// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry //! payments thereafter. use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch}; use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS}; use chain::transaction::OutPoint; use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure}; use ln::features::InitFeatures; use ln::msgs; use ln::msgs::ChannelMessageHandler; use util::events::{ClosureReason, Event, MessageSendEvent, MessageSendEventsProvider}; use util::test_utils; use util::errors::APIError; use util::enforcing_trait_impls::EnforcingSigner; use util::ser::{ReadableArgs, Writeable}; use io; use bitcoin::{Block, BlockHeader, BlockHash}; use prelude::*; use ln::functional_test_utils::*; #[test] fn retry_single_path_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(&nodes[1]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false); // Rebalance the channel so the retry succeeds. send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); // Mine two blocks (we expire retries after 3, so this will check that we don't expire early) connect_blocks(&nodes[0], 2); // Retry the payment and make sure it succeeds. nodes[0].node.retry_payment(&route, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); } #[test] fn mpp_failure() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret); fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash); } #[test] fn mpp_retry() { let chanmon_cfgs = create_chanmon_cfgs(4); let node_cfgs = create_node_cfgs(4, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]); let nodes = create_network(4, &node_cfgs, &node_chanmgrs); let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; let chan_4_id = create_announced_chan_between_nodes(&nodes, 3, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id; // Rebalance send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000); let path = route.paths[0].clone(); route.paths.push(path); route.paths[0][0].pubkey = nodes[1].node.get_our_node_id(); route.paths[0][0].short_channel_id = chan_1_id; route.paths[0][1].short_channel_id = chan_3_id; route.paths[1][0].pubkey = nodes[2].node.get_our_node_id(); route.paths[1][0].short_channel_id = chan_2_id; route.paths[1][1].short_channel_id = chan_4_id; // Initiate the MPP payment. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 2); // one monitor per path let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 2); // Pass half of the payment along the success path. let success_path_msgs = events.remove(0); pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None); // Add the HTLC along the first hop. let fail_path_msgs_1 = events.remove(0); let (update_add, commitment_signed) = match fail_path_msgs_1 { MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { assert_eq!(update_add_htlcs.len(), 1); assert!(update_fail_htlcs.is_empty()); assert!(update_fulfill_htlcs.is_empty()); assert!(update_fail_malformed_htlcs.is_empty()); assert!(update_fee.is_none()); (update_add_htlcs[0].clone(), commitment_signed.clone()) }, _ => panic!("Unexpected event"), }; nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add); commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false); // Attempt to forward the payment and complete the 2nd path's failure. expect_pending_htlcs_forwardable!(&nodes[2]); expect_pending_htlcs_forwardable!(&nodes[2]); let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[2], 1); nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false); // Rebalance the channel so the second half of the payment can succeed. send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000); // Make sure it errors as expected given a too-large amount. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) { assert!(err.contains("over total_payment_amt_msat")); } else { panic!("Unexpected error"); } // Make sure it errors as expected given the wrong payment_id. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } // Retry the second half of the payment and make sure it succeeds. let mut path = route.clone(); path.paths.remove(0); nodes[0].node.retry_payment(&path, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage); } #[test] fn retry_expired_payment() { let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known()); // Rebalance to find a route send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000); // Rebalance so that the first hop fails. send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000); // Make sure the payment fails on the first hop. let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let mut payment_event = SendEvent::from_event(events.pop().unwrap()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); check_added_monitors!(nodes[1], 0); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_pending_htlcs_forwardable!(&nodes[1]); let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); assert!(htlc_updates.update_add_htlcs.is_empty()); assert_eq!(htlc_updates.update_fail_htlcs.len(), 1); assert!(htlc_updates.update_fulfill_htlcs.is_empty()); assert!(htlc_updates.update_fail_malformed_htlcs.is_empty()); check_added_monitors!(nodes[1], 1); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false); expect_payment_failed!(nodes[0], payment_hash, false); // Mine blocks so the payment will have expired. connect_blocks(&nodes[0], 3); // Retry the payment and make sure it errors as expected. if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) { assert!(err.contains("not found")); } else { panic!("Unexpected error"); } } #[test] fn no_pending_leak_on_initial_send_failure() { // In an earlier version of our payment tracking, we'd have a retry entry even when the initial // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a // pending payment forever and never time it out. // Here we test exactly that - retrying a payment when a peer was disconnected on the first // try, and then check that no pending payment is being tracked. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)), true, APIError::ChannelUnavailable { ref err }, assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!")); assert!(!nodes[0].node.has_pending_payments()); } fn do_retry_with_no_persist(confirm_before_reload: bool) { // If we send a pending payment and `send_payment` returns success, we should always either // return a payment failure event or a payment success event, and on failure the payment should // be retryable. // // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its // always persisted asynchronously), the ChannelManager has to reload some payment data from // ChannelMonitor(s) in some cases. This tests that reloading. // // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking // which has separate codepaths for "commitment transaction already confirmed" and not. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known()); // Serialize the ChannelManager prior to sending payments let nodes_0_serialized = nodes[0].node.encode(); // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time // out and retry. let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); let (payment_preimage_1, _, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000); let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); let payment_event = SendEvent::from_event(events.pop().unwrap()); assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id()); // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment // which would prevent retry. nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false); nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]); commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true); // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone(); if confirm_before_reload { mine_transaction(&nodes[0], &as_commitment_tx); nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); } // The ChannelMonitor should always be the latest version, as we're required to persist it // during the `commitment_signed_dance!()`. let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let mut nodes_0_read = &nodes_0_serialized[..]; let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)>::read(&mut nodes_0_read, ChannelManagerReadArgs { default_config: test_default_channel_config(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes_0_read.is_empty()); assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); nodes[0].node = &nodes_0_deserialized; check_added_monitors!(nodes[0], 1); // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and // force-close the channel. check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[0].node.has_pending_payments()); let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_broadcasted_txn.len(), 1); assert_eq!(as_broadcasted_txn[0], as_commitment_tx); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()}); assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty()); // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an // error, as the channel has hit the chain. nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()}); let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()); nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish); let as_err = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(as_err.len(), 1); match as_err[0] { MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => { assert_eq!(node_id, nodes[1].node.get_our_node_id()); nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg); check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() }); check_added_monitors!(nodes[1], 1); assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1); }, _ => panic!("Unexpected event"), } check_closed_broadcast!(nodes[1], false); // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when // we close in a moment. nodes[2].node.claim_funds(payment_preimage_1); check_added_monitors!(nodes[2], 1); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); check_added_monitors!(nodes[1], 1); commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false); if confirm_before_reload { let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone(); nodes[0].node.best_block_updated(&best_block.0, best_block.1); } // Create a new channel on which to retry the payment before we fail the payment via the // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us // connecting several blocks while creating the channel (implying time has passed). create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); assert_eq!(nodes[0].node.list_usable_channels().len(), 1); mine_transaction(&nodes[1], &as_commitment_tx); let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_claim_txn.len(), 1); check_spends!(bs_htlc_claim_txn[0], as_commitment_tx); expect_payment_forwarded!(nodes[1], None, false); mine_transaction(&nodes[0], &as_commitment_tx); mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]); expect_payment_sent!(nodes[0], payment_preimage_1); connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20); let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); check_spends!(as_htlc_timeout_txn[2], funding_tx); check_spends!(as_htlc_timeout_txn[0], as_commitment_tx); check_spends!(as_htlc_timeout_txn[1], as_commitment_tx); assert_eq!(as_htlc_timeout_txn.len(), 3); if as_htlc_timeout_txn[0].input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output { confirm_transaction(&nodes[0], &as_htlc_timeout_txn[1]); } else { confirm_transaction(&nodes[0], &as_htlc_timeout_txn[0]); } nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); expect_payment_failed!(nodes[0], payment_hash, false); // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was // reloaded) via a route over the new channel, which work without issue and eventually be // received and claimed at the recipient just like any other payment. let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee // and not the original fee. We also update node[1]'s relevant config as // do_claim_payment_along_route expects us to never overpay. nodes[1].node.channel_state.lock().unwrap().by_id.get_mut(&chan_id_2).unwrap().config.forwarding_fee_base_msat += 100_000; new_route.paths[0][0].fee_msat += 100_000; assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment nodes[0].node.retry_payment(&new_route, payment_id).unwrap(); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_msg_events(); assert_eq!(events.len(), 1); pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None); do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage); expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat)); } #[test] fn retry_with_no_persist() { do_retry_with_no_persist(true); do_retry_with_no_persist(false); } fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) { // When a Channel is closed, any outbound HTLCs which were relayed through it are simply // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when // the ChannelMonitor tells it to. // // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_0_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()); // Route a payment, but force-close the channel before the HTLC fulfill message arrives at // nodes[0]. let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000); nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap(); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed); nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false); // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(node_txn.len(), 3); assert_eq!(node_txn[0], node_txn[1]); check_spends!(node_txn[1], funding_tx); check_spends!(node_txn[2], node_txn[1]); let timeout_txn = vec![node_txn[2].clone()]; assert!(nodes[1].node.claim_funds(payment_preimage)); check_added_monitors!(nodes[1], 1); let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 }; connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]}); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); header.prev_blockhash = nodes[0].best_block_hash(); connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]}); if confirm_commitment_tx { connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1); } header.prev_blockhash = nodes[0].best_block_hash(); let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } }; if payment_timeout { assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV! connect_block(&nodes[0], &claim_block); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2); } // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update // returning TemporaryFailure. This should cause the claim event to never make its way to the // ChannelManager. chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear(); chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure)); if payment_timeout { connect_blocks(&nodes[0], 1); } else { connect_block(&nodes[0], &claim_block); } let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 }; let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap() .get_mut(&funding_txo).unwrap().drain().collect(); assert_eq!(mon_updates.len(), 1); assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty()); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); // If we persist the ChannelManager here, we should get the PaymentSent event after // deserialization. let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new()); if !persist_manager_post_event { nodes[0].node.write(&mut chan_manager_serialized).unwrap(); } // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the // payment sent event. chanmon_cfgs[0].persister.set_update_ret(Ok(())); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap(); if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, true); } else { expect_payment_sent!(nodes[0], payment_preimage); } // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it // twice. if persist_manager_post_event { nodes[0].node.write(&mut chan_manager_serialized).unwrap(); } // Now reload nodes[0]... persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[0].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager); nodes[0].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let (_, nodes_0_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)> ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs { default_config: Default::default(), keys_manager, fee_estimator: node_cfgs[0].fee_estimator, chain_monitor: nodes[0].chain_monitor, tx_broadcaster: nodes[0].tx_broadcaster.clone(), logger: nodes[0].logger, channel_monitors, }).unwrap() }; nodes_0_deserialized = nodes_0_deserialized_tmp; assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); check_added_monitors!(nodes[0], 1); nodes[0].node = &nodes_0_deserialized; if persist_manager_post_event { assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } else if payment_timeout { expect_payment_failed!(nodes[0], payment_hash, true); } else { expect_payment_sent!(nodes[0], payment_preimage); } // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of // payment events should kick in, leaving us with no pending events here. let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1; nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); } #[test] fn test_dup_htlc_onchain_fails_on_reload() { do_test_dup_htlc_onchain_fails_on_reload(true, true, true); do_test_dup_htlc_onchain_fails_on_reload(true, true, false); do_test_dup_htlc_onchain_fails_on_reload(true, false, false); do_test_dup_htlc_onchain_fails_on_reload(false, true, true); do_test_dup_htlc_onchain_fails_on_reload(false, true, false); do_test_dup_htlc_onchain_fails_on_reload(false, false, false); } #[test] fn test_fulfill_restart_failure() { // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC // again, or fail it, giving us free money. // // Of course probably they won't fail it and give us free money, but because we have code to // handle it, we should test the logic for it anyway. We do that here. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let persister: test_utils::TestPersister; let new_chain_monitor: test_utils::TestChainMonitor; let nodes_1_deserialized: ChannelManager; let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2; let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000); // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state // pre-fulfill, which we do by serializing it here. let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new()); nodes[1].node.write(&mut chan_manager_serialized).unwrap(); let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new()); get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap(); nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]); expect_payment_sent_without_paths!(nodes[0], payment_preimage); // Now reload nodes[1]... persister = test_utils::TestPersister::new(); let keys_manager = &chanmon_cfgs[1].keys_manager; new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager); nodes[1].chain_monitor = &new_chain_monitor; let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..]; let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor)>::read( &mut chan_0_monitor_read, keys_manager).unwrap(); assert!(chan_0_monitor_read.is_empty()); let (_, nodes_1_deserialized_tmp) = { let mut channel_monitors = HashMap::new(); channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor); <(BlockHash, ChannelManager)> ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs { default_config: Default::default(), keys_manager, fee_estimator: node_cfgs[1].fee_estimator, chain_monitor: nodes[1].chain_monitor, tx_broadcaster: nodes[1].tx_broadcaster.clone(), logger: nodes[1].logger, channel_monitors, }).unwrap() }; nodes_1_deserialized = nodes_1_deserialized_tmp; assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok()); check_added_monitors!(nodes[1], 1); nodes[1].node = &nodes_1_deserialized; nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false); reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false)); nodes[1].node.fail_htlc_backwards(&payment_hash); expect_pending_htlcs_forwardable!(nodes[1]); check_added_monitors!(nodes[1], 1); let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false); // nodes[0] shouldn't generate any events here, while it just got a payment failure completion // it had already considered the payment fulfilled, and now they just got free money. assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); }