(dst.len(), src.len()); for i in 0..dst.len() { dst[i] ^= src[i]; } } const ZERO:[u8; 21*65] = [0; 21*65]; fn construct_onion_packet(mut payloads: Vec, onion_keys: Vec, associated_data: &[u8; 32]) -> msgs::OnionPacket { let mut buf = Vec::with_capacity(21*65); buf.resize(21*65, 0); let filler = { let iters = payloads.len() - 1; let end_len = iters * 65; let mut res = Vec::with_capacity(end_len); res.resize(end_len, 0); for (i, keys) in onion_keys.iter().enumerate() { if i == payloads.len() - 1 { continue; } let mut chacha = ChaCha20::new(&keys.rho, &[0u8; 8]); chacha.process(&ChannelManager::ZERO, &mut buf); // We don't have a seek function :( ChannelManager::xor_bufs(&mut res[0..(i + 1)*65], &buf[(20 - i)*65..21*65]); } res }; let mut packet_data = [0; 20*65]; let mut hmac_res = [0; 32]; for (i, (payload, keys)) in payloads.iter_mut().zip(onion_keys.iter()).rev().enumerate() { ChannelManager::shift_arr_right(&mut packet_data); payload.hmac = hmac_res; packet_data[0..65].copy_from_slice(&payload.encode()[..]); let mut chacha = ChaCha20::new(&keys.rho, &[0u8; 8]); chacha.process(&packet_data, &mut buf[0..20*65]); packet_data[..].copy_from_slice(&buf[0..20*65]); if i == 0 { packet_data[20*65 - filler.len()..20*65].copy_from_slice(&filler[..]); } let mut hmac = Hmac::new(Sha256::new(), &keys.mu); hmac.input(&packet_data); hmac.input(&associated_data[..]); hmac.raw_result(&mut hmac_res); } msgs::OnionPacket{ version: 0, public_key: Ok(onion_keys.first().unwrap().ephemeral_pubkey), hop_data: packet_data, hmac: hmac_res, } } /// Encrypts a failure packet. raw_packet can either be a /// msgs::DecodedOnionErrorPacket.encode() result or a msgs::OnionErrorPacket.data element. fn encrypt_failure_packet(shared_secret: &[u8], raw_packet: &[u8]) -> msgs::OnionErrorPacket { let ammag = ChannelManager::gen_ammag_from_shared_secret(&shared_secret); let mut packet_crypted = Vec::with_capacity(raw_packet.len()); packet_crypted.resize(raw_packet.len(), 0); let mut chacha = ChaCha20::new(&ammag, &[0u8; 8]); chacha.process(&raw_packet, &mut packet_crypted[..]); msgs::OnionErrorPacket { data: packet_crypted, } } fn build_failure_packet(shared_secret: &[u8], failure_type: u16, failure_data: &[u8]) -> msgs::DecodedOnionErrorPacket { assert_eq!(shared_secret.len(), 32); assert!(failure_data.len() <= 256 - 2); let um = ChannelManager::gen_um_from_shared_secret(&shared_secret); let failuremsg = { let mut res = Vec::with_capacity(2 + failure_data.len()); res.push(((failure_type >> 8) & 0xff) as u8); res.push(((failure_type >> 0) & 0xff) as u8); res.extend_from_slice(&failure_data[..]); res }; let pad = { let mut res = Vec::with_capacity(256 - 2 - failure_data.len()); res.resize(256 - 2 - failure_data.len(), 0); res }; let mut packet = msgs::DecodedOnionErrorPacket { hmac: [0; 32], failuremsg: failuremsg, pad: pad, }; let mut hmac = Hmac::new(Sha256::new(), &um); hmac.input(&packet.encode()[32..]); hmac.raw_result(&mut packet.hmac); packet } #[inline] fn build_first_hop_failure_packet(shared_secret: &[u8], failure_type: u16, failure_data: &[u8]) -> msgs::OnionErrorPacket { let failure_packet = ChannelManager::build_failure_packet(shared_secret, failure_type, failure_data); ChannelManager::encrypt_failure_packet(shared_secret, &failure_packet.encode()[..]) } fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard) { macro_rules! get_onion_hash { () => { { let mut sha = Sha256::new(); sha.input(&msg.onion_routing_packet.hop_data); let mut onion_hash = [0; 32]; sha.result(&mut onion_hash); onion_hash } } } if let Err(_) = msg.onion_routing_packet.public_key { log_info!(self, "Failed to accept/forward incoming HTLC with invalid ephemeral pubkey"); return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, sha256_of_onion: get_onion_hash!(), failure_code: 0x8000 | 0x4000 | 6, })), self.channel_state.lock().unwrap()); } let shared_secret = { let mut arr = [0; 32]; arr.copy_from_slice(&SharedSecret::new(&self.secp_ctx, &msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]); arr }; let (rho, mu) = ChannelManager::gen_rho_mu_from_shared_secret(&shared_secret); let mut channel_state = None; macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg); if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: ChannelManager::build_first_hop_failure_packet(&shared_secret, $err_code, $data), })), channel_state.unwrap()); } } } if msg.onion_routing_packet.version != 0 { //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way, //the hash doesn't really serve any purpuse - in the case of hashing all data, the //receiving node would have to brute force to figure out which version was put in the //packet by the node that send us the message, in the case of hashing the hop_data, the //node knows the HMAC matched, so they already know what is there... return_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4, &get_onion_hash!()); } let mut hmac = Hmac::new(Sha256::new(), &mu); hmac.input(&msg.onion_routing_packet.hop_data); hmac.input(&msg.payment_hash); if hmac.result() != MacResult::new(&msg.onion_routing_packet.hmac) { return_err!("HMAC Check failed", 0x8000 | 0x4000 | 5, &get_onion_hash!()); } let mut chacha = ChaCha20::new(&rho, &[0u8; 8]); let next_hop_data = { let mut decoded = [0; 65]; chacha.process(&msg.onion_routing_packet.hop_data[0..65], &mut decoded); match msgs::OnionHopData::read(&mut Cursor::new(&decoded[..])) { Err(err) => { let error_code = match err { msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte _ => 0x2000 | 2, // Should never happen }; return_err!("Unable to decode our hop data", error_code, &[0;0]); }, Ok(msg) => msg } }; let pending_forward_info = if next_hop_data.hmac == [0; 32] { // OUR PAYMENT! // final_expiry_too_soon if (msg.cltv_expiry as u64) < self.latest_block_height.load(Ordering::Acquire) as u64 + (CLTV_CLAIM_BUFFER + HTLC_FAIL_TIMEOUT_BLOCKS) as u64 { return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]); } // final_incorrect_htlc_amount if next_hop_data.data.amt_to_forward > msg.amount_msat { return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat)); } // final_incorrect_cltv_expiry if next_hop_data.data.outgoing_cltv_value != msg.cltv_expiry { return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry)); } // Note that we could obviously respond immediately with an update_fulfill_htlc // message, however that would leak that we are the recipient of this payment, so // instead we stay symmetric with the forwarding case, only responding (after a // delay) once they've send us a commitment_signed! PendingHTLCStatus::Forward(PendingForwardHTLCInfo { onion_packet: None, payment_hash: msg.payment_hash.clone(), short_channel_id: 0, incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.data.amt_to_forward, outgoing_cltv_value: next_hop_data.data.outgoing_cltv_value, }) } else { let mut new_packet_data = [0; 20*65]; chacha.process(&msg.onion_routing_packet.hop_data[65..], &mut new_packet_data[0..19*65]); chacha.process(&ChannelManager::ZERO[0..65], &mut new_packet_data[19*65..]); let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap(); let blinding_factor = { let mut sha = Sha256::new(); sha.input(&new_pubkey.serialize()[..]); sha.input(&shared_secret); let mut res = [0u8; 32]; sha.result(&mut res); match SecretKey::from_slice(&self.secp_ctx, &res) { Err(_) => { return_err!("Blinding factor is an invalid private key", 0x8000 | 0x4000 | 6, &get_onion_hash!()); }, Ok(key) => key } }; if let Err(_) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor) { return_err!("New blinding factor is an invalid private key", 0x8000 | 0x4000 | 6, &get_onion_hash!()); } let outgoing_packet = msgs::OnionPacket { version: 0, public_key: Ok(new_pubkey), hop_data: new_packet_data, hmac: next_hop_data.hmac.clone(), }; PendingHTLCStatus::Forward(PendingForwardHTLCInfo { onion_packet: Some(outgoing_packet), payment_hash: msg.payment_hash.clone(), short_channel_id: next_hop_data.data.short_channel_id, incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.data.amt_to_forward, outgoing_cltv_value: next_hop_data.data.outgoing_cltv_value, }) }; channel_state = Some(self.channel_state.lock().unwrap()); if let &PendingHTLCStatus::Forward(PendingForwardHTLCInfo { ref onion_packet, ref short_channel_id, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info { if onion_packet.is_some() { // If short_channel_id is 0 here, we'll reject them in the body here let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned(); let forwarding_id = match id_option { None => { // unknown_next_peer return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]); }, Some(id) => id.clone(), }; if let Some((err, code, chan_update)) = loop { let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap(); // Note that we could technically not return an error yet here and just hope // that the connection is reestablished or monitor updated by the time we get // around to doing the actual forward, but better to fail early if we can and // hopefully an attacker trying to path-trace payments cannot make this occur // on a small/per-node/per-channel scale. if !chan.is_live() { // channel_disabled break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap()))); } if *amt_to_forward < chan.get_their_htlc_minimum_msat() { // amount_below_minimum break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap()))); } let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_our_fee_base_msat(&*self.fee_estimator) as u64) }); if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap()))); } if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap()))); } let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1; // We want to have at least HTLC_FAIL_TIMEOUT_BLOCKS to fail prior to going on chain CLAIM_BUFFER blocks before expiration if msg.cltv_expiry <= cur_height + CLTV_CLAIM_BUFFER + HTLC_FAIL_TIMEOUT_BLOCKS as u32 { // expiry_too_soon break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap()))); } if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far break Some(("CLTV expiry is too far in the future", 21, None)); } break None; } { let mut res = Vec::with_capacity(8 + 128); if code == 0x1000 | 11 || code == 0x1000 | 12 { res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat)); } else if code == 0x1000 | 13 { res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry)); } if let Some(chan_update) = chan_update { res.extend_from_slice(&chan_update.encode_with_len()[..]); } return_err!(err, code, &res[..]); } } } (pending_forward_info, channel_state.unwrap()) } /// only fails if the channel does not yet have an assigned short_id /// May be called with channel_state already locked! fn get_channel_update(&self, chan: &Channel) -> Result { let short_channel_id = match chan.get_short_channel_id() { None => return Err(HandleError{err: "Channel not yet established", action: None}), Some(id) => id, }; let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_their_node_id().serialize()[..]; let unsigned = msgs::UnsignedChannelUpdate { chain_hash: self.genesis_hash, short_channel_id: short_channel_id, timestamp: chan.get_channel_update_count(), flags: (!were_node_one) as u16 | ((!chan.is_live() as u16) << 1), cltv_expiry_delta: CLTV_EXPIRY_DELTA, htlc_minimum_msat: chan.get_our_htlc_minimum_msat(), fee_base_msat: chan.get_our_fee_base_msat(&*self.fee_estimator), fee_proportional_millionths: chan.get_fee_proportional_millionths(), excess_data: Vec::new(), }; let msg_hash = Sha256dHash::from_data(&unsigned.encode()[..]); let sig = self.secp_ctx.sign(&Message::from_slice(&msg_hash[..]).unwrap(), &self.our_network_key); Ok(msgs::ChannelUpdate { signature: sig, contents: unsigned }) } /// Sends a payment along a given route. /// /// Value parameters are provided via the last hop in route, see documentation for RouteHop /// fields for more info. /// /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative /// payment), we don't do anything to stop you! We always try to ensure that if the provided /// next hop knows the preimage to payment_hash they can claim an additional amount as /// specified in the last hop in the route! Thus, you should probably do your own /// payment_preimage tracking (which you should already be doing as they represent "proof of /// payment") and prevent double-sends yourself. /// /// May generate a SendHTLCs message event on success, which should be relayed. /// /// Raises APIError::RoutError when invalid route or forward parameter /// (cltv_delta, fee, node public key) is specified pub fn send_payment(&self, route: Route, payment_hash: [u8; 32]) -> Result<(), APIError> { if route.hops.len() < 1 || route.hops.len() > 20 { return Err(APIError::RouteError{err: "Route didn't go anywhere/had bogus size"}); } let our_node_id = self.get_our_node_id(); for (idx, hop) in route.hops.iter().enumerate() { if idx != route.hops.len() - 1 && hop.pubkey == our_node_id { return Err(APIError::RouteError{err: "Route went through us but wasn't a simple rebalance loop to us"}); } } let session_priv = SecretKey::from_slice(&self.secp_ctx, &{ let mut session_key = [0; 32]; rng::fill_bytes(&mut session_key); session_key }).expect("RNG is bad!"); let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = secp_call!(ChannelManager::construct_onion_keys(&self.secp_ctx, &route, &session_priv), APIError::RouteError{err: "Pubkey along hop was maliciously selected"}); let (onion_payloads, htlc_msat, htlc_cltv) = ChannelManager::build_onion_payloads(&route, cur_height)?; let onion_packet = ChannelManager::construct_onion_packet(onion_payloads, onion_keys, &payment_hash); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = self.channel_state.lock().unwrap(); let id = match channel_state.short_to_id.get(&route.hops.first().unwrap().short_channel_id) { None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!"}), Some(id) => id.clone(), }; let res = { let chan = channel_state.by_id.get_mut(&id).unwrap(); if chan.get_their_node_id() != route.hops.first().unwrap().pubkey { return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"}); } if chan.is_awaiting_monitor_update() { return Err(APIError::MonitorUpdateFailed); } if !chan.is_live() { return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected!"}); } chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute { route: route.clone(), session_priv: session_priv.clone(), first_hop_htlc_msat: htlc_msat, }, onion_packet).map_err(|he| APIError::ChannelUnavailable{err: he.err})? }; match res { Some((update_add, commitment_signed, chan_monitor)) => { if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { self.handle_monitor_update_fail(channel_state, &id, e, RAACommitmentOrder::CommitmentFirst); return Err(APIError::MonitorUpdateFailed); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: route.hops.first().unwrap().pubkey, updates: msgs::CommitmentUpdate { update_add_htlcs: vec![update_add], update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, }, }); }, None => {}, } Ok(()) } /// Call this upon creation of a funding transaction for the given channel. /// /// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs /// or your counterparty can steal your funds! /// /// Panics if a funding transaction has already been provided for this channel. /// /// May panic if the funding_txo is duplicative with some other channel (note that this should /// be trivially prevented by using unique funding transaction keys per-channel). pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) { let _ = self.total_consistency_lock.read().unwrap(); let (chan, msg, chan_monitor) = { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.remove(temporary_channel_id) { Some(mut chan) => { match chan.get_outbound_funding_created(funding_txo) { Ok(funding_msg) => { (chan, funding_msg.0, funding_msg.1) }, Err(e) => { log_error!(self, "Got bad signatures: {}!", e.err); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_their_node_id(), action: e.action, }); return; }, } }, None => return } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before add_update_monitor if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated { node_id: chan.get_their_node_id(), msg: msg, }); match channel_state.by_id.entry(chan.channel_id()) { hash_map::Entry::Occupied(_) => { panic!("Generated duplicate funding txid?"); }, hash_map::Entry::Vacant(e) => { e.insert(chan); } } } fn get_announcement_sigs(&self, chan: &Channel) -> Option { if !chan.should_announce() { return None } let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) { Ok(res) => res, Err(_) => return None, // Only in case of state precondition violations eg channel is closing }; let msghash = Message::from_slice(&Sha256dHash::from_data(&announcement.encode()[..])[..]).unwrap(); let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); Some(msgs::AnnouncementSignatures { channel_id: chan.channel_id(), short_channel_id: chan.get_short_channel_id().unwrap(), node_signature: our_node_sig, bitcoin_signature: our_bitcoin_sig, }) } /// Processes HTLCs which are pending waiting on random forward delay. /// /// Should only really ever be called in response to an PendingHTLCsForwardable event. /// Will likely generate further events. pub fn process_pending_htlc_forwards(&self) { let _ = self.total_consistency_lock.read().unwrap(); let mut new_events = Vec::new(); let mut failed_forwards = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); if cfg!(not(feature = "fuzztarget")) && Instant::now() < *channel_state.next_forward { return; } for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() { if short_chan_id != 0 { let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) { Some(chan_id) => chan_id.clone(), None => { failed_forwards.reserve(pending_forwards.len()); for HTLCForwardInfo { prev_short_channel_id, prev_htlc_id, forward_info } in pending_forwards.drain(..) { let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }); failed_forwards.push((htlc_source, forward_info.payment_hash, 0x4000 | 10, None)); } continue; } }; let forward_chan = &mut channel_state.by_id.get_mut(&forward_chan_id).unwrap(); let mut add_htlc_msgs = Vec::new(); for HTLCForwardInfo { prev_short_channel_id, prev_htlc_id, forward_info } in pending_forwards.drain(..) { let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }); match forward_chan.send_htlc(forward_info.amt_to_forward, forward_info.payment_hash, forward_info.outgoing_cltv_value, htlc_source.clone(), forward_info.onion_packet.unwrap()) { Err(_e) => { let chan_update = self.get_channel_update(forward_chan).unwrap(); failed_forwards.push((htlc_source, forward_info.payment_hash, 0x1000 | 7, Some(chan_update))); continue; }, Ok(update_add) => { match update_add { Some(msg) => { add_htlc_msgs.push(msg); }, None => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can add anymore HTLCs. The Channel // will automatically handle building the update_add_htlc and // commitment_signed messages when we can. // TODO: Do some kind of timer to set the channel as !is_live() // as we don't really want others relying on us relaying through // this channel currently :/. } } } } } if !add_htlc_msgs.is_empty() { let (commitment_msg, monitor) = match forward_chan.send_commitment() { Ok(res) => res, Err(e) => { if let &Some(msgs::ErrorAction::DisconnectPeer{msg: Some(ref _err_msg)}) = &e.action { } else if let &Some(msgs::ErrorAction::SendErrorMessage{msg: ref _err_msg}) = &e.action { } else { panic!("Stated return value requirements in send_commitment() were not met"); } //TODO: Handle...this is bad! continue; }, }; if let Err(_e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) { unimplemented!();// but def dont push the event... } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: forward_chan.get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: add_htlc_msgs, update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: commitment_msg, }, }); } } else { for HTLCForwardInfo { prev_short_channel_id, prev_htlc_id, forward_info } in pending_forwards.drain(..) { let prev_hop_data = HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }; match channel_state.claimable_htlcs.entry(forward_info.payment_hash) { hash_map::Entry::Occupied(mut entry) => entry.get_mut().push(prev_hop_data), hash_map::Entry::Vacant(entry) => { entry.insert(vec![prev_hop_data]); }, }; new_events.push(events::Event::PaymentReceived { payment_hash: forward_info.payment_hash, amt: forward_info.amt_to_forward, }); } } } } for (htlc_source, payment_hash, failure_code, update) in failed_forwards.drain(..) { match update { None => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: Vec::new() }), Some(chan_update) => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: chan_update.encode_with_len() }), }; } if new_events.is_empty() { return } let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_events); } /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect after a PaymentReceived event. pub fn fail_htlc_backwards(&self, payment_hash: &[u8; 32], reason: PaymentFailReason) -> bool { let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash); if let Some(mut sources) = removed_source { for htlc_with_hash in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), payment_hash, HTLCFailReason::Reason { failure_code: if reason == PaymentFailReason::PreimageUnknown {0x4000 | 15} else {0x4000 | 16}, data: Vec::new() }); } true } else { false } } /// Fails an HTLC backwards to the sender of it to us. /// Note that while we take a channel_state lock as input, we do *not* assume consistency here. /// There are several callsites that do stupid things like loop over a list of payment_hashes /// to fail and take the channel_state lock for each iteration (as we take ownership and may /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to /// still-available channels. fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard, source: HTLCSource, payment_hash: &[u8; 32], onion_error: HTLCFailReason) { match source { HTLCSource::OutboundRoute { .. } => { mem::drop(channel_state_lock); if let &HTLCFailReason::ErrorPacket { ref err } = &onion_error { let (channel_update, payment_retryable) = self.process_onion_failure(&source, err.data.clone()); if let Some(update) = channel_update { self.channel_state.lock().unwrap().pending_msg_events.push( events::MessageSendEvent::PaymentFailureNetworkUpdate { update, } ); } self.pending_events.lock().unwrap().push(events::Event::PaymentFailed { payment_hash: payment_hash.clone(), rejected_by_dest: !payment_retryable, }); } else { panic!("should have onion error packet here"); } }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret }) => { let err_packet = match onion_error { HTLCFailReason::Reason { failure_code, data } => { let packet = ChannelManager::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode(); ChannelManager::encrypt_failure_packet(&incoming_packet_shared_secret, &packet) }, HTLCFailReason::ErrorPacket { err } => { ChannelManager::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data) } }; let channel_state = channel_state_lock.borrow_parts(); let chan_id = match channel_state.short_to_id.get(&short_channel_id) { Some(chan_id) => chan_id.clone(), None => return }; let chan = channel_state.by_id.get_mut(&chan_id).unwrap(); match chan.get_update_fail_htlc_and_commit(htlc_id, err_packet) { Ok(Some((msg, commitment_msg, chan_monitor))) => { if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: vec![msg], update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: commitment_msg, }, }); }, Ok(None) => {}, Err(_e) => { //TODO: Do something with e? return; }, } }, } } /// Provides a payment preimage in response to a PaymentReceived event, returning true and /// generating message events for the net layer to claim the payment, if possible. Thus, you /// should probably kick the net layer to go send messages if this returns true! /// /// May panic if called except in response to a PaymentReceived event. pub fn claim_funds(&self, payment_preimage: [u8; 32]) -> bool { let mut sha = Sha256::new(); sha.input(&payment_preimage); let mut payment_hash = [0; 32]; sha.result(&mut payment_hash); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash); if let Some(mut sources) = removed_source { for htlc_with_hash in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } self.claim_funds_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), payment_preimage); } true } else { false } } fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard, source: HTLCSource, payment_preimage: [u8; 32]) { match source { HTLCSource::OutboundRoute { .. } => { mem::drop(channel_state_lock); let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PaymentSent { payment_preimage }); }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, .. }) => { //TODO: Delay the claimed_funds relaying just like we do outbound relay! let channel_state = channel_state_lock.borrow_parts(); let chan_id = match channel_state.short_to_id.get(&short_channel_id) { Some(chan_id) => chan_id.clone(), None => { // TODO: There is probably a channel manager somewhere that needs to // learn the preimage as the channel already hit the chain and that's // why its missing. return } }; let chan = channel_state.by_id.get_mut(&chan_id).unwrap(); match chan.get_update_fulfill_htlc_and_commit(htlc_id, payment_preimage) { Ok((msgs, monitor_option)) => { if let Some(chan_monitor) = monitor_option { if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!();// but def dont push the event... } } if let Some((msg, commitment_signed)) = msgs { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: vec![msg], update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, } }); } }, Err(_e) => { // TODO: There is probably a channel manager somewhere that needs to // learn the preimage as the channel may be about to hit the chain. //TODO: Do something with e? return }, } }, } } /// Gets the node_id held by this ChannelManager pub fn get_our_node_id(&self) -> PublicKey { PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key) } /// Used to restore channels to normal operation after a /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update /// operation. pub fn test_restore_channel_monitor(&self) { let mut close_results = Vec::new(); let mut htlc_forwards = Vec::new(); let mut htlc_failures = Vec::new(); let _ = self.total_consistency_lock.read().unwrap(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { if channel.is_awaiting_monitor_update() { let chan_monitor = channel.channel_monitor(); if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { match e { ChannelMonitorUpdateErr::PermanentFailure => { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } close_results.push(channel.force_shutdown()); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false }, ChannelMonitorUpdateErr::TemporaryFailure => true, } } else { let (raa, commitment_update, order, pending_forwards, mut pending_failures) = channel.monitor_updating_restored(); if !pending_forwards.is_empty() { htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), pending_forwards)); } htlc_failures.append(&mut pending_failures); macro_rules! handle_cs { () => { if let Some(update) = commitment_update { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: channel.get_their_node_id(), updates: update, }); } } } macro_rules! handle_raa { () => { if let Some(revoke_and_ack) = raa { pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: channel.get_their_node_id(), msg: revoke_and_ack, }); } } } match order { RAACommitmentOrder::CommitmentFirst => { handle_cs!(); handle_raa!(); }, RAACommitmentOrder::RevokeAndACKFirst => { handle_raa!(); handle_cs!(); }, } true } } else { true } }); } for failure in htlc_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut htlc_forwards[..]); for res in close_results.drain(..) { self.finish_force_close_channel(res); } } fn internal_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> { if msg.chain_hash != self.genesis_hash { return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash", msg.temporary_channel_id.clone())); } let channel = Channel::new_from_req(&*self.fee_estimator, &self.keys_manager, their_node_id.clone(), msg, 0, Arc::clone(&self.logger), &self.default_configuration) .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?; let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!", msg.temporary_channel_id.clone())), hash_map::Entry::Vacant(entry) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: their_node_id.clone(), msg: channel.get_accept_channel(), }); entry.insert(channel); } } Ok(()) } fn internal_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> { let (value, output_script, user_id) = { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.get_mut(&msg.temporary_channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id)); } chan.accept_channel(&msg, &self.default_configuration) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.temporary_channel_id))?; (chan.get_value_satoshis(), chan.get_funding_redeemscript().to_v0_p2wsh(), chan.get_user_id()) }, //TODO: same as above None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingGenerationReady { temporary_channel_id: msg.temporary_channel_id, channel_value_satoshis: value, output_script: output_script, user_channel_id: user_id, }); Ok(()) } fn internal_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> { let (chan, funding_msg, monitor_update) = { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.entry(msg.temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id)); } match chan.get_mut().funding_created(msg) { Ok((funding_msg, monitor_update)) => { (chan.remove(), funding_msg, monitor_update) }, Err(e) => { return Err(e).map_err(|e| MsgHandleErrInternal::from_maybe_close(e)) } } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id)) } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before add_update_monitor if let Err(_e) = self.monitor.add_update_monitor(monitor_update.get_funding_txo().unwrap(), monitor_update) { unimplemented!(); } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(funding_msg.channel_id) { hash_map::Entry::Occupied(_) => { return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id", funding_msg.channel_id)) }, hash_map::Entry::Vacant(e) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned { node_id: their_node_id.clone(), msg: funding_msg, }); e.insert(chan); } } Ok(()) } fn internal_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> { let (funding_txo, user_id) = { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let chan_monitor = chan.funding_signed(&msg).map_err(|e| MsgHandleErrInternal::from_maybe_close(e))?; if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } (chan.get_funding_txo().unwrap(), chan.get_user_id()) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingBroadcastSafe { funding_txo: funding_txo, user_channel_id: user_id, }); Ok(()) } fn internal_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } chan.funding_locked(&msg) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?; if let Some(announcement_sigs) = self.get_announcement_sigs(chan) { channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: their_node_id.clone(), msg: announcement_sigs, }); } Ok(()) }, None => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> { let (mut dropped_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (shutdown, closing_signed, dropped_htlcs) = chan_entry.get_mut().shutdown(&*self.fee_estimator, &msg).map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?; if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: their_node_id.clone(), msg, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (dropped_htlcs, Some(chan_entry.remove_entry().1)) } else { (dropped_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; for htlc_source in dropped_htlcs.drain(..) { // unknown_next_peer...I dunno who that is anymore.... self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> { let (tx, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (closing_signed, tx) = chan_entry.get_mut().closing_signed(&*self.fee_estimator, &msg).map_err(|e| MsgHandleErrInternal::from_maybe_close(e))?; if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } if tx.is_some() { // We're done with this channel, we've got a signed closing transaction and // will send the closing_signed back to the remote peer upon return. This // also implies there are no pending HTLCs left on the channel, so we can // fully delete it from tracking (the channel monitor is still around to // watch for old state broadcasts)! if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (tx, Some(chan_entry.remove_entry().1)) } else { (tx, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; if let Some(broadcast_tx) = tx { self.tx_broadcaster.broadcast_transaction(&broadcast_tx); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> { //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and //determine the state of the payment based on our response/if we forward anything/the time //we take to respond. We should take care to avoid allowing such an attack. // //TODO: There exists a further attack where a node may garble the onion data, forward it to //us repeatedly garbled in different ways, and compare our error messages, which are //encrypted with the same key. Its not immediately obvious how to usefully exploit that, //but we should prevent it anyway. let (mut pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if !chan.is_usable() { // If the update_add is completely bogus, the call will Err and we will close, // but if we've sent a shutdown and they haven't acknowledged it yet, we just // want to reject the new HTLC and fail it backwards instead of forwarding. if let PendingHTLCStatus::Forward(PendingForwardHTLCInfo { incoming_shared_secret, .. }) = pending_forward_info { pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: ChannelManager::build_first_hop_failure_packet(&incoming_shared_secret, 0x1000|20, &self.get_channel_update(chan).unwrap().encode_with_len()[..]), })); } } chan.update_add_htlc(&msg, pending_forward_info).map_err(|e| MsgHandleErrInternal::from_maybe_close(e)) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_state = self.channel_state.lock().unwrap(); let htlc_source = match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } chan.update_fulfill_htlc(&msg) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?.clone() }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) }; self.claim_funds_internal(channel_state, htlc_source, msg.payment_preimage.clone()); Ok(()) } // Process failure we got back from upstream on a payment we sent. Returns update and a boolean // indicating that the payment itself failed fn process_onion_failure(&self, htlc_source: &HTLCSource, mut packet_decrypted: Vec) -> (Option, bool) { if let &HTLCSource::OutboundRoute { ref route, ref session_priv, ref first_hop_htlc_msat } = htlc_source { macro_rules! onion_failure_log { ( $error_code_textual: expr, $error_code: expr, $reported_name: expr, $reported_value: expr ) => { log_trace!(self, "{}({:#x}) {}({})", $error_code_textual, $error_code, $reported_name, $reported_value); }; ( $error_code_textual: expr, $error_code: expr ) => { log_trace!(self, "{}({})", $error_code_textual, $error_code); }; } const BADONION: u16 = 0x8000; const PERM: u16 = 0x4000; const UPDATE: u16 = 0x1000; let mut res = None; let mut htlc_msat = *first_hop_htlc_msat; // Handle packed channel/node updates for passing back for the route handler Self::construct_onion_keys_callback(&self.secp_ctx, route, session_priv, |shared_secret, _, _, route_hop| { if res.is_some() { return; } let incoming_htlc_msat = htlc_msat; let amt_to_forward = htlc_msat - route_hop.fee_msat; htlc_msat = amt_to_forward; let ammag = ChannelManager::gen_ammag_from_shared_secret(&shared_secret[..]); let mut decryption_tmp = Vec::with_capacity(packet_decrypted.len()); decryption_tmp.resize(packet_decrypted.len(), 0); let mut chacha = ChaCha20::new(&ammag, &[0u8; 8]); chacha.process(&packet_decrypted, &mut decryption_tmp[..]); packet_decrypted = decryption_tmp; let is_from_final_node = route.hops.last().unwrap().pubkey == route_hop.pubkey; if let Ok(err_packet) = msgs::DecodedOnionErrorPacket::read(&mut Cursor::new(&packet_decrypted)) { let um = ChannelManager::gen_um_from_shared_secret(&shared_secret[..]); let mut hmac = Hmac::new(Sha256::new(), &um); hmac.input(&err_packet.encode()[32..]); let mut calc_tag = [0u8; 32]; hmac.raw_result(&mut calc_tag); if crypto::util::fixed_time_eq(&calc_tag, &err_packet.hmac) { if err_packet.failuremsg.len() < 2 { // Useless packet that we can't use but it passed HMAC, so it // definitely came from the peer in question res = Some((None, !is_from_final_node)); } else { let error_code = byte_utils::slice_to_be16(&err_packet.failuremsg[0..2]); match error_code & 0xff { 1|2|3 => { // either from an intermediate or final node // invalid_realm(PERM|1), // temporary_node_failure(NODE|2) // permanent_node_failure(PERM|NODE|2) // required_node_feature_mssing(PERM|NODE|3) res = Some((Some(msgs::HTLCFailChannelUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent: error_code & PERM == PERM, }), !(error_code & PERM == PERM && is_from_final_node))); // node returning invalid_realm is removed from network_map, // although NODE flag is not set, TODO: or remove channel only? // retry payment when removed node is not a final node return; }, _ => {} } if is_from_final_node { let payment_retryable = match error_code { c if c == PERM|15 => false, // unknown_payment_hash c if c == PERM|16 => false, // incorrect_payment_amount 17 => true, // final_expiry_too_soon 18 if err_packet.failuremsg.len() == 6 => { // final_incorrect_cltv_expiry let _reported_cltv_expiry = byte_utils::slice_to_be32(&err_packet.failuremsg[2..2+4]); true }, 19 if err_packet.failuremsg.len() == 10 => { // final_incorrect_htlc_amount let _reported_incoming_htlc_msat = byte_utils::slice_to_be64(&err_packet.failuremsg[2..2+8]); true }, _ => { // A final node has sent us either an invalid code or an error_code that // MUST be sent from the processing node, or the formmat of failuremsg // does not coform to the spec. // Remove it from the network map and don't may retry payment res = Some((Some(msgs::HTLCFailChannelUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent: true, }), false)); return; } }; res = Some((None, payment_retryable)); return; } // now, error_code should be only from the intermediate nodes match error_code { _c if error_code & PERM == PERM => { res = Some((Some(msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id: route_hop.short_channel_id, is_permanent: true, }), false)); }, _c if error_code & UPDATE == UPDATE => { let offset = match error_code { c if c == UPDATE|7 => 0, // temporary_channel_failure c if c == UPDATE|11 => 8, // amount_below_minimum c if c == UPDATE|12 => 8, // fee_insufficient c if c == UPDATE|13 => 4, // incorrect_cltv_expiry c if c == UPDATE|14 => 0, // expiry_too_soon c if c == UPDATE|20 => 2, // channel_disabled _ => { // node sending unknown code res = Some((Some(msgs::HTLCFailChannelUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent: true, }), false)); return; } }; if err_packet.failuremsg.len() >= offset + 2 { let update_len = byte_utils::slice_to_be16(&err_packet.failuremsg[offset+2..offset+4]) as usize; if err_packet.failuremsg.len() >= offset + 4 + update_len { if let Ok(chan_update) = msgs::ChannelUpdate::read(&mut Cursor::new(&err_packet.failuremsg[offset + 4..offset + 4 + update_len])) { // if channel_update should NOT have caused the failure: // MAY treat the channel_update as invalid. let is_chan_update_invalid = match error_code { c if c == UPDATE|7 => { // temporary_channel_failure false }, c if c == UPDATE|11 => { // amount_below_minimum let reported_htlc_msat = byte_utils::slice_to_be64(&err_packet.failuremsg[2..2+8]); onion_failure_log!("amount_below_minimum", UPDATE|11, "htlc_msat", reported_htlc_msat); incoming_htlc_msat > chan_update.contents.htlc_minimum_msat }, c if c == UPDATE|12 => { // fee_insufficient let reported_htlc_msat = byte_utils::slice_to_be64(&err_packet.failuremsg[2..2+8]); let new_fee = amt_to_forward.checked_mul(chan_update.contents.fee_proportional_millionths as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan_update.contents.fee_base_msat as u64) }); onion_failure_log!("fee_insufficient", UPDATE|12, "htlc_msat", reported_htlc_msat); new_fee.is_none() || incoming_htlc_msat >= new_fee.unwrap() && incoming_htlc_msat >= amt_to_forward + new_fee.unwrap() } c if c == UPDATE|13 => { // incorrect_cltv_expiry let reported_cltv_expiry = byte_utils::slice_to_be32(&err_packet.failuremsg[2..2+4]); onion_failure_log!("incorrect_cltv_expiry", UPDATE|13, "cltv_expiry", reported_cltv_expiry); route_hop.cltv_expiry_delta as u16 >= chan_update.contents.cltv_expiry_delta }, c if c == UPDATE|20 => { // channel_disabled let reported_flags = byte_utils::slice_to_be16(&err_packet.failuremsg[2..2+2]); onion_failure_log!("channel_disabled", UPDATE|20, "flags", reported_flags); chan_update.contents.flags & 0x01 == 0x01 }, c if c == UPDATE|21 => true, // expiry_too_far _ => { unreachable!(); }, }; let msg = if is_chan_update_invalid { None } else { Some(msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { msg: chan_update, }) }; res = Some((msg, true)); return; } } } }, _c if error_code & BADONION == BADONION => { //TODO }, 14 => { // expiry_too_soon res = Some((None, true)); return; } _ => { // node sending unknown code res = Some((Some(msgs::HTLCFailChannelUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent: true, }), false)); return; } } } } } }).expect("Route that we sent via spontaneously grew invalid keys in the middle of it?"); res.unwrap_or((None, true)) } else { ((None, true)) } } fn internal_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } chan.update_fail_htlc(&msg, HTLCFailReason::ErrorPacket { err: msg.reason.clone() }) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id)) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) }?; Ok(()) } fn internal_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if (msg.failure_code & 0x8000) != 0 { return Err(MsgHandleErrInternal::send_err_msg_close_chan("Got update_fail_malformed_htlc with BADONION set", msg.channel_id)); } chan.update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?; Ok(()) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (revoke_and_ack, commitment_signed, closing_signed, chan_monitor) = chan.commitment_signed(&msg, &*self.fee_estimator).map_err(|e| MsgHandleErrInternal::from_maybe_close(e))?; if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: their_node_id.clone(), msg: revoke_and_ack, }); if let Some(msg) = commitment_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: msg, }, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } Ok(()) }, None => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } #[inline] fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, Vec<(PendingForwardHTLCInfo, u64)>)]) { for &mut (prev_short_channel_id, ref mut pending_forwards) in per_source_pending_forwards { let mut forward_event = None; if !pending_forwards.is_empty() { let mut channel_state = self.channel_state.lock().unwrap(); if channel_state.forward_htlcs.is_empty() { forward_event = Some(Instant::now() + Duration::from_millis(((rng::rand_f32() * 4.0 + 1.0) * MIN_HTLC_RELAY_HOLDING_CELL_MILLIS as f32) as u64)); channel_state.next_forward = forward_event.unwrap(); } for (forward_info, prev_htlc_id) in pending_forwards.drain(..) { match channel_state.forward_htlcs.entry(forward_info.short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo { prev_short_channel_id, prev_htlc_id, forward_info }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo { prev_short_channel_id, prev_htlc_id, forward_info })); } } } } match forward_event { Some(time) => { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } None => {}, } } } fn internal_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> { let (pending_forwards, mut pending_failures, short_channel_id) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (commitment_update, pending_forwards, pending_failures, closing_signed, chan_monitor) = chan.revoke_and_ack(&msg, &*self.fee_estimator).map_err(|e| MsgHandleErrInternal::from_maybe_close(e))?; if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } (pending_forwards, pending_failures, chan.get_short_channel_id().expect("RAA should only work on a short-id-available channel")) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; for failure in pending_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut [(short_channel_id, pending_forwards)]); Ok(()) } fn internal_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } chan.update_fee(&*self.fee_estimator, &msg).map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id)) }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if !chan.is_usable() { return Err(MsgHandleErrInternal::from_no_close(HandleError{err: "Got an announcement_signatures before we were ready for it", action: Some(msgs::ErrorAction::IgnoreError)})); } let our_node_id = self.get_our_node_id(); let (announcement, our_bitcoin_sig) = chan.get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?; let were_node_one = announcement.node_id_1 == our_node_id; let msghash = Message::from_slice(&Sha256dHash::from_data(&announcement.encode()[..])[..]).unwrap(); let bad_sig_action = MsgHandleErrInternal::send_err_msg_close_chan("Bad announcement_signatures node_signature", msg.channel_id); secp_call!(self.secp_ctx.verify(&msghash, &msg.node_signature, if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 }), bad_sig_action); secp_call!(self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 }), bad_sig_action); let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: msgs::ChannelAnnouncement { node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature }, node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig }, bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature }, bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig }, contents: announcement, }, update_msg: self.get_channel_update(chan).unwrap(), // can only fail if we're not in a ready state }); }, None => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } Ok(()) } fn internal_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&msg.channel_id) { Some(chan) => { if chan.get_their_node_id() != *their_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (funding_locked, revoke_and_ack, commitment_update, channel_monitor, order, shutdown) = chan.channel_reestablish(msg) .map_err(|e| MsgHandleErrInternal::from_chan_maybe_close(e, msg.channel_id))?; if let Some(monitor) = channel_monitor { if let Err(_e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) { unimplemented!(); } } if let Some(msg) = funding_locked { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: their_node_id.clone(), msg }); } macro_rules! send_raa { () => { if let Some(msg) = revoke_and_ack { channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: their_node_id.clone(), msg }); } } } macro_rules! send_cu { () => { if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates }); } } } match order { RAACommitmentOrder::RevokeAndACKFirst => { send_raa!(); send_cu!(); }, RAACommitmentOrder::CommitmentFirst => { send_cu!(); send_raa!(); }, } if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: their_node_id.clone(), msg, }); } Ok(()) }, None => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } /// Begin Update fee process. Allowed only on an outbound channel. /// If successful, will generate a UpdateHTLCs event, so you should probably poll /// PeerManager::process_events afterwards. /// Note: This API is likely to change! #[doc(hidden)] pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u64) -> Result<(), APIError> { let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.get_mut(&channel_id) { None => return Err(APIError::APIMisuseError{err: "Failed to find corresponding channel"}), Some(chan) => { if !chan.is_outbound() { return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel"}); } if chan.is_awaiting_monitor_update() { return Err(APIError::MonitorUpdateFailed); } if !chan.is_live() { return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected"}); } if let Some((update_fee, commitment_signed, chan_monitor)) = chan.send_update_fee_and_commit(feerate_per_kw).map_err(|e| APIError::APIMisuseError{err: e.err})? { if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: Some(update_fee), commitment_signed, }, }); } }, } Ok(()) } } impl events::MessageSendEventsProvider for ChannelManager { fn get_and_clear_pending_msg_events(&self) -> Vec { let mut ret = Vec::new(); let mut channel_state = self.channel_state.lock().unwrap(); mem::swap(&mut ret, &mut channel_state.pending_msg_events); ret } } impl events::EventsProvider for ChannelManager { fn get_and_clear_pending_events(&self) -> Vec { let mut ret = Vec::new(); let mut pending_events = self.pending_events.lock().unwrap(); mem::swap(&mut ret, &mut *pending_events); ret } } impl ChainListener for ChannelManager { fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], indexes_of_txn_matched: &[u32]) { let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { let chan_res = channel.block_connected(header, height, txn_matched, indexes_of_txn_matched); if let Ok(Some(funding_locked)) = chan_res { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_their_node_id(), msg: funding_locked, }); if let Some(announcement_sigs) = self.get_announcement_sigs(channel) { pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_their_node_id(), msg: announcement_sigs, }); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } else if let Err(e) = chan_res { pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: channel.get_their_node_id(), action: e.action, }); if channel.is_shutdown() { return false; } } if let Some(funding_txo) = channel.get_funding_txo() { for tx in txn_matched { for inp in tx.input.iter() { if inp.previous_output == funding_txo.into_bitcoin_outpoint() { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } // It looks like our counterparty went on-chain. We go ahead and // broadcast our latest local state as well here, just in case its // some kind of SPV attack, though we expect these to be dropped. failed_channels.push(channel.force_shutdown()); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } return false; } } } } if channel.is_funding_initiated() && channel.channel_monitor().would_broadcast_at_height(height) { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(channel.force_shutdown()); // If would_broadcast_at_height() is true, the channel_monitor will broadcast // the latest local tx for us, so we should skip that here (it doesn't really // hurt anything, but does make tests a bit simpler). failed_channels.last_mut().unwrap().0 = Vec::new(); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } return false; } true }); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } self.latest_block_height.store(height as usize, Ordering::Release); *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash(); } /// We force-close the channel without letting our counterparty participate in the shutdown fn block_disconnected(&self, header: &BlockHeader) { let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, v| { if v.block_disconnected(header) { if let Some(short_id) = v.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(v.force_shutdown()); if let Ok(update) = self.get_channel_update(&v) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false } else { true } }); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } self.latest_block_height.fetch_sub(1, Ordering::AcqRel); *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash(); } } macro_rules! handle_error { ($self: ident, $internal: expr, $their_node_id: expr) => { match $internal { Ok(msg) => Ok(msg), Err(MsgHandleErrInternal { err, needs_channel_force_close }) => { if needs_channel_force_close { match &err.action { &Some(msgs::ErrorAction::DisconnectPeer { msg: Some(ref msg) }) => { if msg.channel_id == [0; 32] { $self.peer_disconnected(&$their_node_id, true); } else { $self.force_close_channel(&msg.channel_id); } }, &Some(msgs::ErrorAction::DisconnectPeer { msg: None }) => {}, &Some(msgs::ErrorAction::IgnoreError) => {}, &Some(msgs::ErrorAction::SendErrorMessage { ref msg }) => { if msg.channel_id == [0; 32] { $self.peer_disconnected(&$their_node_id, true); } else { $self.force_close_channel(&msg.channel_id); } }, &None => {}, } } Err(err) }, } } } impl ChannelMessageHandler for ChannelManager { //TODO: Handle errors and close channel (or so) fn handle_open_channel(&self, their_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_open_channel(their_node_id, msg), their_node_id) } fn handle_accept_channel(&self, their_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_accept_channel(their_node_id, msg), their_node_id) } fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_created(their_node_id, msg), their_node_id) } fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_signed(their_node_id, msg), their_node_id) } fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_locked(their_node_id, msg), their_node_id) } fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_shutdown(their_node_id, msg), their_node_id) } fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_closing_signed(their_node_id, msg), their_node_id) } fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), msgs::HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_add_htlc(their_node_id, msg), their_node_id) } fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fulfill_htlc(their_node_id, msg), their_node_id) } fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fail_htlc(their_node_id, msg), their_node_id) } fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fail_malformed_htlc(their_node_id, msg), their_node_id) } fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_commitment_signed(their_node_id, msg), their_node_id) } fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_revoke_and_ack(their_node_id, msg), their_node_id) } fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fee(their_node_id, msg), their_node_id) } fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_announcement_signatures(their_node_id, msg), their_node_id) } fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), HandleError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_channel_reestablish(their_node_id, msg), their_node_id) } fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool) { let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); let mut failed_payments = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; if no_connection_possible { channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown()); if let Ok(update) = self.get_channel_update(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false } else { true } }); } else { channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { //TODO: mark channel disabled (and maybe announce such after a timeout). let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(); if !failed_adds.is_empty() { let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe failed_payments.push((chan_update, failed_adds)); } if chan.is_shutdown() { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } return false; } } true }) } } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } for (chan_update, mut htlc_sources) in failed_payments { for (htlc_source, payment_hash) in htlc_sources.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() }); } } } fn peer_connected(&self, their_node_id: &PublicKey) { let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { if !chan.have_received_message() { // If we created this (outbound) channel while we were disconnected from the // peer we probably failed to send the open_channel message, which is now // lost. We can't have had anything pending related to this channel, so we just // drop it. false } else { pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish { node_id: chan.get_their_node_id(), msg: chan.get_channel_reestablish(), }); true } } else { true } }); //TODO: Also re-broadcast announcement_signatures } fn handle_error(&self, their_node_id: &PublicKey, msg: &msgs::ErrorMessage) { let _ = self.total_consistency_lock.read().unwrap(); if msg.channel_id == [0; 32] { for chan in self.list_channels() { if chan.remote_network_id == *their_node_id { self.force_close_channel(&chan.channel_id); } } } else { self.force_close_channel(&msg.channel_id); } } } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl Writeable for PendingForwardHTLCInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { if let &Some(ref onion) = &self.onion_packet { 1u8.write(writer)?; onion.write(writer)?; } else { 0u8.write(writer)?; } self.incoming_shared_secret.write(writer)?; self.payment_hash.write(writer)?; self.short_channel_id.write(writer)?; self.amt_to_forward.write(writer)?; self.outgoing_cltv_value.write(writer)?; Ok(()) } } impl Readable for PendingForwardHTLCInfo { fn read(reader: &mut R) -> Result { let onion_packet = match >::read(reader)? { 0 => None, 1 => Some(msgs::OnionPacket::read(reader)?), _ => return Err(DecodeError::InvalidValue), }; Ok(PendingForwardHTLCInfo { onion_packet, incoming_shared_secret: Readable::read(reader)?, payment_hash: Readable::read(reader)?, short_channel_id: Readable::read(reader)?, amt_to_forward: Readable::read(reader)?, outgoing_cltv_value: Readable::read(reader)?, }) } } impl Writeable for HTLCFailureMsg { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailureMsg::Relay(ref fail_msg) => { 0u8.write(writer)?; fail_msg.write(writer)?; }, &HTLCFailureMsg::Malformed(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailureMsg { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)), 1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for PendingHTLCStatus { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &PendingHTLCStatus::Forward(ref forward_info) => { 0u8.write(writer)?; forward_info.write(writer)?; }, &PendingHTLCStatus::Fail(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for PendingHTLCStatus { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)), 1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl_writeable!(HTLCPreviousHopData, 0, { short_channel_id, htlc_id, incoming_packet_shared_secret }); impl Writeable for HTLCSource { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCSource::PreviousHopData(ref hop_data) => { 0u8.write(writer)?; hop_data.write(writer)?; }, &HTLCSource::OutboundRoute { ref route, ref session_priv, ref first_hop_htlc_msat } => { 1u8.write(writer)?; route.write(writer)?; session_priv.write(writer)?; first_hop_htlc_msat.write(writer)?; } } Ok(()) } } impl Readable for HTLCSource { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)), 1 => Ok(HTLCSource::OutboundRoute { route: Readable::read(reader)?, session_priv: Readable::read(reader)?, first_hop_htlc_msat: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for HTLCFailReason { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailReason::ErrorPacket { ref err } => { 0u8.write(writer)?; err.write(writer)?; }, &HTLCFailReason::Reason { ref failure_code, ref data } => { 1u8.write(writer)?; failure_code.write(writer)?; data.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailReason { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCFailReason::ErrorPacket { err: Readable::read(reader)? }), 1 => Ok(HTLCFailReason::Reason { failure_code: Readable::read(reader)?, data: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl_writeable!(HTLCForwardInfo, 0, { prev_short_channel_id, prev_htlc_id, forward_info }); impl Writeable for ChannelManager { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { let _ = self.total_consistency_lock.write().unwrap(); writer.write_all(&[SERIALIZATION_VERSION; 1])?; writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; self.genesis_hash.write(writer)?; (self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?; self.last_block_hash.lock().unwrap().write(writer)?; let channel_state = self.channel_state.lock().unwrap(); let mut unfunded_channels = 0; for (_, channel) in channel_state.by_id.iter() { if !channel.is_funding_initiated() { unfunded_channels += 1; } } ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?; for (_, channel) in channel_state.by_id.iter() { if channel.is_funding_initiated() { channel.write(writer)?; } } (channel_state.forward_htlcs.len() as u64).write(writer)?; for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() { short_channel_id.write(writer)?; (pending_forwards.len() as u64).write(writer)?; for forward in pending_forwards { forward.write(writer)?; } } (channel_state.claimable_htlcs.len() as u64).write(writer)?; for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() { payment_hash.write(writer)?; (previous_hops.len() as u64).write(writer)?; for previous_hop in previous_hops { previous_hop.write(writer)?; } } Ok(()) } } /// Arguments for the creation of a ChannelManager that are not deserialized. /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: /// 1) Deserialize all stored ChannelMonitors. /// 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash, /// ChannelManager)>::read(reader, args). /// This may result in closing some Channels if the ChannelMonitor is newer than the stored /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted. /// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using /// ChannelMonitor::get_monitored_outpoints and ChannelMonitor::get_funding_txo(). /// 4) Reconnect blocks on your ChannelMonitors. /// 5) Move the ChannelMonitors into your local ManyChannelMonitor. /// 6) Disconnect/connect blocks on the ChannelManager. /// 7) Register the new ChannelManager with your ChainWatchInterface (this does not happen /// automatically as it does in ChannelManager::new()). pub struct ChannelManagerReadArgs<'a> { /// The keys provider which will give us relevant keys. Some keys will be loaded during /// deserialization. pub keys_manager: Arc, /// The fee_estimator for use in the ChannelManager in the future. /// /// No calls to the FeeEstimator will be made during deserialization. pub fee_estimator: Arc, /// The ManyChannelMonitor for use in the ChannelManager in the future. /// /// No calls to the ManyChannelMonitor will be made during deserialization. It is assumed that /// you have deserialized ChannelMonitors separately and will add them to your /// ManyChannelMonitor after deserializing this ChannelManager. pub monitor: Arc, /// The ChainWatchInterface for use in the ChannelManager in the future. /// /// No calls to the ChainWatchInterface will be made during deserialization. pub chain_monitor: Arc, /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be /// used to broadcast the latest local commitment transactions of channels which must be /// force-closed during deserialization. pub tx_broadcaster: Arc, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: Arc, /// Default settings used for new channels. Any existing channels will continue to use the /// runtime settings which were stored when the ChannelManager was serialized. pub default_config: UserConfig, /// A map from channel funding outpoints to ChannelMonitors for those channels (ie /// value.get_funding_txo() should be the key). /// /// If a monitor is inconsistent with the channel state during deserialization the channel will /// be force-closed using the data in the channelmonitor and the Channel will be dropped. This /// is true for missing channels as well. If there is a monitor missing for which we find /// channel data Err(DecodeError::InvalidValue) will be returned. /// /// In such cases the latest local transactions will be sent to the tx_broadcaster included in /// this struct. pub channel_monitors: &'a HashMap, } impl<'a, R : ::std::io::Read> ReadableArgs> for (Sha256dHash, ChannelManager) { fn read(reader: &mut R, args: ChannelManagerReadArgs<'a>) -> Result { let _ver: u8 = Readable::read(reader)?; let min_ver: u8 = Readable::read(reader)?; if min_ver > SERIALIZATION_VERSION { return Err(DecodeError::UnknownVersion); } let genesis_hash: Sha256dHash = Readable::read(reader)?; let latest_block_height: u32 = Readable::read(reader)?; let last_block_hash: Sha256dHash = Readable::read(reader)?; let mut closed_channels = Vec::new(); let channel_count: u64 = Readable::read(reader)?; let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128)); let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); for _ in 0..channel_count { let mut channel: Channel = ReadableArgs::read(reader, args.logger.clone())?; if channel.last_block_connected != last_block_hash { return Err(DecodeError::InvalidValue); } let funding_txo = channel.channel_monitor().get_funding_txo().ok_or(DecodeError::InvalidValue)?; funding_txo_set.insert(funding_txo.clone()); if let Some(monitor) = args.channel_monitors.get(&funding_txo) { if channel.get_cur_local_commitment_transaction_number() != monitor.get_cur_local_commitment_number() || channel.get_revoked_remote_commitment_transaction_number() != monitor.get_min_seen_secret() || channel.get_cur_remote_commitment_transaction_number() != monitor.get_cur_remote_commitment_number() { let mut force_close_res = channel.force_shutdown(); force_close_res.0 = monitor.get_latest_local_commitment_txn(); closed_channels.push(force_close_res); } else { if let Some(short_channel_id) = channel.get_short_channel_id() { short_to_id.insert(short_channel_id, channel.channel_id()); } by_id.insert(channel.channel_id(), channel); } } else { return Err(DecodeError::InvalidValue); } } for (ref funding_txo, ref monitor) in args.channel_monitors.iter() { if !funding_txo_set.contains(funding_txo) { closed_channels.push((monitor.get_latest_local_commitment_txn(), Vec::new())); } } let forward_htlcs_count: u64 = Readable::read(reader)?; let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128)); for _ in 0..forward_htlcs_count { let short_channel_id = Readable::read(reader)?; let pending_forwards_count: u64 = Readable::read(reader)?; let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, 128)); for _ in 0..pending_forwards_count { pending_forwards.push(Readable::read(reader)?); } forward_htlcs.insert(short_channel_id, pending_forwards); } let claimable_htlcs_count: u64 = Readable::read(reader)?; let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128)); for _ in 0..claimable_htlcs_count { let payment_hash = Readable::read(reader)?; let previous_hops_len: u64 = Readable::read(reader)?; let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, 2)); for _ in 0..previous_hops_len { previous_hops.push(Readable::read(reader)?); } claimable_htlcs.insert(payment_hash, previous_hops); } let channel_manager = ChannelManager { genesis_hash, fee_estimator: args.fee_estimator, monitor: args.monitor, chain_monitor: args.chain_monitor, tx_broadcaster: args.tx_broadcaster, latest_block_height: AtomicUsize::new(latest_block_height as usize), last_block_hash: Mutex::new(last_block_hash), secp_ctx: Secp256k1::new(), channel_state: Mutex::new(ChannelHolder { by_id, short_to_id, next_forward: Instant::now(), forward_htlcs, claimable_htlcs, pending_msg_events: Vec::new(), }), our_network_key: args.keys_manager.get_node_secret(), pending_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), keys_manager: args.keys_manager, logger: args.logger, default_configuration: args.default_config, }; for close_res in closed_channels.drain(..) { channel_manager.finish_force_close_channel(close_res); //TODO: Broadcast channel update for closed channels, but only after we've made a //connection or two. } Ok((last_block_hash.clone(), channel_manager)) } } #[cfg(test)] mod tests { use chain::chaininterface; use chain::transaction::OutPoint; use chain::chaininterface::{ChainListener, ChainWatchInterface}; use chain::keysinterface::KeysInterface; use chain::keysinterface; use ln::channelmanager::{ChannelManager,ChannelManagerReadArgs,OnionKeys,PaymentFailReason,RAACommitmentOrder}; use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, CLTV_CLAIM_BUFFER, HTLC_FAIL_TIMEOUT_BLOCKS, ManyChannelMonitor}; use ln::router::{Route, RouteHop, Router}; use ln::msgs; use ln::msgs::{ChannelMessageHandler,RoutingMessageHandler}; use util::test_utils; use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider}; use util::errors::APIError; use util::logger::Logger; use util::ser::{Writeable, Writer, ReadableArgs}; use util::config::UserConfig; use bitcoin::util::hash::Sha256dHash; use bitcoin::blockdata::block::{Block, BlockHeader}; use bitcoin::blockdata::transaction::{Transaction, TxOut}; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::network::serialize::serialize; use bitcoin::network::serialize::BitcoinHash; use hex; use secp256k1::{Secp256k1, Message}; use secp256k1::key::{PublicKey,SecretKey}; use crypto::sha2::Sha256; use crypto::digest::Digest; use rand::{thread_rng,Rng}; use std::cell::RefCell; use std::collections::{BTreeSet, HashMap}; use std::default::Default; use std::rc::Rc; use std::sync::{Arc, Mutex}; use std::sync::atomic::Ordering; use std::time::Instant; use std::mem; fn build_test_onion_keys() -> Vec { // Keys from BOLT 4, used in both test vector tests let secp_ctx = Secp256k1::new(); let route = Route { hops: vec!( RouteHop { pubkey: PublicKey::from_slice(&secp_ctx, &hex::decode("02eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619").unwrap()[..]).unwrap(), short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0 // Test vectors are garbage and not generateble from a RouteHop, we fill in payloads manually }, RouteHop { pubkey: PublicKey::from_slice(&secp_ctx, &hex::decode("0324653eac434488002cc06bbfb7f10fe18991e35f9fe4302dbea6d2353dc0ab1c").unwrap()[..]).unwrap(), short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0 // Test vectors are garbage and not generateble from a RouteHop, we fill in payloads manually }, RouteHop { pubkey: PublicKey::from_slice(&secp_ctx, &hex::decode("027f31ebc5462c1fdce1b737ecff52d37d75dea43ce11c74d25aa297165faa2007").unwrap()[..]).unwrap(), short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0 // Test vectors are garbage and not generateble from a RouteHop, we fill in payloads manually }, RouteHop { pubkey: PublicKey::from_slice(&secp_ctx, &hex::decode("032c0b7cf95324a07d05398b240174dc0c2be444d96b159aa6c7f7b1e668680991").unwrap()[..]).unwrap(), short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0 // Test vectors are garbage and not generateble from a RouteHop, we fill in payloads manually }, RouteHop { pubkey: PublicKey::from_slice(&secp_ctx, &hex::decode("02edabbd16b41c8371b92ef2f04c1185b4f03b6dcd52ba9b78d9d7c89c8f221145").unwrap()[..]).unwrap(), short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0 // Test vectors are garbage and not generateble from a RouteHop, we fill in payloads manually }, ), }; let session_priv = SecretKey::from_slice(&secp_ctx, &hex::decode("4141414141414141414141414141414141414141414141414141414141414141").unwrap()[..]).unwrap(); let onion_keys = ChannelManager::construct_onion_keys(&secp_ctx, &route, &session_priv).unwrap(); assert_eq!(onion_keys.len(), route.hops.len()); onion_keys } #[test] fn onion_vectors() { // Packet creation test vectors from BOLT 4 let onion_keys = build_test_onion_keys(); assert_eq!(onion_keys[0].shared_secret[..], hex::decode("53eb63ea8a3fec3b3cd433b85cd62a4b145e1dda09391b348c4e1cd36a03ea66").unwrap()[..]); assert_eq!(onion_keys[0].blinding_factor[..], hex::decode("2ec2e5da605776054187180343287683aa6a51b4b1c04d6dd49c45d8cffb3c36").unwrap()[..]); assert_eq!(onion_keys[0].ephemeral_pubkey.serialize()[..], hex::decode("02eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619").unwrap()[..]); assert_eq!(onion_keys[0].rho, hex::decode("ce496ec94def95aadd4bec15cdb41a740c9f2b62347c4917325fcc6fb0453986").unwrap()[..]); assert_eq!(onion_keys[0].mu, hex::decode("b57061dc6d0a2b9f261ac410c8b26d64ac5506cbba30267a649c28c179400eba").unwrap()[..]); assert_eq!(onion_keys[1].shared_secret[..], hex::decode("a6519e98832a0b179f62123b3567c106db99ee37bef036e783263602f3488fae").unwrap()[..]); assert_eq!(onion_keys[1].blinding_factor[..], hex::decode("bf66c28bc22e598cfd574a1931a2bafbca09163df2261e6d0056b2610dab938f").unwrap()[..]); assert_eq!(onion_keys[1].ephemeral_pubkey.serialize()[..], hex::decode("028f9438bfbf7feac2e108d677e3a82da596be706cc1cf342b75c7b7e22bf4e6e2").unwrap()[..]); assert_eq!(onion_keys[1].rho, hex::decode("450ffcabc6449094918ebe13d4f03e433d20a3d28a768203337bc40b6e4b2c59").unwrap()[..]); assert_eq!(onion_keys[1].mu, hex::decode("05ed2b4a3fb023c2ff5dd6ed4b9b6ea7383f5cfe9d59c11d121ec2c81ca2eea9").unwrap()[..]); assert_eq!(onion_keys[2].shared_secret[..], hex::decode("3a6b412548762f0dbccce5c7ae7bb8147d1caf9b5471c34120b30bc9c04891cc").unwrap()[..]); assert_eq!(onion_keys[2].blinding_factor[..], hex::decode("a1f2dadd184eb1627049673f18c6325814384facdee5bfd935d9cb031a1698a5").unwrap()[..]); assert_eq!(onion_keys[2].ephemeral_pubkey.serialize()[..], hex::decode("03bfd8225241ea71cd0843db7709f4c222f62ff2d4516fd38b39914ab6b83e0da0").unwrap()[..]); assert_eq!(onion_keys[2].rho, hex::decode("11bf5c4f960239cb37833936aa3d02cea82c0f39fd35f566109c41f9eac8deea").unwrap()[..]); assert_eq!(onion_keys[2].mu, hex::decode("caafe2820fa00eb2eeb78695ae452eba38f5a53ed6d53518c5c6edf76f3f5b78").unwrap()[..]); assert_eq!(onion_keys[3].shared_secret[..], hex::decode("21e13c2d7cfe7e18836df50872466117a295783ab8aab0e7ecc8c725503ad02d").unwrap()[..]); assert_eq!(onion_keys[3].blinding_factor[..], hex::decode("7cfe0b699f35525029ae0fa437c69d0f20f7ed4e3916133f9cacbb13c82ff262").unwrap()[..]); assert_eq!(onion_keys[3].ephemeral_pubkey.serialize()[..], hex::decode("031dde6926381289671300239ea8e57ffaf9bebd05b9a5b95beaf07af05cd43595").unwrap()[..]); assert_eq!(onion_keys[3].rho, hex::decode("cbe784ab745c13ff5cffc2fbe3e84424aa0fd669b8ead4ee562901a4a4e89e9e").unwrap()[..]); assert_eq!(onion_keys[3].mu, hex::decode("5052aa1b3d9f0655a0932e50d42f0c9ba0705142c25d225515c45f47c0036ee9").unwrap()[..]); assert_eq!(onion_keys[4].shared_secret[..], hex::decode("b5756b9b542727dbafc6765a49488b023a725d631af688fc031217e90770c328").unwrap()[..]); assert_eq!(onion_keys[4].blinding_factor[..], hex::decode("c96e00dddaf57e7edcd4fb5954be5b65b09f17cb6d20651b4e90315be5779205").unwrap()[..]); assert_eq!(onion_keys[4].ephemeral_pubkey.serialize()[..], hex::decode("03a214ebd875aab6ddfd77f22c5e7311d7f77f17a169e599f157bbcdae8bf071f4").unwrap()[..]); assert_eq!(onion_keys[4].rho, hex::decode("034e18b8cc718e8af6339106e706c52d8df89e2b1f7e9142d996acf88df8799b").unwrap()[..]); assert_eq!(onion_keys[4].mu, hex::decode("8e45e5c61c2b24cb6382444db6698727afb063adecd72aada233d4bf273d975a").unwrap()[..]); // Test vectors below are flat-out wrong: they claim to set outgoing_cltv_value to non-0 :/ let payloads = vec!( msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: 0, amt_to_forward: 0, outgoing_cltv_value: 0, }, hmac: [0; 32], }, msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: 0x0101010101010101, amt_to_forward: 0x0100000001, outgoing_cltv_value: 0, }, hmac: [0; 32], }, msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: 0x0202020202020202, amt_to_forward: 0x0200000002, outgoing_cltv_value: 0, }, hmac: [0; 32], }, msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: 0x0303030303030303, amt_to_forward: 0x0300000003, outgoing_cltv_value: 0, }, hmac: [0; 32], }, msgs::OnionHopData { realm: 0, data: msgs::OnionRealm0HopData { short_channel_id: 0x0404040404040404, amt_to_forward: 0x0400000004, outgoing_cltv_value: 0, }, hmac: [0; 32], }, ); let packet = ChannelManager::construct_onion_packet(payloads, onion_keys, &[0x42; 32]); // Just check the final packet encoding, as it includes all the per-hop vectors in it // anyway... assert_eq!(packet.encode(), hex::decode("0002eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619e5f14350c2a76fc232b5e46d421e9615471ab9e0bc887beff8c95fdb878f7b3a716a996c7845c93d90e4ecbb9bde4ece2f69425c99e4bc820e44485455f135edc0d10f7d61ab590531cf08000179a333a347f8b4072f216400406bdf3bf038659793d4a1fd7b246979e3150a0a4cb052c9ec69acf0f48c3d39cd55675fe717cb7d80ce721caad69320c3a469a202f1e468c67eaf7a7cd8226d0fd32f7b48084dca885d56047694762b67021713ca673929c163ec36e04e40ca8e1c6d17569419d3039d9a1ec866abe044a9ad635778b961fc0776dc832b3a451bd5d35072d2269cf9b040f6b7a7dad84fb114ed413b1426cb96ceaf83825665ed5a1d002c1687f92465b49ed4c7f0218ff8c6c7dd7221d589c65b3b9aaa71a41484b122846c7c7b57e02e679ea8469b70e14fe4f70fee4d87b910cf144be6fe48eef24da475c0b0bcc6565ae82cd3f4e3b24c76eaa5616c6111343306ab35c1fe5ca4a77c0e314ed7dba39d6f1e0de791719c241a939cc493bea2bae1c1e932679ea94d29084278513c77b899cc98059d06a27d171b0dbdf6bee13ddc4fc17a0c4d2827d488436b57baa167544138ca2e64a11b43ac8a06cd0c2fba2d4d900ed2d9205305e2d7383cc98dacb078133de5f6fb6bed2ef26ba92cea28aafc3b9948dd9ae5559e8bd6920b8cea462aa445ca6a95e0e7ba52961b181c79e73bd581821df2b10173727a810c92b83b5ba4a0403eb710d2ca10689a35bec6c3a708e9e92f7d78ff3c5d9989574b00c6736f84c199256e76e19e78f0c98a9d580b4a658c84fc8f2096c2fbea8f5f8c59d0fdacb3be2802ef802abbecb3aba4acaac69a0e965abd8981e9896b1f6ef9d60f7a164b371af869fd0e48073742825e9434fc54da837e120266d53302954843538ea7c6c3dbfb4ff3b2fdbe244437f2a153ccf7bdb4c92aa08102d4f3cff2ae5ef86fab4653595e6a5837fa2f3e29f27a9cde5966843fb847a4a61f1e76c281fe8bb2b0a181d096100db5a1a5ce7a910238251a43ca556712eaadea167fb4d7d75825e440f3ecd782036d7574df8bceacb397abefc5f5254d2722215c53ff54af8299aaaad642c6d72a14d27882d9bbd539e1cc7a527526ba89b8c037ad09120e98ab042d3e8652b31ae0e478516bfaf88efca9f3676ffe99d2819dcaeb7610a626695f53117665d267d3f7abebd6bbd6733f645c72c389f03855bdf1e4b8075b516569b118233a0f0971d24b83113c0b096f5216a207ca99a7cddc81c130923fe3d91e7508c9ac5f2e914ff5dccab9e558566fa14efb34ac98d878580814b94b73acbfde9072f30b881f7f0fff42d4045d1ace6322d86a97d164aa84d93a60498065cc7c20e636f5862dc81531a88c60305a2e59a985be327a6902e4bed986dbf4a0b50c217af0ea7fdf9ab37f9ea1a1aaa72f54cf40154ea9b269f1a7c09f9f43245109431a175d50e2db0132337baa0ef97eed0fcf20489da36b79a1172faccc2f7ded7c60e00694282d93359c4682135642bc81f433574aa8ef0c97b4ade7ca372c5ffc23c7eddd839bab4e0f14d6df15c9dbeab176bec8b5701cf054eb3072f6dadc98f88819042bf10c407516ee58bce33fbe3b3d86a54255e577db4598e30a135361528c101683a5fcde7e8ba53f3456254be8f45fe3a56120ae96ea3773631fcb3873aa3abd91bcff00bd38bd43697a2e789e00da6077482e7b1b1a677b5afae4c54e6cbdf7377b694eb7d7a5b913476a5be923322d3de06060fd5e819635232a2cf4f0731da13b8546d1d6d4f8d75b9fce6c2341a71b0ea6f780df54bfdb0dd5cd9855179f602f9172307c7268724c3618e6817abd793adc214a0dc0bc616816632f27ea336fb56dfd").unwrap()); } #[test] fn test_failure_packet_onion() { // Returning Errors test vectors from BOLT 4 let onion_keys = build_test_onion_keys(); let onion_error = ChannelManager::build_failure_packet(&onion_keys[4].shared_secret[..], 0x2002, &[0; 0]); assert_eq!(onion_error.encode(), hex::decode("4c2fc8bc08510334b6833ad9c3e79cd1b52ae59dfe5c2a4b23ead50f09f7ee0b0002200200fe0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap()); let onion_packet_1 = ChannelManager::encrypt_failure_packet(&onion_keys[4].shared_secret[..], &onion_error.encode()[..]); assert_eq!(onion_packet_1.data, hex::decode("a5e6bd0c74cb347f10cce367f949098f2457d14c046fd8a22cb96efb30b0fdcda8cb9168b50f2fd45edd73c1b0c8b33002df376801ff58aaa94000bf8a86f92620f343baef38a580102395ae3abf9128d1047a0736ff9b83d456740ebbb4aeb3aa9737f18fb4afb4aa074fb26c4d702f42968888550a3bded8c05247e045b866baef0499f079fdaeef6538f31d44deafffdfd3afa2fb4ca9082b8f1c465371a9894dd8c243fb4847e004f5256b3e90e2edde4c9fb3082ddfe4d1e734cacd96ef0706bf63c9984e22dc98851bcccd1c3494351feb458c9c6af41c0044bea3c47552b1d992ae542b17a2d0bba1a096c78d169034ecb55b6e3a7263c26017f033031228833c1daefc0dedb8cf7c3e37c9c37ebfe42f3225c326e8bcfd338804c145b16e34e4").unwrap()); let onion_packet_2 = ChannelManager::encrypt_failure_packet(&onion_keys[3].shared_secret[..], &onion_packet_1.data[..]); assert_eq!(onion_packet_2.data, hex::decode("c49a1ce81680f78f5f2000cda36268de34a3f0a0662f55b4e837c83a8773c22aa081bab1616a0011585323930fa5b9fae0c85770a2279ff59ec427ad1bbff9001c0cd1497004bd2a0f68b50704cf6d6a4bf3c8b6a0833399a24b3456961ba00736785112594f65b6b2d44d9f5ea4e49b5e1ec2af978cbe31c67114440ac51a62081df0ed46d4a3df295da0b0fe25c0115019f03f15ec86fabb4c852f83449e812f141a9395b3f70b766ebbd4ec2fae2b6955bd8f32684c15abfe8fd3a6261e52650e8807a92158d9f1463261a925e4bfba44bd20b166d532f0017185c3a6ac7957adefe45559e3072c8dc35abeba835a8cb01a71a15c736911126f27d46a36168ca5ef7dccd4e2886212602b181463e0dd30185c96348f9743a02aca8ec27c0b90dca270").unwrap()); let onion_packet_3 = ChannelManager::encrypt_failure_packet(&onion_keys[2].shared_secret[..], &onion_packet_2.data[..]); assert_eq!(onion_packet_3.data, hex::decode("a5d3e8634cfe78b2307d87c6d90be6fe7855b4f2cc9b1dfb19e92e4b79103f61ff9ac25f412ddfb7466e74f81b3e545563cdd8f5524dae873de61d7bdfccd496af2584930d2b566b4f8d3881f8c043df92224f38cf094cfc09d92655989531524593ec6d6caec1863bdfaa79229b5020acc034cd6deeea1021c50586947b9b8e6faa83b81fbfa6133c0af5d6b07c017f7158fa94f0d206baf12dda6b68f785b773b360fd0497e16cc402d779c8d48d0fa6315536ef0660f3f4e1865f5b38ea49c7da4fd959de4e83ff3ab686f059a45c65ba2af4a6a79166aa0f496bf04d06987b6d2ea205bdb0d347718b9aeff5b61dfff344993a275b79717cd815b6ad4c0beb568c4ac9c36ff1c315ec1119a1993c4b61e6eaa0375e0aaf738ac691abd3263bf937e3").unwrap()); let onion_packet_4 = ChannelManager::encrypt_failure_packet(&onion_keys[1].shared_secret[..], &onion_packet_3.data[..]); assert_eq!(onion_packet_4.data, hex::decode("aac3200c4968f56b21f53e5e374e3a2383ad2b1b6501bbcc45abc31e59b26881b7dfadbb56ec8dae8857add94e6702fb4c3a4de22e2e669e1ed926b04447fc73034bb730f4932acd62727b75348a648a1128744657ca6a4e713b9b646c3ca66cac02cdab44dd3439890ef3aaf61708714f7375349b8da541b2548d452d84de7084bb95b3ac2345201d624d31f4d52078aa0fa05a88b4e20202bd2b86ac5b52919ea305a8949de95e935eed0319cf3cf19ebea61d76ba92532497fcdc9411d06bcd4275094d0a4a3c5d3a945e43305a5a9256e333e1f64dbca5fcd4e03a39b9012d197506e06f29339dfee3331995b21615337ae060233d39befea925cc262873e0530408e6990f1cbd233a150ef7b004ff6166c70c68d9f8c853c1abca640b8660db2921").unwrap()); let onion_packet_5 = ChannelManager::encrypt_failure_packet(&onion_keys[0].shared_secret[..], &onion_packet_4.data[..]); assert_eq!(onion_packet_5.data, hex::decode("9c5add3963fc7f6ed7f148623c84134b5647e1306419dbe2174e523fa9e2fbed3a06a19f899145610741c83ad40b7712aefaddec8c6baf7325d92ea4ca4d1df8bce517f7e54554608bf2bd8071a4f52a7a2f7ffbb1413edad81eeea5785aa9d990f2865dc23b4bc3c301a94eec4eabebca66be5cf638f693ec256aec514620cc28ee4a94bd9565bc4d4962b9d3641d4278fb319ed2b84de5b665f307a2db0f7fbb757366067d88c50f7e829138fde4f78d39b5b5802f1b92a8a820865af5cc79f9f30bc3f461c66af95d13e5e1f0381c184572a91dee1c849048a647a1158cf884064deddbf1b0b88dfe2f791428d0ba0f6fb2f04e14081f69165ae66d9297c118f0907705c9c4954a199bae0bb96fad763d690e7daa6cfda59ba7f2c8d11448b604d12d").unwrap()); } fn confirm_transaction(chain: &chaininterface::ChainWatchInterfaceUtil, tx: &Transaction, chan_id: u32) { assert!(chain.does_match_tx(tx)); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; chain.block_connected_checked(&header, 1, &[tx; 1], &[chan_id; 1]); for i in 2..100 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; chain.block_connected_checked(&header, i, &[tx; 0], &[0; 0]); } } struct Node { chain_monitor: Arc, tx_broadcaster: Arc, chan_monitor: Arc, node: Arc, router: Router, node_seed: [u8; 32], network_payment_count: Rc>, network_chan_count: Rc>, } impl Drop for Node { fn drop(&mut self) { if !::std::thread::panicking() { // Check that we processed all pending events assert_eq!(self.node.get_and_clear_pending_msg_events().len(), 0); assert_eq!(self.node.get_and_clear_pending_events().len(), 0); assert_eq!(self.chan_monitor.added_monitors.lock().unwrap().len(), 0); } } } fn create_chan_between_nodes(node_a: &Node, node_b: &Node) -> (msgs::ChannelAnnouncement, msgs::ChannelUpdate, msgs::ChannelUpdate, [u8; 32], Transaction) { create_chan_between_nodes_with_value(node_a, node_b, 100000, 10001) } fn create_chan_between_nodes_with_value(node_a: &Node, node_b: &Node, channel_value: u64, push_msat: u64) -> (msgs::ChannelAnnouncement, msgs::ChannelUpdate, msgs::ChannelUpdate, [u8; 32], Transaction) { let (funding_locked, channel_id, tx) = create_chan_between_nodes_with_value_a(node_a, node_b, channel_value, push_msat); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(node_a, node_b, &funding_locked); (announcement, as_update, bs_update, channel_id, tx) } macro_rules! get_revoke_commit_msgs { ($node: expr, $node_id: expr) => { { let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); (match events[0] { MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, $node_id); (*msg).clone() }, _ => panic!("Unexpected event"), }, match events[1] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, $node_id); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); updates.commitment_signed.clone() }, _ => panic!("Unexpected event"), }) } } } macro_rules! get_event_msg { ($node: expr, $event_type: path, $node_id: expr) => { { let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { $event_type { ref node_id, ref msg } => { assert_eq!(*node_id, $node_id); (*msg).clone() }, _ => panic!("Unexpected event"), } } } } macro_rules! get_htlc_update_msgs { ($node: expr, $node_id: expr) => { { let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, $node_id); (*updates).clone() }, _ => panic!("Unexpected event"), } } } } fn create_chan_between_nodes_with_value_init(node_a: &Node, node_b: &Node, channel_value: u64, push_msat: u64) -> Transaction { node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42).unwrap(); node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id())).unwrap(); node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id())).unwrap(); let chan_id = *node_a.network_chan_count.borrow(); let tx; let funding_output; let events_2 = node_a.node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::FundingGenerationReady { ref temporary_channel_id, ref channel_value_satoshis, ref output_script, user_channel_id } => { assert_eq!(*channel_value_satoshis, channel_value); assert_eq!(user_channel_id, 42); tx = Transaction { version: chan_id as u32, lock_time: 0, input: Vec::new(), output: vec![TxOut { value: *channel_value_satoshis, script_pubkey: output_script.clone(), }]}; funding_output = OutPoint::new(Sha256dHash::from_data(&serialize(&tx).unwrap()[..]), 0); node_a.node.funding_transaction_generated(&temporary_channel_id, funding_output); let mut added_monitors = node_a.chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); }, _ => panic!("Unexpected event"), } node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id())).unwrap(); { let mut added_monitors = node_b.chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id())).unwrap(); { let mut added_monitors = node_a.chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 1); assert_eq!(added_monitors[0].0, funding_output); added_monitors.clear(); } let events_4 = node_a.node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::FundingBroadcastSafe { ref funding_txo, user_channel_id } => { assert_eq!(user_channel_id, 42); assert_eq!(*funding_txo, funding_output); }, _ => panic!("Unexpected event"), }; tx } fn create_chan_between_nodes_with_value_confirm(node_a: &Node, node_b: &Node, tx: &Transaction) -> ((msgs::FundingLocked, msgs::AnnouncementSignatures), [u8; 32]) { confirm_transaction(&node_b.chain_monitor, &tx, tx.version); node_a.node.handle_funding_locked(&node_b.node.get_our_node_id(), &get_event_msg!(node_b, MessageSendEvent::SendFundingLocked, node_a.node.get_our_node_id())).unwrap(); let channel_id; confirm_transaction(&node_a.chain_monitor, &tx, tx.version); let events_6 = node_a.node.get_and_clear_pending_msg_events(); assert_eq!(events_6.len(), 2); ((match events_6[0] { MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => { channel_id = msg.channel_id.clone(); assert_eq!(*node_id, node_b.node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }, match events_6[1] { MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { assert_eq!(*node_id, node_b.node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }), channel_id) } fn create_chan_between_nodes_with_value_a(node_a: &Node, node_b: &Node, channel_value: u64, push_msat: u64) -> ((msgs::FundingLocked, msgs::AnnouncementSignatures), [u8; 32], Transaction) { let tx = create_chan_between_nodes_with_value_init(node_a, node_b, channel_value, push_msat); let (msgs, chan_id) = create_chan_between_nodes_with_value_confirm(node_a, node_b, &tx); (msgs, chan_id, tx) } fn create_chan_between_nodes_with_value_b(node_a: &Node, node_b: &Node, as_funding_msgs: &(msgs::FundingLocked, msgs::AnnouncementSignatures)) -> (msgs::ChannelAnnouncement, msgs::ChannelUpdate, msgs::ChannelUpdate) { node_b.node.handle_funding_locked(&node_a.node.get_our_node_id(), &as_funding_msgs.0).unwrap(); let bs_announcement_sigs = get_event_msg!(node_b, MessageSendEvent::SendAnnouncementSignatures, node_a.node.get_our_node_id()); node_b.node.handle_announcement_signatures(&node_a.node.get_our_node_id(), &as_funding_msgs.1).unwrap(); let events_7 = node_b.node.get_and_clear_pending_msg_events(); assert_eq!(events_7.len(), 1); let (announcement, bs_update) = match events_7[0] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { (msg, update_msg) }, _ => panic!("Unexpected event"), }; node_a.node.handle_announcement_signatures(&node_b.node.get_our_node_id(), &bs_announcement_sigs).unwrap(); let events_8 = node_a.node.get_and_clear_pending_msg_events(); assert_eq!(events_8.len(), 1); let as_update = match events_8[0] { MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { assert!(*announcement == *msg); update_msg }, _ => panic!("Unexpected event"), }; *node_a.network_chan_count.borrow_mut() += 1; ((*announcement).clone(), (*as_update).clone(), (*bs_update).clone()) } fn create_announced_chan_between_nodes(nodes: &Vec, a: usize, b: usize) -> (msgs::ChannelUpdate, msgs::ChannelUpdate, [u8; 32], Transaction) { create_announced_chan_between_nodes_with_value(nodes, a, b, 100000, 10001) } fn create_announced_chan_between_nodes_with_value(nodes: &Vec, a: usize, b: usize, channel_value: u64, push_msat: u64) -> (msgs::ChannelUpdate, msgs::ChannelUpdate, [u8; 32], Transaction) { let chan_announcement = create_chan_between_nodes_with_value(&nodes[a], &nodes[b], channel_value, push_msat); for node in nodes { assert!(node.router.handle_channel_announcement(&chan_announcement.0).unwrap()); node.router.handle_channel_update(&chan_announcement.1).unwrap(); node.router.handle_channel_update(&chan_announcement.2).unwrap(); } (chan_announcement.1, chan_announcement.2, chan_announcement.3, chan_announcement.4) } macro_rules! check_spends { ($tx: expr, $spends_tx: expr) => { { let mut funding_tx_map = HashMap::new(); let spends_tx = $spends_tx; funding_tx_map.insert(spends_tx.txid(), spends_tx); $tx.verify(&funding_tx_map).unwrap(); } } } fn close_channel(outbound_node: &Node, inbound_node: &Node, channel_id: &[u8; 32], funding_tx: Transaction, close_inbound_first: bool) -> (msgs::ChannelUpdate, msgs::ChannelUpdate) { let (node_a, broadcaster_a, struct_a) = if close_inbound_first { (&inbound_node.node, &inbound_node.tx_broadcaster, inbound_node) } else { (&outbound_node.node, &outbound_node.tx_broadcaster, outbound_node) }; let (node_b, broadcaster_b) = if close_inbound_first { (&outbound_node.node, &outbound_node.tx_broadcaster) } else { (&inbound_node.node, &inbound_node.tx_broadcaster) }; let (tx_a, tx_b); node_a.close_channel(channel_id).unwrap(); node_b.handle_shutdown(&node_a.get_our_node_id(), &get_event_msg!(struct_a, MessageSendEvent::SendShutdown, node_b.get_our_node_id())).unwrap(); let events_1 = node_b.get_and_clear_pending_msg_events(); assert!(events_1.len() >= 1); let shutdown_b = match events_1[0] { MessageSendEvent::SendShutdown { ref node_id, ref msg } => { assert_eq!(node_id, &node_a.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }; let closing_signed_b = if !close_inbound_first { assert_eq!(events_1.len(), 1); None } else { Some(match events_1[1] { MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => { assert_eq!(node_id, &node_a.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }) }; macro_rules! get_closing_signed_broadcast { ($node: expr, $dest_pubkey: expr) => { { let events = $node.get_and_clear_pending_msg_events(); assert!(events.len() == 1 || events.len() == 2); (match events[events.len() - 1] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { msg.clone() }, _ => panic!("Unexpected event"), }, if events.len() == 2 { match events[0] { MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => { assert_eq!(*node_id, $dest_pubkey); Some(msg.clone()) }, _ => panic!("Unexpected event"), } } else { None }) } } } node_a.handle_shutdown(&node_b.get_our_node_id(), &shutdown_b).unwrap(); let (as_update, bs_update) = if close_inbound_first { assert!(node_a.get_and_clear_pending_msg_events().is_empty()); node_a.handle_closing_signed(&node_b.get_our_node_id(), &closing_signed_b.unwrap()).unwrap(); assert_eq!(broadcaster_a.txn_broadcasted.lock().unwrap().len(), 1); tx_a = broadcaster_a.txn_broadcasted.lock().unwrap().remove(0); let (as_update, closing_signed_a) = get_closing_signed_broadcast!(node_a, node_b.get_our_node_id()); node_b.handle_closing_signed(&node_a.get_our_node_id(), &closing_signed_a.unwrap()).unwrap(); let (bs_update, none_b) = get_closing_signed_broadcast!(node_b, node_a.get_our_node_id()); assert!(none_b.is_none()); assert_eq!(broadcaster_b.txn_broadcasted.lock().unwrap().len(), 1); tx_b = broadcaster_b.txn_broadcasted.lock().unwrap().remove(0); (as_update, bs_update) } else { let closing_signed_a = get_event_msg!(struct_a, MessageSendEvent::SendClosingSigned, node_b.get_our_node_id()); node_b.handle_closing_signed(&node_a.get_our_node_id(), &closing_signed_a).unwrap(); assert_eq!(broadcaster_b.txn_broadcasted.lock().unwrap().len(), 1); tx_b = broadcaster_b.txn_broadcasted.lock().unwrap().remove(0); let (bs_update, closing_signed_b) = get_closing_signed_broadcast!(node_b, node_a.get_our_node_id()); node_a.handle_closing_signed(&node_b.get_our_node_id(), &closing_signed_b.unwrap()).unwrap(); let (as_update, none_a) = get_closing_signed_broadcast!(node_a, node_b.get_our_node_id()); assert!(none_a.is_none()); assert_eq!(broadcaster_a.txn_broadcasted.lock().unwrap().len(), 1); tx_a = broadcaster_a.txn_broadcasted.lock().unwrap().remove(0); (as_update, bs_update) }; assert_eq!(tx_a, tx_b); check_spends!(tx_a, funding_tx); (as_update, bs_update) } struct SendEvent { node_id: PublicKey, msgs: Vec, commitment_msg: msgs::CommitmentSigned, } impl SendEvent { fn from_commitment_update(node_id: PublicKey, updates: msgs::CommitmentUpdate) -> SendEvent { assert!(updates.update_fulfill_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); SendEvent { node_id: node_id, msgs: updates.update_add_htlcs, commitment_msg: updates.commitment_signed } } fn from_event(event: MessageSendEvent) -> SendEvent { match event { MessageSendEvent::UpdateHTLCs { node_id, updates } => SendEvent::from_commitment_update(node_id, updates), _ => panic!("Unexpected event type!"), } } } macro_rules! check_added_monitors { ($node: expr, $count: expr) => { { let mut added_monitors = $node.chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), $count); added_monitors.clear(); } } } macro_rules! commitment_signed_dance { ($node_a: expr, $node_b: expr, $commitment_signed: expr, $fail_backwards: expr) => { { check_added_monitors!($node_a, 0); assert!($node_a.node.get_and_clear_pending_msg_events().is_empty()); $node_a.node.handle_commitment_signed(&$node_b.node.get_our_node_id(), &$commitment_signed).unwrap(); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!($node_a, $node_b.node.get_our_node_id()); check_added_monitors!($node_a, 1); check_added_monitors!($node_b, 0); assert!($node_b.node.get_and_clear_pending_msg_events().is_empty()); $node_b.node.handle_revoke_and_ack(&$node_a.node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!($node_b.node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!($node_b, 1); $node_b.node.handle_commitment_signed(&$node_a.node.get_our_node_id(), &as_commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!($node_b, MessageSendEvent::SendRevokeAndACK, $node_a.node.get_our_node_id()); check_added_monitors!($node_b, 1); if $fail_backwards { assert!($node_a.node.get_and_clear_pending_events().is_empty()); assert!($node_a.node.get_and_clear_pending_msg_events().is_empty()); } $node_a.node.handle_revoke_and_ack(&$node_b.node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); if $fail_backwards { let channel_state = $node_a.node.channel_state.lock().unwrap(); assert_eq!(channel_state.pending_msg_events.len(), 1); if let MessageSendEvent::UpdateHTLCs { ref node_id, .. } = channel_state.pending_msg_events[0] { assert_ne!(*node_id, $node_b.node.get_our_node_id()); } else { panic!("Unexpected event"); } } else { assert!($node_a.node.get_and_clear_pending_msg_events().is_empty()); } { let mut added_monitors = $node_a.chan_monitor.added_monitors.lock().unwrap(); if $fail_backwards { assert_eq!(added_monitors.len(), 2); assert!(added_monitors[0].0 != added_monitors[1].0); } else { assert_eq!(added_monitors.len(), 1); } added_monitors.clear(); } } } } macro_rules! get_payment_preimage_hash { ($node: expr) => { { let payment_preimage = [*$node.network_payment_count.borrow(); 32]; *$node.network_payment_count.borrow_mut() += 1; let mut payment_hash = [0; 32]; let mut sha = Sha256::new(); sha.input(&payment_preimage[..]); sha.result(&mut payment_hash); (payment_preimage, payment_hash) } } } fn send_along_route(origin_node: &Node, route: Route, expected_route: &[&Node], recv_value: u64) -> ([u8; 32], [u8; 32]) { let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(origin_node); let mut payment_event = { origin_node.node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(origin_node, 1); let mut events = origin_node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; let mut prev_node = origin_node; for (idx, &node) in expected_route.iter().enumerate() { assert_eq!(node.node.get_our_node_id(), payment_event.node_id); node.node.handle_update_add_htlc(&prev_node.node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); check_added_monitors!(node, 0); commitment_signed_dance!(node, prev_node, payment_event.commitment_msg, false); let events_1 = node.node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 1); match events_1[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; node.node.channel_state.lock().unwrap().next_forward = Instant::now(); node.node.process_pending_htlc_forwards(); if idx == expected_route.len() - 1 { let events_2 = node.node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(our_payment_hash, *payment_hash); assert_eq!(amt, recv_value); }, _ => panic!("Unexpected event"), } } else { let mut events_2 = node.node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); check_added_monitors!(node, 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); } prev_node = node; } (our_payment_preimage, our_payment_hash) } fn claim_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_preimage: [u8; 32]) { assert!(expected_route.last().unwrap().node.claim_funds(our_payment_preimage)); check_added_monitors!(expected_route.last().unwrap(), 1); let mut next_msgs: Option<(msgs::UpdateFulfillHTLC, msgs::CommitmentSigned)> = None; let mut expected_next_node = expected_route.last().unwrap().node.get_our_node_id(); macro_rules! get_next_msgs { ($node: expr) => { { let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); expected_next_node = node_id.clone(); Some((update_fulfill_htlcs[0].clone(), commitment_signed.clone())) }, _ => panic!("Unexpected event"), } } } } macro_rules! last_update_fulfill_dance { ($node: expr, $prev_node: expr) => { { $node.node.handle_update_fulfill_htlc(&$prev_node.node.get_our_node_id(), &next_msgs.as_ref().unwrap().0).unwrap(); check_added_monitors!($node, 0); assert!($node.node.get_and_clear_pending_msg_events().is_empty()); commitment_signed_dance!($node, $prev_node, next_msgs.as_ref().unwrap().1, false); } } } macro_rules! mid_update_fulfill_dance { ($node: expr, $prev_node: expr, $new_msgs: expr) => { { $node.node.handle_update_fulfill_htlc(&$prev_node.node.get_our_node_id(), &next_msgs.as_ref().unwrap().0).unwrap(); check_added_monitors!($node, 1); let new_next_msgs = if $new_msgs { get_next_msgs!($node) } else { assert!($node.node.get_and_clear_pending_msg_events().is_empty()); None }; commitment_signed_dance!($node, $prev_node, next_msgs.as_ref().unwrap().1, false); next_msgs = new_next_msgs; } } } let mut prev_node = expected_route.last().unwrap(); for (idx, node) in expected_route.iter().rev().enumerate() { assert_eq!(expected_next_node, node.node.get_our_node_id()); let update_next_msgs = !skip_last || idx != expected_route.len() - 1; if next_msgs.is_some() { mid_update_fulfill_dance!(node, prev_node, update_next_msgs); } else if update_next_msgs { next_msgs = get_next_msgs!(node); } else { assert!(node.node.get_and_clear_pending_msg_events().is_empty()); } if !skip_last && idx == expected_route.len() - 1 { assert_eq!(expected_next_node, origin_node.node.get_our_node_id()); } prev_node = node; } if !skip_last { last_update_fulfill_dance!(origin_node, expected_route.first().unwrap()); let events = origin_node.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentSent { payment_preimage } => { assert_eq!(payment_preimage, our_payment_preimage); }, _ => panic!("Unexpected event"), } } } fn claim_payment(origin_node: &Node, expected_route: &[&Node], our_payment_preimage: [u8; 32]) { claim_payment_along_route(origin_node, expected_route, false, our_payment_preimage); } const TEST_FINAL_CLTV: u32 = 32; fn route_payment(origin_node: &Node, expected_route: &[&Node], recv_value: u64) -> ([u8; 32], [u8; 32]) { let route = origin_node.router.get_route(&expected_route.last().unwrap().node.get_our_node_id(), None, &Vec::new(), recv_value, TEST_FINAL_CLTV).unwrap(); assert_eq!(route.hops.len(), expected_route.len()); for (node, hop) in expected_route.iter().zip(route.hops.iter()) { assert_eq!(hop.pubkey, node.node.get_our_node_id()); } send_along_route(origin_node, route, expected_route, recv_value) } fn route_over_limit(origin_node: &Node, expected_route: &[&Node], recv_value: u64) { let route = origin_node.router.get_route(&expected_route.last().unwrap().node.get_our_node_id(), None, &Vec::new(), recv_value, TEST_FINAL_CLTV).unwrap(); assert_eq!(route.hops.len(), expected_route.len()); for (node, hop) in expected_route.iter().zip(route.hops.iter()) { assert_eq!(hop.pubkey, node.node.get_our_node_id()); } let (_, our_payment_hash) = get_payment_preimage_hash!(origin_node); let err = origin_node.node.send_payment(route, our_payment_hash).err().unwrap(); match err { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over our max HTLC value in flight"), _ => panic!("Unknown error variants"), }; } fn send_payment(origin: &Node, expected_route: &[&Node], recv_value: u64) { let our_payment_preimage = route_payment(&origin, expected_route, recv_value).0; claim_payment(&origin, expected_route, our_payment_preimage); } fn fail_payment_along_route(origin_node: &Node, expected_route: &[&Node], skip_last: bool, our_payment_hash: [u8; 32]) { assert!(expected_route.last().unwrap().node.fail_htlc_backwards(&our_payment_hash, PaymentFailReason::PreimageUnknown)); check_added_monitors!(expected_route.last().unwrap(), 1); let mut next_msgs: Option<(msgs::UpdateFailHTLC, msgs::CommitmentSigned)> = None; macro_rules! update_fail_dance { ($node: expr, $prev_node: expr, $last_node: expr) => { { $node.node.handle_update_fail_htlc(&$prev_node.node.get_our_node_id(), &next_msgs.as_ref().unwrap().0).unwrap(); commitment_signed_dance!($node, $prev_node, next_msgs.as_ref().unwrap().1, !$last_node); } } } let mut expected_next_node = expected_route.last().unwrap().node.get_our_node_id(); let mut prev_node = expected_route.last().unwrap(); for (idx, node) in expected_route.iter().rev().enumerate() { assert_eq!(expected_next_node, node.node.get_our_node_id()); if next_msgs.is_some() { // We may be the "last node" for the purpose of the commitment dance if we're // skipping the last node (implying it is disconnected) and we're the // second-to-last node! update_fail_dance!(node, prev_node, skip_last && idx == expected_route.len() - 1); } let events = node.node.get_and_clear_pending_msg_events(); if !skip_last || idx != expected_route.len() - 1 { assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert_eq!(update_fail_htlcs.len(), 1); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); expected_next_node = node_id.clone(); next_msgs = Some((update_fail_htlcs[0].clone(), commitment_signed.clone())); }, _ => panic!("Unexpected event"), } } else { assert!(events.is_empty()); } if !skip_last && idx == expected_route.len() - 1 { assert_eq!(expected_next_node, origin_node.node.get_our_node_id()); } prev_node = node; } if !skip_last { update_fail_dance!(origin_node, expected_route.first().unwrap(), true); let events = origin_node.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentFailed { payment_hash, rejected_by_dest } => { assert_eq!(payment_hash, our_payment_hash); assert!(rejected_by_dest); }, _ => panic!("Unexpected event"), } } } fn fail_payment(origin_node: &Node, expected_route: &[&Node], our_payment_hash: [u8; 32]) { fail_payment_along_route(origin_node, expected_route, false, our_payment_hash); } fn create_network(node_count: usize) -> Vec { let mut nodes = Vec::new(); let mut rng = thread_rng(); let secp_ctx = Secp256k1::new(); let logger: Arc = Arc::new(test_utils::TestLogger::new()); let chan_count = Rc::new(RefCell::new(0)); let payment_count = Rc::new(RefCell::new(0)); for _ in 0..node_count { let feeest = Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }); let chain_monitor = Arc::new(chaininterface::ChainWatchInterfaceUtil::new(Network::Testnet, Arc::clone(&logger))); let tx_broadcaster = Arc::new(test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())}); let mut seed = [0; 32]; rng.fill_bytes(&mut seed); let keys_manager = Arc::new(keysinterface::KeysManager::new(&seed, Network::Testnet, Arc::clone(&logger))); let chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(chain_monitor.clone(), tx_broadcaster.clone(), logger.clone())); let mut config = UserConfig::new(); config.channel_options.announced_channel = true; config.channel_limits.force_announced_channel_preference = false; let node = ChannelManager::new(Network::Testnet, feeest.clone(), chan_monitor.clone(), chain_monitor.clone(), tx_broadcaster.clone(), Arc::clone(&logger), keys_manager.clone(), config).unwrap(); let router = Router::new(PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()), chain_monitor.clone(), Arc::clone(&logger)); nodes.push(Node { chain_monitor, tx_broadcaster, chan_monitor, node, router, node_seed: seed, network_payment_count: payment_count.clone(), network_chan_count: chan_count.clone(), }); } nodes } #[test] fn test_async_inbound_update_fee() { let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // A B // update_fee -> // send (1) commitment_signed -. // <- update_add_htlc/commitment_signed // send (2) RAA (awaiting remote revoke) -. // (1) commitment_signed is delivered -> // .- send (3) RAA (awaiting remote revoke) // (2) RAA is delivered -> // .- send (4) commitment_signed // <- (3) RAA is delivered // send (5) commitment_signed -. // <- (4) commitment_signed is delivered // send (6) RAA -. // (5) commitment_signed is delivered -> // <- RAA // (6) RAA is delivered -> // First nodes[0] generates an update_fee nodes[0].node.update_fee(channel_id, get_feerate!(nodes[0]) + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 40000, TEST_FINAL_CLTV).unwrap(), our_payment_hash).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); // (2) let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); // deliver(1), generate (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // nodes[1] is awaiting nodes[0] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); // deliver (2) let bs_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_update.update_add_htlcs.is_empty()); // (4) assert!(bs_update.update_fulfill_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_htlcs.is_empty()); // (4) assert!(bs_update.update_fail_malformed_htlcs.is_empty()); // (4) assert!(bs_update.update_fee.is_none()); // (4) check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); // deliver (3) let as_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_update.update_add_htlcs.is_empty()); // (5) assert!(as_update.update_fulfill_htlcs.is_empty()); // (5) assert!(as_update.update_fail_htlcs.is_empty()); // (5) assert!(as_update.update_fail_malformed_htlcs.is_empty()); // (5) assert!(as_update.update_fee.is_none()); // (5) check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_update.commitment_signed).unwrap(); // deliver (4) let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // only (6) so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_update.commitment_signed).unwrap(); // deliver (5) let bs_second_revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke).unwrap(); check_added_monitors!(nodes[0], 1); let events_2 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PendingHTLCsForwardable {..} => {}, // If we actually processed we'd receive the payment _ => panic!("Unexpected event"), } nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke).unwrap(); // deliver (6) check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_unordered_raa() { // Just the intro to the previous test followed by an out-of-order RAA (which caused a // crash in an earlier version of the update_fee patch) let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // First nodes[0] generates an update_fee nodes[0].node.update_fee(channel_id, get_feerate!(nodes[0]) + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let update_msg = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, .. }, .. } => { update_fee.as_ref() }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // ...but before it's delivered, nodes[1] starts to send a payment back to nodes[0]... let (_, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); nodes[1].node.send_payment(nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 40000, TEST_FINAL_CLTV).unwrap(), our_payment_hash).unwrap(); check_added_monitors!(nodes[1], 1); let payment_event = { let mut events_1 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); SendEvent::from_event(events_1.remove(0)) }; assert_eq!(payment_event.node_id, nodes[0].node.get_our_node_id()); assert_eq!(payment_event.msgs.len(), 1); // ...now when the messages get delivered everyone should be happy nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); // (2) let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // nodes[0] is awaiting nodes[1] revoke_and_ack so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg).unwrap(); // deliver (2) check_added_monitors!(nodes[1], 1); // We can't continue, sadly, because our (1) now has a bogus signature } #[test] fn test_multi_flight_update_fee() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } // A B // update_fee/commitment_signed -> // .- send (1) RAA and (2) commitment_signed // update_fee (never committed) -> // (3) update_fee -> // We have to manually generate the above update_fee, it is allowed by the protocol but we // don't track which updates correspond to which revoke_and_ack responses so we're in // AwaitingRAA mode and will not generate the update_fee yet. // <- (1) RAA delivered // (3) is generated and send (4) CS -. // Note that A cannot generate (4) prior to (1) being delivered as it otherwise doesn't // know the per_commitment_point to use for it. // <- (2) commitment_signed delivered // revoke_and_ack -> // B should send no response here // (4) commitment_signed delivered -> // <- RAA/commitment_signed delivered // revoke_and_ack -> // First nodes[0] generates an update_fee let initial_feerate = get_feerate!(nodes[0]); nodes[0].node.update_fee(channel_id, initial_feerate + 20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg_1, commitment_signed_1) = match events_0[0] { // (1) MessageSendEvent::UpdateHTLCs { updates: msgs::CommitmentUpdate { ref update_fee, ref commitment_signed, .. }, .. } => { (update_fee.as_ref().unwrap(), commitment_signed) }, _ => panic!("Unexpected event"), }; // Deliver first update_fee/commitment_signed pair, generating (1) and (2): nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg_1).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed_1).unwrap(); let (bs_revoke_msg, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // nodes[0] is awaiting a revoke from nodes[1] before it will create a new commitment // transaction: nodes[0].node.update_fee(channel_id, initial_feerate + 40).unwrap(); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Create the (3) update_fee message that nodes[0] will generate before it does... let mut update_msg_2 = msgs::UpdateFee { channel_id: update_msg_1.channel_id.clone(), feerate_per_kw: (initial_feerate + 30) as u32, }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2).unwrap(); update_msg_2.feerate_per_kw = (initial_feerate + 40) as u32; // Deliver (3) nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &update_msg_2).unwrap(); // Deliver (1), generating (3) and (4) nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_msg).unwrap(); let as_second_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); assert!(as_second_update.update_add_htlcs.is_empty()); assert!(as_second_update.update_fulfill_htlcs.is_empty()); assert!(as_second_update.update_fail_htlcs.is_empty()); assert!(as_second_update.update_fail_malformed_htlcs.is_empty()); // Check that the update_fee newly generated matches what we delivered: assert_eq!(as_second_update.update_fee.as_ref().unwrap().channel_id, update_msg_2.channel_id); assert_eq!(as_second_update.update_fee.as_ref().unwrap().feerate_per_kw, update_msg_2.feerate_per_kw); // Deliver (2) commitment_signed nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed).unwrap(); let as_revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); check_added_monitors!(nodes[0], 1); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_msg).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); // Delever (4) nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update.commitment_signed).unwrap(); let (bs_second_revoke, bs_second_commitment) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment).unwrap(); let as_second_revoke = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_revoke).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_vanilla() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } let feerate = get_feerate!(nodes[0]); nodes[0].node.update_fee(channel_id, feerate+20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } #[test] fn test_update_fee_with_fundee_update_add_htlc() { let mut nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } // balancing send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); let feerate = get_feerate!(nodes[0]); nodes[0].node.update_fee(channel_id, feerate+20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); let route = nodes[1].router.get_route(&nodes[0].node.get_our_node_id(), None, &Vec::new(), 800000, TEST_FINAL_CLTV).unwrap(); let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(nodes[1]); // nothing happens since node[1] is in AwaitingRemoteRevoke nodes[1].node.send_payment(route, our_payment_hash).unwrap(); { let mut added_monitors = nodes[0].chan_monitor.added_monitors.lock().unwrap(); assert_eq!(added_monitors.len(), 0); added_monitors.clear(); } assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // node[1] has nothing to do nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); check_added_monitors!(nodes[1], 1); // AwaitingRemoteRevoke ends here let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert_eq!(commitment_update.update_add_htlcs.len(), 1); assert_eq!(commitment_update.update_fulfill_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_htlcs.len(), 0); assert_eq!(commitment_update.update_fail_malformed_htlcs.len(), 0); assert_eq!(commitment_update.update_fee.is_none(), true); nodes[0].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &commitment_update.update_add_htlcs[0]).unwrap(); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let (revoke, commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke).unwrap(); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); let revoke = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke).unwrap(); check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[0].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[0].node.process_pending_htlc_forwards(); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { .. } => { }, _ => panic!("Unexpected event"), }; claim_payment(&nodes[1], &vec!(&nodes[0])[..], our_payment_preimage); send_payment(&nodes[1], &vec!(&nodes[0])[..], 800000); send_payment(&nodes[0], &vec!(&nodes[1])[..], 800000); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); } #[test] fn test_update_fee() { let nodes = create_network(2); let chan = create_announced_chan_between_nodes(&nodes, 0, 1); let channel_id = chan.2; macro_rules! get_feerate { ($node: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&channel_id).unwrap(); chan.get_feerate() }} } // A B // (1) update_fee/commitment_signed -> // <- (2) revoke_and_ack // .- send (3) commitment_signed // (4) update_fee/commitment_signed -> // .- send (5) revoke_and_ack (no CS as we're awaiting a revoke) // <- (3) commitment_signed delivered // send (6) revoke_and_ack -. // <- (5) deliver revoke_and_ack // (6) deliver revoke_and_ack -> // .- send (7) commitment_signed in response to (4) // <- (7) deliver commitment_signed // revoke_and_ack -> // Create and deliver (1)... let feerate = get_feerate!(nodes[0]); nodes[0].node.update_fee(channel_id, feerate+20).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); // Generate (2) and (3): nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); let (revoke_msg, commitment_signed_0) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // Deliver (2): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Create and deliver (4)... nodes[0].node.update_fee(channel_id, feerate+30).unwrap(); check_added_monitors!(nodes[0], 1); let events_0 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_0.len(), 1); let (update_msg, commitment_signed) = match events_0[0] { MessageSendEvent::UpdateHTLCs { node_id:_, updates: msgs::CommitmentUpdate { update_add_htlcs:_, update_fulfill_htlcs:_, update_fail_htlcs:_, update_fail_malformed_htlcs:_, ref update_fee, ref commitment_signed } } => { (update_fee.as_ref(), commitment_signed) }, _ => panic!("Unexpected event"), }; nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), update_msg.unwrap()).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), commitment_signed).unwrap(); check_added_monitors!(nodes[1], 1); // ... creating (5) let revoke_msg = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Handle (3), creating (6): nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed_0).unwrap(); check_added_monitors!(nodes[0], 1); let revoke_msg_0 = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes // Deliver (5): nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &revoke_msg).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); // Deliver (6), creating (7): nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg_0).unwrap(); let commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(commitment_update.update_add_htlcs.is_empty()); assert!(commitment_update.update_fulfill_htlcs.is_empty()); assert!(commitment_update.update_fail_htlcs.is_empty()); assert!(commitment_update.update_fail_malformed_htlcs.is_empty()); assert!(commitment_update.update_fee.is_none()); check_added_monitors!(nodes[1], 1); // Deliver (7) nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let revoke_msg = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &revoke_msg).unwrap(); check_added_monitors!(nodes[1], 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(get_feerate!(nodes[0]), feerate + 30); assert_eq!(get_feerate!(nodes[1]), feerate + 30); close_channel(&nodes[0], &nodes[1], &chan.2, chan.3, true); } #[test] fn fake_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that payments get routed and transactions broadcast in semi-reasonable ways. let nodes = create_network(4); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 8000000); // Send some more payments send_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1], &nodes[0])[..], 1000000); send_payment(&nodes[3], &vec!(&nodes[2], &nodes[1])[..], 1000000); // Test failure packets let payment_hash_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3])[..], payment_hash_1); // Add a new channel that skips 3 let chan_4 = create_announced_chan_between_nodes(&nodes, 1, 3); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 1000000); send_payment(&nodes[2], &vec!(&nodes[3])[..], 1000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); send_payment(&nodes[1], &vec!(&nodes[3])[..], 8000000); // Do some rebalance loop payments, simultaneously let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), short_channel_id: chan_2.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_3.0.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), short_channel_id: chan_3.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_4.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), short_channel_id: chan_4.0.contents.short_channel_id, fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_4.1.contents.fee_base_msat as u64 + chan_4.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.0.contents.fee_base_msat as u64 + chan_3.0.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_preimage_1 = send_along_route(&nodes[1], Route { hops }, &vec!(&nodes[2], &nodes[3], &nodes[1])[..], 1000000).0; let mut hops = Vec::with_capacity(3); hops.push(RouteHop { pubkey: nodes[3].node.get_our_node_id(), short_channel_id: chan_4.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_3.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[2].node.get_our_node_id(), short_channel_id: chan_3.0.contents.short_channel_id, fee_msat: 0, cltv_expiry_delta: chan_2.1.contents.cltv_expiry_delta as u32 }); hops.push(RouteHop { pubkey: nodes[1].node.get_our_node_id(), short_channel_id: chan_2.0.contents.short_channel_id, fee_msat: 1000000, cltv_expiry_delta: TEST_FINAL_CLTV, }); hops[1].fee_msat = chan_2.1.contents.fee_base_msat as u64 + chan_2.1.contents.fee_proportional_millionths as u64 * hops[2].fee_msat as u64 / 1000000; hops[0].fee_msat = chan_3.1.contents.fee_base_msat as u64 + chan_3.1.contents.fee_proportional_millionths as u64 * hops[1].fee_msat as u64 / 1000000; let payment_hash_2 = send_along_route(&nodes[1], Route { hops }, &vec!(&nodes[3], &nodes[2], &nodes[1])[..], 1000000).1; // Claim the rebalances... fail_payment(&nodes[1], &vec!(&nodes[3], &nodes[2], &nodes[1])[..], payment_hash_2); claim_payment(&nodes[1], &vec!(&nodes[2], &nodes[3], &nodes[1])[..], payment_preimage_1); // Add a duplicate new channel from 2 to 4 let chan_5 = create_announced_chan_between_nodes(&nodes, 1, 3); // Send some payments across both channels let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; let payment_preimage_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000).0; route_over_limit(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], 3000000); //TODO: Test that routes work again here as we've been notified that the channel is full claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_3); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_4); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[3])[..], payment_preimage_5); // Close down the channels... close_channel(&nodes[0], &nodes[1], &chan_1.2, chan_1.3, true); close_channel(&nodes[1], &nodes[2], &chan_2.2, chan_2.3, false); close_channel(&nodes[2], &nodes[3], &chan_3.2, chan_3.3, true); close_channel(&nodes[1], &nodes[3], &chan_4.2, chan_4.3, false); close_channel(&nodes[1], &nodes[3], &chan_5.2, chan_5.3, false); } #[test] fn duplicate_htlc_test() { // Test that we accept duplicate payment_hash HTLCs across the network and that // claiming/failing them are all separate and don't effect each other let mut nodes = create_network(6); // Create some initial channels to route via 3 to 4/5 from 0/1/2 create_announced_chan_between_nodes(&nodes, 0, 3); create_announced_chan_between_nodes(&nodes, 1, 3); create_announced_chan_between_nodes(&nodes, 2, 3); create_announced_chan_between_nodes(&nodes, 3, 4); create_announced_chan_between_nodes(&nodes, 3, 5); let (payment_preimage, payment_hash) = route_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], 1000000); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[1], &vec!(&nodes[3])[..], 1000000).0, payment_preimage); *nodes[0].network_payment_count.borrow_mut() -= 1; assert_eq!(route_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], 1000000).0, payment_preimage); claim_payment(&nodes[0], &vec!(&nodes[3], &nodes[4])[..], payment_preimage); fail_payment(&nodes[2], &vec!(&nodes[3], &nodes[5])[..], payment_hash); claim_payment(&nodes[1], &vec!(&nodes[3])[..], payment_preimage); } #[derive(PartialEq)] enum HTLCType { NONE, TIMEOUT, SUCCESS } /// Tests that the given node has broadcast transactions for the given Channel /// /// First checks that the latest local commitment tx has been broadcast, unless an explicit /// commitment_tx is provided, which may be used to test that a remote commitment tx was /// broadcast and the revoked outputs were claimed. /// /// Next tests that there is (or is not) a transaction that spends the commitment transaction /// that appears to be the type of HTLC transaction specified in has_htlc_tx. /// /// All broadcast transactions must be accounted for in one of the above three types of we'll /// also fail. fn test_txn_broadcast(node: &Node, chan: &(msgs::ChannelUpdate, msgs::ChannelUpdate, [u8; 32], Transaction), commitment_tx: Option, has_htlc_tx: HTLCType) -> Vec { let mut node_txn = node.tx_broadcaster.txn_broadcasted.lock().unwrap(); assert!(node_txn.len() >= if commitment_tx.is_some() { 0 } else { 1 } + if has_htlc_tx == HTLCType::NONE { 0 } else { 1 }); let mut res = Vec::with_capacity(2); node_txn.retain(|tx| { if tx.input.len() == 1 && tx.input[0].previous_output.txid == chan.3.txid() { check_spends!(tx, chan.3.clone()); if commitment_tx.is_none() { res.push(tx.clone()); } false } else { true } }); if let Some(explicit_tx) = commitment_tx { res.push(explicit_tx.clone()); } assert_eq!(res.len(), 1); if has_htlc_tx != HTLCType::NONE { node_txn.retain(|tx| { if tx.input.len() == 1 && tx.input[0].previous_output.txid == res[0].txid() { check_spends!(tx, res[0].clone()); if has_htlc_tx == HTLCType::TIMEOUT { assert!(tx.lock_time != 0); } else { assert!(tx.lock_time == 0); } res.push(tx.clone()); false } else { true } }); assert_eq!(res.len(), 2); } assert!(node_txn.is_empty()); res } /// Tests that the given node has broadcast a claim transaction against the provided revoked /// HTLC transaction. fn test_revoked_htlc_claim_txn_broadcast(node: &Node, revoked_tx: Transaction) { let mut node_txn = node.tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); node_txn.retain(|tx| { if tx.input.len() == 1 && tx.input[0].previous_output.txid == revoked_tx.txid() { check_spends!(tx, revoked_tx.clone()); false } else { true } }); assert!(node_txn.is_empty()); } fn check_preimage_claim(node: &Node, prev_txn: &Vec) -> Vec { let mut node_txn = node.tx_broadcaster.txn_broadcasted.lock().unwrap(); assert!(node_txn.len() >= 1); assert_eq!(node_txn[0].input.len(), 1); let mut found_prev = false; for tx in prev_txn { if node_txn[0].input[0].previous_output.txid == tx.txid() { check_spends!(node_txn[0], tx.clone()); assert!(node_txn[0].input[0].witness[2].len() > 106); // must spend an htlc output assert_eq!(tx.input.len(), 1); // must spend a commitment tx found_prev = true; break; } } assert!(found_prev); let mut res = Vec::new(); mem::swap(&mut *node_txn, &mut res); res } fn get_announce_close_broadcast_events(nodes: &Vec, a: usize, b: usize) { let events_1 = nodes[a].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); let as_update = match events_1[0] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { msg.clone() }, _ => panic!("Unexpected event"), }; let events_2 = nodes[b].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); let bs_update = match events_2[0] { MessageSendEvent::BroadcastChannelUpdate { ref msg } => { msg.clone() }, _ => panic!("Unexpected event"), }; for node in nodes { node.router.handle_channel_update(&as_update).unwrap(); node.router.handle_channel_update(&bs_update).unwrap(); } } macro_rules! expect_pending_htlcs_forwardable { ($node: expr) => {{ let events = $node.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; $node.node.channel_state.lock().unwrap().next_forward = Instant::now(); $node.node.process_pending_htlc_forwards(); }} } #[test] fn channel_reserve_test() { use util::rng; use std::sync::atomic::Ordering; use ln::msgs::HandleError; macro_rules! get_channel_value_stat { ($node: expr, $channel_id: expr) => {{ let chan_lock = $node.node.channel_state.lock().unwrap(); let chan = chan_lock.by_id.get(&$channel_id).unwrap(); chan.get_value_stat() }} } let mut nodes = create_network(3); let chan_1 = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1900, 1001); let chan_2 = create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 1900, 1001); let mut stat01 = get_channel_value_stat!(nodes[0], chan_1.2); let mut stat11 = get_channel_value_stat!(nodes[1], chan_1.2); let mut stat12 = get_channel_value_stat!(nodes[1], chan_2.2); let mut stat22 = get_channel_value_stat!(nodes[2], chan_2.2); macro_rules! get_route_and_payment_hash { ($recv_value: expr) => {{ let route = nodes[0].router.get_route(&nodes.last().unwrap().node.get_our_node_id(), None, &Vec::new(), $recv_value, TEST_FINAL_CLTV).unwrap(); let (payment_preimage, payment_hash) = get_payment_preimage_hash!(nodes[0]); (route, payment_hash, payment_preimage) }} }; macro_rules! expect_forward { ($node: expr) => {{ let mut events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); check_added_monitors!($node, 1); let payment_event = SendEvent::from_event(events.remove(0)); payment_event }} } macro_rules! expect_payment_received { ($node: expr, $expected_payment_hash: expr, $expected_recv_value: expr) => { let events = $node.node.get_and_clear_pending_events(); assert_eq!(events.len(), 1); match events[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!($expected_payment_hash, *payment_hash); assert_eq!($expected_recv_value, amt); }, _ => panic!("Unexpected event"), } } }; let feemsat = 239; // somehow we know? let total_fee_msat = (nodes.len() - 2) as u64 * 239; let recv_value_0 = stat01.their_max_htlc_value_in_flight_msat - total_fee_msat; // attempt to send amt_msat > their_max_htlc_value_in_flight_msat { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_0 + 1); assert!(route.hops.iter().rev().skip(1).all(|h| h.fee_msat == feemsat)); let err = nodes[0].node.send_payment(route, our_payment_hash).err().unwrap(); match err { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over our max HTLC value in flight"), _ => panic!("Unknown error variants"), } } let mut htlc_id = 0; // channel reserve is bigger than their_max_htlc_value_in_flight_msat so loop to deplete // nodes[0]'s wealth loop { let amt_msat = recv_value_0 + total_fee_msat; if stat01.value_to_self_msat - amt_msat < stat01.channel_reserve_msat { break; } send_payment(&nodes[0], &vec![&nodes[1], &nodes[2]][..], recv_value_0); htlc_id += 1; let (stat01_, stat11_, stat12_, stat22_) = ( get_channel_value_stat!(nodes[0], chan_1.2), get_channel_value_stat!(nodes[1], chan_1.2), get_channel_value_stat!(nodes[1], chan_2.2), get_channel_value_stat!(nodes[2], chan_2.2), ); assert_eq!(stat01_.value_to_self_msat, stat01.value_to_self_msat - amt_msat); assert_eq!(stat11_.value_to_self_msat, stat11.value_to_self_msat + amt_msat); assert_eq!(stat12_.value_to_self_msat, stat12.value_to_self_msat - (amt_msat - feemsat)); assert_eq!(stat22_.value_to_self_msat, stat22.value_to_self_msat + (amt_msat - feemsat)); stat01 = stat01_; stat11 = stat11_; stat12 = stat12_; stat22 = stat22_; } { let recv_value = stat01.value_to_self_msat - stat01.channel_reserve_msat - total_fee_msat; // attempt to get channel_reserve violation let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value + 1); let err = nodes[0].node.send_payment(route.clone(), our_payment_hash).err().unwrap(); match err { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over our reserve value"), _ => panic!("Unknown error variants"), } } // adding pending output let recv_value_1 = (stat01.value_to_self_msat - stat01.channel_reserve_msat - total_fee_msat)/2; let amt_msat_1 = recv_value_1 + total_fee_msat; let (route_1, our_payment_hash_1, our_payment_preimage_1) = get_route_and_payment_hash!(recv_value_1); let payment_event_1 = { nodes[0].node.send_payment(route_1, our_payment_hash_1).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event_1.msgs[0]).unwrap(); // channel reserve test with htlc pending output > 0 let recv_value_2 = stat01.value_to_self_msat - amt_msat_1 - stat01.channel_reserve_msat - total_fee_msat; { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_2 + 1); match nodes[0].node.send_payment(route, our_payment_hash).err().unwrap() { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over our reserve value"), _ => panic!("Unknown error variants"), } } { // test channel_reserve test on nodes[1] side let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_2 + 1); // Need to manually create update_add_htlc message to go around the channel reserve check in send_htlc() let secp_ctx = Secp256k1::new(); let session_priv = SecretKey::from_slice(&secp_ctx, &{ let mut session_key = [0; 32]; rng::fill_bytes(&mut session_key); session_key }).expect("RNG is bad!"); let cur_height = nodes[0].node.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = ChannelManager::construct_onion_keys(&secp_ctx, &route, &session_priv).unwrap(); let (onion_payloads, htlc_msat, htlc_cltv) = ChannelManager::build_onion_payloads(&route, cur_height).unwrap(); let onion_packet = ChannelManager::construct_onion_packet(onion_payloads, onion_keys, &our_payment_hash); let msg = msgs::UpdateAddHTLC { channel_id: chan_1.2, htlc_id, amount_msat: htlc_msat, payment_hash: our_payment_hash, cltv_expiry: htlc_cltv, onion_routing_packet: onion_packet, }; let err = nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &msg).err().unwrap(); match err { HandleError{err, .. } => assert_eq!(err, "Remote HTLC add would put them over their reserve value"), } } // split the rest to test holding cell let recv_value_21 = recv_value_2/2; let recv_value_22 = recv_value_2 - recv_value_21 - total_fee_msat; { let stat = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat.value_to_self_msat - (stat.pending_outbound_htlcs_amount_msat + recv_value_21 + recv_value_22 + total_fee_msat + total_fee_msat), stat.channel_reserve_msat); } // now see if they go through on both sides let (route_21, our_payment_hash_21, our_payment_preimage_21) = get_route_and_payment_hash!(recv_value_21); // but this will stuck in the holding cell nodes[0].node.send_payment(route_21, our_payment_hash_21).unwrap(); check_added_monitors!(nodes[0], 0); let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 0); // test with outbound holding cell amount > 0 { let (route, our_payment_hash, _) = get_route_and_payment_hash!(recv_value_22+1); match nodes[0].node.send_payment(route, our_payment_hash).err().unwrap() { APIError::ChannelUnavailable{err} => assert_eq!(err, "Cannot send value that would put us over our reserve value"), _ => panic!("Unknown error variants"), } } let (route_22, our_payment_hash_22, our_payment_preimage_22) = get_route_and_payment_hash!(recv_value_22); // this will also stuck in the holding cell nodes[0].node.send_payment(route_22, our_payment_hash_22).unwrap(); check_added_monitors!(nodes[0], 0); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // flush the pending htlc nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event_1.commitment_msg).unwrap(); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); check_added_monitors!(nodes[0], 1); let commitment_update_2 = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &as_commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_11 = expect_forward!(nodes[1]); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_11.msgs[0]).unwrap(); commitment_signed_dance!(nodes[2], nodes[1], payment_event_11.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); expect_payment_received!(nodes[2], our_payment_hash_1, recv_value_1); // flush the htlcs in the holding cell assert_eq!(commitment_update_2.update_add_htlcs.len(), 2); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[0]).unwrap(); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &commitment_update_2.update_add_htlcs[1]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], &commitment_update_2.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); let ref payment_event_3 = expect_forward!(nodes[1]); assert_eq!(payment_event_3.msgs.len(), 2); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[0]).unwrap(); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event_3.msgs[1]).unwrap(); commitment_signed_dance!(nodes[2], nodes[1], &payment_event_3.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[2]); let events = nodes[2].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(our_payment_hash_21, *payment_hash); assert_eq!(recv_value_21, amt); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(our_payment_hash_22, *payment_hash); assert_eq!(recv_value_22, amt); }, _ => panic!("Unexpected event"), } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_1); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_21); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), our_payment_preimage_22); let expected_value_to_self = stat01.value_to_self_msat - (recv_value_1 + total_fee_msat) - (recv_value_21 + total_fee_msat) - (recv_value_22 + total_fee_msat); let stat0 = get_channel_value_stat!(nodes[0], chan_1.2); assert_eq!(stat0.value_to_self_msat, expected_value_to_self); assert_eq!(stat0.value_to_self_msat, stat0.channel_reserve_msat); let stat2 = get_channel_value_stat!(nodes[2], chan_2.2); assert_eq!(stat2.value_to_self_msat, stat22.value_to_self_msat + recv_value_1 + recv_value_21 + recv_value_22); } #[test] fn channel_monitor_network_test() { // Simple test which builds a network of ChannelManagers, connects them to each other, and // tests that ChannelMonitor is able to recover from various states. let nodes = create_network(5); // Create some initial channels let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); let chan_2 = create_announced_chan_between_nodes(&nodes, 1, 2); let chan_3 = create_announced_chan_between_nodes(&nodes, 2, 3); let chan_4 = create_announced_chan_between_nodes(&nodes, 3, 4); // Rebalance the network a bit by relaying one payment through all the channels... send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); send_payment(&nodes[0], &vec!(&nodes[1], &nodes[2], &nodes[3], &nodes[4])[..], 8000000); // Simple case with no pending HTLCs: nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), true); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_1, None, HTLCType::NONE); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn.drain(..).next().unwrap()] }, 1); test_txn_broadcast(&nodes[0], &chan_1, None, HTLCType::NONE); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 1); // One pending HTLC is discarded by the force-close: let payment_preimage_1 = route_payment(&nodes[1], &vec!(&nodes[2], &nodes[3])[..], 3000000).0; // Simple case of one pending HTLC to HTLC-Timeout nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), true); { let mut node_txn = test_txn_broadcast(&nodes[1], &chan_2, None, HTLCType::TIMEOUT); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[2].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn.drain(..).next().unwrap()] }, 1); test_txn_broadcast(&nodes[2], &chan_2, None, HTLCType::NONE); } get_announce_close_broadcast_events(&nodes, 1, 2); assert_eq!(nodes[1].node.list_channels().len(), 0); assert_eq!(nodes[2].node.list_channels().len(), 1); macro_rules! claim_funds { ($node: expr, $prev_node: expr, $preimage: expr) => { { assert!($node.node.claim_funds($preimage)); check_added_monitors!($node, 1); let events = $node.node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, .. } } => { assert!(update_add_htlcs.is_empty()); assert!(update_fail_htlcs.is_empty()); assert_eq!(*node_id, $prev_node.node.get_our_node_id()); }, _ => panic!("Unexpected event"), }; } } } // nodes[3] gets the preimage, but nodes[2] already disconnected, resulting in a nodes[2] // HTLC-Timeout and a nodes[3] claim against it (+ its own announces) nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), true); { let node_txn = test_txn_broadcast(&nodes[2], &chan_3, None, HTLCType::TIMEOUT); // Claim the payment on nodes[3], giving it knowledge of the preimage claim_funds!(nodes[3], nodes[2], payment_preimage_1); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, 1); check_preimage_claim(&nodes[3], &node_txn); } get_announce_close_broadcast_events(&nodes, 2, 3); assert_eq!(nodes[2].node.list_channels().len(), 0); assert_eq!(nodes[3].node.list_channels().len(), 1); { // Cheat and reset nodes[4]'s height to 1 let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![] }, 1); } assert_eq!(nodes[3].node.latest_block_height.load(Ordering::Acquire), 1); assert_eq!(nodes[4].node.latest_block_height.load(Ordering::Acquire), 1); // One pending HTLC to time out: let payment_preimage_2 = route_payment(&nodes[3], &vec!(&nodes[4])[..], 3000000).0; // CLTV expires at TEST_FINAL_CLTV + 1 (current height) + 1 (added in send_payment for // buffer space). { let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_checked(&header, 2, &Vec::new()[..], &[0; 0]); for i in 3..TEST_FINAL_CLTV + 2 + HTLC_FAIL_TIMEOUT_BLOCKS + 1 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[3].chain_monitor.block_connected_checked(&header, i, &Vec::new()[..], &[0; 0]); } let node_txn = test_txn_broadcast(&nodes[3], &chan_4, None, HTLCType::TIMEOUT); // Claim the payment on nodes[4], giving it knowledge of the preimage claim_funds!(nodes[4], nodes[3], payment_preimage_2); header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_checked(&header, 2, &Vec::new()[..], &[0; 0]); for i in 3..TEST_FINAL_CLTV + 2 - CLTV_CLAIM_BUFFER + 1 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_checked(&header, i, &Vec::new()[..], &[0; 0]); } test_txn_broadcast(&nodes[4], &chan_4, None, HTLCType::SUCCESS); header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[4].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[0].clone()] }, TEST_FINAL_CLTV - 5); check_preimage_claim(&nodes[4], &node_txn); } get_announce_close_broadcast_events(&nodes, 3, 4); assert_eq!(nodes[3].node.list_channels().len(), 0); assert_eq!(nodes[4].node.list_channels().len(), 0); // Create some new channels: let chan_5 = create_announced_chan_between_nodes(&nodes, 0, 1); // A pending HTLC which will be revoked: let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; // Get the will-be-revoked local txn from nodes[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.iter().next().unwrap().1.last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 2); // First commitment tx, then HTLC tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_5.3.txid()); assert_eq!(revoked_local_txn[0].output.len(), 2); // Only HTLC and output back to 0 are present assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), 133); // HTLC-Timeout // Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_3); { let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); { let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn.pop().unwrap(), node_txn[0]); // An outpoint registration will result in a 2nd block_connected assert_eq!(node_txn[0].input.len(), 2); // We should claim the revoked output and the HTLC output check_spends!(node_txn[0], revoked_local_txn[0].clone()); node_txn.swap_remove(0); } test_txn_broadcast(&nodes[1], &chan_5, None, HTLCType::NONE); nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = test_txn_broadcast(&nodes[0], &chan_5, Some(revoked_local_txn[0].clone()), HTLCType::TIMEOUT); header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![node_txn[1].clone()] }, 1); test_revoked_htlc_claim_txn_broadcast(&nodes[1], node_txn[1].clone()); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn revoked_output_claim() { // Simple test to ensure a node will claim a revoked output when a stale remote commitment // transaction is broadcast by its counterparty let nodes = create_network(2); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // node[0] is gonna to revoke an old state thus node[1] should be able to claim the revoked output let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 1); // Only output is the full channel value back to nodes[0]: assert_eq!(revoked_local_txn[0].output.len(), 1); // Send a payment through, updating everyone's latest commitment txn send_payment(&nodes[0], &vec!(&nodes[1])[..], 5000000); // Inform nodes[1] that nodes[0] broadcast a stale tx let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 3); // nodes[1] will broadcast justice tx twice, and its own local state once assert_eq!(node_txn[0], node_txn[2]); check_spends!(node_txn[0], revoked_local_txn[0].clone()); check_spends!(node_txn[1], chan_1.3.clone()); // Inform nodes[0] that a watchtower cheated on its behalf, so it will force-close the chan nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); get_announce_close_broadcast_events(&nodes, 0, 1); } #[test] fn claim_htlc_outputs_shared_tx() { // Node revoked old state, htlcs haven't time out yet, claim them in shared justice tx let nodes = create_network(2); // Create some new channel: let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let _payment_preimage_2 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000).0; // Get the will-be-revoked local txn from node[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); assert_eq!(revoked_local_txn.len(), 2); // commitment tx + 1 HTLC-Timeout tx assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, chan_1.3.txid()); assert_eq!(revoked_local_txn[1].input.len(), 1); assert_eq!(revoked_local_txn[1].input[0].previous_output.txid, revoked_local_txn[0].txid()); assert_eq!(revoked_local_txn[1].input[0].witness.last().unwrap().len(), 133); // HTLC-Timeout check_spends!(revoked_local_txn[1], revoked_local_txn[0].clone()); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 1); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 4); assert_eq!(node_txn[0].input.len(), 3); // Claim the revoked output + both revoked HTLC outputs check_spends!(node_txn[0], revoked_local_txn[0].clone()); assert_eq!(node_txn[0], node_txn[3]); // justice tx is duplicated due to block re-scanning let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[0].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[1].witness.last().unwrap().len()); witness_lens.insert(node_txn[0].input[2].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), 133); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), 138); // revoked received HTLC // Next nodes[1] broadcasts its current local tx state: assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[1].input[0].previous_output.txid, chan_1.3.txid()); //Spending funding tx unique txouput, tx broadcasted by ChannelManager assert_eq!(node_txn[2].input.len(), 1); let witness_script = node_txn[2].clone().input[0].witness.pop().unwrap(); assert_eq!(witness_script.len(), 133); //Spending an offered htlc output assert_eq!(node_txn[2].input[0].previous_output.txid, node_txn[1].txid()); assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid); assert_ne!(node_txn[2].input[0].previous_output.txid, node_txn[0].input[1].previous_output.txid); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn claim_htlc_outputs_single_tx() { // Node revoked old state, htlcs have timed out, claim each of them in separated justice tx let nodes = create_network(2); let chan_1 = create_announced_chan_between_nodes(&nodes, 0, 1); // Rebalance the network to generate htlc in the two directions send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000); // node[0] is gonna to revoke an old state thus node[1] should be able to claim both offered/received HTLC outputs on top of commitment tx, but this // time as two different claim transactions as we're gonna to timeout htlc with given a high current height let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1])[..], 3000000).0; let _payment_preimage_2 = route_payment(&nodes[1], &vec!(&nodes[0])[..], 3000000).0; // Get the will-be-revoked local txn from node[0] let revoked_local_txn = nodes[0].node.channel_state.lock().unwrap().by_id.get(&chan_1.2).unwrap().last_local_commitment_txn.clone(); //Revoke the old state claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage_1); { let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[0].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200); nodes[1].chain_monitor.block_connected_with_filtering(&Block { header, txdata: vec![revoked_local_txn[0].clone()] }, 200); let node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 12); // ChannelManager : 2, ChannelMontitor: 8 (1 standard revoked output, 2 revocation htlc tx, 1 local commitment tx + 1 htlc timeout tx) * 2 (block-rescan) assert_eq!(node_txn[0], node_txn[7]); assert_eq!(node_txn[1], node_txn[8]); assert_eq!(node_txn[2], node_txn[9]); assert_eq!(node_txn[3], node_txn[10]); assert_eq!(node_txn[4], node_txn[11]); assert_eq!(node_txn[3], node_txn[5]); //local commitment tx + htlc timeout tx broadcated by ChannelManger assert_eq!(node_txn[4], node_txn[6]); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[1].input.len(), 1); assert_eq!(node_txn[2].input.len(), 1); let mut revoked_tx_map = HashMap::new(); revoked_tx_map.insert(revoked_local_txn[0].txid(), revoked_local_txn[0].clone()); node_txn[0].verify(&revoked_tx_map).unwrap(); node_txn[1].verify(&revoked_tx_map).unwrap(); node_txn[2].verify(&revoked_tx_map).unwrap(); let mut witness_lens = BTreeSet::new(); witness_lens.insert(node_txn[0].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[1].input[0].witness.last().unwrap().len()); witness_lens.insert(node_txn[2].input[0].witness.last().unwrap().len()); assert_eq!(witness_lens.len(), 3); assert_eq!(*witness_lens.iter().skip(0).next().unwrap(), 77); // revoked to_local assert_eq!(*witness_lens.iter().skip(1).next().unwrap(), 133); // revoked offered HTLC assert_eq!(*witness_lens.iter().skip(2).next().unwrap(), 138); // revoked received HTLC assert_eq!(node_txn[3].input.len(), 1); check_spends!(node_txn[3], chan_1.3.clone()); assert_eq!(node_txn[4].input.len(), 1); let witness_script = node_txn[4].input[0].witness.last().unwrap(); assert_eq!(witness_script.len(), 133); //Spending an offered htlc output assert_eq!(node_txn[4].input[0].previous_output.txid, node_txn[3].txid()); assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[0].input[0].previous_output.txid); assert_ne!(node_txn[4].input[0].previous_output.txid, node_txn[1].input[0].previous_output.txid); } get_announce_close_broadcast_events(&nodes, 0, 1); assert_eq!(nodes[0].node.list_channels().len(), 0); assert_eq!(nodes[1].node.list_channels().len(), 0); } #[test] fn test_htlc_ignore_latest_remote_commitment() { // Test that HTLC transactions spending the latest remote commitment transaction are simply // ignored if we cannot claim them. This originally tickled an invalid unwrap(). let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); route_payment(&nodes[0], &[&nodes[1]], 10000000); nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id); { let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { contents: msgs::UnsignedChannelUpdate { flags, .. }, .. } } => { assert_eq!(flags & 0b10, 0b10); }, _ => panic!("Unexpected event"), } } let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 2); let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&node_txn[0], &node_txn[1]], &[1; 2]); { let events = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { contents: msgs::UnsignedChannelUpdate { flags, .. }, .. } } => { assert_eq!(flags & 0b10, 0b10); }, _ => panic!("Unexpected event"), } } // Duplicate the block_connected call since this may happen due to other listeners // registering new transactions nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&node_txn[0], &node_txn[1]], &[1; 2]); } #[test] fn test_force_close_fail_back() { // Check which HTLCs are failed-backwards on channel force-closure let mut nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 1, 2); let route = nodes[0].router.get_route(&nodes[2].node.get_our_node_id(), None, &Vec::new(), 1000000, 42).unwrap(); let (our_payment_preimage, our_payment_hash) = get_payment_preimage_hash!(nodes[0]); let mut payment_event = { nodes[0].node.send_payment(route, our_payment_hash).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); let events_1 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 1); match events_1[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[1].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[1].node.process_pending_htlc_forwards(); let mut events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); payment_event = SendEvent::from_event(events_2.remove(0)); assert_eq!(payment_event.msgs.len(), 1); check_added_monitors!(nodes[1], 1); nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[2].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); check_added_monitors!(nodes[2], 1); let (_, _) = get_revoke_commit_msgs!(nodes[2], nodes[1].node.get_our_node_id()); // nodes[2] now has the latest commitment transaction, but hasn't revoked its previous // state or updated nodes[1]' state. Now force-close and broadcast that commitment/HTLC // transaction and ensure nodes[1] doesn't fail-backwards (this was originally a bug!). nodes[2].node.force_close_channel(&payment_event.commitment_msg.channel_id); let events_3 = nodes[2].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); match events_3[0] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { contents: msgs::UnsignedChannelUpdate { flags, .. }, .. } } => { assert_eq!(flags & 0b10, 0b10); }, _ => panic!("Unexpected event"), } let tx = { let mut node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); // Note that we don't bother broadcasting the HTLC-Success transaction here as we don't // have a use for it unless nodes[2] learns the preimage somehow, the funds will go // back to nodes[1] upon timeout otherwise. assert_eq!(node_txn.len(), 1); node_txn.remove(0) }; let header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; nodes[1].chain_monitor.block_connected_checked(&header, 1, &[&tx], &[1]); let events_4 = nodes[1].node.get_and_clear_pending_msg_events(); // Note no UpdateHTLCs event here from nodes[1] to nodes[0]! assert_eq!(events_4.len(), 1); match events_4[0] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { contents: msgs::UnsignedChannelUpdate { flags, .. }, .. } } => { assert_eq!(flags & 0b10, 0b10); }, _ => panic!("Unexpected event"), } // Now check that if we add the preimage to ChannelMonitor it broadcasts our HTLC-Success.. { let mut monitors = nodes[2].chan_monitor.simple_monitor.monitors.lock().unwrap(); monitors.get_mut(&OutPoint::new(Sha256dHash::from(&payment_event.commitment_msg.channel_id[..]), 0)).unwrap() .provide_payment_preimage(&our_payment_hash, &our_payment_preimage); } nodes[2].chain_monitor.block_connected_checked(&header, 1, &[&tx], &[1]); let node_txn = nodes[2].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(node_txn.len(), 1); assert_eq!(node_txn[0].input.len(), 1); assert_eq!(node_txn[0].input[0].previous_output.txid, tx.txid()); assert_eq!(node_txn[0].lock_time, 0); // Must be an HTLC-Success assert_eq!(node_txn[0].input[0].witness.len(), 5); // Must be an HTLC-Success check_spends!(node_txn[0], tx); } #[test] fn test_unconf_chan() { // After creating a chan between nodes, we disconnect all blocks previously seen to force a channel close on nodes[0] side let nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let channel_state = nodes[0].node.channel_state.lock().unwrap(); assert_eq!(channel_state.by_id.len(), 1); assert_eq!(channel_state.short_to_id.len(), 1); mem::drop(channel_state); let mut headers = Vec::new(); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; headers.push(header.clone()); for _i in 2..100 { header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; headers.push(header.clone()); } while !headers.is_empty() { nodes[0].node.block_disconnected(&headers.pop().unwrap()); } { let events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); match events[0] { MessageSendEvent::BroadcastChannelUpdate { msg: msgs::ChannelUpdate { contents: msgs::UnsignedChannelUpdate { flags, .. }, .. } } => { assert_eq!(flags & 0b10, 0b10); }, _ => panic!("Unexpected event"), } } let channel_state = nodes[0].node.channel_state.lock().unwrap(); assert_eq!(channel_state.by_id.len(), 0); assert_eq!(channel_state.short_to_id.len(), 0); } macro_rules! get_chan_reestablish_msgs { ($src_node: expr, $dst_node: expr) => { { let mut res = Vec::with_capacity(1); for msg in $src_node.node.get_and_clear_pending_msg_events() { if let MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } = msg { assert_eq!(*node_id, $dst_node.node.get_our_node_id()); res.push(msg.clone()); } else { panic!("Unexpected event") } } res } } } macro_rules! handle_chan_reestablish_msgs { ($src_node: expr, $dst_node: expr) => { { let msg_events = $src_node.node.get_and_clear_pending_msg_events(); let mut idx = 0; let funding_locked = if let Some(&MessageSendEvent::SendFundingLocked { ref node_id, ref msg }) = msg_events.get(0) { idx += 1; assert_eq!(*node_id, $dst_node.node.get_our_node_id()); Some(msg.clone()) } else { None }; let mut revoke_and_ack = None; let mut commitment_update = None; let order = if let Some(ev) = msg_events.get(idx) { idx += 1; match ev { &MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, $dst_node.node.get_our_node_id()); revoke_and_ack = Some(msg.clone()); RAACommitmentOrder::RevokeAndACKFirst }, &MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, $dst_node.node.get_our_node_id()); commitment_update = Some(updates.clone()); RAACommitmentOrder::CommitmentFirst }, _ => panic!("Unexpected event"), } } else { RAACommitmentOrder::CommitmentFirst }; if let Some(ev) = msg_events.get(idx) { match ev { &MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, $dst_node.node.get_our_node_id()); assert!(revoke_and_ack.is_none()); revoke_and_ack = Some(msg.clone()); }, &MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, $dst_node.node.get_our_node_id()); assert!(commitment_update.is_none()); commitment_update = Some(updates.clone()); }, _ => panic!("Unexpected event"), } } (funding_locked, revoke_and_ack, commitment_update, order) } } } /// pending_htlc_adds includes both the holding cell and in-flight update_add_htlcs, whereas /// for claims/fails they are separated out. fn reconnect_nodes(node_a: &Node, node_b: &Node, pre_all_htlcs: bool, pending_htlc_adds: (i64, i64), pending_htlc_claims: (usize, usize), pending_cell_htlc_claims: (usize, usize), pending_cell_htlc_fails: (usize, usize), pending_raa: (bool, bool)) { node_a.node.peer_connected(&node_b.node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(node_a, node_b); node_b.node.peer_connected(&node_a.node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(node_b, node_a); let mut resp_1 = Vec::new(); for msg in reestablish_1 { node_b.node.handle_channel_reestablish(&node_a.node.get_our_node_id(), &msg).unwrap(); resp_1.push(handle_chan_reestablish_msgs!(node_b, node_a)); } if pending_cell_htlc_claims.0 != 0 || pending_cell_htlc_fails.0 != 0 { check_added_monitors!(node_b, 1); } else { check_added_monitors!(node_b, 0); } let mut resp_2 = Vec::new(); for msg in reestablish_2 { node_a.node.handle_channel_reestablish(&node_b.node.get_our_node_id(), &msg).unwrap(); resp_2.push(handle_chan_reestablish_msgs!(node_a, node_b)); } if pending_cell_htlc_claims.1 != 0 || pending_cell_htlc_fails.1 != 0 { check_added_monitors!(node_a, 1); } else { check_added_monitors!(node_a, 0); } // We dont yet support both needing updates, as that would require a different commitment dance: assert!((pending_htlc_adds.0 == 0 && pending_htlc_claims.0 == 0 && pending_cell_htlc_claims.0 == 0 && pending_cell_htlc_fails.0 == 0) || (pending_htlc_adds.1 == 0 && pending_htlc_claims.1 == 0 && pending_cell_htlc_claims.1 == 0 && pending_cell_htlc_fails.1 == 0)); for chan_msgs in resp_1.drain(..) { if pre_all_htlcs { node_a.node.handle_funding_locked(&node_b.node.get_our_node_id(), &chan_msgs.0.unwrap()).unwrap(); let announcement_event = node_a.node.get_and_clear_pending_msg_events(); if !announcement_event.is_empty() { assert_eq!(announcement_event.len(), 1); if let MessageSendEvent::SendAnnouncementSignatures { .. } = announcement_event[0] { //TODO: Test announcement_sigs re-sending } else { panic!("Unexpected event!"); } } } else { assert!(chan_msgs.0.is_none()); } if pending_raa.0 { assert!(chan_msgs.3 == RAACommitmentOrder::RevokeAndACKFirst); node_a.node.handle_revoke_and_ack(&node_b.node.get_our_node_id(), &chan_msgs.1.unwrap()).unwrap(); assert!(node_a.node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(node_a, 1); } else { assert!(chan_msgs.1.is_none()); } if pending_htlc_adds.0 != 0 || pending_htlc_claims.0 != 0 || pending_cell_htlc_claims.0 != 0 || pending_cell_htlc_fails.0 != 0 { let commitment_update = chan_msgs.2.unwrap(); if pending_htlc_adds.0 != -1 { // We use -1 to denote a response commitment_signed assert_eq!(commitment_update.update_add_htlcs.len(), pending_htlc_adds.0 as usize); } else { assert!(commitment_update.update_add_htlcs.is_empty()); } assert_eq!(commitment_update.update_fulfill_htlcs.len(), pending_htlc_claims.0 + pending_cell_htlc_claims.0); assert_eq!(commitment_update.update_fail_htlcs.len(), pending_cell_htlc_fails.0); assert!(commitment_update.update_fail_malformed_htlcs.is_empty()); for update_add in commitment_update.update_add_htlcs { node_a.node.handle_update_add_htlc(&node_b.node.get_our_node_id(), &update_add).unwrap(); } for update_fulfill in commitment_update.update_fulfill_htlcs { node_a.node.handle_update_fulfill_htlc(&node_b.node.get_our_node_id(), &update_fulfill).unwrap(); } for update_fail in commitment_update.update_fail_htlcs { node_a.node.handle_update_fail_htlc(&node_b.node.get_our_node_id(), &update_fail).unwrap(); } if pending_htlc_adds.0 != -1 { // We use -1 to denote a response commitment_signed commitment_signed_dance!(node_a, node_b, commitment_update.commitment_signed, false); } else { node_a.node.handle_commitment_signed(&node_b.node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(node_a, 1); let as_revoke_and_ack = get_event_msg!(node_a, MessageSendEvent::SendRevokeAndACK, node_b.node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes node_b.node.handle_revoke_and_ack(&node_a.node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(node_b.node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(node_b, 1); } } else { assert!(chan_msgs.2.is_none()); } } for chan_msgs in resp_2.drain(..) { if pre_all_htlcs { node_b.node.handle_funding_locked(&node_a.node.get_our_node_id(), &chan_msgs.0.unwrap()).unwrap(); let announcement_event = node_b.node.get_and_clear_pending_msg_events(); if !announcement_event.is_empty() { assert_eq!(announcement_event.len(), 1); if let MessageSendEvent::SendAnnouncementSignatures { .. } = announcement_event[0] { //TODO: Test announcement_sigs re-sending } else { panic!("Unexpected event!"); } } } else { assert!(chan_msgs.0.is_none()); } if pending_raa.1 { assert!(chan_msgs.3 == RAACommitmentOrder::RevokeAndACKFirst); node_b.node.handle_revoke_and_ack(&node_a.node.get_our_node_id(), &chan_msgs.1.unwrap()).unwrap(); assert!(node_b.node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(node_b, 1); } else { assert!(chan_msgs.1.is_none()); } if pending_htlc_adds.1 != 0 || pending_htlc_claims.1 != 0 || pending_cell_htlc_claims.1 != 0 || pending_cell_htlc_fails.1 != 0 { let commitment_update = chan_msgs.2.unwrap(); if pending_htlc_adds.1 != -1 { // We use -1 to denote a response commitment_signed assert_eq!(commitment_update.update_add_htlcs.len(), pending_htlc_adds.1 as usize); } assert_eq!(commitment_update.update_fulfill_htlcs.len(), pending_htlc_claims.0 + pending_cell_htlc_claims.0); assert_eq!(commitment_update.update_fail_htlcs.len(), pending_cell_htlc_fails.0); assert!(commitment_update.update_fail_malformed_htlcs.is_empty()); for update_add in commitment_update.update_add_htlcs { node_b.node.handle_update_add_htlc(&node_a.node.get_our_node_id(), &update_add).unwrap(); } for update_fulfill in commitment_update.update_fulfill_htlcs { node_b.node.handle_update_fulfill_htlc(&node_a.node.get_our_node_id(), &update_fulfill).unwrap(); } for update_fail in commitment_update.update_fail_htlcs { node_b.node.handle_update_fail_htlc(&node_a.node.get_our_node_id(), &update_fail).unwrap(); } if pending_htlc_adds.1 != -1 { // We use -1 to denote a response commitment_signed commitment_signed_dance!(node_b, node_a, commitment_update.commitment_signed, false); } else { node_b.node.handle_commitment_signed(&node_a.node.get_our_node_id(), &commitment_update.commitment_signed).unwrap(); check_added_monitors!(node_b, 1); let bs_revoke_and_ack = get_event_msg!(node_b, MessageSendEvent::SendRevokeAndACK, node_a.node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes node_a.node.handle_revoke_and_ack(&node_b.node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(node_a.node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(node_a, 1); } } else { assert!(chan_msgs.2.is_none()); } } } #[test] fn test_simple_peer_disconnect() { // Test that we can reconnect when there are no lost messages let nodes = create_network(3); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 1, 2); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], true, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let payment_preimage_1 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_2 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_2); claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_1); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let payment_preimage_3 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_preimage_4 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).0; let payment_hash_5 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; let payment_hash_6 = route_payment(&nodes[0], &vec!(&nodes[1], &nodes[2])[..], 1000000).1; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); claim_payment_along_route(&nodes[0], &vec!(&nodes[1], &nodes[2]), true, payment_preimage_3); fail_payment_along_route(&nodes[0], &[&nodes[1], &nodes[2]], true, payment_hash_5); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (1, 0), (1, 0), (false, false)); { let events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 2); match events[0] { Event::PaymentSent { payment_preimage } => { assert_eq!(payment_preimage, payment_preimage_3); }, _ => panic!("Unexpected event"), } match events[1] { Event::PaymentFailed { payment_hash, rejected_by_dest } => { assert_eq!(payment_hash, payment_hash_5); assert!(rejected_by_dest); }, _ => panic!("Unexpected event"), } } claim_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_preimage_4); fail_payment(&nodes[0], &vec!(&nodes[1], &nodes[2]), payment_hash_6); } fn do_test_drop_messages_peer_disconnect(messages_delivered: u8) { // Test that we can reconnect when in-flight HTLC updates get dropped let mut nodes = create_network(2); if messages_delivered == 0 { create_chan_between_nodes_with_value_a(&nodes[0], &nodes[1], 100000, 10001); // nodes[1] doesn't receive the funding_locked message (it'll be re-sent on reconnect) } else { create_announced_chan_between_nodes(&nodes, 0, 1); } let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), Some(&nodes[0].node.list_usable_channels()), &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_1, payment_hash_1) = get_payment_preimage_hash!(nodes[0]); let payment_event = { nodes[0].node.send_payment(route.clone(), payment_hash_1).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); SendEvent::from_event(events.remove(0)) }; assert_eq!(nodes[1].node.get_our_node_id(), payment_event.node_id); if messages_delivered < 2 { // Drop the payment_event messages, and let them get re-generated in reconnect_nodes! } else { nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); if messages_delivered >= 3 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); check_added_monitors!(nodes[1], 1); let (bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs!(nodes[1], nodes[0].node.get_our_node_id()); if messages_delivered >= 4 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); if messages_delivered >= 5 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_commitment_signed).unwrap(); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); if messages_delivered >= 6 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 3 { // Even if the funding_locked messages get exchanged, as long as nothing further was // received on either side, both sides will need to resend them. reconnect_nodes(&nodes[0], &nodes[1], true, (0, 1), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 3 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], false, (-1, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 4 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], false, (-1, 0), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 5 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 6 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } let events_1 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_1.len(), 1); match events_1[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[1].node.process_pending_htlc_forwards(); let events_2 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_2.len(), 1); match events_2[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(payment_hash_1, *payment_hash); assert_eq!(amt, 1000000); }, _ => panic!("Unexpected event"), } nodes[1].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[1], 1); let events_3 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_3.len(), 1); let (update_fulfill_htlc, commitment_signed) = match events_3[0] { MessageSendEvent::UpdateHTLCs { ref node_id, ref updates } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(updates.update_add_htlcs.is_empty()); assert!(updates.update_fail_htlcs.is_empty()); assert_eq!(updates.update_fulfill_htlcs.len(), 1); assert!(updates.update_fail_malformed_htlcs.is_empty()); assert!(updates.update_fee.is_none()); (updates.update_fulfill_htlcs[0].clone(), updates.commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; if messages_delivered >= 1 { nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlc).unwrap(); let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(payment_preimage_1, *payment_preimage); }, _ => panic!("Unexpected event"), } if messages_delivered >= 2 { nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &commitment_signed).unwrap(); check_added_monitors!(nodes[0], 1); let (as_revoke_and_ack, as_commitment_signed) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); if messages_delivered >= 3 { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); if messages_delivered >= 4 { nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); if messages_delivered >= 5 { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); } } } } } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); if messages_delivered < 2 { reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (1, 0), (0, 0), (0, 0), (false, false)); //TODO: Deduplicate PaymentSent events, then enable this if: //if messages_delivered < 1 { let events_4 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(payment_preimage_1, *payment_preimage); }, _ => panic!("Unexpected event"), } //} } else if messages_delivered == 2 { // nodes[0] still wants its RAA + commitment_signed reconnect_nodes(&nodes[0], &nodes[1], false, (0, -1), (0, 0), (0, 0), (0, 0), (false, true)); } else if messages_delivered == 3 { // nodes[0] still wants its commitment_signed reconnect_nodes(&nodes[0], &nodes[1], false, (0, -1), (0, 0), (0, 0), (0, 0), (false, false)); } else if messages_delivered == 4 { // nodes[1] still wants its final RAA reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (true, false)); } else if messages_delivered == 5 { // Everything was delivered... reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // Channel should still work fine... let payment_preimage_2 = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0; claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_drop_messages_peer_disconnect_a() { do_test_drop_messages_peer_disconnect(0); do_test_drop_messages_peer_disconnect(1); do_test_drop_messages_peer_disconnect(2); do_test_drop_messages_peer_disconnect(3); } #[test] fn test_drop_messages_peer_disconnect_b() { do_test_drop_messages_peer_disconnect(4); do_test_drop_messages_peer_disconnect(5); do_test_drop_messages_peer_disconnect(6); } #[test] fn test_funding_peer_disconnect() { // Test that we can lock in our funding tx while disconnected let nodes = create_network(2); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); confirm_transaction(&nodes[0].chain_monitor, &tx, tx.version); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::SendFundingLocked { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } confirm_transaction(&nodes[1].chain_monitor, &tx, tx.version); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); match events_2[0] { MessageSendEvent::SendFundingLocked { ref node_id, msg: _ } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); }, _ => panic!("Unexpected event"), } reconnect_nodes(&nodes[0], &nodes[1], true, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], true, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); // TODO: We shouldn't need to manually pass list_usable_chanels here once we support // rebroadcasting announcement_signatures upon reconnect. let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), Some(&nodes[0].node.list_usable_channels()), &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage, _) = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); } #[test] fn test_drop_messages_peer_disconnect_dual_htlc() { // Test that we can handle reconnecting when both sides of a channel have pending // commitment_updates when we disconnect. let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let (payment_preimage_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); // Now try to send a second payment which will fail to send let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_2, payment_hash_2) = get_payment_preimage_hash!(nodes[0]); nodes[0].node.send_payment(route.clone(), payment_hash_2).unwrap(); check_added_monitors!(nodes[0], 1); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::UpdateHTLCs { .. } => {}, _ => panic!("Unexpected event"), } assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); match events_2[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]).unwrap(); let events_3 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(*payment_preimage, payment_preimage_1); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed).unwrap(); let _ = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); }, _ => panic!("Unexpected event"), } nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); let as_resp = handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); let bs_resp = handle_chan_reestablish_msgs!(nodes[1], nodes[0]); assert!(as_resp.0.is_none()); assert!(bs_resp.0.is_none()); assert!(bs_resp.1.is_none()); assert!(bs_resp.2.is_none()); assert!(as_resp.3 == RAACommitmentOrder::CommitmentFirst); assert_eq!(as_resp.2.as_ref().unwrap().update_add_htlcs.len(), 1); assert!(as_resp.2.as_ref().unwrap().update_fulfill_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fail_malformed_htlcs.is_empty()); assert!(as_resp.2.as_ref().unwrap().update_fee.is_none()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().update_add_htlcs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_resp.2.as_ref().unwrap().commitment_signed).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), as_resp.1.as_ref().unwrap()).unwrap(); let bs_second_commitment_signed = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_second_commitment_signed.update_add_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(bs_second_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); let as_commitment_signed = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_commitment_signed.update_add_htlcs.is_empty()); assert!(as_commitment_signed.update_fulfill_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_htlcs.is_empty()); assert!(as_commitment_signed.update_fail_malformed_htlcs.is_empty()); assert!(as_commitment_signed.update_fee.is_none()); check_added_monitors!(nodes[0], 1); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment_signed.commitment_signed).unwrap(); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_signed.commitment_signed).unwrap(); let bs_second_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); let events_4 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_4.len(), 1); match events_4[0] { Event::PendingHTLCsForwardable { .. } => { }, _ => panic!("Unexpected event"), }; nodes[1].node.channel_state.lock().unwrap().next_forward = Instant::now(); nodes[1].node.process_pending_htlc_forwards(); let events_5 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_5.len(), 1); match events_5[0] { Event::PaymentReceived { ref payment_hash, amt: _ } => { assert_eq!(payment_hash_2, *payment_hash); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_simple_monitor_permanent_update_fail() { // Test that we handle a simple permanent monitor update failure let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (_, payment_hash_1) = get_payment_preimage_hash!(nodes[0]); *nodes[0].chan_monitor.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::PermanentFailure); if let Err(APIError::MonitorUpdateFailed) = nodes[0].node.send_payment(route, payment_hash_1) {} else { panic!(); } check_added_monitors!(nodes[0], 1); let events_1 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_1.len(), 1); match events_1[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), }; // TODO: Once we hit the chain with the failure transaction we should check that we get a // PaymentFailed event assert_eq!(nodes[0].node.list_channels().len(), 0); } fn do_test_simple_monitor_temporary_update_fail(disconnect: bool) { // Test that we can recover from a simple temporary monitor update failure optionally with // a disconnect in between let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_1, payment_hash_1) = get_payment_preimage_hash!(nodes[0]); *nodes[0].chan_monitor.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure); if let Err(APIError::MonitorUpdateFailed) = nodes[0].node.send_payment(route.clone(), payment_hash_1) {} else { panic!(); } check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(nodes[0].node.list_channels().len(), 1); if disconnect { nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], true, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } *nodes[0].chan_monitor.update_ret.lock().unwrap() = Ok(()); nodes[0].node.test_restore_channel_monitor(); check_added_monitors!(nodes[0], 1); let mut events_2 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); let payment_event = SendEvent::from_event(events_2.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); let events_3 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(payment_hash_1, *payment_hash); assert_eq!(amt, 1000000); }, _ => panic!("Unexpected event"), } claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_1); // Now set it to failed again... let (_, payment_hash_2) = get_payment_preimage_hash!(nodes[0]); *nodes[0].chan_monitor.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure); if let Err(APIError::MonitorUpdateFailed) = nodes[0].node.send_payment(route, payment_hash_2) {} else { panic!(); } check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(nodes[0].node.list_channels().len(), 1); if disconnect { nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); } // ...and make sure we can force-close a TemporaryFailure channel with a PermanentFailure *nodes[0].chan_monitor.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::PermanentFailure); nodes[0].node.test_restore_channel_monitor(); check_added_monitors!(nodes[0], 1); let events_5 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_5.len(), 1); match events_5[0] { MessageSendEvent::BroadcastChannelUpdate { .. } => {}, _ => panic!("Unexpected event"), } // TODO: Once we hit the chain with the failure transaction we should check that we get a // PaymentFailed event assert_eq!(nodes[0].node.list_channels().len(), 0); } #[test] fn test_simple_monitor_temporary_update_fail() { do_test_simple_monitor_temporary_update_fail(false); do_test_simple_monitor_temporary_update_fail(true); } fn do_test_monitor_temporary_update_fail(disconnect_count: usize) { let disconnect_flags = 8 | 16; // Test that we can recover from a temporary monitor update failure with some in-flight // HTLCs going on at the same time potentially with some disconnection thrown in. // * First we route a payment, then get a temporary monitor update failure when trying to // route a second payment. We then claim the first payment. // * If disconnect_count is set, we will disconnect at this point (which is likely as // TemporaryFailure likely indicates net disconnect which resulted in failing to update // the ChannelMonitor on a watchtower). // * If !(disconnect_count & 16) we deliver a update_fulfill_htlc/CS for the first payment // immediately, otherwise we wait sconnect and deliver them via the reconnect // channel_reestablish processing (ie disconnect_count & 16 makes no sense if // disconnect_count & !disconnect_flags is 0). // * We then update the channel monitor, reconnecting if disconnect_count is set and walk // through message sending, potentially disconnect/reconnecting multiple times based on // disconnect_count, to get the update_fulfill_htlc through. // * We then walk through more message exchanges to get the original update_add_htlc // through, swapping message ordering based on disconnect_count & 8 and optionally // disconnect/reconnecting based on disconnect_count. let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let (payment_preimage_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); // Now try to send a second payment which will fail to send let route = nodes[0].router.get_route(&nodes[1].node.get_our_node_id(), None, &Vec::new(), 1000000, TEST_FINAL_CLTV).unwrap(); let (payment_preimage_2, payment_hash_2) = get_payment_preimage_hash!(nodes[0]); *nodes[0].chan_monitor.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure); if let Err(APIError::MonitorUpdateFailed) = nodes[0].node.send_payment(route.clone(), payment_hash_2) {} else { panic!(); } check_added_monitors!(nodes[0], 1); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); assert_eq!(nodes[0].node.list_channels().len(), 1); // Claim the previous payment, which will result in a update_fulfill_htlc/CS from nodes[1] // but nodes[0] won't respond since it is frozen. assert!(nodes[1].node.claim_funds(payment_preimage_1)); check_added_monitors!(nodes[1], 1); let events_2 = nodes[1].node.get_and_clear_pending_msg_events(); assert_eq!(events_2.len(), 1); let (bs_initial_fulfill, bs_initial_commitment_signed) = match events_2[0] { MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(*node_id, nodes[0].node.get_our_node_id()); assert!(update_add_htlcs.is_empty()); assert_eq!(update_fulfill_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); if (disconnect_count & 16) == 0 { nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &update_fulfill_htlcs[0]).unwrap(); let events_3 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(*payment_preimage, payment_preimage_1); }, _ => panic!("Unexpected event"), } if let Err(msgs::HandleError{err, action: Some(msgs::ErrorAction::IgnoreError) }) = nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), commitment_signed) { assert_eq!(err, "Previous monitor update failure prevented generation of RAA"); } else { panic!(); } } (update_fulfill_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; if disconnect_count & !disconnect_flags > 0 { nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); } // Now fix monitor updating... *nodes[0].chan_monitor.update_ret.lock().unwrap() = Ok(()); nodes[0].node.test_restore_channel_monitor(); check_added_monitors!(nodes[0], 1); macro_rules! disconnect_reconnect_peers { () => { { nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); let as_resp = handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); let bs_resp = handle_chan_reestablish_msgs!(nodes[1], nodes[0]); assert!(as_resp.0.is_none()); assert!(bs_resp.0.is_none()); (reestablish_1, reestablish_2, as_resp, bs_resp) } } } let (payment_event, initial_revoke_and_ack) = if disconnect_count & !disconnect_flags > 0 { assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); assert_eq!(reestablish_1.len(), 1); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); assert_eq!(reestablish_2.len(), 1); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); check_added_monitors!(nodes[0], 0); let mut as_resp = handle_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); check_added_monitors!(nodes[1], 0); let mut bs_resp = handle_chan_reestablish_msgs!(nodes[1], nodes[0]); assert!(as_resp.0.is_none()); assert!(bs_resp.0.is_none()); assert!(bs_resp.1.is_none()); if (disconnect_count & 16) == 0 { assert!(bs_resp.2.is_none()); assert!(as_resp.1.is_some()); assert!(as_resp.2.is_some()); assert!(as_resp.3 == RAACommitmentOrder::CommitmentFirst); } else { assert!(bs_resp.2.as_ref().unwrap().update_add_htlcs.is_empty()); assert!(bs_resp.2.as_ref().unwrap().update_fail_htlcs.is_empty()); assert!(bs_resp.2.as_ref().unwrap().update_fail_malformed_htlcs.is_empty()); assert!(bs_resp.2.as_ref().unwrap().update_fee.is_none()); assert!(bs_resp.2.as_ref().unwrap().update_fulfill_htlcs == vec![bs_initial_fulfill]); assert!(bs_resp.2.as_ref().unwrap().commitment_signed == bs_initial_commitment_signed); assert!(as_resp.1.is_none()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_resp.2.as_ref().unwrap().update_fulfill_htlcs[0]).unwrap(); let events_3 = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events_3.len(), 1); match events_3[0] { Event::PaymentSent { ref payment_preimage } => { assert_eq!(*payment_preimage, payment_preimage_1); }, _ => panic!("Unexpected event"), } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_resp.2.as_ref().unwrap().commitment_signed).unwrap(); let as_resp_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); as_resp.1 = Some(as_resp_raa); bs_resp.2 = None; } if disconnect_count & !disconnect_flags > 1 { let (second_reestablish_1, second_reestablish_2, second_as_resp, second_bs_resp) = disconnect_reconnect_peers!(); if (disconnect_count & 16) == 0 { assert!(reestablish_1 == second_reestablish_1); assert!(reestablish_2 == second_reestablish_2); } assert!(as_resp == second_as_resp); assert!(bs_resp == second_bs_resp); } (SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), as_resp.2.unwrap()), as_resp.1.unwrap()) } else { let mut events_4 = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events_4.len(), 2); (SendEvent::from_event(events_4.remove(0)), match events_4[0] { MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { assert_eq!(*node_id, nodes[1].node.get_our_node_id()); msg.clone() }, _ => panic!("Unexpected event"), }) }; assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]).unwrap(); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &payment_event.commitment_msg).unwrap(); let bs_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // nodes[1] is awaiting an RAA from nodes[0] still so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); if disconnect_count & !disconnect_flags > 2 { let (_, _, as_resp, bs_resp) = disconnect_reconnect_peers!(); assert!(as_resp.1.unwrap() == initial_revoke_and_ack); assert!(bs_resp.1.unwrap() == bs_revoke_and_ack); assert!(as_resp.2.is_none()); assert!(bs_resp.2.is_none()); } let as_commitment_update; let bs_second_commitment_update; macro_rules! handle_bs_raa { () => { nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_revoke_and_ack).unwrap(); as_commitment_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); assert!(as_commitment_update.update_add_htlcs.is_empty()); assert!(as_commitment_update.update_fulfill_htlcs.is_empty()); assert!(as_commitment_update.update_fail_htlcs.is_empty()); assert!(as_commitment_update.update_fail_malformed_htlcs.is_empty()); assert!(as_commitment_update.update_fee.is_none()); check_added_monitors!(nodes[0], 1); } } macro_rules! handle_initial_raa { () => { nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &initial_revoke_and_ack).unwrap(); bs_second_commitment_update = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(bs_second_commitment_update.update_add_htlcs.is_empty()); assert!(bs_second_commitment_update.update_fulfill_htlcs.is_empty()); assert!(bs_second_commitment_update.update_fail_htlcs.is_empty()); assert!(bs_second_commitment_update.update_fail_malformed_htlcs.is_empty()); assert!(bs_second_commitment_update.update_fee.is_none()); check_added_monitors!(nodes[1], 1); } } if (disconnect_count & 8) == 0 { handle_bs_raa!(); if disconnect_count & !disconnect_flags > 3 { let (_, _, as_resp, bs_resp) = disconnect_reconnect_peers!(); assert!(as_resp.1.unwrap() == initial_revoke_and_ack); assert!(bs_resp.1.is_none()); assert!(as_resp.2.unwrap() == as_commitment_update); assert!(bs_resp.2.is_none()); assert!(as_resp.3 == RAACommitmentOrder::RevokeAndACKFirst); } handle_initial_raa!(); if disconnect_count & !disconnect_flags > 4 { let (_, _, as_resp, bs_resp) = disconnect_reconnect_peers!(); assert!(as_resp.1.is_none()); assert!(bs_resp.1.is_none()); assert!(as_resp.2.unwrap() == as_commitment_update); assert!(bs_resp.2.unwrap() == bs_second_commitment_update); } } else { handle_initial_raa!(); if disconnect_count & !disconnect_flags > 3 { let (_, _, as_resp, bs_resp) = disconnect_reconnect_peers!(); assert!(as_resp.1.is_none()); assert!(bs_resp.1.unwrap() == bs_revoke_and_ack); assert!(as_resp.2.is_none()); assert!(bs_resp.2.unwrap() == bs_second_commitment_update); assert!(bs_resp.3 == RAACommitmentOrder::RevokeAndACKFirst); } handle_bs_raa!(); if disconnect_count & !disconnect_flags > 4 { let (_, _, as_resp, bs_resp) = disconnect_reconnect_peers!(); assert!(as_resp.1.is_none()); assert!(bs_resp.1.is_none()); assert!(as_resp.2.unwrap() == as_commitment_update); assert!(bs_resp.2.unwrap() == bs_second_commitment_update); } } nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_commitment_update.commitment_signed).unwrap(); let as_revoke_and_ack = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[0], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_commitment_update.commitment_signed).unwrap(); let bs_second_revoke_and_ack = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); // No commitment_signed so get_event_msg's assert(len == 1) passes check_added_monitors!(nodes[1], 1); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_revoke_and_ack).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_revoke_and_ack).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); check_added_monitors!(nodes[0], 1); expect_pending_htlcs_forwardable!(nodes[1]); let events_5 = nodes[1].node.get_and_clear_pending_events(); assert_eq!(events_5.len(), 1); match events_5[0] { Event::PaymentReceived { ref payment_hash, amt } => { assert_eq!(payment_hash_2, *payment_hash); assert_eq!(amt, 1000000); }, _ => panic!("Unexpected event"), } claim_payment(&nodes[0], &[&nodes[1]], payment_preimage_2); } #[test] fn test_monitor_temporary_update_fail_a() { do_test_monitor_temporary_update_fail(0); do_test_monitor_temporary_update_fail(1); do_test_monitor_temporary_update_fail(2); do_test_monitor_temporary_update_fail(3); do_test_monitor_temporary_update_fail(4); do_test_monitor_temporary_update_fail(5); } #[test] fn test_monitor_temporary_update_fail_b() { do_test_monitor_temporary_update_fail(2 | 8); do_test_monitor_temporary_update_fail(3 | 8); do_test_monitor_temporary_update_fail(4 | 8); do_test_monitor_temporary_update_fail(5 | 8); } #[test] fn test_monitor_temporary_update_fail_c() { do_test_monitor_temporary_update_fail(1 | 16); do_test_monitor_temporary_update_fail(2 | 16); do_test_monitor_temporary_update_fail(3 | 16); do_test_monitor_temporary_update_fail(2 | 8 | 16); do_test_monitor_temporary_update_fail(3 | 8 | 16); } #[test] fn test_invalid_channel_announcement() { //Test BOLT 7 channel_announcement msg requirement for final node, gather data to build customed channel_announcement msgs let secp_ctx = Secp256k1::new(); let nodes = create_network(2); let chan_announcement = create_chan_between_nodes(&nodes[0], &nodes[1]); let a_channel_lock = nodes[0].node.channel_state.lock().unwrap(); let b_channel_lock = nodes[1].node.channel_state.lock().unwrap(); let as_chan = a_channel_lock.by_id.get(&chan_announcement.3).unwrap(); let bs_chan = b_channel_lock.by_id.get(&chan_announcement.3).unwrap(); let _ = nodes[0].router.handle_htlc_fail_channel_update(&msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id : as_chan.get_short_channel_id().unwrap(), is_permanent: false } ); let as_bitcoin_key = PublicKey::from_secret_key(&secp_ctx, &as_chan.get_local_keys().funding_key); let bs_bitcoin_key = PublicKey::from_secret_key(&secp_ctx, &bs_chan.get_local_keys().funding_key); let as_network_key = nodes[0].node.get_our_node_id(); let bs_network_key = nodes[1].node.get_our_node_id(); let were_node_one = as_bitcoin_key.serialize()[..] < bs_bitcoin_key.serialize()[..]; let mut chan_announcement; macro_rules! dummy_unsigned_msg { () => { msgs::UnsignedChannelAnnouncement { features: msgs::GlobalFeatures::new(), chain_hash: genesis_block(Network::Testnet).header.bitcoin_hash(), short_channel_id: as_chan.get_short_channel_id().unwrap(), node_id_1: if were_node_one { as_network_key } else { bs_network_key }, node_id_2: if were_node_one { bs_network_key } else { as_network_key }, bitcoin_key_1: if were_node_one { as_bitcoin_key } else { bs_bitcoin_key }, bitcoin_key_2: if were_node_one { bs_bitcoin_key } else { as_bitcoin_key }, excess_data: Vec::new(), }; } } macro_rules! sign_msg { ($unsigned_msg: expr) => { let msghash = Message::from_slice(&Sha256dHash::from_data(&$unsigned_msg.encode()[..])[..]).unwrap(); let as_bitcoin_sig = secp_ctx.sign(&msghash, &as_chan.get_local_keys().funding_key); let bs_bitcoin_sig = secp_ctx.sign(&msghash, &bs_chan.get_local_keys().funding_key); let as_node_sig = secp_ctx.sign(&msghash, &nodes[0].node.our_network_key); let bs_node_sig = secp_ctx.sign(&msghash, &nodes[1].node.our_network_key); chan_announcement = msgs::ChannelAnnouncement { node_signature_1 : if were_node_one { as_node_sig } else { bs_node_sig}, node_signature_2 : if were_node_one { bs_node_sig } else { as_node_sig}, bitcoin_signature_1: if were_node_one { as_bitcoin_sig } else { bs_bitcoin_sig }, bitcoin_signature_2 : if were_node_one { bs_bitcoin_sig } else { as_bitcoin_sig }, contents: $unsigned_msg } } } let unsigned_msg = dummy_unsigned_msg!(); sign_msg!(unsigned_msg); assert_eq!(nodes[0].router.handle_channel_announcement(&chan_announcement).unwrap(), true); let _ = nodes[0].router.handle_htlc_fail_channel_update(&msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id : as_chan.get_short_channel_id().unwrap(), is_permanent: false } ); // Configured with Network::Testnet let mut unsigned_msg = dummy_unsigned_msg!(); unsigned_msg.chain_hash = genesis_block(Network::Bitcoin).header.bitcoin_hash(); sign_msg!(unsigned_msg); assert!(nodes[0].router.handle_channel_announcement(&chan_announcement).is_err()); let mut unsigned_msg = dummy_unsigned_msg!(); unsigned_msg.chain_hash = Sha256dHash::from_data(&[1,2,3,4,5,6,7,8,9]); sign_msg!(unsigned_msg); assert!(nodes[0].router.handle_channel_announcement(&chan_announcement).is_err()); } struct VecWriter(Vec); impl Writer for VecWriter { fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> { self.0.extend_from_slice(buf); Ok(()) } fn size_hint(&mut self, size: usize) { self.0.reserve_exact(size); } } #[test] fn test_no_txn_manager_serialize_deserialize() { let mut nodes = create_network(2); let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = VecWriter(Vec::new()); nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter().next().unwrap().1.write_for_disk(&mut chan_0_monitor_serialized).unwrap(); nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()))); let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, chan_0_monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut chan_0_monitor_read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let config = UserConfig::new(); let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().unwrap(), &chan_0_monitor); <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: config, keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &channel_monitors, }).unwrap() }; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chan_monitor.add_update_monitor(chan_0_monitor.get_funding_txo().unwrap(), chan_0_monitor).is_ok()); nodes[0].node = Arc::new(nodes_0_deserialized); let nodes_0_as_listener: Arc = nodes[0].node.clone(); nodes[0].chain_monitor.register_listener(Arc::downgrade(&nodes_0_as_listener)); assert_eq!(nodes[0].node.list_channels().len(), 1); check_added_monitors!(nodes[0], 1); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id()); let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]); nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]); nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]).unwrap(); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]).unwrap(); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); let (funding_locked, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx); let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &funding_locked); for node in nodes.iter() { assert!(node.router.handle_channel_announcement(&announcement).unwrap()); node.router.handle_channel_update(&as_update).unwrap(); node.router.handle_channel_update(&bs_update).unwrap(); } send_payment(&nodes[0], &[&nodes[1]], 1000000); } #[test] fn test_simple_manager_serialize_deserialize() { let mut nodes = create_network(2); create_announced_chan_between_nodes(&nodes, 0, 1); let (our_payment_preimage, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000); let (_, our_payment_hash) = route_payment(&nodes[0], &[&nodes[1]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); let nodes_0_serialized = nodes[0].node.encode(); let mut chan_0_monitor_serialized = VecWriter(Vec::new()); nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter().next().unwrap().1.write_for_disk(&mut chan_0_monitor_serialized).unwrap(); nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()))); let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, chan_0_monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut chan_0_monitor_read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().unwrap(), &chan_0_monitor); <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::new(), keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &channel_monitors, }).unwrap() }; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chan_monitor.add_update_monitor(chan_0_monitor.get_funding_txo().unwrap(), chan_0_monitor).is_ok()); nodes[0].node = Arc::new(nodes_0_deserialized); check_added_monitors!(nodes[0], 1); reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash); claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage); } #[test] fn test_manager_serialize_deserialize_inconsistent_monitor() { // Test deserializing a ChannelManager with a out-of-date ChannelMonitor let mut nodes = create_network(4); create_announced_chan_between_nodes(&nodes, 0, 1); create_announced_chan_between_nodes(&nodes, 2, 0); let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3); let (our_payment_preimage, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000); // Serialize the ChannelManager here, but the monitor we keep up-to-date let nodes_0_serialized = nodes[0].node.encode(); route_payment(&nodes[0], &[&nodes[3]], 1000000); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/ // nodes[3]) let mut node_0_monitors_serialized = Vec::new(); for monitor in nodes[0].chan_monitor.simple_monitor.monitors.lock().unwrap().iter() { let mut writer = VecWriter(Vec::new()); monitor.1.write_for_disk(&mut writer).unwrap(); node_0_monitors_serialized.push(writer.0); } nodes[0].chan_monitor = Arc::new(test_utils::TestChannelMonitor::new(nodes[0].chain_monitor.clone(), nodes[0].tx_broadcaster.clone(), Arc::new(test_utils::TestLogger::new()))); let mut node_0_monitors = Vec::new(); for serialized in node_0_monitors_serialized.iter() { let mut read = &serialized[..]; let (_, monitor) = <(Sha256dHash, ChannelMonitor)>::read(&mut read, Arc::new(test_utils::TestLogger::new())).unwrap(); assert!(read.is_empty()); node_0_monitors.push(monitor); } let mut nodes_0_read = &nodes_0_serialized[..]; let keys_manager = Arc::new(keysinterface::KeysManager::new(&nodes[0].node_seed, Network::Testnet, Arc::new(test_utils::TestLogger::new()))); let (_, nodes_0_deserialized) = <(Sha256dHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: UserConfig::new(), keys_manager, fee_estimator: Arc::new(test_utils::TestFeeEstimator { sat_per_kw: 253 }), monitor: nodes[0].chan_monitor.clone(), chain_monitor: nodes[0].chain_monitor.clone(), tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: Arc::new(test_utils::TestLogger::new()), channel_monitors: &node_0_monitors.iter().map(|monitor| { (monitor.get_funding_txo().unwrap(), monitor) }).collect(), }).unwrap(); assert!(nodes_0_read.is_empty()); { // Channel close should result in a commitment tx and an HTLC tx let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap(); assert_eq!(txn.len(), 2); assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid()); assert_eq!(txn[1].input[0].previous_output.txid, txn[0].txid()); } for monitor in node_0_monitors.drain(..) { assert!(nodes[0].chan_monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor).is_ok()); check_added_monitors!(nodes[0], 1); } nodes[0].node = Arc::new(nodes_0_deserialized); // nodes[1] and nodes[2] have no lost state with nodes[0]... reconnect_nodes(&nodes[0], &nodes[1], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); reconnect_nodes(&nodes[0], &nodes[2], false, (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); //... and we can even still claim the payment! claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage); nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id()); let reestablish = get_event_msg!(nodes[3], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id()); if let Err(msgs::HandleError { action: Some(msgs::ErrorAction::SendErrorMessage { msg }), .. }) = nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish) { assert_eq!(msg.channel_id, channel_id); } else { panic!("Unexpected result"); } } }