//! Various utilities for building scripts and deriving keys related to channels. These are //! largely of interest for those implementing chain::keysinterface::ChannelKeys message signing //! by hand. use bitcoin::blockdata::script::{Script,Builder}; use bitcoin::blockdata::opcodes; use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashType}; use bitcoin::consensus::encode::{self, Decodable, Encodable}; use bitcoin::util::bip143; use bitcoin_hashes::{Hash, HashEngine}; use bitcoin_hashes::sha256::Hash as Sha256; use bitcoin_hashes::ripemd160::Hash as Ripemd160; use bitcoin_hashes::hash160::Hash as Hash160; use bitcoin_hashes::sha256d::Hash as Sha256dHash; use ln::channelmanager::{PaymentHash, PaymentPreimage}; use ln::msgs::DecodeError; use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor}; use secp256k1::key::{SecretKey, PublicKey}; use secp256k1::{Secp256k1, Signature}; use secp256k1; pub(super) const HTLC_SUCCESS_TX_WEIGHT: u64 = 703; pub(super) const HTLC_TIMEOUT_TX_WEIGHT: u64 = 663; #[derive(PartialEq)] pub(crate) enum HTLCType { AcceptedHTLC, OfferedHTLC } impl HTLCType { /// Check if a given tx witnessScript len matchs one of a pre-signed HTLC pub(crate) fn scriptlen_to_htlctype(witness_script_len: usize) -> Option { if witness_script_len == 133 { Some(HTLCType::OfferedHTLC) } else if witness_script_len >= 136 && witness_script_len <= 139 { Some(HTLCType::AcceptedHTLC) } else { None } } } // Various functions for key derivation and transaction creation for use within channels. Primarily // used in Channel and ChannelMonitor. pub(super) fn build_commitment_secret(commitment_seed: &[u8; 32], idx: u64) -> [u8; 32] { let mut res: [u8; 32] = commitment_seed.clone(); for i in 0..48 { let bitpos = 47 - i; if idx & (1 << bitpos) == (1 << bitpos) { res[bitpos / 8] ^= 1 << (bitpos & 7); res = Sha256::hash(&res).into_inner(); } } res } /// Derives a per-commitment-transaction private key (eg an htlc key or payment key) from the base /// private key for that type of key and the per_commitment_point (available in TxCreationKeys) pub fn derive_private_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_secret: &SecretKey) -> Result { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&PublicKey::from_secret_key(&secp_ctx, &base_secret).serialize()); let res = Sha256::from_engine(sha).into_inner(); let mut key = base_secret.clone(); key.add_assign(&res)?; Ok(key) } pub(super) fn derive_public_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, base_point: &PublicKey) -> Result { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&base_point.serialize()); let res = Sha256::from_engine(sha).into_inner(); let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?); base_point.combine(&hashkey) } /// Derives a revocation key from its constituent parts. /// Note that this is infallible iff we trust that at least one of the two input keys are randomly /// generated (ie our own). pub(super) fn derive_private_revocation_key(secp_ctx: &Secp256k1, per_commitment_secret: &SecretKey, revocation_base_secret: &SecretKey) -> Result { let revocation_base_point = PublicKey::from_secret_key(&secp_ctx, &revocation_base_secret); let per_commitment_point = PublicKey::from_secret_key(&secp_ctx, &per_commitment_secret); let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let mut part_a = revocation_base_secret.clone(); part_a.mul_assign(&rev_append_commit_hash_key)?; let mut part_b = per_commitment_secret.clone(); part_b.mul_assign(&commit_append_rev_hash_key)?; part_a.add_assign(&part_b[..])?; Ok(part_a) } pub(super) fn derive_public_revocation_key(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, revocation_base_point: &PublicKey) -> Result { let rev_append_commit_hash_key = { let mut sha = Sha256::engine(); sha.input(&revocation_base_point.serialize()); sha.input(&per_commitment_point.serialize()); Sha256::from_engine(sha).into_inner() }; let commit_append_rev_hash_key = { let mut sha = Sha256::engine(); sha.input(&per_commitment_point.serialize()); sha.input(&revocation_base_point.serialize()); Sha256::from_engine(sha).into_inner() }; let mut part_a = revocation_base_point.clone(); part_a.mul_assign(&secp_ctx, &rev_append_commit_hash_key)?; let mut part_b = per_commitment_point.clone(); part_b.mul_assign(&secp_ctx, &commit_append_rev_hash_key)?; part_a.combine(&part_b) } /// The set of public keys which are used in the creation of one commitment transaction. /// These are derived from the channel base keys and per-commitment data. #[derive(PartialEq)] pub struct TxCreationKeys { /// The per-commitment public key which was used to derive the other keys. pub per_commitment_point: PublicKey, /// The revocation key which is used to allow the owner of the commitment transaction to /// provide their counterparty the ability to punish them if they broadcast an old state. pub(crate) revocation_key: PublicKey, /// A's HTLC Key pub(crate) a_htlc_key: PublicKey, /// B's HTLC Key pub(crate) b_htlc_key: PublicKey, /// A's Payment Key (which isn't allowed to be spent from for some delay) pub(crate) a_delayed_payment_key: PublicKey, /// B's Payment Key pub(crate) b_payment_key: PublicKey, } /// One counterparty's public keys which do not change over the life of a channel. #[derive(Clone)] pub struct ChannelPublicKeys { /// The public key which is used to sign all commitment transactions, as it appears in the /// on-chain channel lock-in 2-of-2 multisig output. pub funding_pubkey: PublicKey, /// The base point which is used (with derive_public_revocation_key) to derive per-commitment /// revocation keys. The per-commitment revocation private key is then revealed by the owner of /// a commitment transaction so that their counterparty can claim all available funds if they /// broadcast an old state. pub revocation_basepoint: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment payment /// public key which receives immediately-spendable non-HTLC-encumbered funds. pub payment_basepoint: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment payment /// public key which receives non-HTLC-encumbered funds which are only available for spending /// after some delay (or can be claimed via the revocation path). pub delayed_payment_basepoint: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment public key /// which is used to encumber HTLC-in-flight outputs. pub htlc_basepoint: PublicKey, } impl_writeable!(ChannelPublicKeys, 33*5, { funding_pubkey, revocation_basepoint, payment_basepoint, delayed_payment_basepoint, htlc_basepoint }); impl TxCreationKeys { pub(crate) fn new(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result { Ok(TxCreationKeys { per_commitment_point: per_commitment_point.clone(), revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?, a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?, b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?, a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?, b_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_payment_base)?, }) } } /// Gets the "to_local" output redeemscript, ie the script which is time-locked or spendable by /// the revocation key pub(super) fn get_revokeable_redeemscript(revocation_key: &PublicKey, to_self_delay: u16, delayed_payment_key: &PublicKey) -> Script { Builder::new().push_opcode(opcodes::all::OP_IF) .push_slice(&revocation_key.serialize()) .push_opcode(opcodes::all::OP_ELSE) .push_int(to_self_delay as i64) .push_opcode(opcodes::all::OP_CSV) .push_opcode(opcodes::all::OP_DROP) .push_slice(&delayed_payment_key.serialize()) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_CHECKSIG) .into_script() } #[derive(Clone, PartialEq)] /// Information about an HTLC as it appears in a commitment transaction pub struct HTLCOutputInCommitment { /// Whether the HTLC was "offered" (ie outbound in relation to this commitment transaction). /// Note that this is not the same as whether it is ountbound *from us*. To determine that you /// need to compare this value to whether the commitment transaction in question is that of /// the remote party or our own. pub offered: bool, /// The value, in msat, of the HTLC. The value as it appears in the commitment transaction is /// this divided by 1000. pub amount_msat: u64, /// The CLTV lock-time at which this HTLC expires. pub cltv_expiry: u32, /// The hash of the preimage which unlocks this HTLC. pub payment_hash: PaymentHash, /// The position within the commitment transactions' outputs. This may be None if the value is /// below the dust limit (in which case no output appears in the commitment transaction and the /// value is spent to additional transaction fees). pub transaction_output_index: Option, } #[inline] pub(super) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey) -> Script { let payment_hash160 = Ripemd160::hash(&htlc.payment_hash.0[..]).into_inner(); if htlc.offered { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&Hash160::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&b_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_NOTIF) .push_opcode(opcodes::all::OP_DROP) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&a_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_ENDIF) .into_script() } else { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&Hash160::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ELSE) .push_slice(&b_htlc_key.serialize()[..]) .push_opcode(opcodes::all::OP_SWAP) .push_opcode(opcodes::all::OP_SIZE) .push_int(32) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_HASH160) .push_slice(&payment_hash160) .push_opcode(opcodes::all::OP_EQUALVERIFY) .push_int(2) .push_opcode(opcodes::all::OP_SWAP) .push_slice(&a_htlc_key.serialize()[..]) .push_int(2) .push_opcode(opcodes::all::OP_CHECKMULTISIG) .push_opcode(opcodes::all::OP_ELSE) .push_opcode(opcodes::all::OP_DROP) .push_int(htlc.cltv_expiry as i64) .push_opcode(opcodes::all::OP_CLTV) .push_opcode(opcodes::all::OP_DROP) .push_opcode(opcodes::all::OP_CHECKSIG) .push_opcode(opcodes::all::OP_ENDIF) .push_opcode(opcodes::all::OP_ENDIF) .into_script() } } /// note here that 'a_revocation_key' is generated using b_revocation_basepoint and a's /// commitment secret. 'htlc' does *not* need to have its previous_output_index filled. #[inline] pub fn get_htlc_redeemscript(htlc: &HTLCOutputInCommitment, keys: &TxCreationKeys) -> Script { get_htlc_redeemscript_with_explicit_keys(htlc, &keys.a_htlc_key, &keys.b_htlc_key, &keys.revocation_key) } /// Gets the redeemscript for a funding output from the two funding public keys. /// Note that the order of funding public keys does not matter. pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script { let our_funding_key = a.serialize(); let their_funding_key = b.serialize(); let builder = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2); if our_funding_key[..] < their_funding_key[..] { builder.push_slice(&our_funding_key) .push_slice(&their_funding_key) } else { builder.push_slice(&their_funding_key) .push_slice(&our_funding_key) }.push_opcode(opcodes::all::OP_PUSHNUM_2).push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script() } /// panics if htlc.transaction_output_index.is_none()! pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction { let mut txins: Vec = Vec::new(); txins.push(TxIn { previous_output: OutPoint { txid: prev_hash.clone(), vout: htlc.transaction_output_index.expect("Can't build an HTLC transaction for a dust output"), }, script_sig: Script::new(), sequence: 0, witness: Vec::new(), }); let total_fee = if htlc.offered { feerate_per_kw * HTLC_TIMEOUT_TX_WEIGHT / 1000 } else { feerate_per_kw * HTLC_SUCCESS_TX_WEIGHT / 1000 }; let mut txouts: Vec = Vec::new(); txouts.push(TxOut { script_pubkey: get_revokeable_redeemscript(revocation_key, to_self_delay, a_delayed_payment_key).to_v0_p2wsh(), value: htlc.amount_msat / 1000 - total_fee //TODO: BOLT 3 does not specify if we should add amount_msat before dividing or if we should divide by 1000 before subtracting (as we do here) }); Transaction { version: 2, lock_time: if htlc.offered { htlc.cltv_expiry } else { 0 }, input: txins, output: txouts, } } /// Signs a transaction created by build_htlc_transaction. If the transaction is an /// HTLC-Success transaction (ie htlc.offered is false), preimage must be set! pub(crate) fn sign_htlc_transaction(tx: &mut Transaction, their_sig: &Signature, preimage: &Option, htlc: &HTLCOutputInCommitment, a_htlc_key: &PublicKey, b_htlc_key: &PublicKey, revocation_key: &PublicKey, per_commitment_point: &PublicKey, htlc_base_key: &SecretKey, secp_ctx: &Secp256k1) -> Result<(Signature, Script), ()> { if tx.input.len() != 1 { return Err(()); } if tx.input[0].witness.len() != 0 { return Err(()); } let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&htlc, a_htlc_key, b_htlc_key, revocation_key); let our_htlc_key = derive_private_key(secp_ctx, per_commitment_point, htlc_base_key).map_err(|_| ())?; let sighash = hash_to_message!(&bip143::SighashComponents::new(&tx).sighash_all(&tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]); let local_tx = PublicKey::from_secret_key(&secp_ctx, &our_htlc_key) == *a_htlc_key; let our_sig = secp_ctx.sign(&sighash, &our_htlc_key); tx.input[0].witness.push(Vec::new()); // First is the multisig dummy if local_tx { // b, then a tx.input[0].witness.push(their_sig.serialize_der().to_vec()); tx.input[0].witness.push(our_sig.serialize_der().to_vec()); } else { tx.input[0].witness.push(our_sig.serialize_der().to_vec()); tx.input[0].witness.push(their_sig.serialize_der().to_vec()); } tx.input[0].witness[1].push(SigHashType::All as u8); tx.input[0].witness[2].push(SigHashType::All as u8); if htlc.offered { tx.input[0].witness.push(Vec::new()); assert!(preimage.is_none()); } else { tx.input[0].witness.push(preimage.unwrap().0.to_vec()); } tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec()); Ok((our_sig, htlc_redeemscript)) } #[derive(Clone)] /// We use this to track local commitment transactions and put off signing them until we are ready /// to broadcast. Eventually this will require a signer which is possibly external, but for now we /// just pass in the SecretKeys required. pub(crate) struct LocalCommitmentTransaction { tx: Transaction } impl LocalCommitmentTransaction { #[cfg(test)] pub fn dummy() -> Self { Self { tx: Transaction { version: 2, input: Vec::new(), output: Vec::new(), lock_time: 0, } } } pub fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey) -> LocalCommitmentTransaction { if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); } if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); } tx.input[0].witness.push(Vec::new()); // First is the multisig dummy if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] { tx.input[0].witness.push(Vec::new()); tx.input[0].witness.push(their_sig.serialize_der().to_vec()); tx.input[0].witness[2].push(SigHashType::All as u8); } else { tx.input[0].witness.push(their_sig.serialize_der().to_vec()); tx.input[0].witness[1].push(SigHashType::All as u8); tx.input[0].witness.push(Vec::new()); } Self { tx } } pub fn txid(&self) -> Sha256dHash { self.tx.txid() } pub fn has_local_sig(&self) -> bool { if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); } if self.tx.input[0].witness.len() == 4 { assert!(!self.tx.input[0].witness[1].is_empty()); assert!(!self.tx.input[0].witness[2].is_empty()); true } else { assert_eq!(self.tx.input[0].witness.len(), 3); assert!(self.tx.input[0].witness[0].is_empty()); assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty()); false } } pub fn add_local_sig(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) { if self.has_local_sig() { return; } let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx) .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]); let our_sig = secp_ctx.sign(&sighash, funding_key); if self.tx.input[0].witness[1].is_empty() { self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec(); self.tx.input[0].witness[1].push(SigHashType::All as u8); } else { self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec(); self.tx.input[0].witness[2].push(SigHashType::All as u8); } self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); } pub fn without_valid_witness(&self) -> &Transaction { &self.tx } pub fn with_valid_witness(&self) -> &Transaction { assert!(self.has_local_sig()); &self.tx } } impl PartialEq for LocalCommitmentTransaction { // We dont care whether we are signed in equality comparison fn eq(&self, o: &Self) -> bool { self.txid() == o.txid() } } impl Writeable for LocalCommitmentTransaction { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { match e { encode::Error::Io(e) => return Err(e), _ => panic!("local tx must have been well-formed!"), } } Ok(()) } } impl Readable for LocalCommitmentTransaction { fn read(reader: &mut R) -> Result { let tx = match Transaction::consensus_decode(reader.by_ref()) { Ok(tx) => tx, Err(e) => match e { encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)), _ => return Err(DecodeError::InvalidValue), }, }; if tx.input.len() != 1 { // Ensure tx didn't hit the 0-input ambiguity case. return Err(DecodeError::InvalidValue); } Ok(Self { tx }) } }