// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. /// Maximum block height that can be used in a `short_channel_id`. This /// value is based on the 3-bytes available for block height. pub const MAX_SCID_BLOCK: u64 = 0x00ffffff; /// Maximum transaction index that can be used in a `short_channel_id`. /// This value is based on the 3-bytes available for tx index. pub const MAX_SCID_TX_INDEX: u64 = 0x00ffffff; /// Maximum vout index that can be used in a `short_channel_id`. This /// value is based on the 2-bytes available for the vout index. pub const MAX_SCID_VOUT_INDEX: u64 = 0xffff; /// A `short_channel_id` construction error #[derive(Debug, PartialEq)] pub enum ShortChannelIdError { BlockOverflow, TxIndexOverflow, VoutIndexOverflow, } /// Extracts the block height (most significant 3-bytes) from the `short_channel_id` pub fn block_from_scid(short_channel_id: &u64) -> u32 { return (short_channel_id >> 40) as u32; } /// Extracts the tx index (bytes [2..4]) from the `short_channel_id` pub fn tx_index_from_scid(short_channel_id: &u64) -> u32 { return ((short_channel_id >> 16) & MAX_SCID_TX_INDEX) as u32; } /// Extracts the vout (bytes [0..2]) from the `short_channel_id` pub fn vout_from_scid(short_channel_id: &u64) -> u16 { return ((short_channel_id) & MAX_SCID_VOUT_INDEX) as u16; } /// Constructs a `short_channel_id` using the components pieces. Results in an error /// if the block height, tx index, or vout index overflow the maximum sizes. pub fn scid_from_parts(block: u64, tx_index: u64, vout_index: u64) -> Result { if block > MAX_SCID_BLOCK { return Err(ShortChannelIdError::BlockOverflow); } if tx_index > MAX_SCID_TX_INDEX { return Err(ShortChannelIdError::TxIndexOverflow); } if vout_index > MAX_SCID_VOUT_INDEX { return Err(ShortChannelIdError::VoutIndexOverflow); } Ok((block << 40) | (tx_index << 16) | vout_index) } /// LDK has multiple reasons to generate fake short channel ids: /// 1) outbound SCID aliases we use for private channels /// 2) phantom node payments, to get an scid for the phantom node's phantom channel pub(crate) mod fake_scid { use bitcoin::hash_types::BlockHash; use bitcoin::hashes::hex::FromHex; use chain::keysinterface::{Sign, KeysInterface}; use util::chacha20::ChaCha20; use util::scid_utils; use core::convert::TryInto; use core::ops::Deref; const TEST_SEGWIT_ACTIVATION_HEIGHT: u32 = 0; const MAINNET_SEGWIT_ACTIVATION_HEIGHT: u32 = 481_824; const MAX_TX_INDEX: u32 = 2_500; const MAX_NAMESPACES: u8 = 8; // We allocate 3 bits for the namespace identifier. const NAMESPACE_ID_BITMASK: u8 = 0b111; const BLOCKS_PER_MONTH: u32 = 144 /* blocks per day */ * 30 /* days per month */; pub(crate) const MAX_SCID_BLOCKS_FROM_NOW: u32 = BLOCKS_PER_MONTH; /// Fake scids are divided into namespaces, with each namespace having its own identifier between /// [0..7]. This allows us to identify what namespace a fake scid corresponds to upon HTLC /// receipt, and handle the HTLC accordingly. The namespace identifier is encrypted when encoded /// into the fake scid. #[derive(Copy, Clone)] pub(crate) enum Namespace { Phantom, OutboundAlias, } impl Namespace { /// We generate "realistic-looking" random scids here, meaning the scid's block height is /// between segwit activation and the current best known height, and the tx index and output /// index are also selected from a "reasonable" range. We add this logic because it makes it /// non-obvious at a glance that the scid is fake, e.g. if it appears in invoice route hints. pub(crate) fn get_fake_scid(&self, highest_seen_blockheight: u32, genesis_hash: &BlockHash, fake_scid_rand_bytes: &[u8; 32], keys_manager: &K) -> u64 where K::Target: KeysInterface, { // Ensure we haven't created a namespace that doesn't fit into the 3 bits we've allocated for // namespaces. assert!((*self as u8) < MAX_NAMESPACES); let rand_bytes = keys_manager.get_secure_random_bytes(); let segwit_activation_height = segwit_activation_height(genesis_hash); let mut blocks_since_segwit_activation = highest_seen_blockheight.saturating_sub(segwit_activation_height); // We want to ensure that this fake channel won't conflict with any transactions we haven't // seen yet, in case `highest_seen_blockheight` is updated before we get full information // about transactions confirmed in the given block. blocks_since_segwit_activation = blocks_since_segwit_activation.saturating_sub(MAX_SCID_BLOCKS_FROM_NOW); let rand_for_height = u32::from_be_bytes(rand_bytes[..4].try_into().unwrap()); let fake_scid_height = segwit_activation_height + rand_for_height % (blocks_since_segwit_activation + 1); let rand_for_tx_index = u32::from_be_bytes(rand_bytes[4..8].try_into().unwrap()); let fake_scid_tx_index = rand_for_tx_index % MAX_TX_INDEX; // Put the scid in the given namespace. let fake_scid_vout = self.get_encrypted_vout(fake_scid_height, fake_scid_tx_index, fake_scid_rand_bytes); scid_utils::scid_from_parts(fake_scid_height as u64, fake_scid_tx_index as u64, fake_scid_vout as u64).unwrap() } /// We want to ensure that a 3rd party can't identify a payment as belong to a given /// `Namespace`. Therefore, we encrypt it using a random bytes provided by `ChannelManager`. fn get_encrypted_vout(&self, block_height: u32, tx_index: u32, fake_scid_rand_bytes: &[u8; 32]) -> u8 { let mut salt = [0 as u8; 8]; let block_height_bytes = block_height.to_be_bytes(); salt[0..4].copy_from_slice(&block_height_bytes); let tx_index_bytes = tx_index.to_be_bytes(); salt[4..8].copy_from_slice(&tx_index_bytes); let mut chacha = ChaCha20::new(fake_scid_rand_bytes, &salt); let mut vout_byte = [*self as u8]; chacha.process_in_place(&mut vout_byte); vout_byte[0] & NAMESPACE_ID_BITMASK } } fn segwit_activation_height(genesis: &BlockHash) -> u32 { const MAINNET_GENESIS_STR: &'static str = "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"; if BlockHash::from_hex(MAINNET_GENESIS_STR).unwrap() == *genesis { MAINNET_SEGWIT_ACTIVATION_HEIGHT } else { TEST_SEGWIT_ACTIVATION_HEIGHT } } /// Returns whether the given fake scid falls into the given namespace. pub fn is_valid_phantom(fake_scid_rand_bytes: &[u8; 32], scid: u64) -> bool { let block_height = scid_utils::block_from_scid(&scid); let tx_index = scid_utils::tx_index_from_scid(&scid); let namespace = Namespace::Phantom; let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes); valid_vout == scid_utils::vout_from_scid(&scid) as u8 } #[cfg(test)] mod tests { use bitcoin::blockdata::constants::genesis_block; use bitcoin::network::constants::Network; use util::scid_utils::fake_scid::{is_valid_phantom, MAINNET_SEGWIT_ACTIVATION_HEIGHT, MAX_TX_INDEX, MAX_NAMESPACES, Namespace, NAMESPACE_ID_BITMASK, segwit_activation_height, TEST_SEGWIT_ACTIVATION_HEIGHT}; use util::scid_utils; use util::test_utils; use sync::Arc; #[test] fn namespace_identifier_is_within_range() { let phantom_namespace = Namespace::Phantom; assert!((phantom_namespace as u8) < MAX_NAMESPACES); assert!((phantom_namespace as u8) <= NAMESPACE_ID_BITMASK); } #[test] fn test_segwit_activation_height() { let mainnet_genesis = genesis_block(Network::Bitcoin).header.block_hash(); assert_eq!(segwit_activation_height(&mainnet_genesis), MAINNET_SEGWIT_ACTIVATION_HEIGHT); let testnet_genesis = genesis_block(Network::Testnet).header.block_hash(); assert_eq!(segwit_activation_height(&testnet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT); let signet_genesis = genesis_block(Network::Signet).header.block_hash(); assert_eq!(segwit_activation_height(&signet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT); let regtest_genesis = genesis_block(Network::Regtest).header.block_hash(); assert_eq!(segwit_activation_height(®test_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT); } #[test] fn test_is_valid_phantom() { let namespace = Namespace::Phantom; let fake_scid_rand_bytes = [0; 32]; let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes); let valid_fake_scid = scid_utils::scid_from_parts(0, 0, valid_encrypted_vout as u64).unwrap(); assert!(is_valid_phantom(&fake_scid_rand_bytes, valid_fake_scid)); let invalid_fake_scid = scid_utils::scid_from_parts(0, 0, 12).unwrap(); assert!(!is_valid_phantom(&fake_scid_rand_bytes, invalid_fake_scid)); } #[test] fn test_get_fake_scid() { let mainnet_genesis = genesis_block(Network::Bitcoin).header.block_hash(); let seed = [0; 32]; let fake_scid_rand_bytes = [1; 32]; let keys_manager = Arc::new(test_utils::TestKeysInterface::new(&seed, Network::Testnet)); let namespace = Namespace::Phantom; let fake_scid = namespace.get_fake_scid(500_000, &mainnet_genesis, &fake_scid_rand_bytes, &keys_manager); let fake_height = scid_utils::block_from_scid(&fake_scid); assert!(fake_height >= MAINNET_SEGWIT_ACTIVATION_HEIGHT); assert!(fake_height <= 500_000); let fake_tx_index = scid_utils::tx_index_from_scid(&fake_scid); assert!(fake_tx_index <= MAX_TX_INDEX); let fake_vout = scid_utils::vout_from_scid(&fake_scid); assert!(fake_vout < MAX_NAMESPACES as u16); } } } #[cfg(test)] mod tests { use super::*; #[test] fn test_block_from_scid() { assert_eq!(block_from_scid(&0x000000_000000_0000), 0); assert_eq!(block_from_scid(&0x000001_000000_0000), 1); assert_eq!(block_from_scid(&0x000001_ffffff_ffff), 1); assert_eq!(block_from_scid(&0x800000_ffffff_ffff), 0x800000); assert_eq!(block_from_scid(&0xffffff_ffffff_ffff), 0xffffff); } #[test] fn test_tx_index_from_scid() { assert_eq!(tx_index_from_scid(&0x000000_000000_0000), 0); assert_eq!(tx_index_from_scid(&0x000000_000001_0000), 1); assert_eq!(tx_index_from_scid(&0xffffff_000001_ffff), 1); assert_eq!(tx_index_from_scid(&0xffffff_800000_ffff), 0x800000); assert_eq!(tx_index_from_scid(&0xffffff_ffffff_ffff), 0xffffff); } #[test] fn test_vout_from_scid() { assert_eq!(vout_from_scid(&0x000000_000000_0000), 0); assert_eq!(vout_from_scid(&0x000000_000000_0001), 1); assert_eq!(vout_from_scid(&0xffffff_ffffff_0001), 1); assert_eq!(vout_from_scid(&0xffffff_ffffff_8000), 0x8000); assert_eq!(vout_from_scid(&0xffffff_ffffff_ffff), 0xffff); } #[test] fn test_scid_from_parts() { assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x0000).unwrap(), 0x000000_000000_0000); assert_eq!(scid_from_parts(0x00000001, 0x00000002, 0x0003).unwrap(), 0x000001_000002_0003); assert_eq!(scid_from_parts(0x00111111, 0x00222222, 0x3333).unwrap(), 0x111111_222222_3333); assert_eq!(scid_from_parts(0x00ffffff, 0x00ffffff, 0xffff).unwrap(), 0xffffff_ffffff_ffff); assert_eq!(scid_from_parts(0x01ffffff, 0x00000000, 0x0000).err().unwrap(), ShortChannelIdError::BlockOverflow); assert_eq!(scid_from_parts(0x00000000, 0x01ffffff, 0x0000).err().unwrap(), ShortChannelIdError::TxIndexOverflow); assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x010000).err().unwrap(), ShortChannelIdError::VoutIndexOverflow); } }