//! The top-level channel management and payment tracking stuff lives here. //! //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those //! upon reconnect to the relevant peer(s). //! //! It does not manage routing logic (see ln::router for that) nor does it manage constructing //! on-chain transactions (it only monitors the chain to watch for any force-closes that might //! imply it needs to fail HTLCs/payments/channels it manages). use bitcoin::blockdata::block::BlockHeader; use bitcoin::blockdata::transaction::Transaction; use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use bitcoin::util::hash::BitcoinHash; use bitcoin_hashes::{Hash, HashEngine}; use bitcoin_hashes::hmac::{Hmac, HmacEngine}; use bitcoin_hashes::sha256::Hash as Sha256; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use bitcoin_hashes::cmp::fixed_time_eq; use secp256k1::key::{SecretKey,PublicKey}; use secp256k1::Secp256k1; use secp256k1::ecdh::SharedSecret; use secp256k1; use chain::chaininterface::{BroadcasterInterface,ChainListener,FeeEstimator}; use chain::transaction::OutPoint; use ln::channel::{Channel, ChannelError}; use ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, ManyChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY}; use ln::router::Route; use ln::msgs; use ln::msgs::LocalFeatures; use ln::onion_utils; use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError}; use chain::keysinterface::{ChannelKeys, KeysInterface}; use util::config::UserConfig; use util::{byte_utils, events}; use util::ser::{Readable, ReadableArgs, Writeable, Writer}; use util::chacha20::ChaCha20; use util::logger::Logger; use util::errors::APIError; use std::{cmp, mem}; use std::collections::{HashMap, hash_map, HashSet}; use std::io::Cursor; use std::sync::{Arc, Mutex, MutexGuard, RwLock}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::time::Duration; const SIXTY_FIVE_ZEROS: [u8; 65] = [0; 65]; // We hold various information about HTLC relay in the HTLC objects in Channel itself: // // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should // forward the HTLC with information it will give back to us when it does so, or if it should Fail // the HTLC with the relevant message for the Channel to handle giving to the remote peer. // // When a Channel forwards an HTLC to its peer, it will give us back the PendingForwardHTLCInfo // which we will use to construct an outbound HTLC, with a relevant HTLCSource::PreviousHopData // filled in to indicate where it came from (which we can use to either fail-backwards or fulfill // the HTLC backwards along the relevant path). // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is // our payment, which we can use to decode errors or inform the user that the payment was sent. /// Stores the info we will need to send when we want to forward an HTLC onwards #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) struct PendingForwardHTLCInfo { onion_packet: Option, incoming_shared_secret: [u8; 32], payment_hash: PaymentHash, short_channel_id: u64, pub(super) amt_to_forward: u64, pub(super) outgoing_cltv_value: u32, } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailureMsg { Relay(msgs::UpdateFailHTLC), Malformed(msgs::UpdateFailMalformedHTLC), } /// Stores whether we can't forward an HTLC or relevant forwarding info #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum PendingHTLCStatus { Forward(PendingForwardHTLCInfo), Fail(HTLCFailureMsg), } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, PartialEq)] pub(super) struct HTLCPreviousHopData { short_channel_id: u64, htlc_id: u64, incoming_packet_shared_secret: [u8; 32], } /// Tracks the inbound corresponding to an outbound HTLC #[derive(Clone, PartialEq)] pub(super) enum HTLCSource { PreviousHopData(HTLCPreviousHopData), OutboundRoute { route: Route, session_priv: SecretKey, /// Technically we can recalculate this from the route, but we cache it here to avoid /// doing a double-pass on route when we get a failure back first_hop_htlc_msat: u64, }, } #[cfg(test)] impl HTLCSource { pub fn dummy() -> Self { HTLCSource::OutboundRoute { route: Route { hops: Vec::new() }, session_priv: SecretKey::from_slice(&[1; 32]).unwrap(), first_hop_htlc_msat: 0, } } } #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug pub(super) enum HTLCFailReason { LightningError { err: msgs::OnionErrorPacket, }, Reason { failure_code: u16, data: Vec, } } /// payment_hash type, use to cross-lock hop #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentHash(pub [u8;32]); /// payment_preimage type, use to route payment between hop #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] pub struct PaymentPreimage(pub [u8;32]); type ShutdownResult = (Vec, Vec<(HTLCSource, PaymentHash)>); /// Error type returned across the channel_state mutex boundary. When an Err is generated for a /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel /// immediately (ie with no further calls on it made). Thus, this step happens inside a /// channel_state lock. We then return the set of things that need to be done outside the lock in /// this struct and call handle_error!() on it. struct MsgHandleErrInternal { err: msgs::LightningError, shutdown_finish: Option<(ShutdownResult, Option)>, } impl MsgHandleErrInternal { #[inline] fn send_err_msg_no_close(err: &'static str, channel_id: [u8; 32]) -> Self { Self { err: LightningError { err, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err.to_string() }, }, }, shutdown_finish: None, } } #[inline] fn ignore_no_close(err: &'static str) -> Self { Self { err: LightningError { err, action: msgs::ErrorAction::IgnoreError, }, shutdown_finish: None, } } #[inline] fn from_no_close(err: msgs::LightningError) -> Self { Self { err, shutdown_finish: None } } #[inline] fn from_finish_shutdown(err: &'static str, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option) -> Self { Self { err: LightningError { err, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: err.to_string() }, }, }, shutdown_finish: Some((shutdown_res, channel_update)), } } #[inline] fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self { Self { err: match err { ChannelError::Ignore(msg) => LightningError { err: msg, action: msgs::ErrorAction::IgnoreError, }, ChannelError::Close(msg) => LightningError { err: msg, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg.to_string() }, }, }, ChannelError::CloseDelayBroadcast { msg, .. } => LightningError { err: msg, action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage { channel_id, data: msg.to_string() }, }, }, }, shutdown_finish: None, } } } /// We hold back HTLCs we intend to relay for a random interval greater than this (see /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited). /// This provides some limited amount of privacy. Ideally this would range from somewhere like one /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly. const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100; pub(super) enum HTLCForwardInfo { AddHTLC { prev_short_channel_id: u64, prev_htlc_id: u64, forward_info: PendingForwardHTLCInfo, }, FailHTLC { htlc_id: u64, err_packet: msgs::OnionErrorPacket, }, } /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should /// be sent in the order they appear in the return value, however sometimes the order needs to be /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order /// they were originally sent). In those cases, this enum is also returned. #[derive(Clone, PartialEq)] pub(super) enum RAACommitmentOrder { /// Send the CommitmentUpdate messages first CommitmentFirst, /// Send the RevokeAndACK message first RevokeAndACKFirst, } // Note this is only exposed in cfg(test): pub(super) struct ChannelHolder { pub(super) by_id: HashMap<[u8; 32], Channel>, pub(super) short_to_id: HashMap, /// short channel id -> forward infos. Key of 0 means payments received /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the existence of a channel with the short id here, nor the short /// ids in the PendingForwardHTLCInfo! pub(super) forward_htlcs: HashMap>, /// payment_hash -> Vec<(amount_received, htlc_source)> for tracking things that were to us and /// can be failed/claimed by the user /// Note that while this is held in the same mutex as the channels themselves, no consistency /// guarantees are made about the channels given here actually existing anymore by the time you /// go to read them! pub(super) claimable_htlcs: HashMap>, /// Messages to send to peers - pushed to in the same lock that they are generated in (except /// for broadcast messages, where ordering isn't as strict). pub(super) pending_msg_events: Vec, } pub(super) struct MutChannelHolder<'a, ChanSigner: ChannelKeys + 'a> { pub(super) by_id: &'a mut HashMap<[u8; 32], Channel>, pub(super) short_to_id: &'a mut HashMap, pub(super) forward_htlcs: &'a mut HashMap>, pub(super) claimable_htlcs: &'a mut HashMap>, pub(super) pending_msg_events: &'a mut Vec, } impl ChannelHolder { pub(super) fn borrow_parts(&mut self) -> MutChannelHolder { MutChannelHolder { by_id: &mut self.by_id, short_to_id: &mut self.short_to_id, forward_htlcs: &mut self.forward_htlcs, claimable_htlcs: &mut self.claimable_htlcs, pending_msg_events: &mut self.pending_msg_events, } } } #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))] const ERR: () = "You need at least 32 bit pointers (well, usize, but we'll assume they're the same) for ChannelManager::latest_block_height"; /// Manager which keeps track of a number of channels and sends messages to the appropriate /// channel, also tracking HTLC preimages and forwarding onion packets appropriately. /// /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through /// to individual Channels. /// /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for /// all peers during write/read (though does not modify this instance, only the instance being /// serialized). This will result in any channels which have not yet exchanged funding_created (ie /// called funding_transaction_generated for outbound channels). /// /// Note that you can be a bit lazier about writing out ChannelManager than you can be with /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before /// returning from ManyChannelMonitor::add_update_monitor, with ChannelManagers, writing updates /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during /// the serialization process). If the deserialized version is out-of-date compared to the /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees). /// /// Note that the deserializer is only implemented for (Sha256dHash, ChannelManager), which /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call /// block_connected() to step towards your best block) upon deserialization before using the /// object! /// /// Note that ChannelManager is responsible for tracking liveness of its channels and generating /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been /// offline for a full minute. In order to track this, you must call /// timer_chan_freshness_every_min roughly once per minute, though it doesn't have to be perfec. pub struct ChannelManager { default_configuration: UserConfig, genesis_hash: Sha256dHash, fee_estimator: Arc, monitor: Arc, tx_broadcaster: Arc, #[cfg(test)] pub(super) latest_block_height: AtomicUsize, #[cfg(not(test))] latest_block_height: AtomicUsize, last_block_hash: Mutex, secp_ctx: Secp256k1, #[cfg(test)] pub(super) channel_state: Mutex>, #[cfg(not(test))] channel_state: Mutex>, our_network_key: SecretKey, pending_events: Mutex>, /// Used when we have to take a BIG lock to make sure everything is self-consistent. /// Essentially just when we're serializing ourselves out. /// Taken first everywhere where we are making changes before any other locks. total_consistency_lock: RwLock<()>, keys_manager: Arc>, logger: Arc, } /// The amount of time we require our counterparty wait to claim their money (ie time between when /// we, or our watchtower, must check for them having broadcast a theft transaction). pub(crate) const BREAKDOWN_TIMEOUT: u16 = 6 * 24; /// The amount of time we're willing to wait to claim money back to us pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 6 * 24 * 7; /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound /// HTLC's CLTV. This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER, /// ie the node we forwarded the payment on to should always have enough room to reliably time out /// the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the /// CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more). const CLTV_EXPIRY_DELTA: u16 = 6 * 12; //TODO? pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO? // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS, // ie that if the next-hop peer fails the HTLC within // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain, // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before // LATENCY_GRACE_PERIOD_BLOCKS. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS; // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See // ChannelMontior::would_broadcast_at_height for a description of why this is needed. #[deny(const_err)] #[allow(dead_code)] const CHECK_CLTV_EXPIRY_SANITY_2: u32 = CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER; macro_rules! secp_call { ( $res: expr, $err: expr ) => { match $res { Ok(key) => key, Err(_) => return Err($err), } }; } /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels pub struct ChannelDetails { /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes, /// thereafter this is the txid of the funding transaction xor the funding transaction output). /// Note that this means this value is *not* persistent - it can change once during the /// lifetime of the channel. pub channel_id: [u8; 32], /// The position of the funding transaction in the chain. None if the funding transaction has /// not yet been confirmed and the channel fully opened. pub short_channel_id: Option, /// The node_id of our counterparty pub remote_network_id: PublicKey, /// The value, in satoshis, of this channel as appears in the funding output pub channel_value_satoshis: u64, /// The user_id passed in to create_channel, or 0 if the channel was inbound. pub user_id: u64, /// The available outbound capacity for sending HTLCs to the remote peer. This does not include /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not /// available for inclusion in new outbound HTLCs). This further does not include any pending /// outgoing HTLCs which are awaiting some other resolution to be sent. pub outbound_capacity_msat: u64, /// The available inbound capacity for the remote peer to send HTLCs to us. This does not /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not /// available for inclusion in new inbound HTLCs). /// Note that there are some corner cases not fully handled here, so the actual available /// inbound capacity may be slightly higher than this. pub inbound_capacity_msat: u64, /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b) /// the peer is connected, and (c) no monitor update failure is pending resolution. pub is_live: bool, } macro_rules! handle_error { ($self: ident, $internal: expr) => { match $internal { Ok(msg) => Ok(msg), Err(MsgHandleErrInternal { err, shutdown_finish }) => { if let Some((shutdown_res, update_option)) = shutdown_finish { $self.finish_force_close_channel(shutdown_res); if let Some(update) = update_option { let mut channel_state = $self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Err(err) }, } } } macro_rules! break_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(ChannelError::Ignore(msg)) => { break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone())) }, Err(ChannelError::Close(msg)) => { log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok())) }, Err(ChannelError::CloseDelayBroadcast { .. }) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); } } } } macro_rules! try_chan_entry { ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => { match $res { Ok(res) => res, Err(ChannelError::Ignore(msg)) => { return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone())) }, Err(ChannelError::Close(msg)) => { log_trace!($self, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok())) }, Err(ChannelError::CloseDelayBroadcast { msg, update }) => { log_error!($self, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } if let Some(update) = update { if let Err(e) = $self.monitor.add_update_monitor(update.get_funding_txo().unwrap(), update) { match e { // Upstream channel is dead, but we want at least to fail backward HTLCs to save // downstream channels. In case of PermanentFailure, we are not going to be able // to claim back to_remote output on remote commitment transaction. Doesn't // make a difference here, we are concern about HTLCs circuit, not onchain funds. ChannelMonitorUpdateErr::PermanentFailure => {}, ChannelMonitorUpdateErr::TemporaryFailure => {}, } } } let mut shutdown_res = chan.force_shutdown(); if shutdown_res.0.len() >= 1 { log_error!($self, "You have a toxic local commitment transaction {} avaible in channel monitor, read comment in ChannelMonitor::get_latest_local_commitment_txn to be informed of manual action to take", shutdown_res.0[0].txid()); } shutdown_res.0.clear(); return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok())) } } } } macro_rules! handle_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new()) }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { match $err { ChannelMonitorUpdateErr::PermanentFailure => { log_error!($self, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..])); let (channel_id, mut chan) = $entry.remove_entry(); if let Some(short_id) = chan.get_short_channel_id() { $channel_state.short_to_id.remove(&short_id); } // TODO: $failed_fails is dropped here, which will cause other channels to hit the // chain in a confused state! We need to move them into the ChannelMonitor which // will be responsible for failing backwards once things confirm on-chain. // It's ok that we drop $failed_forwards here - at this point we'd rather they // broadcast HTLC-Timeout and pay the associated fees to get their funds back than // us bother trying to claim it just to forward on to another peer. If we're // splitting hairs we'd prefer to claim payments that were to us, but we haven't // given up the preimage yet, so might as well just wait until the payment is // retried, avoiding the on-chain fees. let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", channel_id, chan.force_shutdown(), $self.get_channel_update(&chan).ok())); res }, ChannelMonitorUpdateErr::TemporaryFailure => { log_info!($self, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails", log_bytes!($entry.key()[..]), if $resend_commitment && $resend_raa { match $action_type { RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" }, RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" }, } } else if $resend_commitment { "commitment" } else if $resend_raa { "RAA" } else { "nothing" }, (&$failed_forwards as &Vec<(PendingForwardHTLCInfo, u64)>).len(), (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len()); if !$resend_commitment { debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa); } if !$resend_raa { debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment); } $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails); Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor"), *$entry.key())) }, } } } macro_rules! return_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment); }; ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => { return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails); } } // Does not break in case of TemporaryFailure! macro_rules! maybe_break_monitor_err { ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => { match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) { (e, ChannelMonitorUpdateErr::PermanentFailure) => { break e; }, (_, ChannelMonitorUpdateErr::TemporaryFailure) => { }, } } } impl ChannelManager { /// Constructs a new ChannelManager to hold several channels and route between them. /// /// This is the main "logic hub" for all channel-related actions, and implements /// ChannelMessageHandler. /// /// Non-proportional fees are fixed according to our risk using the provided fee estimator. /// /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`! /// /// Users must provide the current blockchain height from which to track onchain channel /// funding outpoints and send payments with reliable timelocks. /// /// Users need to notify the new ChannelManager when a new block is connected or /// disconnected using its `block_connected` and `block_disconnected` methods. /// However, rather than calling these methods directly, the user should register /// the ChannelManager as a listener to the BlockNotifier and call the BlockNotifier's /// `block_(dis)connected` methods, which will notify all registered listeners in one /// go. pub fn new(network: Network, feeest: Arc, monitor: Arc, tx_broadcaster: Arc, logger: Arc,keys_manager: Arc>, config: UserConfig, current_blockchain_height: usize) -> Result>, secp256k1::Error> { let secp_ctx = Secp256k1::new(); let res = Arc::new(ChannelManager { default_configuration: config.clone(), genesis_hash: genesis_block(network).header.bitcoin_hash(), fee_estimator: feeest.clone(), monitor: monitor.clone(), tx_broadcaster, latest_block_height: AtomicUsize::new(current_blockchain_height), last_block_hash: Mutex::new(Default::default()), secp_ctx, channel_state: Mutex::new(ChannelHolder{ by_id: HashMap::new(), short_to_id: HashMap::new(), forward_htlcs: HashMap::new(), claimable_htlcs: HashMap::new(), pending_msg_events: Vec::new(), }), our_network_key: keys_manager.get_node_secret(), pending_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), keys_manager, logger, }); Ok(res) } /// Creates a new outbound channel to the given remote node and with the given value. /// /// user_id will be provided back as user_channel_id in FundingGenerationReady and /// FundingBroadcastSafe events to allow tracking of which events correspond with which /// create_channel call. Note that user_channel_id defaults to 0 for inbound channels, so you /// may wish to avoid using 0 for user_id here. /// /// If successful, will generate a SendOpenChannel message event, so you should probably poll /// PeerManager::process_events afterwards. /// /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000. pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64) -> Result<(), APIError> { if channel_value_satoshis < 1000 { return Err(APIError::APIMisuseError { err: "channel_value must be at least 1000 satoshis" }); } let channel = Channel::new_outbound(&*self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, Arc::clone(&self.logger), &self.default_configuration)?; let res = channel.get_open_channel(self.genesis_hash.clone(), &*self.fee_estimator); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => { if cfg!(feature = "fuzztarget") { return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG" }); } else { panic!("RNG is bad???"); } }, hash_map::Entry::Vacant(entry) => { entry.insert(channel); } } channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel { node_id: their_network_key, msg: res, }); Ok(()) } /// Gets the list of open channels, in random order. See ChannelDetail field documentation for /// more information. pub fn list_channels(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter() { let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat(); res.push(ChannelDetails { channel_id: (*channel_id).clone(), short_channel_id: channel.get_short_channel_id(), remote_network_id: channel.get_their_node_id(), channel_value_satoshis: channel.get_value_satoshis(), inbound_capacity_msat, outbound_capacity_msat, user_id: channel.get_user_id(), is_live: channel.is_live(), }); } res } /// Gets the list of usable channels, in random order. Useful as an argument to /// Router::get_route to ensure non-announced channels are used. /// /// These are guaranteed to have their is_live value set to true, see the documentation for /// ChannelDetails::is_live for more info on exactly what the criteria are. pub fn list_usable_channels(&self) -> Vec { let channel_state = self.channel_state.lock().unwrap(); let mut res = Vec::with_capacity(channel_state.by_id.len()); for (channel_id, channel) in channel_state.by_id.iter() { // Note we use is_live here instead of usable which leads to somewhat confused // internal/external nomenclature, but that's ok cause that's probably what the user // really wanted anyway. if channel.is_live() { let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat(); res.push(ChannelDetails { channel_id: (*channel_id).clone(), short_channel_id: channel.get_short_channel_id(), remote_network_id: channel.get_their_node_id(), channel_value_satoshis: channel.get_value_satoshis(), inbound_capacity_msat, outbound_capacity_msat, user_id: channel.get_user_id(), is_live: true, }); } } res } /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs /// will be accepted on the given channel, and after additional timeout/the closing of all /// pending HTLCs, the channel will be closed on chain. /// /// May generate a SendShutdown message event on success, which should be relayed. pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> { let _ = self.total_consistency_lock.read().unwrap(); let (mut failed_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?; channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: chan_entry.get().get_their_node_id(), msg: shutdown_msg }); if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (failed_htlcs, Some(chan_entry.remove_entry().1)) } else { (failed_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel"}) } }; for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } let chan_update = if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { Some(update) } else { None } } else { None }; if let Some(update) = chan_update { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } Ok(()) } #[inline] fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) { let (local_txn, mut failed_htlcs) = shutdown_res; log_trace!(self, "Finishing force-closure of channel with {} transactions to broadcast and {} HTLCs to fail", local_txn.len(), failed_htlcs.len()); for htlc_source in failed_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } for tx in local_txn { log_trace!(self, "Broadcast onchain {}", log_tx!(tx)); self.tx_broadcaster.broadcast_transaction(&tx); } } /// Force closes a channel, immediately broadcasting the latest local commitment transaction to /// the chain and rejecting new HTLCs on the given channel. pub fn force_close_channel(&self, channel_id: &[u8; 32]) { let _ = self.total_consistency_lock.read().unwrap(); let mut chan = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); if let Some(chan) = channel_state.by_id.remove(channel_id) { if let Some(short_id) = chan.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } chan } else { return; } }; log_trace!(self, "Force-closing channel {}", log_bytes!(channel_id[..])); self.finish_force_close_channel(chan.force_shutdown()); if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } /// Force close all channels, immediately broadcasting the latest local commitment transaction /// for each to the chain and rejecting new HTLCs on each. pub fn force_close_all_channels(&self) { for chan in self.list_channels() { self.force_close_channel(&chan.channel_id); } } fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard>) { macro_rules! return_malformed_err { ($msg: expr, $err_code: expr) => { { log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg); return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(), failure_code: $err_code, })), self.channel_state.lock().unwrap()); } } } if let Err(_) = msg.onion_routing_packet.public_key { return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6); } let shared_secret = { let mut arr = [0; 32]; arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]); arr }; let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret); if msg.onion_routing_packet.version != 0 { //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way, //the hash doesn't really serve any purpose - in the case of hashing all data, the //receiving node would have to brute force to figure out which version was put in the //packet by the node that send us the message, in the case of hashing the hop_data, the //node knows the HMAC matched, so they already know what is there... return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4); } let mut hmac = HmacEngine::::new(&mu); hmac.input(&msg.onion_routing_packet.hop_data); hmac.input(&msg.payment_hash.0[..]); if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) { return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5); } let mut channel_state = None; macro_rules! return_err { ($msg: expr, $err_code: expr, $data: expr) => { { log_info!(self, "Failed to accept/forward incoming HTLC: {}", $msg); if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data), })), channel_state.unwrap()); } } } let mut chacha = ChaCha20::new(&rho, &[0u8; 8]); let next_hop_data = { let mut decoded = [0; 65]; chacha.process(&msg.onion_routing_packet.hop_data[0..65], &mut decoded); match msgs::OnionHopData::read(&mut Cursor::new(&decoded[..])) { Err(err) => { let error_code = match err { msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte _ => 0x2000 | 2, // Should never happen }; return_err!("Unable to decode our hop data", error_code, &[0;0]); }, Ok(msg) => msg } }; let pending_forward_info = if next_hop_data.hmac == [0; 32] { #[cfg(test)] { // In tests, make sure that the initial onion pcket data is, at least, non-0. // We could do some fancy randomness test here, but, ehh, whatever. // This checks for the issue where you can calculate the path length given the // onion data as all the path entries that the originator sent will be here // as-is (and were originally 0s). // Of course reverse path calculation is still pretty easy given naive routing // algorithms, but this fixes the most-obvious case. let mut new_packet_data = [0; 19*65]; chacha.process(&msg.onion_routing_packet.hop_data[65..], &mut new_packet_data[0..19*65]); assert_ne!(new_packet_data[0..65], [0; 65][..]); assert_ne!(new_packet_data[..], [0; 19*65][..]); } // OUR PAYMENT! // final_expiry_too_soon if (msg.cltv_expiry as u64) < self.latest_block_height.load(Ordering::Acquire) as u64 + (CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS) as u64 { return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]); } // final_incorrect_htlc_amount if next_hop_data.data.amt_to_forward > msg.amount_msat { return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat)); } // final_incorrect_cltv_expiry if next_hop_data.data.outgoing_cltv_value != msg.cltv_expiry { return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry)); } // Note that we could obviously respond immediately with an update_fulfill_htlc // message, however that would leak that we are the recipient of this payment, so // instead we stay symmetric with the forwarding case, only responding (after a // delay) once they've send us a commitment_signed! PendingHTLCStatus::Forward(PendingForwardHTLCInfo { onion_packet: None, payment_hash: msg.payment_hash.clone(), short_channel_id: 0, incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.data.amt_to_forward, outgoing_cltv_value: next_hop_data.data.outgoing_cltv_value, }) } else { let mut new_packet_data = [0; 20*65]; chacha.process(&msg.onion_routing_packet.hop_data[65..], &mut new_packet_data[0..19*65]); chacha.process(&SIXTY_FIVE_ZEROS[..], &mut new_packet_data[19*65..]); let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap(); let blinding_factor = { let mut sha = Sha256::engine(); sha.input(&new_pubkey.serialize()[..]); sha.input(&shared_secret); Sha256::from_engine(sha).into_inner() }; let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) { Err(e) } else { Ok(new_pubkey) }; let outgoing_packet = msgs::OnionPacket { version: 0, public_key, hop_data: new_packet_data, hmac: next_hop_data.hmac.clone(), }; PendingHTLCStatus::Forward(PendingForwardHTLCInfo { onion_packet: Some(outgoing_packet), payment_hash: msg.payment_hash.clone(), short_channel_id: next_hop_data.data.short_channel_id, incoming_shared_secret: shared_secret, amt_to_forward: next_hop_data.data.amt_to_forward, outgoing_cltv_value: next_hop_data.data.outgoing_cltv_value, }) }; channel_state = Some(self.channel_state.lock().unwrap()); if let &PendingHTLCStatus::Forward(PendingForwardHTLCInfo { ref onion_packet, ref short_channel_id, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info { if onion_packet.is_some() { // If short_channel_id is 0 here, we'll reject them in the body here let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned(); let forwarding_id = match id_option { None => { // unknown_next_peer return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]); }, Some(id) => id.clone(), }; if let Some((err, code, chan_update)) = loop { let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap(); // Note that we could technically not return an error yet here and just hope // that the connection is reestablished or monitor updated by the time we get // around to doing the actual forward, but better to fail early if we can and // hopefully an attacker trying to path-trace payments cannot make this occur // on a small/per-node/per-channel scale. if !chan.is_live() { // channel_disabled break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap()))); } if *amt_to_forward < chan.get_their_htlc_minimum_msat() { // amount_below_minimum break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap()))); } let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_our_fee_base_msat(&*self.fee_estimator) as u64) }); if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap()))); } if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + CLTV_EXPIRY_DELTA as u64 { // incorrect_cltv_expiry break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap()))); } let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1; // We want to have at least LATENCY_GRACE_PERIOD_BLOCKS to fail prior to going on chain CLAIM_BUFFER blocks before expiration if msg.cltv_expiry <= cur_height + CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS as u32 { // expiry_too_soon break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap()))); } if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far break Some(("CLTV expiry is too far in the future", 21, None)); } break None; } { let mut res = Vec::with_capacity(8 + 128); if let Some(chan_update) = chan_update { if code == 0x1000 | 11 || code == 0x1000 | 12 { res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat)); } else if code == 0x1000 | 13 { res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry)); } else if code == 0x1000 | 20 { res.extend_from_slice(&byte_utils::be16_to_array(chan_update.contents.flags)); } res.extend_from_slice(&chan_update.encode_with_len()[..]); } return_err!(err, code, &res[..]); } } } (pending_forward_info, channel_state.unwrap()) } /// only fails if the channel does not yet have an assigned short_id /// May be called with channel_state already locked! fn get_channel_update(&self, chan: &Channel) -> Result { let short_channel_id = match chan.get_short_channel_id() { None => return Err(LightningError{err: "Channel not yet established", action: msgs::ErrorAction::IgnoreError}), Some(id) => id, }; let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_their_node_id().serialize()[..]; let unsigned = msgs::UnsignedChannelUpdate { chain_hash: self.genesis_hash, short_channel_id: short_channel_id, timestamp: chan.get_channel_update_count(), flags: (!were_node_one) as u16 | ((!chan.is_live() as u16) << 1), cltv_expiry_delta: CLTV_EXPIRY_DELTA, htlc_minimum_msat: chan.get_our_htlc_minimum_msat(), fee_base_msat: chan.get_our_fee_base_msat(&*self.fee_estimator), fee_proportional_millionths: chan.get_fee_proportional_millionths(), excess_data: Vec::new(), }; let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]); let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key); Ok(msgs::ChannelUpdate { signature: sig, contents: unsigned }) } /// Sends a payment along a given route. /// /// Value parameters are provided via the last hop in route, see documentation for RouteHop /// fields for more info. /// /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative /// payment), we don't do anything to stop you! We always try to ensure that if the provided /// next hop knows the preimage to payment_hash they can claim an additional amount as /// specified in the last hop in the route! Thus, you should probably do your own /// payment_preimage tracking (which you should already be doing as they represent "proof of /// payment") and prevent double-sends yourself. /// /// May generate a SendHTLCs message event on success, which should be relayed. /// /// Raises APIError::RoutError when invalid route or forward parameter /// (cltv_delta, fee, node public key) is specified. /// Raises APIError::ChannelUnavailable if the next-hop channel is not available for updates /// (including due to previous monitor update failure or new permanent monitor update failure). /// Raised APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the /// relevant updates. /// /// In case of APIError::RouteError/APIError::ChannelUnavailable, the payment send has failed /// and you may wish to retry via a different route immediately. /// In case of APIError::MonitorUpdateFailed, the commitment update has been irrevocably /// committed on our end and we're just waiting for a monitor update to send it. Do NOT retry /// the payment via a different route unless you intend to pay twice! pub fn send_payment(&self, route: Route, payment_hash: PaymentHash) -> Result<(), APIError> { if route.hops.len() < 1 || route.hops.len() > 20 { return Err(APIError::RouteError{err: "Route didn't go anywhere/had bogus size"}); } let our_node_id = self.get_our_node_id(); for (idx, hop) in route.hops.iter().enumerate() { if idx != route.hops.len() - 1 && hop.pubkey == our_node_id { return Err(APIError::RouteError{err: "Route went through us but wasn't a simple rebalance loop to us"}); } } let (session_priv, prng_seed) = self.keys_manager.get_onion_rand(); let cur_height = self.latest_block_height.load(Ordering::Acquire) as u32 + 1; let onion_keys = secp_call!(onion_utils::construct_onion_keys(&self.secp_ctx, &route, &session_priv), APIError::RouteError{err: "Pubkey along hop was maliciously selected"}); let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(&route, cur_height)?; let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, &payment_hash); let _ = self.total_consistency_lock.read().unwrap(); let err: Result<(), _> = loop { let mut channel_lock = self.channel_state.lock().unwrap(); let id = match channel_lock.short_to_id.get(&route.hops.first().unwrap().short_channel_id) { None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!"}), Some(id) => id.clone(), }; let channel_state = channel_lock.borrow_parts(); if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) { match { if chan.get().get_their_node_id() != route.hops.first().unwrap().pubkey { return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"}); } if !chan.get().is_live() { return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!"}); } break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute { route: route.clone(), session_priv: session_priv.clone(), first_hop_htlc_msat: htlc_msat, }, onion_packet), channel_state, chan) } { Some((update_add, commitment_signed, chan_monitor)) => { if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true); // Note that MonitorUpdateFailed here indicates (per function docs) // that we will resent the commitment update once we unfree monitor // updating, so we have to take special care that we don't return // something else in case we will resend later! return Err(APIError::MonitorUpdateFailed); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: route.hops.first().unwrap().pubkey, updates: msgs::CommitmentUpdate { update_add_htlcs: vec![update_add], update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, }, }); }, None => {}, } } else { unreachable!(); } return Ok(()); }; match handle_error!(self, err) { Ok(_) => unreachable!(), Err(e) => { if let msgs::ErrorAction::IgnoreError = e.action { } else { log_error!(self, "Got bad keys: {}!", e.err); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: route.hops.first().unwrap().pubkey, action: e.action, }); } Err(APIError::ChannelUnavailable { err: e.err }) }, } } /// Call this upon creation of a funding transaction for the given channel. /// /// Note that ALL inputs in the transaction pointed to by funding_txo MUST spend SegWit outputs /// or your counterparty can steal your funds! /// /// Panics if a funding transaction has already been provided for this channel. /// /// May panic if the funding_txo is duplicative with some other channel (note that this should /// be trivially prevented by using unique funding transaction keys per-channel). pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_txo: OutPoint) { let _ = self.total_consistency_lock.read().unwrap(); let (mut chan, msg, chan_monitor) = { let (res, chan) = { let mut channel_state = self.channel_state.lock().unwrap(); match channel_state.by_id.remove(temporary_channel_id) { Some(mut chan) => { (chan.get_outbound_funding_created(funding_txo) .map_err(|e| if let ChannelError::Close(msg) = e { MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(), None) } else { unreachable!(); }) , chan) }, None => return } }; match handle_error!(self, res) { Ok(funding_msg) => { (chan, funding_msg.0, funding_msg.1) }, Err(e) => { log_error!(self, "Got bad signatures: {}!", e.err); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_their_node_id(), action: e.action, }); return; }, } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before add_update_monitor if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { match e { ChannelMonitorUpdateErr::PermanentFailure => { match handle_error!(self, Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", *temporary_channel_id, chan.force_shutdown(), None))) { Err(e) => { log_error!(self, "Failed to store ChannelMonitor update for funding tx generation"); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_their_node_id(), action: e.action, }); return; }, Ok(()) => unreachable!(), } }, ChannelMonitorUpdateErr::TemporaryFailure => { // Its completely fine to continue with a FundingCreated until the monitor // update is persisted, as long as we don't generate the FundingBroadcastSafe // until the monitor has been safely persisted (as funding broadcast is not, // in fact, safe). chan.monitor_update_failed(false, false, Vec::new(), Vec::new()); }, } } let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated { node_id: chan.get_their_node_id(), msg: msg, }); match channel_state.by_id.entry(chan.channel_id()) { hash_map::Entry::Occupied(_) => { panic!("Generated duplicate funding txid?"); }, hash_map::Entry::Vacant(e) => { e.insert(chan); } } } fn get_announcement_sigs(&self, chan: &Channel) -> Option { if !chan.should_announce() { return None } let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) { Ok(res) => res, Err(_) => return None, // Only in case of state precondition violations eg channel is closing }; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); Some(msgs::AnnouncementSignatures { channel_id: chan.channel_id(), short_channel_id: chan.get_short_channel_id().unwrap(), node_signature: our_node_sig, bitcoin_signature: our_bitcoin_sig, }) } /// Processes HTLCs which are pending waiting on random forward delay. /// /// Should only really ever be called in response to a PendingHTLCsForwardable event. /// Will likely generate further events. pub fn process_pending_htlc_forwards(&self) { let _ = self.total_consistency_lock.read().unwrap(); let mut new_events = Vec::new(); let mut failed_forwards = Vec::new(); let mut handle_errors = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() { if short_chan_id != 0 { let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) { Some(chan_id) => chan_id.clone(), None => { failed_forwards.reserve(pending_forwards.len()); for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => { let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }); failed_forwards.push((htlc_source, forward_info.payment_hash, 0x4000 | 10, None)); }, HTLCForwardInfo::FailHTLC { .. } => { // Channel went away before we could fail it. This implies // the channel is now on chain and our counterparty is // trying to broadcast the HTLC-Timeout, but that's their // problem, not ours. } } } continue; } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) { let mut add_htlc_msgs = Vec::new(); let mut fail_htlc_msgs = Vec::new(); for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => { log_trace!(self, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(forward_info.payment_hash.0), prev_short_channel_id, short_chan_id); let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }); match chan.get_mut().send_htlc(forward_info.amt_to_forward, forward_info.payment_hash, forward_info.outgoing_cltv_value, htlc_source.clone(), forward_info.onion_packet.unwrap()) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(forward_info.payment_hash.0), msg); } else { panic!("Stated return value requirements in send_htlc() were not met"); } let chan_update = self.get_channel_update(chan.get()).unwrap(); failed_forwards.push((htlc_source, forward_info.payment_hash, 0x1000 | 7, Some(chan_update))); continue; }, Ok(update_add) => { match update_add { Some(msg) => { add_htlc_msgs.push(msg); }, None => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can add anymore HTLCs. The Channel // will automatically handle building the update_add_htlc and // commitment_signed messages when we can. // TODO: Do some kind of timer to set the channel as !is_live() // as we don't really want others relying on us relaying through // this channel currently :/. } } } } }, HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => { log_trace!(self, "Failing HTLC back to channel with short id {} after delay", short_chan_id); match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) { Err(e) => { if let ChannelError::Ignore(msg) = e { log_trace!(self, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg); } else { panic!("Stated return value requirements in get_update_fail_htlc() were not met"); } // fail-backs are best-effort, we probably already have one // pending, and if not that's OK, if not, the channel is on // the chain and sending the HTLC-Timeout is their problem. continue; }, Ok(Some(msg)) => { fail_htlc_msgs.push(msg); }, Ok(None) => { // Nothing to do here...we're waiting on a remote // revoke_and_ack before we can update the commitment // transaction. The Channel will automatically handle // building the update_fail_htlc and commitment_signed // messages when we can. // We don't need any kind of timer here as they should fail // the channel onto the chain if they can't get our // update_fail_htlc in time, it's not our problem. } } }, } } if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() { let (commitment_msg, monitor) = match chan.get_mut().send_commitment() { Ok(res) => res, Err(e) => { // We surely failed send_commitment due to bad keys, in that case // close channel and then send error message to peer. let their_node_id = chan.get().get_their_node_id(); let err: Result<(), _> = match e { ChannelError::Ignore(_) => { panic!("Stated return value requirements in send_commitment() were not met"); }, ChannelError::Close(msg) => { log_trace!(self, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg); let (channel_id, mut channel) = chan.remove_entry(); if let Some(short_id) = channel.get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(), self.get_channel_update(&channel).ok())) }, ChannelError::CloseDelayBroadcast { .. } => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); } }; match handle_error!(self, err) { Ok(_) => unreachable!(), Err(e) => { match e.action { msgs::ErrorAction::IgnoreError => {}, _ => { log_error!(self, "Got bad keys: {}!", e.err); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: their_node_id, action: e.action, }); }, } continue; }, } } }; if let Err(e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) { handle_errors.push((chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true))); continue; } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: add_htlc_msgs, update_fulfill_htlcs: Vec::new(), update_fail_htlcs: fail_htlc_msgs, update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: commitment_msg, }, }); } } else { unreachable!(); } } else { for forward_info in pending_forwards.drain(..) { match forward_info { HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info } => { let prev_hop_data = HTLCPreviousHopData { short_channel_id: prev_short_channel_id, htlc_id: prev_htlc_id, incoming_packet_shared_secret: forward_info.incoming_shared_secret, }; match channel_state.claimable_htlcs.entry(forward_info.payment_hash) { hash_map::Entry::Occupied(mut entry) => entry.get_mut().push((forward_info.amt_to_forward, prev_hop_data)), hash_map::Entry::Vacant(entry) => { entry.insert(vec![(forward_info.amt_to_forward, prev_hop_data)]); }, }; new_events.push(events::Event::PaymentReceived { payment_hash: forward_info.payment_hash, amt: forward_info.amt_to_forward, }); }, HTLCForwardInfo::FailHTLC { .. } => { panic!("Got pending fail of our own HTLC"); } } } } } } for (htlc_source, payment_hash, failure_code, update) in failed_forwards.drain(..) { match update { None => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: Vec::new() }), Some(chan_update) => self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code, data: chan_update.encode_with_len() }), }; } for (their_node_id, err) in handle_errors.drain(..) { match handle_error!(self, err) { Ok(_) => {}, Err(e) => { if let msgs::ErrorAction::IgnoreError = e.action { } else { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: their_node_id, action: e.action, }); } }, } } if new_events.is_empty() { return } let mut events = self.pending_events.lock().unwrap(); events.append(&mut new_events); } /// If a peer is disconnected we mark any channels with that peer as 'disabled'. /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate /// to inform the network about the uselessness of these channels. /// /// This method handles all the details, and must be called roughly once per minute. pub fn timer_chan_freshness_every_min(&self) { let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); for (_, chan) in channel_state.by_id { if chan.is_disabled_staged() && !chan.is_live() { if let Ok(update) = self.get_channel_update(&chan) { channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } chan.to_fresh(); } else if chan.is_disabled_staged() && chan.is_live() { chan.to_fresh(); } else if chan.is_disabled_marked() { chan.to_disabled_staged(); } } } /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources /// along the path (including in our own channel on which we received it). /// Returns false if no payment was found to fail backwards, true if the process of failing the /// HTLC backwards has been started. pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool { let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash); if let Some(mut sources) = removed_source { for (recvd_value, htlc_with_hash) in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: byte_utils::be64_to_array(recvd_value).to_vec() }); } true } else { false } } /// Fails an HTLC backwards to the sender of it to us. /// Note that while we take a channel_state lock as input, we do *not* assume consistency here. /// There are several callsites that do stupid things like loop over a list of payment_hashes /// to fail and take the channel_state lock for each iteration (as we take ownership and may /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to /// still-available channels. fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) { //TODO: There is a timing attack here where if a node fails an HTLC back to us they can //identify whether we sent it or not based on the (I presume) very different runtime //between the branches here. We should make this async and move it into the forward HTLCs //timer handling. match source { HTLCSource::OutboundRoute { ref route, .. } => { log_trace!(self, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0)); mem::drop(channel_state_lock); match &onion_error { &HTLCFailReason::LightningError { ref err } => { #[cfg(test)] let (channel_update, payment_retryable, onion_error_code) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); #[cfg(not(test))] let (channel_update, payment_retryable, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone()); // TODO: If we decided to blame ourselves (or one of our channels) in // process_onion_failure we should close that channel as it implies our // next-hop is needlessly blaming us! if let Some(update) = channel_update { self.channel_state.lock().unwrap().pending_msg_events.push( events::MessageSendEvent::PaymentFailureNetworkUpdate { update, } ); } self.pending_events.lock().unwrap().push( events::Event::PaymentFailed { payment_hash: payment_hash.clone(), rejected_by_dest: !payment_retryable, #[cfg(test)] error_code: onion_error_code } ); }, &HTLCFailReason::Reason { #[cfg(test)] ref failure_code, .. } => { // we get a fail_malformed_htlc from the first hop // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary // failures here, but that would be insufficient as Router::get_route // generally ignores its view of our own channels as we provide them via // ChannelDetails. // TODO: For non-temporary failures, we really should be closing the // channel here as we apparently can't relay through them anyway. self.pending_events.lock().unwrap().push( events::Event::PaymentFailed { payment_hash: payment_hash.clone(), rejected_by_dest: route.hops.len() == 1, #[cfg(test)] error_code: Some(*failure_code), } ); } } }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret }) => { let err_packet = match onion_error { HTLCFailReason::Reason { failure_code, data } => { log_trace!(self, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code); let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode(); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet) }, HTLCFailReason::LightningError { err } => { log_trace!(self, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0)); onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data) } }; let mut forward_event = None; if channel_state_lock.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)); } match channel_state_lock.forward_htlcs.entry(short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet })); } } mem::drop(channel_state_lock); if let Some(time) = forward_event { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } }, } } /// Provides a payment preimage in response to a PaymentReceived event, returning true and /// generating message events for the net layer to claim the payment, if possible. Thus, you /// should probably kick the net layer to go send messages if this returns true! /// /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs /// available within a few percent of the expected amount. This is critical for several /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the /// payment_preimage without having provided the full value and b) it avoids certain /// privacy-breaking recipient-probing attacks which may reveal payment activity to /// motivated attackers. /// /// May panic if called except in response to a PaymentReceived event. pub fn claim_funds(&self, payment_preimage: PaymentPreimage, expected_amount: u64) -> bool { let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state = Some(self.channel_state.lock().unwrap()); let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash); if let Some(mut sources) = removed_source { for (received_amount, htlc_with_hash) in sources.drain(..) { if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); } if received_amount < expected_amount || received_amount > expected_amount * 2 { let mut htlc_msat_data = byte_utils::be64_to_array(received_amount).to_vec(); let mut height_data = byte_utils::be32_to_array(self.latest_block_height.load(Ordering::Acquire) as u32).to_vec(); htlc_msat_data.append(&mut height_data); self.fail_htlc_backwards_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), &payment_hash, HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_data }); } else { self.claim_funds_internal(channel_state.take().unwrap(), HTLCSource::PreviousHopData(htlc_with_hash), payment_preimage); } } true } else { false } } fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard>, source: HTLCSource, payment_preimage: PaymentPreimage) { let (their_node_id, err) = loop { match source { HTLCSource::OutboundRoute { .. } => { mem::drop(channel_state_lock); let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PaymentSent { payment_preimage }); }, HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, .. }) => { //TODO: Delay the claimed_funds relaying just like we do outbound relay! let channel_state = channel_state_lock.borrow_parts(); let chan_id = match channel_state.short_to_id.get(&short_channel_id) { Some(chan_id) => chan_id.clone(), None => { // TODO: There is probably a channel manager somewhere that needs to // learn the preimage as the channel already hit the chain and that's // why it's missing. return } }; if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) { let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update(); match chan.get_mut().get_update_fulfill_htlc_and_commit(htlc_id, payment_preimage) { Ok((msgs, monitor_option)) => { if let Some(chan_monitor) = monitor_option { if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { if was_frozen_for_monitor { assert!(msgs.is_none()); } else { break (chan.get().get_their_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some())); } } } if let Some((msg, commitment_signed)) = msgs { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: vec![msg], update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed, } }); } }, Err(_e) => { // TODO: There is probably a channel manager somewhere that needs to // learn the preimage as the channel may be about to hit the chain. //TODO: Do something with e? return }, } } else { unreachable!(); } }, } return; }; match handle_error!(self, err) { Ok(_) => {}, Err(e) => { if let msgs::ErrorAction::IgnoreError = e.action { } else { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: their_node_id, action: e.action, }); } }, } } /// Gets the node_id held by this ChannelManager pub fn get_our_node_id(&self) -> PublicKey { PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key) } /// Used to restore channels to normal operation after a /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update /// operation. pub fn test_restore_channel_monitor(&self) { let mut close_results = Vec::new(); let mut htlc_forwards = Vec::new(); let mut htlc_failures = Vec::new(); let mut pending_events = Vec::new(); let _ = self.total_consistency_lock.read().unwrap(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { if channel.is_awaiting_monitor_update() { let chan_monitor = channel.channel_monitor().clone(); if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { match e { ChannelMonitorUpdateErr::PermanentFailure => { // TODO: There may be some pending HTLCs that we intended to fail // backwards when a monitor update failed. We should make sure // knowledge of those gets moved into the appropriate in-memory // ChannelMonitor and they get failed backwards once we get // on-chain confirmations. // Note I think #198 addresses this, so once it's merged a test // should be written. if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } close_results.push(channel.force_shutdown()); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false }, ChannelMonitorUpdateErr::TemporaryFailure => true, } } else { let (raa, commitment_update, order, pending_forwards, mut pending_failures, needs_broadcast_safe, funding_locked) = channel.monitor_updating_restored(); if !pending_forwards.is_empty() { htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), pending_forwards)); } htlc_failures.append(&mut pending_failures); macro_rules! handle_cs { () => { if let Some(update) = commitment_update { pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: channel.get_their_node_id(), updates: update, }); } } } macro_rules! handle_raa { () => { if let Some(revoke_and_ack) = raa { pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: channel.get_their_node_id(), msg: revoke_and_ack, }); } } } match order { RAACommitmentOrder::CommitmentFirst => { handle_cs!(); handle_raa!(); }, RAACommitmentOrder::RevokeAndACKFirst => { handle_raa!(); handle_cs!(); }, } if needs_broadcast_safe { pending_events.push(events::Event::FundingBroadcastSafe { funding_txo: channel.get_funding_txo().unwrap(), user_channel_id: channel.get_user_id(), }); } if let Some(msg) = funding_locked { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_their_node_id(), msg, }); if let Some(announcement_sigs) = self.get_announcement_sigs(channel) { pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_their_node_id(), msg: announcement_sigs, }); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } true } } else { true } }); } self.pending_events.lock().unwrap().append(&mut pending_events); for failure in htlc_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut htlc_forwards[..]); for res in close_results.drain(..) { self.finish_force_close_channel(res); } } fn internal_open_channel(&self, their_node_id: &PublicKey, their_local_features: LocalFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> { if msg.chain_hash != self.genesis_hash { return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash", msg.temporary_channel_id.clone())); } let channel = Channel::new_from_req(&*self.fee_estimator, &self.keys_manager, their_node_id.clone(), their_local_features, msg, 0, Arc::clone(&self.logger), &self.default_configuration) .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?; let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(channel.channel_id()) { hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!", msg.temporary_channel_id.clone())), hash_map::Entry::Vacant(entry) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel { node_id: their_node_id.clone(), msg: channel.get_accept_channel(), }); entry.insert(channel); } } Ok(()) } fn internal_accept_channel(&self, their_node_id: &PublicKey, their_local_features: LocalFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> { let (value, output_script, user_id) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.temporary_channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id)); } try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_local_features), channel_state, chan); (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id()) }, //TODO: same as above hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingGenerationReady { temporary_channel_id: msg.temporary_channel_id, channel_value_satoshis: value, output_script: output_script, user_channel_id: user_id, }); Ok(()) } fn internal_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> { let ((funding_msg, monitor_update), mut chan) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.temporary_channel_id.clone()) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.temporary_channel_id)); } (try_chan_entry!(self, chan.get_mut().funding_created(msg), channel_state, chan), chan.remove()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.temporary_channel_id)) } }; // Because we have exclusive ownership of the channel here we can release the channel_state // lock before add_update_monitor if let Err(e) = self.monitor.add_update_monitor(monitor_update.get_funding_txo().unwrap(), monitor_update) { match e { ChannelMonitorUpdateErr::PermanentFailure => { // Note that we reply with the new channel_id in error messages if we gave up on the // channel, not the temporary_channel_id. This is compatible with ourselves, but the // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for // any messages referencing a previously-closed channel anyway. return Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure", funding_msg.channel_id, chan.force_shutdown(), None)); }, ChannelMonitorUpdateErr::TemporaryFailure => { // There's no problem signing a counterparty's funding transaction if our monitor // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't // accepted payment from yet. We do, however, need to wait to send our funding_locked // until we have persisted our monitor. chan.monitor_update_failed(false, false, Vec::new(), Vec::new()); }, } } let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(funding_msg.channel_id) { hash_map::Entry::Occupied(_) => { return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id", funding_msg.channel_id)) }, hash_map::Entry::Vacant(e) => { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned { node_id: their_node_id.clone(), msg: funding_msg, }); e.insert(chan); } } Ok(()) } fn internal_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> { let (funding_txo, user_id) = { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let chan_monitor = try_chan_entry!(self, chan.get_mut().funding_signed(&msg), channel_state, chan); if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false); } (chan.get().get_funding_txo().unwrap(), chan.get().get_user_id()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::FundingBroadcastSafe { funding_txo: funding_txo, user_channel_id: user_id, }); Ok(()) } fn internal_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan); if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) { // If we see locking block before receiving remote funding_locked, we broadcast our // announcement_sigs at remote funding_locked reception. If we receive remote // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever // the order of the events but our peer may not receive it due to disconnection. The specs // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer // connection in the future if simultaneous misses by both peers due to network/hardware // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs // to be received, from then sigs are going to be flood to the whole network. channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: their_node_id.clone(), msg: announcement_sigs, }); } Ok(()) }, hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> { let (mut dropped_htlcs, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&*self.fee_estimator, &msg), channel_state, chan_entry); if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: their_node_id.clone(), msg, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } if chan_entry.get().is_shutdown() { if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (dropped_htlcs, Some(chan_entry.remove_entry().1)) } else { (dropped_htlcs, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; for htlc_source in dropped_htlcs.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> { let (tx, chan_option) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id.clone()) { hash_map::Entry::Occupied(mut chan_entry) => { if chan_entry.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&*self.fee_estimator, &msg), channel_state, chan_entry); if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } if tx.is_some() { // We're done with this channel, we've got a signed closing transaction and // will send the closing_signed back to the remote peer upon return. This // also implies there are no pending HTLCs left on the channel, so we can // fully delete it from tracking (the channel monitor is still around to // watch for old state broadcasts)! if let Some(short_id) = chan_entry.get().get_short_channel_id() { channel_state.short_to_id.remove(&short_id); } (tx, Some(chan_entry.remove_entry().1)) } else { (tx, None) } }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; if let Some(broadcast_tx) = tx { log_trace!(self, "Broadcast onchain {}", log_tx!(broadcast_tx)); self.tx_broadcaster.broadcast_transaction(&broadcast_tx); } if let Some(chan) = chan_option { if let Ok(update) = self.get_channel_update(&chan) { let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } } Ok(()) } fn internal_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> { //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and //determine the state of the payment based on our response/if we forward anything/the time //we take to respond. We should take care to avoid allowing such an attack. // //TODO: There exists a further attack where a node may garble the onion data, forward it to //us repeatedly garbled in different ways, and compare our error messages, which are //encrypted with the same key. It's not immediately obvious how to usefully exploit that, //but we should prevent it anyway. let (mut pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if !chan.get().is_usable() { // If the update_add is completely bogus, the call will Err and we will close, // but if we've sent a shutdown and they haven't acknowledged it yet, we just // want to reject the new HTLC and fail it backwards instead of forwarding. if let PendingHTLCStatus::Forward(PendingForwardHTLCInfo { incoming_shared_secret, .. }) = pending_forward_info { let chan_update = self.get_channel_update(chan.get()); pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id: msg.channel_id, htlc_id: msg.htlc_id, reason: if let Ok(update) = chan_update { // TODO: Note that |20 is defined as "channel FROM the processing // node has been disabled" (emphasis mine), which seems to imply // that we can't return |20 for an inbound channel being disabled. // This probably needs a spec update but should definitely be // allowed. onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x1000|20, &{ let mut res = Vec::with_capacity(8 + 128); res.extend_from_slice(&byte_utils::be16_to_array(update.contents.flags)); res.extend_from_slice(&update.encode_with_len()[..]); res }[..]) } else { // This can only happen if the channel isn't in the fully-funded // state yet, implying our counterparty is trying to route payments // over the channel back to themselves (cause no one else should // know the short_id is a lightning channel yet). We should have no // problem just calling this unknown_next_peer onion_utils::build_first_hop_failure_packet(&incoming_shared_secret, 0x4000|10, &[]) }, })); } } try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } Ok(()) } fn internal_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let htlc_source = { let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone()); Ok(()) } fn internal_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } Ok(()) } fn internal_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if (msg.failure_code & 0x8000) == 0 { try_chan_entry!(self, Err(ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set")), channel_state, chan); } try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan); Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } fn internal_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (revoke_and_ack, commitment_signed, closing_signed, chan_monitor) = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &*self.fee_estimator), channel_state, chan); if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some()); //TODO: Rebroadcast closing_signed if present on monitor update restoration } channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: their_node_id.clone(), msg: revoke_and_ack, }); if let Some(msg) = commitment_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: None, commitment_signed: msg, }, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } #[inline] fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, Vec<(PendingForwardHTLCInfo, u64)>)]) { for &mut (prev_short_channel_id, ref mut pending_forwards) in per_source_pending_forwards { let mut forward_event = None; if !pending_forwards.is_empty() { let mut channel_state = self.channel_state.lock().unwrap(); if channel_state.forward_htlcs.is_empty() { forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS)) } for (forward_info, prev_htlc_id) in pending_forwards.drain(..) { match channel_state.forward_htlcs.entry(forward_info.short_channel_id) { hash_map::Entry::Occupied(mut entry) => { entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info }); }, hash_map::Entry::Vacant(entry) => { entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info })); } } } } match forward_event { Some(time) => { let mut pending_events = self.pending_events.lock().unwrap(); pending_events.push(events::Event::PendingHTLCsForwardable { time_forwardable: time }); } None => {}, } } } fn internal_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> { let (pending_forwards, mut pending_failures, short_channel_id) = { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update(); let (commitment_update, pending_forwards, pending_failures, closing_signed, chan_monitor) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &*self.fee_estimator), channel_state, chan); if let Err(e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { if was_frozen_for_monitor { assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty()); return Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA")); } else { return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures); } } if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates, }); } if let Some(msg) = closing_signed { channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned { node_id: their_node_id.clone(), msg, }); } (pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel")) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } }; for failure in pending_failures.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2); } self.forward_htlcs(&mut [(short_channel_id, pending_forwards)]); Ok(()) } fn internal_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { //TODO: here and below MsgHandleErrInternal, #153 case return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } try_chan_entry!(self, chan.get_mut().update_fee(&*self.fee_estimator, &msg), channel_state, chan); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } Ok(()) } fn internal_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } if !chan.get().is_usable() { return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it", action: msgs::ErrorAction::IgnoreError})); } let our_node_id = self.get_our_node_id(); let (announcement, our_bitcoin_sig) = try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan); let were_node_one = announcement.node_id_1 == our_node_id; let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]); if self.secp_ctx.verify(&msghash, &msg.node_signature, if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 }).is_err() || self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 }).is_err() { try_chan_entry!(self, Err(ChannelError::Close("Bad announcement_signatures node_signature")), channel_state, chan); } let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key); channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement { msg: msgs::ChannelAnnouncement { node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature }, node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig }, bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature }, bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig }, contents: announcement, }, update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state }); }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } Ok(()) } fn internal_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(msg.channel_id) { hash_map::Entry::Occupied(mut chan) => { if chan.get().get_their_node_id() != *their_node_id { return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!", msg.channel_id)); } let (funding_locked, revoke_and_ack, commitment_update, channel_monitor, mut order, shutdown) = try_chan_entry!(self, chan.get_mut().channel_reestablish(msg), channel_state, chan); if let Some(monitor) = channel_monitor { if let Err(e) = self.monitor.add_update_monitor(monitor.get_funding_txo().unwrap(), monitor) { // channel_reestablish doesn't guarantee the order it returns is sensical // for the messages it returns, but if we're setting what messages to // re-transmit on monitor update success, we need to make sure it is sane. if revoke_and_ack.is_none() { order = RAACommitmentOrder::CommitmentFirst; } if commitment_update.is_none() { order = RAACommitmentOrder::RevokeAndACKFirst; } return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some()); //TODO: Resend the funding_locked if needed once we get the monitor running again } } if let Some(msg) = funding_locked { channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: their_node_id.clone(), msg }); } macro_rules! send_raa { () => { if let Some(msg) = revoke_and_ack { channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK { node_id: their_node_id.clone(), msg }); } } } macro_rules! send_cu { () => { if let Some(updates) = commitment_update { channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: their_node_id.clone(), updates }); } } } match order { RAACommitmentOrder::RevokeAndACKFirst => { send_raa!(); send_cu!(); }, RAACommitmentOrder::CommitmentFirst => { send_cu!(); send_raa!(); }, } if let Some(msg) = shutdown { channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown { node_id: their_node_id.clone(), msg, }); } Ok(()) }, hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel", msg.channel_id)) } } /// Begin Update fee process. Allowed only on an outbound channel. /// If successful, will generate a UpdateHTLCs event, so you should probably poll /// PeerManager::process_events afterwards. /// Note: This API is likely to change! #[doc(hidden)] pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u64) -> Result<(), APIError> { let _ = self.total_consistency_lock.read().unwrap(); let their_node_id; let err: Result<(), _> = loop { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); match channel_state.by_id.entry(channel_id) { hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: "Failed to find corresponding channel"}), hash_map::Entry::Occupied(mut chan) => { if !chan.get().is_outbound() { return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel"}); } if chan.get().is_awaiting_monitor_update() { return Err(APIError::MonitorUpdateFailed); } if !chan.get().is_live() { return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected"}); } their_node_id = chan.get().get_their_node_id(); if let Some((update_fee, commitment_signed, chan_monitor)) = break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw), channel_state, chan) { if let Err(_e) = self.monitor.add_update_monitor(chan_monitor.get_funding_txo().unwrap(), chan_monitor) { unimplemented!(); } channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs { node_id: chan.get().get_their_node_id(), updates: msgs::CommitmentUpdate { update_add_htlcs: Vec::new(), update_fulfill_htlcs: Vec::new(), update_fail_htlcs: Vec::new(), update_fail_malformed_htlcs: Vec::new(), update_fee: Some(update_fee), commitment_signed, }, }); } }, } return Ok(()) }; match handle_error!(self, err) { Ok(_) => unreachable!(), Err(e) => { if let msgs::ErrorAction::IgnoreError = e.action { } else { log_error!(self, "Got bad keys: {}!", e.err); let mut channel_state = self.channel_state.lock().unwrap(); channel_state.pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: their_node_id, action: e.action, }); } Err(APIError::APIMisuseError { err: e.err }) }, } } } impl events::MessageSendEventsProvider for ChannelManager { fn get_and_clear_pending_msg_events(&self) -> Vec { // TODO: Event release to users and serialization is currently race-y: it's very easy for a // user to serialize a ChannelManager with pending events in it and lose those events on // restart. This is doubly true for the fail/fulfill-backs from monitor events! { //TODO: This behavior should be documented. for htlc_update in self.monitor.fetch_pending_htlc_updated() { if let Some(preimage) = htlc_update.payment_preimage { log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0)); self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage); } else { log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0)); self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } } } let mut ret = Vec::new(); let mut channel_state = self.channel_state.lock().unwrap(); mem::swap(&mut ret, &mut channel_state.pending_msg_events); ret } } impl events::EventsProvider for ChannelManager { fn get_and_clear_pending_events(&self) -> Vec { // TODO: Event release to users and serialization is currently race-y: it's very easy for a // user to serialize a ChannelManager with pending events in it and lose those events on // restart. This is doubly true for the fail/fulfill-backs from monitor events! { //TODO: This behavior should be documented. for htlc_update in self.monitor.fetch_pending_htlc_updated() { if let Some(preimage) = htlc_update.payment_preimage { log_trace!(self, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0)); self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage); } else { log_trace!(self, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0)); self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } } } let mut ret = Vec::new(); let mut pending_events = self.pending_events.lock().unwrap(); mem::swap(&mut ret, &mut *pending_events); ret } } impl ChainListener for ChannelManager { fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], indexes_of_txn_matched: &[u32]) { let header_hash = header.bitcoin_hash(); log_trace!(self, "Block {} at height {} connected with {} txn matched", header_hash, height, txn_matched.len()); let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, channel| { let chan_res = channel.block_connected(header, height, txn_matched, indexes_of_txn_matched); if let Ok(Some(funding_locked)) = chan_res { pending_msg_events.push(events::MessageSendEvent::SendFundingLocked { node_id: channel.get_their_node_id(), msg: funding_locked, }); if let Some(announcement_sigs) = self.get_announcement_sigs(channel) { pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures { node_id: channel.get_their_node_id(), msg: announcement_sigs, }); } short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id()); } else if let Err(e) = chan_res { pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: channel.get_their_node_id(), action: msgs::ErrorAction::SendErrorMessage { msg: e }, }); return false; } if let Some(funding_txo) = channel.get_funding_txo() { for tx in txn_matched { for inp in tx.input.iter() { if inp.previous_output == funding_txo.into_bitcoin_outpoint() { log_trace!(self, "Detected channel-closing tx {} spending {}:{}, closing channel {}", tx.txid(), inp.previous_output.txid, inp.previous_output.vout, log_bytes!(channel.channel_id())); if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } // It looks like our counterparty went on-chain. We go ahead and // broadcast our latest local state as well here, just in case its // some kind of SPV attack, though we expect these to be dropped. failed_channels.push(channel.force_shutdown()); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } return false; } } } } if channel.is_funding_initiated() && channel.channel_monitor().would_broadcast_at_height(height) { if let Some(short_id) = channel.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(channel.force_shutdown()); // If would_broadcast_at_height() is true, the channel_monitor will broadcast // the latest local tx for us, so we should skip that here (it doesn't really // hurt anything, but does make tests a bit simpler). failed_channels.last_mut().unwrap().0 = Vec::new(); if let Ok(update) = self.get_channel_update(&channel) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } return false; } true }); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } self.latest_block_height.store(height as usize, Ordering::Release); *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header_hash; } /// We force-close the channel without letting our counterparty participate in the shutdown fn block_disconnected(&self, header: &BlockHeader, _: u32) { let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = channel_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, v| { if v.block_disconnected(header) { if let Some(short_id) = v.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(v.force_shutdown()); if let Ok(update) = self.get_channel_update(&v) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false } else { true } }); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } self.latest_block_height.fetch_sub(1, Ordering::AcqRel); *self.last_block_hash.try_lock().expect("block_(dis)connected must not be called in parallel") = header.bitcoin_hash(); } } impl ChannelMessageHandler for ChannelManager { //TODO: Handle errors and close channel (or so) fn handle_open_channel(&self, their_node_id: &PublicKey, their_local_features: LocalFeatures, msg: &msgs::OpenChannel) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_open_channel(their_node_id, their_local_features, msg)) } fn handle_accept_channel(&self, their_node_id: &PublicKey, their_local_features: LocalFeatures, msg: &msgs::AcceptChannel) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_accept_channel(their_node_id, their_local_features, msg)) } fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_created(their_node_id, msg)) } fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_signed(their_node_id, msg)) } fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_funding_locked(their_node_id, msg)) } fn handle_shutdown(&self, their_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_shutdown(their_node_id, msg)) } fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_closing_signed(their_node_id, msg)) } fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_add_htlc(their_node_id, msg)) } fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fulfill_htlc(their_node_id, msg)) } fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fail_htlc(their_node_id, msg)) } fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fail_malformed_htlc(their_node_id, msg)) } fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_commitment_signed(their_node_id, msg)) } fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_revoke_and_ack(their_node_id, msg)) } fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_update_fee(their_node_id, msg)) } fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_announcement_signatures(their_node_id, msg)) } fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), LightningError> { let _ = self.total_consistency_lock.read().unwrap(); handle_error!(self, self.internal_channel_reestablish(their_node_id, msg)) } fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool) { let _ = self.total_consistency_lock.read().unwrap(); let mut failed_channels = Vec::new(); let mut failed_payments = Vec::new(); { let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); let short_to_id = channel_state.short_to_id; let pending_msg_events = channel_state.pending_msg_events; if no_connection_possible { log_debug!(self, "Failing all channels with {} due to no_connection_possible", log_pubkey!(their_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } failed_channels.push(chan.force_shutdown()); if let Ok(update) = self.get_channel_update(&chan) { pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg: update }); } false } else { true } }); } else { log_debug!(self, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(their_node_id)); channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(); chan.to_disabled_marked(); if !failed_adds.is_empty() { let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe failed_payments.push((chan_update, failed_adds)); } if chan.is_shutdown() { if let Some(short_id) = chan.get_short_channel_id() { short_to_id.remove(&short_id); } return false; } } true }) } pending_msg_events.retain(|msg| { match msg { &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true, &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true, &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != their_node_id, &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true, } }); } for failure in failed_channels.drain(..) { self.finish_force_close_channel(failure); } for (chan_update, mut htlc_sources) in failed_payments { for (htlc_source, payment_hash) in htlc_sources.drain(..) { self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() }); } } } fn peer_connected(&self, their_node_id: &PublicKey) { log_debug!(self, "Generating channel_reestablish events for {}", log_pubkey!(their_node_id)); let _ = self.total_consistency_lock.read().unwrap(); let mut channel_state_lock = self.channel_state.lock().unwrap(); let channel_state = channel_state_lock.borrow_parts(); let pending_msg_events = channel_state.pending_msg_events; channel_state.by_id.retain(|_, chan| { if chan.get_their_node_id() == *their_node_id { if !chan.have_received_message() { // If we created this (outbound) channel while we were disconnected from the // peer we probably failed to send the open_channel message, which is now // lost. We can't have had anything pending related to this channel, so we just // drop it. false } else { pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish { node_id: chan.get_their_node_id(), msg: chan.get_channel_reestablish(), }); true } } else { true } }); //TODO: Also re-broadcast announcement_signatures } fn handle_error(&self, their_node_id: &PublicKey, msg: &msgs::ErrorMessage) { let _ = self.total_consistency_lock.read().unwrap(); if msg.channel_id == [0; 32] { for chan in self.list_channels() { if chan.remote_network_id == *their_node_id { self.force_close_channel(&chan.channel_id); } } } else { self.force_close_channel(&msg.channel_id); } } } const SERIALIZATION_VERSION: u8 = 1; const MIN_SERIALIZATION_VERSION: u8 = 1; impl Writeable for PendingForwardHTLCInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { self.onion_packet.write(writer)?; self.incoming_shared_secret.write(writer)?; self.payment_hash.write(writer)?; self.short_channel_id.write(writer)?; self.amt_to_forward.write(writer)?; self.outgoing_cltv_value.write(writer)?; Ok(()) } } impl Readable for PendingForwardHTLCInfo { fn read(reader: &mut R) -> Result { Ok(PendingForwardHTLCInfo { onion_packet: Readable::read(reader)?, incoming_shared_secret: Readable::read(reader)?, payment_hash: Readable::read(reader)?, short_channel_id: Readable::read(reader)?, amt_to_forward: Readable::read(reader)?, outgoing_cltv_value: Readable::read(reader)?, }) } } impl Writeable for HTLCFailureMsg { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailureMsg::Relay(ref fail_msg) => { 0u8.write(writer)?; fail_msg.write(writer)?; }, &HTLCFailureMsg::Malformed(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailureMsg { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)), 1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for PendingHTLCStatus { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &PendingHTLCStatus::Forward(ref forward_info) => { 0u8.write(writer)?; forward_info.write(writer)?; }, &PendingHTLCStatus::Fail(ref fail_msg) => { 1u8.write(writer)?; fail_msg.write(writer)?; } } Ok(()) } } impl Readable for PendingHTLCStatus { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)), 1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)), _ => Err(DecodeError::InvalidValue), } } } impl_writeable!(HTLCPreviousHopData, 0, { short_channel_id, htlc_id, incoming_packet_shared_secret }); impl Writeable for HTLCSource { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCSource::PreviousHopData(ref hop_data) => { 0u8.write(writer)?; hop_data.write(writer)?; }, &HTLCSource::OutboundRoute { ref route, ref session_priv, ref first_hop_htlc_msat } => { 1u8.write(writer)?; route.write(writer)?; session_priv.write(writer)?; first_hop_htlc_msat.write(writer)?; } } Ok(()) } } impl Readable for HTLCSource { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)), 1 => Ok(HTLCSource::OutboundRoute { route: Readable::read(reader)?, session_priv: Readable::read(reader)?, first_hop_htlc_msat: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for HTLCFailReason { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCFailReason::LightningError { ref err } => { 0u8.write(writer)?; err.write(writer)?; }, &HTLCFailReason::Reason { ref failure_code, ref data } => { 1u8.write(writer)?; failure_code.write(writer)?; data.write(writer)?; } } Ok(()) } } impl Readable for HTLCFailReason { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }), 1 => Ok(HTLCFailReason::Reason { failure_code: Readable::read(reader)?, data: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for HTLCForwardInfo { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { match self { &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_htlc_id, ref forward_info } => { 0u8.write(writer)?; prev_short_channel_id.write(writer)?; prev_htlc_id.write(writer)?; forward_info.write(writer)?; }, &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => { 1u8.write(writer)?; htlc_id.write(writer)?; err_packet.write(writer)?; }, } Ok(()) } } impl Readable for HTLCForwardInfo { fn read(reader: &mut R) -> Result { match >::read(reader)? { 0 => Ok(HTLCForwardInfo::AddHTLC { prev_short_channel_id: Readable::read(reader)?, prev_htlc_id: Readable::read(reader)?, forward_info: Readable::read(reader)?, }), 1 => Ok(HTLCForwardInfo::FailHTLC { htlc_id: Readable::read(reader)?, err_packet: Readable::read(reader)?, }), _ => Err(DecodeError::InvalidValue), } } } impl Writeable for ChannelManager { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { let _ = self.total_consistency_lock.write().unwrap(); writer.write_all(&[SERIALIZATION_VERSION; 1])?; writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; self.genesis_hash.write(writer)?; (self.latest_block_height.load(Ordering::Acquire) as u32).write(writer)?; self.last_block_hash.lock().unwrap().write(writer)?; let channel_state = self.channel_state.lock().unwrap(); let mut unfunded_channels = 0; for (_, channel) in channel_state.by_id.iter() { if !channel.is_funding_initiated() { unfunded_channels += 1; } } ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?; for (_, channel) in channel_state.by_id.iter() { if channel.is_funding_initiated() { channel.write(writer)?; } } (channel_state.forward_htlcs.len() as u64).write(writer)?; for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() { short_channel_id.write(writer)?; (pending_forwards.len() as u64).write(writer)?; for forward in pending_forwards { forward.write(writer)?; } } (channel_state.claimable_htlcs.len() as u64).write(writer)?; for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() { payment_hash.write(writer)?; (previous_hops.len() as u64).write(writer)?; for &(recvd_amt, ref previous_hop) in previous_hops.iter() { recvd_amt.write(writer)?; previous_hop.write(writer)?; } } Ok(()) } } /// Arguments for the creation of a ChannelManager that are not deserialized. /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: /// 1) Deserialize all stored ChannelMonitors. /// 2) Deserialize the ChannelManager by filling in this struct and calling <(Sha256dHash, /// ChannelManager)>::read(reader, args). /// This may result in closing some Channels if the ChannelMonitor is newer than the stored /// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted. /// 3) Register all relevant ChannelMonitor outpoints with your chain watch mechanism using /// ChannelMonitor::get_monitored_outpoints and ChannelMonitor::get_funding_txo(). /// 4) Reconnect blocks on your ChannelMonitors. /// 5) Move the ChannelMonitors into your local ManyChannelMonitor. /// 6) Disconnect/connect blocks on the ChannelManager. /// 7) Register the new ChannelManager with your ChainWatchInterface. pub struct ChannelManagerReadArgs<'a, ChanSigner: ChannelKeys> { /// The keys provider which will give us relevant keys. Some keys will be loaded during /// deserialization. pub keys_manager: Arc>, /// The fee_estimator for use in the ChannelManager in the future. /// /// No calls to the FeeEstimator will be made during deserialization. pub fee_estimator: Arc, /// The ManyChannelMonitor for use in the ChannelManager in the future. /// /// No calls to the ManyChannelMonitor will be made during deserialization. It is assumed that /// you have deserialized ChannelMonitors separately and will add them to your /// ManyChannelMonitor after deserializing this ChannelManager. pub monitor: Arc, /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be /// used to broadcast the latest local commitment transactions of channels which must be /// force-closed during deserialization. pub tx_broadcaster: Arc, /// The Logger for use in the ChannelManager and which may be used to log information during /// deserialization. pub logger: Arc, /// Default settings used for new channels. Any existing channels will continue to use the /// runtime settings which were stored when the ChannelManager was serialized. pub default_config: UserConfig, /// A map from channel funding outpoints to ChannelMonitors for those channels (ie /// value.get_funding_txo() should be the key). /// /// If a monitor is inconsistent with the channel state during deserialization the channel will /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This /// is true for missing channels as well. If there is a monitor missing for which we find /// channel data Err(DecodeError::InvalidValue) will be returned. /// /// In such cases the latest local transactions will be sent to the tx_broadcaster included in /// this struct. pub channel_monitors: &'a HashMap, } impl<'a, R : ::std::io::Read, ChanSigner: ChannelKeys + Readable> ReadableArgs> for (Sha256dHash, ChannelManager) { fn read(reader: &mut R, args: ChannelManagerReadArgs<'a, ChanSigner>) -> Result { let _ver: u8 = Readable::read(reader)?; let min_ver: u8 = Readable::read(reader)?; if min_ver > SERIALIZATION_VERSION { return Err(DecodeError::UnknownVersion); } let genesis_hash: Sha256dHash = Readable::read(reader)?; let latest_block_height: u32 = Readable::read(reader)?; let last_block_hash: Sha256dHash = Readable::read(reader)?; let mut closed_channels = Vec::new(); let channel_count: u64 = Readable::read(reader)?; let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128)); let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128)); for _ in 0..channel_count { let mut channel: Channel = ReadableArgs::read(reader, args.logger.clone())?; if channel.last_block_connected != last_block_hash { return Err(DecodeError::InvalidValue); } let funding_txo = channel.channel_monitor().get_funding_txo().ok_or(DecodeError::InvalidValue)?; funding_txo_set.insert(funding_txo.clone()); if let Some(monitor) = args.channel_monitors.get(&funding_txo) { if channel.get_cur_local_commitment_transaction_number() != monitor.get_cur_local_commitment_number() || channel.get_revoked_remote_commitment_transaction_number() != monitor.get_min_seen_secret() || channel.get_cur_remote_commitment_transaction_number() != monitor.get_cur_remote_commitment_number() { let mut force_close_res = channel.force_shutdown(); force_close_res.0 = monitor.get_latest_local_commitment_txn(); closed_channels.push(force_close_res); } else { if let Some(short_channel_id) = channel.get_short_channel_id() { short_to_id.insert(short_channel_id, channel.channel_id()); } by_id.insert(channel.channel_id(), channel); } } else { return Err(DecodeError::InvalidValue); } } for (ref funding_txo, ref monitor) in args.channel_monitors.iter() { if !funding_txo_set.contains(funding_txo) { closed_channels.push((monitor.get_latest_local_commitment_txn(), Vec::new())); } } let forward_htlcs_count: u64 = Readable::read(reader)?; let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128)); for _ in 0..forward_htlcs_count { let short_channel_id = Readable::read(reader)?; let pending_forwards_count: u64 = Readable::read(reader)?; let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, 128)); for _ in 0..pending_forwards_count { pending_forwards.push(Readable::read(reader)?); } forward_htlcs.insert(short_channel_id, pending_forwards); } let claimable_htlcs_count: u64 = Readable::read(reader)?; let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128)); for _ in 0..claimable_htlcs_count { let payment_hash = Readable::read(reader)?; let previous_hops_len: u64 = Readable::read(reader)?; let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, 2)); for _ in 0..previous_hops_len { previous_hops.push((Readable::read(reader)?, Readable::read(reader)?)); } claimable_htlcs.insert(payment_hash, previous_hops); } let channel_manager = ChannelManager { genesis_hash, fee_estimator: args.fee_estimator, monitor: args.monitor, tx_broadcaster: args.tx_broadcaster, latest_block_height: AtomicUsize::new(latest_block_height as usize), last_block_hash: Mutex::new(last_block_hash), secp_ctx: Secp256k1::new(), channel_state: Mutex::new(ChannelHolder { by_id, short_to_id, forward_htlcs, claimable_htlcs, pending_msg_events: Vec::new(), }), our_network_key: args.keys_manager.get_node_secret(), pending_events: Mutex::new(Vec::new()), total_consistency_lock: RwLock::new(()), keys_manager: args.keys_manager, logger: args.logger, default_configuration: args.default_config, }; for close_res in closed_channels.drain(..) { channel_manager.finish_force_close_channel(close_res); //TODO: Broadcast channel update for closed channels, but only after we've made a //connection or two. } Ok((last_block_hash.clone(), channel_manager)) } }