// This file is Copyright its original authors, visible in version control // history. // // This file is licensed under the Apache License, Version 2.0 or the MIT license // , at your option. // You may not use this file except in accordance with one or both of these // licenses. //! Further functional tests which test blockchain reorganizations. #[cfg(anchors)] use crate::chain::keysinterface::BaseSign; #[cfg(anchors)] use crate::chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS; use crate::chain::channelmonitor::{ANTI_REORG_DELAY, Balance}; use crate::chain::transaction::OutPoint; use crate::chain::chaininterface::LowerBoundedFeeEstimator; use crate::ln::channel; #[cfg(anchors)] use crate::ln::chan_utils; use crate::ln::channelmanager::{BREAKDOWN_TIMEOUT, PaymentId}; use crate::ln::msgs::ChannelMessageHandler; #[cfg(anchors)] use crate::util::config::UserConfig; #[cfg(anchors)] use crate::util::events::BumpTransactionEvent; use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination}; use bitcoin::blockdata::script::Builder; use bitcoin::blockdata::opcodes; use bitcoin::secp256k1::Secp256k1; #[cfg(anchors)] use bitcoin::{Amount, Script, TxIn, TxOut, PackedLockTime}; use bitcoin::Transaction; use crate::prelude::*; use crate::ln::functional_test_utils::*; #[test] fn chanmon_fail_from_stale_commitment() { // If we forward an HTLC to our counterparty, but we force-closed the channel before our // counterparty provides us an updated commitment transaction, we'll end up with a commitment // transaction that does not contain the HTLC which we attempted to forward. In this case, we // need to wait `ANTI_REORG_DELAY` blocks and then fail back the HTLC as there is no way for us // to learn the preimage and the confirmed commitment transaction paid us the value of the // HTLC. // // However, previously, we did not do this, ignoring the HTLC entirely. // // This could lead to channel closure if the sender we received the HTLC from decides to go on // chain to get their HTLC back before it times out. // // Here, we check exactly this case, forwarding a payment from A, through B, to C, before B // broadcasts its latest commitment transaction, which should result in it eventually failing // the HTLC back off-chain to A. let chanmon_cfgs = create_chanmon_cfgs(3); let node_cfgs = create_node_cfgs(3, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]); let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs); create_announced_chan_between_nodes(&nodes, 0, 1); let (update_a, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2); let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000); nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let bs_txn = get_local_commitment_txn!(nodes[1], chan_id_2); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); // Don't bother delivering the new HTLC add/commits, instead confirming the pre-HTLC commitment // transaction for nodes[1]. mine_transaction(&nodes[1], &bs_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]); check_added_monitors!(nodes[1], 1); let fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &fail_updates.update_fail_htlcs[0]); commitment_signed_dance!(nodes[0], nodes[1], fail_updates.commitment_signed, true, true); expect_payment_failed_with_update!(nodes[0], payment_hash, false, update_a.contents.short_channel_id, true); } fn test_spendable_output<'a, 'b, 'c, 'd>(node: &'a Node<'b, 'c, 'd>, spendable_tx: &Transaction) { let mut spendable = node.chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(spendable.len(), 1); if let Event::SpendableOutputs { outputs } = spendable.pop().unwrap() { assert_eq!(outputs.len(), 1); let spend_tx = node.keys_manager.backing.spend_spendable_outputs(&[&outputs[0]], Vec::new(), Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script(), 253, &Secp256k1::new()).unwrap(); check_spends!(spend_tx, spendable_tx); } else { panic!(); } } #[test] fn revoked_output_htlc_resolution_timing() { // Tests that HTLCs which were present in a broadcasted remote revoked commitment transaction // are resolved only after a spend of the HTLC output reaches six confirmations. Preivously // they would resolve after the revoked commitment transaction itself reaches six // confirmations. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 500_000_000); let payment_hash_1 = route_payment(&nodes[1], &[&nodes[0]], 1_000_000).1; // Get a commitment transaction which contains the HTLC we care about, but which we'll revoke // before forwarding. let revoked_local_txn = get_local_commitment_txn!(nodes[0], chan.2); assert_eq!(revoked_local_txn.len(), 1); // Route a dust payment to revoke the above commitment transaction route_payment(&nodes[0], &[&nodes[1]], 1_000); // Confirm the revoked commitment transaction, closing the channel. mine_transaction(&nodes[1], &revoked_local_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); check_closed_broadcast!(nodes[1], true); let bs_spend_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_spend_txn.len(), 1); check_spends!(bs_spend_txn[0], revoked_local_txn[0]); // After the commitment transaction confirms, we should still wait on the HTLC spend // transaction to confirm before resolving the HTLC. connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // Spend the HTLC output, generating a HTLC failure event after ANTI_REORG_DELAY confirmations. mine_transaction(&nodes[1], &bs_spend_txn[0]); assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[1], payment_hash_1, false); } #[test] fn chanmon_claim_value_coop_close() { // Tests `get_claimable_balances` returns the correct values across a simple cooperative claim. // Specifically, this tests that the channel non-HTLC balances show up in // `get_claimable_balances` until the cooperative claims have confirmed and generated a // `SpendableOutputs` event, and no longer. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::commitment_tx_base_weight(opt_anchors) / 1000 }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); nodes[0].node.close_channel(&chan_id, &nodes[1].node.get_our_node_id()).unwrap(); let node_0_shutdown = get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()); nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &node_0_shutdown); let node_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id()); nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &node_1_shutdown); let node_0_closing_signed = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_closing_signed); let node_1_closing_signed = get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()); nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &node_1_closing_signed); let (_, node_0_2nd_closing_signed) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id()); nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &node_0_2nd_closing_signed.unwrap()); let (_, node_1_none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id()); assert!(node_1_none.is_none()); let shutdown_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(shutdown_tx, nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0)); assert_eq!(shutdown_tx.len(), 1); mine_transaction(&nodes[0], &shutdown_tx[0]); mine_transaction(&nodes[1], &shutdown_tx[0]); assert!(nodes[0].node.list_channels().is_empty()); assert!(nodes[1].node.list_channels().is_empty()); assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 1_000 - chan_feerate * channel::commitment_tx_base_weight(opt_anchors) / 1000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1000, confirmation_height: nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert_eq!(Vec::::new(), nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); test_spendable_output(&nodes[0], &shutdown_tx[0]); test_spendable_output(&nodes[1], &shutdown_tx[0]); check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure); check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure); } fn sorted_vec(mut v: Vec) -> Vec { v.sort_unstable(); v } /// Asserts that `a` and `b` are close, but maybe off by up to 5. /// This is useful when checking fees and weights on transactions as things may vary by a few based /// on signature size and signature size estimation being non-exact. fn fuzzy_assert_eq>(a: V, b: V) { let a_u64 = a.try_into().map_err(|_| ()).unwrap(); let b_u64 = b.try_into().map_err(|_| ()).unwrap(); eprintln!("Checking {} and {} for fuzzy equality", a_u64, b_u64); assert!(a_u64 >= b_u64 - 5); assert!(b_u64 >= a_u64 - 5); } fn do_test_claim_value_force_close(prev_commitment_tx: bool) { // Tests `get_claimable_balances` with an HTLC across a force-close. // We build a channel with an HTLC pending, then force close the channel and check that the // `get_claimable_balances` return value is correct as transactions confirm on-chain. let mut chanmon_cfgs = create_chanmon_cfgs(2); if prev_commitment_tx { // We broadcast a second-to-latest commitment transaction, without providing the revocation // secret to the counterparty. However, because we always immediately take the revocation // secret from the keys_manager, we would panic at broadcast as we're trying to sign a // transaction which, from the point of view of our keys_manager, is revoked. chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; } let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 1_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); // This HTLC is immediately claimed, giving node B the preimage let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 3_000_000); // This HTLC is allowed to time out, letting A claim it. However, in order to test claimable // balances more fully we also give B the preimage for this HTLC. let (timeout_payment_preimage, timeout_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 4_000_000); // This HTLC will be dust, and not be claimable at all: let (dust_payment_preimage, dust_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 3_000); let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); let remote_txn = get_local_commitment_txn!(nodes[1], chan_id); // Before B receives the payment preimage, it only suggests the push_msat value of 1_000 sats // as claimable. A lists both its to-self balance and the (possibly-claimable) HTLCs. assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 3_000, expiry_height: htlc_cltv_timeout, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 4_000, expiry_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); nodes[1].node.claim_funds(payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash, 3_000_000); let b_htlc_msgs = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id()); // We claim the dust payment here as well, but it won't impact our claimable balances as its // dust and thus doesn't appear on chain at all. nodes[1].node.claim_funds(dust_payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], dust_payment_hash, 3_000); nodes[1].node.claim_funds(timeout_payment_preimage); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], timeout_payment_hash, 4_000_000); if prev_commitment_tx { // To build a previous commitment transaction, deliver one round of commitment messages. nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.update_fulfill_htlcs[0]); expect_payment_sent_without_paths!(nodes[0], payment_preimage); nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &b_htlc_msgs.commitment_signed); check_added_monitors!(nodes[0], 1); let (as_raa, as_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_raa); let _htlc_updates = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_cs); let _bs_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); } // Once B has received the payment preimage, it includes the value of the HTLC in its // "claimable if you were to close the channel" balance. let mut a_expected_balances = vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - // Channel funding value in satoshis 4_000 - // The to-be-failed HTLC value in satoshis 3_000 - // The claimed HTLC value in satoshis 1_000 - // The push_msat value in satoshis 3 - // The dust HTLC value in satoshis // The commitment transaction fee with two HTLC outputs: chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + if prev_commitment_tx { 1 } else { 2 } * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]; if !prev_commitment_tx { a_expected_balances.push(Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }); } assert_eq!(sorted_vec(a_expected_balances), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000 + 3_000 + 4_000, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // Broadcast the closing transaction (which has both pending HTLCs in it) and get B's // broadcasted HTLC claim transaction with preimage. let node_b_commitment_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &remote_txn[0]); mine_transaction(&nodes[1], &remote_txn[0]); let b_broadcast_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(b_broadcast_txn.len(), 2); // b_broadcast_txn should spend the HTLCs output of the commitment tx for 3_000 and 4_000 sats check_spends!(b_broadcast_txn[0], remote_txn[0]); check_spends!(b_broadcast_txn[1], remote_txn[0]); assert_eq!(b_broadcast_txn[0].input.len(), 1); assert_eq!(b_broadcast_txn[1].input.len(), 1); assert_eq!(remote_txn[0].output[b_broadcast_txn[0].input[0].previous_output.vout as usize].value, 3_000); assert_eq!(remote_txn[0].output[b_broadcast_txn[1].input[0].previous_output.vout as usize].value, 4_000); assert!(nodes[0].node.list_channels().is_empty()); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[1].node.list_channels().is_empty()); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // Once the commitment transaction confirms, we will wait until ANTI_REORG_DELAY until we // generate any `SpendableOutputs` events. Thus, the same balances will still be listed // available in `get_claimable_balances`. However, both will swap from `ClaimableOnClose` to // other Balance variants, as close has already happened. assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 3_000 - 4_000 - 1_000 - 3 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // The main non-HTLC balance is just awaiting confirmations, but the claimable height is the // CSV delay, not ANTI_REORG_DELAY. assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, // Both HTLC balances are "contentious" as our counterparty could claim them if we wait too // long. Balance::ContentiousClaimable { claimable_amount_satoshis: 3_000, timeout_height: htlc_cltv_timeout, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], dust_payment_hash, false); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); // After ANTI_REORG_DELAY, A will consider its balance fully spendable and generate a // `SpendableOutputs` event. However, B still has to wait for the CSV delay. assert_eq!(sorted_vec(vec![Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 3_000, timeout_height: htlc_cltv_timeout, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); test_spendable_output(&nodes[0], &remote_txn[0]); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); // After broadcasting the HTLC claim transaction, node A will still consider the HTLC // possibly-claimable up to ANTI_REORG_DELAY, at which point it will drop it. mine_transaction(&nodes[0], &b_broadcast_txn[0]); if prev_commitment_tx { expect_payment_path_successful!(nodes[0]); } else { expect_payment_sent!(nodes[0], payment_preimage); } assert_eq!(sorted_vec(vec![Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert_eq!(vec![Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // When the HTLC timeout output is spendable in the next block, A should broadcast it connect_blocks(&nodes[0], htlc_cltv_timeout - nodes[0].best_block_info().1 - 1); let a_broadcast_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(a_broadcast_txn.len(), 2); assert_eq!(a_broadcast_txn[0].input.len(), 1); check_spends!(a_broadcast_txn[0], remote_txn[0]); assert_eq!(a_broadcast_txn[1].input.len(), 1); check_spends!(a_broadcast_txn[1], remote_txn[0]); assert_ne!(a_broadcast_txn[0].input[0].previous_output.vout, a_broadcast_txn[1].input[0].previous_output.vout); // a_broadcast_txn [0] and [1] should spend the HTLC outputs of the commitment tx assert_eq!(remote_txn[0].output[a_broadcast_txn[0].input[0].previous_output.vout as usize].value, 3_000); assert_eq!(remote_txn[0].output[a_broadcast_txn[1].input[0].previous_output.vout as usize].value, 4_000); // Once the HTLC-Timeout transaction confirms, A will no longer consider the HTLC // "MaybeClaimable", but instead move it to "AwaitingConfirmations". mine_transaction(&nodes[0], &a_broadcast_txn[1]); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 4_000, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // After ANTI_REORG_DELAY, A will generate a SpendableOutputs event and drop the claimable // balance entry. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); expect_payment_failed!(nodes[0], timeout_payment_hash, false); test_spendable_output(&nodes[0], &a_broadcast_txn[1]); // Node B will no longer consider the HTLC "contentious" after the HTLC claim transaction // confirms, and consider it simply "awaiting confirmations". Note that it has to wait for the // standard revocable transaction CSV delay before receiving a `SpendableOutputs`. let node_b_htlc_claimable = nodes[1].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[1], &b_broadcast_txn[0]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000, confirmation_height: node_b_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 3_000, confirmation_height: node_b_htlc_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // After reaching the commitment output CSV, we'll get a SpendableOutputs event for it and have // only the HTLCs claimable on node B. connect_blocks(&nodes[1], node_b_commitment_claimable - nodes[1].best_block_info().1); test_spendable_output(&nodes[1], &remote_txn[0]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 3_000, confirmation_height: node_b_htlc_claimable, }, Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // After reaching the claimed HTLC output CSV, we'll get a SpendableOutptus event for it and // have only one HTLC output left spendable. connect_blocks(&nodes[1], node_b_htlc_claimable - nodes[1].best_block_info().1); test_spendable_output(&nodes[1], &b_broadcast_txn[0]); assert_eq!(vec![Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // Finally, mine the HTLC timeout transaction that A broadcasted (even though B should be able // to claim this HTLC with the preimage it knows!). It will remain listed as a claimable HTLC // until ANTI_REORG_DELAY confirmations on the spend. mine_transaction(&nodes[1], &a_broadcast_txn[1]); assert_eq!(vec![Balance::ContentiousClaimable { claimable_amount_satoshis: 4_000, timeout_height: htlc_cltv_timeout, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); assert_eq!(Vec::::new(), nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. for node in nodes.iter() { connect_blocks(node, 6); connect_blocks(node, 6); assert!(node.chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(node.chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } } #[test] fn test_claim_value_force_close() { do_test_claim_value_force_close(true); do_test_claim_value_force_close(false); } #[test] fn test_balances_on_local_commitment_htlcs() { // Previously, when handling the broadcast of a local commitment transactions (with associated // CSV delays prior to spendability), we incorrectly handled the CSV delays on HTLC // transactions. This caused us to miss spendable outputs for HTLCs which were awaiting a CSV // delay prior to spendability. // // Further, because of this, we could hit an assertion as `get_claimable_balances` asserted // that HTLCs were resolved after the funding spend was resolved, which was not true if the // HTLC did not have a CSV delay attached (due to the above bug or due to it being an HTLC // claim by our counterparty). let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create a single channel with two pending HTLCs from nodes[0] to nodes[1], one which nodes[1] // knows the preimage for, one which it does not. let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 0); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 10_000_000); let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_claimable!(nodes[1], payment_hash, payment_secret, 10_000_000); let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[1], 20_000_000); nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap(); check_added_monitors!(nodes[0], 1); let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]); commitment_signed_dance!(nodes[1], nodes[0], updates.commitment_signed, false); expect_pending_htlcs_forwardable!(nodes[1]); expect_payment_claimable!(nodes[1], payment_hash_2, payment_secret_2, 20_000_000); nodes[1].node.claim_funds(payment_preimage_2); get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id()); check_added_monitors!(nodes[1], 1); expect_payment_claimed!(nodes[1], payment_hash_2, 20_000_000); let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); // Get nodes[0]'s commitment transaction and HTLC-Timeout transactions let as_txn = get_local_commitment_txn!(nodes[0], chan_id); assert_eq!(as_txn.len(), 3); check_spends!(as_txn[1], as_txn[0]); check_spends!(as_txn[2], as_txn[0]); check_spends!(as_txn[0], funding_tx); // First confirm the commitment transaction on nodes[0], which should leave us with three // claimable balances. let node_a_commitment_claimable = nodes[0].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &as_txn[0]); check_added_monitors!(nodes[0], 1); check_closed_broadcast!(nodes[0], true); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Get nodes[1]'s HTLC claim tx for the second HTLC mine_transaction(&nodes[1], &as_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_claim_txn.len(), 1); check_spends!(bs_htlc_claim_txn[0], as_txn[0]); // Connect blocks until the HTLCs expire, allowing us to (validly) broadcast the HTLC-Timeout // transaction. connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(as_txn[1].lock_time.0, nodes[0].best_block_info().1 + 1); // as_txn[1] can be included in the next block // Now confirm nodes[0]'s HTLC-Timeout transaction, which changes the claimable balance to an // "awaiting confirmations" one. let node_a_htlc_claimable = nodes[0].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; mine_transaction(&nodes[0], &as_txn[1]); // Note that prior to the fix in the commit which introduced this test, this (and the next // balance) check failed. With this check removed, the code panicked in the `connect_blocks` // call, as described, two hunks down. assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Now confirm nodes[1]'s HTLC claim, giving nodes[0] the preimage. Note that the "maybe // claimable" balance remains until we see ANTI_REORG_DELAY blocks. mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]); expect_payment_sent!(nodes[0], payment_preimage_2); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Finally make the HTLC transactions have ANTI_REORG_DELAY blocks. This call previously // panicked as described in the test introduction. This will remove the "maybe claimable" // spendable output as nodes[1] has fully claimed the second HTLC. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); expect_payment_failed!(nodes[0], payment_hash, false); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 10_000 - 20_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Connect blocks until the commitment transaction's CSV expires, providing us the relevant // `SpendableOutputs` event and removing the claimable balance entry. connect_blocks(&nodes[0], node_a_commitment_claimable - nodes[0].best_block_info().1); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: node_a_htlc_claimable, }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); test_spendable_output(&nodes[0], &as_txn[0]); // Connect blocks until the HTLC-Timeout's CSV expires, providing us the relevant // `SpendableOutputs` event and removing the claimable balance entry. connect_blocks(&nodes[0], node_a_htlc_claimable - nodes[0].best_block_info().1); assert!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); test_spendable_output(&nodes[0], &as_txn[1]); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. connect_blocks(&nodes[0], 6); connect_blocks(&nodes[0], 6); assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } #[test] fn test_no_preimage_inbound_htlc_balances() { // Tests that MaybePreimageClaimableHTLC are generated for inbound HTLCs for which we do not // have a preimage. let chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 500_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; // Send two HTLCs, one from A to B, and one from B to A. let to_b_failed_payment_hash = route_payment(&nodes[0], &[&nodes[1]], 10_000_000).1; let to_a_failed_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 20_000_000).1; let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); // Both A and B will have an HTLC that's claimable on timeout and one that's claimable if they // receive the preimage. These will remain the same through the channel closure and until the // HTLC output is spent. assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 1_000_000 - 500_000 - 10_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 20_000, expiry_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 500_000 - 20_000, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 10_000, expiry_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Get nodes[0]'s commitment transaction and HTLC-Timeout transaction let as_txn = get_local_commitment_txn!(nodes[0], chan_id); assert_eq!(as_txn.len(), 2); check_spends!(as_txn[1], as_txn[0]); check_spends!(as_txn[0], funding_tx); // Now close the channel by confirming A's commitment transaction on both nodes, checking the // claimable balances remain the same except for the non-HTLC balance changing variant. let node_a_commitment_claimable = nodes[0].best_block_info().1 + BREAKDOWN_TIMEOUT as u32; let as_pre_spend_claims = sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 500_000 - 10_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 20_000, expiry_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 10_000, claimable_height: htlc_cltv_timeout, }]); mine_transaction(&nodes[0], &as_txn[0]); nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); check_added_monitors!(nodes[0], 1); check_closed_broadcast!(nodes[0], true); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); assert_eq!(as_pre_spend_claims, sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &as_txn[0]); check_added_monitors!(nodes[1], 1); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let node_b_commitment_claimable = nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1; let mut bs_pre_spend_claims = sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 500_000 - 20_000, confirmation_height: node_b_commitment_claimable, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 10_000, expiry_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 20_000, claimable_height: htlc_cltv_timeout, }]); assert_eq!(bs_pre_spend_claims, sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // We'll broadcast the HTLC-Timeout transaction one block prior to the htlc's expiration (as it // is confirmable in the next block), but will still include the same claimable balances as no // HTLC has been spent, even after the HTLC expires. We'll also fail the inbound HTLC, but it // won't do anything as the channel is already closed. connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1); let as_htlc_timeout_claim = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_htlc_timeout_claim.len(), 1); check_spends!(as_htlc_timeout_claim[0], as_txn[0]); expect_pending_htlcs_forwardable_conditions!(nodes[0], [HTLCDestination::FailedPayment { payment_hash: to_a_failed_payment_hash }]); assert_eq!(as_pre_spend_claims, sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], 1); assert_eq!(as_pre_spend_claims, sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // For node B, we'll get the non-HTLC funds claimable after ANTI_REORG_DELAY confirmations connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1); test_spendable_output(&nodes[1], &as_txn[0]); bs_pre_spend_claims.retain(|e| if let Balance::ClaimableAwaitingConfirmations { .. } = e { false } else { true }); // The next few blocks for B look the same as for A, though for the opposite HTLC nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clear(); connect_blocks(&nodes[1], TEST_FINAL_CLTV - (ANTI_REORG_DELAY - 1) - 1); expect_pending_htlcs_forwardable_conditions!(nodes[1], [HTLCDestination::FailedPayment { payment_hash: to_b_failed_payment_hash }]); let bs_htlc_timeout_claim = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(bs_htlc_timeout_claim.len(), 1); check_spends!(bs_htlc_timeout_claim[0], as_txn[0]); assert_eq!(bs_pre_spend_claims, sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[1], 1); assert_eq!(bs_pre_spend_claims, sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Now confirm the two HTLC timeout transactions for A, checking that the inbound HTLC resolves // after ANTI_REORG_DELAY confirmations and the other takes BREAKDOWN_TIMEOUT confirmations. mine_transaction(&nodes[0], &as_htlc_timeout_claim[0]); let as_timeout_claimable_height = nodes[0].best_block_info().1 + (BREAKDOWN_TIMEOUT as u32) - 1; assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 500_000 - 10_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 20_000, expiry_height: htlc_cltv_timeout, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: as_timeout_claimable_height, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[0], &bs_htlc_timeout_claim[0]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 500_000 - 10_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 20_000, expiry_height: htlc_cltv_timeout, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: as_timeout_claimable_height, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Once as_htlc_timeout_claim[0] reaches ANTI_REORG_DELAY confirmations, we should get a // payment failure event. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2); expect_payment_failed!(nodes[0], to_b_failed_payment_hash, false); connect_blocks(&nodes[0], 1); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 500_000 - 10_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: node_a_commitment_claimable, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: core::cmp::max(as_timeout_claimable_height, htlc_cltv_timeout), }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], node_a_commitment_claimable - nodes[0].best_block_info().1); assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 10_000, confirmation_height: core::cmp::max(as_timeout_claimable_height, htlc_cltv_timeout), }], nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); test_spendable_output(&nodes[0], &as_txn[0]); connect_blocks(&nodes[0], as_timeout_claimable_height - nodes[0].best_block_info().1); assert!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); test_spendable_output(&nodes[0], &as_htlc_timeout_claim[0]); // The process for B should be completely identical as well, noting that the non-HTLC-balance // was already claimed. mine_transaction(&nodes[1], &bs_htlc_timeout_claim[0]); let bs_timeout_claimable_height = nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1; assert_eq!(sorted_vec(vec![Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 10_000, expiry_height: htlc_cltv_timeout, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 20_000, confirmation_height: bs_timeout_claimable_height, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &as_htlc_timeout_claim[0]); assert_eq!(sorted_vec(vec![Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 10_000, expiry_height: htlc_cltv_timeout, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 20_000, confirmation_height: bs_timeout_claimable_height, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[1], ANTI_REORG_DELAY - 2); expect_payment_failed!(nodes[1], to_a_failed_payment_hash, false); assert_eq!(vec![Balance::MaybePreimageClaimableHTLC { claimable_amount_satoshis: 10_000, expiry_height: htlc_cltv_timeout, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); test_spendable_output(&nodes[1], &bs_htlc_timeout_claim[0]); connect_blocks(&nodes[1], 1); assert!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. connect_blocks(&nodes[1], 6); connect_blocks(&nodes[1], 6); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } fn sorted_vec_with_additions(v_orig: &Vec, extra_ts: &[&T]) -> Vec { let mut v = v_orig.clone(); for t in extra_ts { v.push((*t).clone()); } v.sort_unstable(); v } fn do_test_revoked_counterparty_commitment_balances(confirm_htlc_spend_first: bool) { // Tests `get_claimable_balances` for revoked counterparty commitment transactions. let mut chanmon_cfgs = create_chanmon_cfgs(2); // We broadcast a second-to-latest commitment transaction, without providing the revocation // secret to the counterparty. However, because we always immediately take the revocation // secret from the keys_manager, we would panic at broadcast as we're trying to sign a // transaction which, from the point of view of our keys_manager, is revoked. chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 100_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); // We create five HTLCs for B to claim against A's revoked commitment transaction: // // (1) one for which A is the originator and B knows the preimage // (2) one for which B is the originator where the HTLC has since timed-out // (3) one for which B is the originator but where the HTLC has not yet timed-out // (4) one dust HTLC which is lost in the channel closure // (5) one that actually isn't in the revoked commitment transaction at all, but was added in // later commitment transaction updates // // Though they could all be claimed in a single claim transaction, due to CLTV timeouts they // are all currently claimed in separate transactions, which helps us test as we can claim // HTLCs individually. let (claimed_payment_preimage, claimed_payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 3_000_000); let timeout_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 4_000_000).1; let dust_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 3_000).1; let htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety connect_blocks(&nodes[0], 10); connect_blocks(&nodes[1], 10); let live_htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety let live_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 5_000_000).1; // Get the latest commitment transaction from A and then update the fee to revoke it let as_revoked_txn = get_local_commitment_txn!(nodes[0], chan_id); let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let missing_htlc_cltv_timeout = nodes[0].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety let missing_htlc_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 2_000_000).1; nodes[1].node.claim_funds(claimed_payment_preimage); expect_payment_claimed!(nodes[1], claimed_payment_hash, 3_000_000); check_added_monitors!(nodes[1], 1); let _b_htlc_msgs = get_htlc_update_msgs!(&nodes[1], nodes[0].node.get_our_node_id()); connect_blocks(&nodes[0], htlc_cltv_timeout + 1 - 10); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); let mut events = nodes[0].node.get_and_clear_pending_events(); assert_eq!(events.len(), 6); let mut failed_payments: HashSet<_> = [timeout_payment_hash, dust_payment_hash, live_payment_hash, missing_htlc_payment_hash] .iter().map(|a| *a).collect(); events.retain(|ev| { match ev { Event::HTLCHandlingFailed { failed_next_destination: HTLCDestination::NextHopChannel { node_id, channel_id }, .. } => { assert_eq!(*channel_id, chan_id); assert_eq!(*node_id, Some(nodes[1].node.get_our_node_id())); false }, Event::HTLCHandlingFailed { failed_next_destination: HTLCDestination::FailedPayment { payment_hash }, .. } => { assert!(failed_payments.remove(payment_hash)); false }, _ => true, } }); assert!(failed_payments.is_empty()); if let Event::PendingHTLCsForwardable { .. } = events[0] {} else { panic!(); } match &events[1] { Event::ChannelClosed { reason: ClosureReason::CommitmentTxConfirmed, .. } => {}, _ => panic!(), } connect_blocks(&nodes[1], htlc_cltv_timeout + 1 - 10); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); // Prior to channel closure, B considers the preimage HTLC as its own, and otherwise only // lists the two on-chain timeout-able HTLCs as claimable balances. assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 100_000 - 5_000 - 4_000 - 3 - 2_000 + 3_000, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 2_000, claimable_height: missing_htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 5_000, claimable_height: live_htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &as_revoked_txn[0]); let mut claim_txn: Vec<_> = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().drain(..).filter(|tx| tx.input.iter().any(|inp| inp.previous_output.txid == as_revoked_txn[0].txid())).collect(); // Currently the revoked commitment is claimed in four transactions as the HTLCs all expire // quite soon. assert_eq!(claim_txn.len(), 4); claim_txn.sort_unstable_by_key(|tx| tx.output.iter().map(|output| output.value).sum::()); // The following constants were determined experimentally const BS_TO_SELF_CLAIM_EXP_WEIGHT: usize = 483; const OUTBOUND_HTLC_CLAIM_EXP_WEIGHT: usize = 571; const INBOUND_HTLC_CLAIM_EXP_WEIGHT: usize = 578; // Check that the weight is close to the expected weight. Note that signature sizes vary // somewhat so it may not always be exact. fuzzy_assert_eq(claim_txn[0].weight(), OUTBOUND_HTLC_CLAIM_EXP_WEIGHT); fuzzy_assert_eq(claim_txn[1].weight(), INBOUND_HTLC_CLAIM_EXP_WEIGHT); fuzzy_assert_eq(claim_txn[2].weight(), INBOUND_HTLC_CLAIM_EXP_WEIGHT); fuzzy_assert_eq(claim_txn[3].weight(), BS_TO_SELF_CLAIM_EXP_WEIGHT); // The expected balance for the next three checks, with the largest-HTLC and to_self output // claim balances separated out. let expected_balance = vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in A's revoked commitment claimable_amount_satoshis: 100_000 - 5_000 - 4_000 - 3, confirmation_height: nodes[1].best_block_info().1 + 5, }, Balance::CounterpartyRevokedOutputClaimable { claimable_amount_satoshis: 3_000, }, Balance::CounterpartyRevokedOutputClaimable { claimable_amount_satoshis: 4_000, }]; let to_self_unclaimed_balance = Balance::CounterpartyRevokedOutputClaimable { claimable_amount_satoshis: 1_000_000 - 100_000 - 3_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 3 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }; let to_self_claimed_avail_height; let largest_htlc_unclaimed_balance = Balance::CounterpartyRevokedOutputClaimable { claimable_amount_satoshis: 5_000, }; let largest_htlc_claimed_avail_height; // Once the channel has been closed by A, B now considers all of the commitment transactions' // outputs as `CounterpartyRevokedOutputClaimable`. assert_eq!(sorted_vec_with_additions(&expected_balance, &[&to_self_unclaimed_balance, &largest_htlc_unclaimed_balance]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); if confirm_htlc_spend_first { mine_transaction(&nodes[1], &claim_txn[2]); largest_htlc_claimed_avail_height = nodes[1].best_block_info().1 + 5; to_self_claimed_avail_height = nodes[1].best_block_info().1 + 6; // will be claimed in the next block } else { // Connect the to_self output claim, taking all of A's non-HTLC funds mine_transaction(&nodes[1], &claim_txn[3]); to_self_claimed_avail_height = nodes[1].best_block_info().1 + 5; largest_htlc_claimed_avail_height = nodes[1].best_block_info().1 + 6; // will be claimed in the next block } let largest_htlc_claimed_balance = Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 5_000 - chan_feerate * INBOUND_HTLC_CLAIM_EXP_WEIGHT as u64 / 1000, confirmation_height: largest_htlc_claimed_avail_height, }; let to_self_claimed_balance = Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 100_000 - 3_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 3 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000 - chan_feerate * claim_txn[3].weight() as u64 / 1000, confirmation_height: to_self_claimed_avail_height, }; if confirm_htlc_spend_first { assert_eq!(sorted_vec_with_additions(&expected_balance, &[&to_self_unclaimed_balance, &largest_htlc_claimed_balance]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); } else { assert_eq!(sorted_vec_with_additions(&expected_balance, &[&to_self_claimed_balance, &largest_htlc_unclaimed_balance]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); } if confirm_htlc_spend_first { mine_transaction(&nodes[1], &claim_txn[3]); } else { mine_transaction(&nodes[1], &claim_txn[2]); } assert_eq!(sorted_vec_with_additions(&expected_balance, &[&to_self_claimed_balance, &largest_htlc_claimed_balance]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Finally, connect the last two remaining HTLC spends and check that they move to // `ClaimableAwaitingConfirmations` mine_transaction(&nodes[1], &claim_txn[0]); mine_transaction(&nodes[1], &claim_txn[1]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in A's revoked commitment claimable_amount_satoshis: 100_000 - 5_000 - 4_000 - 3, confirmation_height: nodes[1].best_block_info().1 + 1, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 1_000_000 - 100_000 - 3_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 3 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000 - chan_feerate * claim_txn[3].weight() as u64 / 1000, confirmation_height: to_self_claimed_avail_height, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 3_000 - chan_feerate * OUTBOUND_HTLC_CLAIM_EXP_WEIGHT as u64 / 1000, confirmation_height: nodes[1].best_block_info().1 + 4, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 4_000 - chan_feerate * INBOUND_HTLC_CLAIM_EXP_WEIGHT as u64 / 1000, confirmation_height: nodes[1].best_block_info().1 + 5, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: 5_000 - chan_feerate * INBOUND_HTLC_CLAIM_EXP_WEIGHT as u64 / 1000, confirmation_height: largest_htlc_claimed_avail_height, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[1], 1); test_spendable_output(&nodes[1], &as_revoked_txn[0]); let mut payment_failed_events = nodes[1].node.get_and_clear_pending_events(); expect_payment_failed_conditions_event(&nodes[1], payment_failed_events.pop().unwrap(), dust_payment_hash, false, PaymentFailedConditions::new()); expect_payment_failed_conditions_event(&nodes[1], payment_failed_events.pop().unwrap(), missing_htlc_payment_hash, false, PaymentFailedConditions::new()); assert!(payment_failed_events.is_empty()); connect_blocks(&nodes[1], 1); test_spendable_output(&nodes[1], &claim_txn[if confirm_htlc_spend_first { 2 } else { 3 }]); connect_blocks(&nodes[1], 1); test_spendable_output(&nodes[1], &claim_txn[if confirm_htlc_spend_first { 3 } else { 2 }]); expect_payment_failed!(nodes[1], live_payment_hash, false); connect_blocks(&nodes[1], 1); test_spendable_output(&nodes[1], &claim_txn[0]); connect_blocks(&nodes[1], 1); test_spendable_output(&nodes[1], &claim_txn[1]); expect_payment_failed!(nodes[1], timeout_payment_hash, false); assert_eq!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances(), Vec::new()); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. connect_blocks(&nodes[1], 6); connect_blocks(&nodes[1], 6); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } #[test] fn test_revoked_counterparty_commitment_balances() { do_test_revoked_counterparty_commitment_balances(true); do_test_revoked_counterparty_commitment_balances(false); } #[test] fn test_revoked_counterparty_htlc_tx_balances() { // Tests `get_claimable_balances` for revocation spends of HTLC transactions. let mut chanmon_cfgs = create_chanmon_cfgs(2); chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); // Create some initial channels let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 11_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); let payment_preimage = route_payment(&nodes[0], &[&nodes[1]], 3_000_000).0; let failed_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 1_000_000).1; let revoked_local_txn = get_local_commitment_txn!(nodes[1], chan_id); assert_eq!(revoked_local_txn[0].input.len(), 1); assert_eq!(revoked_local_txn[0].input[0].previous_output.txid, funding_tx.txid()); // The to-be-revoked commitment tx should have two HTLCs and an output for both sides assert_eq!(revoked_local_txn[0].output.len(), 4); claim_payment(&nodes[0], &[&nodes[1]], payment_preimage); let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); // B will generate an HTLC-Success from its revoked commitment tx mine_transaction(&nodes[1], &revoked_local_txn[0]); check_closed_broadcast!(nodes[1], true); check_added_monitors!(nodes[1], 1); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); let revoked_htlc_success_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(revoked_htlc_success_txn.len(), 1); assert_eq!(revoked_htlc_success_txn[0].input.len(), 1); assert_eq!(revoked_htlc_success_txn[0].input[0].witness.last().unwrap().len(), ACCEPTED_HTLC_SCRIPT_WEIGHT); check_spends!(revoked_htlc_success_txn[0], revoked_local_txn[0]); connect_blocks(&nodes[1], TEST_FINAL_CLTV); let revoked_htlc_timeout_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(revoked_htlc_timeout_txn.len(), 1); check_spends!(revoked_htlc_timeout_txn[0], revoked_local_txn[0]); assert_ne!(revoked_htlc_success_txn[0].input[0].previous_output, revoked_htlc_timeout_txn[0].input[0].previous_output); assert_eq!(revoked_htlc_success_txn[0].lock_time.0, 0); assert_ne!(revoked_htlc_timeout_txn[0].lock_time.0, 0); // A will generate justice tx from B's revoked commitment/HTLC tx mine_transaction(&nodes[0], &revoked_local_txn[0]); check_closed_broadcast!(nodes[0], true); check_added_monitors!(nodes[0], 1); check_closed_event!(nodes[0], 1, ClosureReason::CommitmentTxConfirmed); let to_remote_conf_height = nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1; let as_commitment_claim_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_commitment_claim_txn.len(), 1); check_spends!(as_commitment_claim_txn[0], revoked_local_txn[0]); // The next two checks have the same balance set for A - even though we confirm a revoked HTLC // transaction our balance tracking doesn't use the on-chain value so the // `CounterpartyRevokedOutputClaimable` entry doesn't change. let as_balances = sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in B's revoked commitment claimable_amount_satoshis: 1_000_000 - 11_000 - 3_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: to_remote_conf_height, }, Balance::CounterpartyRevokedOutputClaimable { // to_self output in B's revoked commitment claimable_amount_satoshis: 10_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 3_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 1_000, }]); assert_eq!(as_balances, sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[0], &revoked_htlc_success_txn[0]); let as_htlc_claim_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_htlc_claim_tx.len(), 2); check_spends!(as_htlc_claim_tx[0], revoked_htlc_success_txn[0]); check_spends!(as_htlc_claim_tx[1], revoked_local_txn[0]); // A has to generate a new claim for the remaining revoked // outputs (which no longer includes the spent HTLC output) assert_eq!(as_balances, sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); assert_eq!(as_htlc_claim_tx[0].output.len(), 1); fuzzy_assert_eq(as_htlc_claim_tx[0].output[0].value, 3_000 - chan_feerate * (revoked_htlc_success_txn[0].weight() + as_htlc_claim_tx[0].weight()) as u64 / 1000); mine_transaction(&nodes[0], &as_htlc_claim_tx[0]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in B's revoked commitment claimable_amount_satoshis: 1_000_000 - 11_000 - 3_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, confirmation_height: to_remote_conf_height, }, Balance::CounterpartyRevokedOutputClaimable { // to_self output in B's revoked commitment claimable_amount_satoshis: 10_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 1_000, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: as_htlc_claim_tx[0].output[0].value, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 3); test_spendable_output(&nodes[0], &revoked_local_txn[0]); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output to B claimable_amount_satoshis: 10_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 1_000, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: as_htlc_claim_tx[0].output[0].value, confirmation_height: nodes[0].best_block_info().1 + 2, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], 2); test_spendable_output(&nodes[0], &as_htlc_claim_tx[0]); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in B's revoked commitment claimable_amount_satoshis: 10_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 1_000, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], revoked_htlc_timeout_txn[0].lock_time.0 - nodes[0].best_block_info().1); expect_pending_htlcs_forwardable_and_htlc_handling_failed_ignore!(&nodes[0], [HTLCDestination::FailedPayment { payment_hash: failed_payment_hash }]); // As time goes on A may split its revocation claim transaction into multiple. let as_fewer_input_rbf = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); for tx in as_fewer_input_rbf.iter() { check_spends!(tx, revoked_local_txn[0]); } // Connect a number of additional blocks to ensure we don't forget the HTLC output needs // claiming. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); let as_fewer_input_rbf = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); for tx in as_fewer_input_rbf.iter() { check_spends!(tx, revoked_local_txn[0]); } mine_transaction(&nodes[0], &revoked_htlc_timeout_txn[0]); let as_second_htlc_claim_tx = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0); assert_eq!(as_second_htlc_claim_tx.len(), 2); check_spends!(as_second_htlc_claim_tx[0], revoked_htlc_timeout_txn[0]); check_spends!(as_second_htlc_claim_tx[1], revoked_local_txn[0]); // Connect blocks to finalize the HTLC resolution with the HTLC-Timeout transaction. In a // previous iteration of the revoked balance handling this would result in us "forgetting" that // the revoked HTLC output still needed to be claimed. connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in B's revoked commitment claimable_amount_satoshis: 10_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 1_000, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[0], &as_second_htlc_claim_tx[0]); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in B's revoked commitment claimable_amount_satoshis: 10_000, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: as_second_htlc_claim_tx[0].output[0].value, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[0], &as_second_htlc_claim_tx[1]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_self output in B's revoked commitment claimable_amount_satoshis: as_second_htlc_claim_tx[1].output[0].value, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 1, }, Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: as_second_htlc_claim_tx[0].output[0].value, confirmation_height: nodes[0].best_block_info().1 + ANTI_REORG_DELAY - 2, }]), sorted_vec(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2); test_spendable_output(&nodes[0], &as_second_htlc_claim_tx[0]); connect_blocks(&nodes[0], 1); test_spendable_output(&nodes[0], &as_second_htlc_claim_tx[1]); assert_eq!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances(), Vec::new()); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. connect_blocks(&nodes[0], 6); connect_blocks(&nodes[0], 6); assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[0].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } #[test] fn test_revoked_counterparty_aggregated_claims() { // Tests `get_claimable_balances` for revoked counterparty commitment transactions when // claiming with an aggregated claim transaction. let mut chanmon_cfgs = create_chanmon_cfgs(2); // We broadcast a second-to-latest commitment transaction, without providing the revocation // secret to the counterparty. However, because we always immediately take the revocation // secret from the keys_manager, we would panic at broadcast as we're trying to sign a // transaction which, from the point of view of our keys_manager, is revoked. chanmon_cfgs[1].keys_manager.disable_revocation_policy_check = true; let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1_000_000, 100_000_000); let funding_outpoint = OutPoint { txid: funding_tx.txid(), index: 0 }; assert_eq!(funding_outpoint.to_channel_id(), chan_id); // We create two HTLCs, one which we will give A the preimage to to generate an HTLC-Success // transaction, and one which we will not, allowing B to claim the HTLC output in an aggregated // revocation-claim transaction. let (claimed_payment_preimage, claimed_payment_hash, ..) = route_payment(&nodes[1], &[&nodes[0]], 3_000_000); let revoked_payment_hash = route_payment(&nodes[1], &[&nodes[0]], 4_000_000).1; let htlc_cltv_timeout = nodes[1].best_block_info().1 + TEST_FINAL_CLTV + 1; // Note ChannelManager adds one to CLTV timeouts for safety // Cheat by giving A's ChannelMonitor the preimage to the to-be-claimed HTLC so that we have an // HTLC-claim transaction on the to-be-revoked state. get_monitor!(nodes[0], chan_id).provide_payment_preimage(&claimed_payment_hash, &claimed_payment_preimage, &node_cfgs[0].tx_broadcaster, &LowerBoundedFeeEstimator::new(node_cfgs[0].fee_estimator), &nodes[0].logger); // Now get the latest commitment transaction from A and then update the fee to revoke it let as_revoked_txn = get_local_commitment_txn!(nodes[0], chan_id); assert_eq!(as_revoked_txn.len(), 2); check_spends!(as_revoked_txn[0], funding_tx); check_spends!(as_revoked_txn[1], as_revoked_txn[0]); // The HTLC-Claim transaction let opt_anchors = get_opt_anchors!(nodes[0], nodes[1], chan_id); let chan_feerate = get_feerate!(nodes[0], nodes[1], chan_id) as u64; { let mut feerate = chanmon_cfgs[0].fee_estimator.sat_per_kw.lock().unwrap(); *feerate += 1; } nodes[0].node.timer_tick_occurred(); check_added_monitors!(nodes[0], 1); let fee_update = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id()); nodes[1].node.handle_update_fee(&nodes[0].node.get_our_node_id(), &fee_update.update_fee.unwrap()); commitment_signed_dance!(nodes[1], nodes[0], fee_update.commitment_signed, false); nodes[0].node.claim_funds(claimed_payment_preimage); expect_payment_claimed!(nodes[0], claimed_payment_hash, 3_000_000); check_added_monitors!(nodes[0], 1); let _a_htlc_msgs = get_htlc_update_msgs!(&nodes[0], nodes[1].node.get_our_node_id()); assert_eq!(sorted_vec(vec![Balance::ClaimableOnChannelClose { claimable_amount_satoshis: 100_000 - 4_000 - 3_000, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 4_000, claimable_height: htlc_cltv_timeout, }, Balance::MaybeTimeoutClaimableHTLC { claimable_amount_satoshis: 3_000, claimable_height: htlc_cltv_timeout, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &as_revoked_txn[0]); check_closed_broadcast!(nodes[1], true); check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed); check_added_monitors!(nodes[1], 1); let mut claim_txn: Vec<_> = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().drain(..).filter(|tx| tx.input.iter().any(|inp| inp.previous_output.txid == as_revoked_txn[0].txid())).collect(); // Currently the revoked commitment outputs are all claimed in one aggregated transaction assert_eq!(claim_txn.len(), 1); assert_eq!(claim_txn[0].input.len(), 3); check_spends!(claim_txn[0], as_revoked_txn[0]); let to_remote_maturity = nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1; assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in A's revoked commitment claimable_amount_satoshis: 100_000 - 4_000 - 3_000, confirmation_height: to_remote_maturity, }, Balance::CounterpartyRevokedOutputClaimable { // to_self output in A's revoked commitment claimable_amount_satoshis: 1_000_000 - 100_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 4_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 claimable_amount_satoshis: 3_000, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); // Confirm A's HTLC-Success tranasction which presumably raced B's claim, causing B to create a // new claim. mine_transaction(&nodes[1], &as_revoked_txn[1]); expect_payment_sent!(nodes[1], claimed_payment_preimage); let mut claim_txn_2: Vec<_> = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone(); claim_txn_2.sort_unstable_by_key(|tx| if tx.input.iter().any(|inp| inp.previous_output.txid == as_revoked_txn[0].txid()) { 0 } else { 1 }); // Once B sees the HTLC-Success transaction it splits its claim transaction into two, though in // theory it could re-aggregate the claims as well. assert_eq!(claim_txn_2.len(), 2); assert_eq!(claim_txn_2[0].input.len(), 2); check_spends!(claim_txn_2[0], as_revoked_txn[0]); assert_eq!(claim_txn_2[1].input.len(), 1); check_spends!(claim_txn_2[1], as_revoked_txn[1]); assert_eq!(sorted_vec(vec![Balance::ClaimableAwaitingConfirmations { // to_remote output in A's revoked commitment claimable_amount_satoshis: 100_000 - 4_000 - 3_000, confirmation_height: to_remote_maturity, }, Balance::CounterpartyRevokedOutputClaimable { // to_self output in A's revoked commitment claimable_amount_satoshis: 1_000_000 - 100_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 4_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 // The amount here is a bit of a misnomer, really its been reduced by the HTLC // transaction fee, but the claimable amount is always a bit of an overshoot for HTLCs // anyway, so its not a big change. claimable_amount_satoshis: 3_000, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[1], 5); test_spendable_output(&nodes[1], &as_revoked_txn[0]); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in A's revoked commitment claimable_amount_satoshis: 1_000_000 - 100_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 4_000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 2 // The amount here is a bit of a misnomer, really its been reduced by the HTLC // transaction fee, but the claimable amount is always a bit of an overshoot for HTLCs // anyway, so its not a big change. claimable_amount_satoshis: 3_000, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &claim_txn_2[1]); let htlc_2_claim_maturity = nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1; assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in A's revoked commitment claimable_amount_satoshis: 1_000_000 - 100_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 4_000, }, Balance::ClaimableAwaitingConfirmations { // HTLC 2 claimable_amount_satoshis: claim_txn_2[1].output[0].value, confirmation_height: htlc_2_claim_maturity, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); connect_blocks(&nodes[1], 5); test_spendable_output(&nodes[1], &claim_txn_2[1]); assert_eq!(sorted_vec(vec![Balance::CounterpartyRevokedOutputClaimable { // to_self output in A's revoked commitment claimable_amount_satoshis: 1_000_000 - 100_000 - chan_feerate * (channel::commitment_tx_base_weight(opt_anchors) + 2 * channel::COMMITMENT_TX_WEIGHT_PER_HTLC) / 1000, }, Balance::CounterpartyRevokedOutputClaimable { // HTLC 1 claimable_amount_satoshis: 4_000, }]), sorted_vec(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances())); mine_transaction(&nodes[1], &claim_txn_2[0]); let rest_claim_maturity = nodes[1].best_block_info().1 + ANTI_REORG_DELAY - 1; assert_eq!(vec![Balance::ClaimableAwaitingConfirmations { claimable_amount_satoshis: claim_txn_2[0].output[0].value, confirmation_height: rest_claim_maturity, }], nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances()); assert!(nodes[1].node.get_and_clear_pending_events().is_empty()); // We shouldn't fail the payment until we spend the output connect_blocks(&nodes[1], 5); expect_payment_failed!(nodes[1], revoked_payment_hash, false); test_spendable_output(&nodes[1], &claim_txn_2[0]); assert!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); // Ensure that even if we connect more blocks, potentially replaying the entire chain if we're // using `ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we don't get new // monitor events or claimable balances. connect_blocks(&nodes[1], 6); connect_blocks(&nodes[1], 6); assert!(nodes[1].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); assert!(nodes[1].chain_monitor.chain_monitor.get_monitor(funding_outpoint).unwrap().get_claimable_balances().is_empty()); } #[cfg(anchors)] #[test] fn test_yield_anchors_events() { // Tests that two parties supporting anchor outputs can open a channel, route payments over // it, and finalize its resolution uncooperatively. Once the HTLCs are locked in, one side will // force close once the HTLCs expire. The force close should stem from an event emitted by LDK, // allowing the consumer to provide additional fees to the commitment transaction to be // broadcast. Once the commitment transaction confirms, events for the HTLC resolution should be // emitted by LDK, such that the consumer can attach fees to the zero fee HTLC transactions. let secp = Secp256k1::new(); let mut chanmon_cfgs = create_chanmon_cfgs(2); let node_cfgs = create_node_cfgs(2, &chanmon_cfgs); let mut anchors_config = UserConfig::default(); anchors_config.channel_handshake_config.announced_channel = true; anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true; let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config), Some(anchors_config)]); let nodes = create_network(2, &node_cfgs, &node_chanmgrs); let chan_id = create_announced_chan_between_nodes_with_value( &nodes, 0, 1, 1_000_000, 500_000_000 ).2; route_payment(&nodes[0], &[&nodes[1]], 1_000_000); let (payment_preimage, payment_hash, _) = route_payment(&nodes[1], &[&nodes[0]], 1_000_000); assert!(nodes[0].node.get_and_clear_pending_events().is_empty()); connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1); check_closed_broadcast!(&nodes[0], true); assert!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().is_empty()); get_monitor!(nodes[0], chan_id).provide_payment_preimage( &payment_hash, &payment_preimage, &node_cfgs[0].tx_broadcaster, &LowerBoundedFeeEstimator::new(node_cfgs[0].fee_estimator), &nodes[0].logger ); let mut holder_events = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(holder_events.len(), 1); let (commitment_tx, anchor_tx) = match holder_events.pop().unwrap() { Event::BumpTransaction(BumpTransactionEvent::ChannelClose { commitment_tx, anchor_descriptor, .. }) => { assert_eq!(commitment_tx.input.len(), 1); assert_eq!(commitment_tx.output.len(), 6); let mut anchor_tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: vec![ TxIn { previous_output: anchor_descriptor.outpoint, ..Default::default() }, TxIn { ..Default::default() }, ], output: vec![TxOut { value: Amount::ONE_BTC.to_sat(), script_pubkey: Script::new_op_return(&[]), }], }; let signer = nodes[0].keys_manager.derive_channel_keys( anchor_descriptor.channel_value_satoshis, &anchor_descriptor.channel_keys_id, ); let funding_sig = signer.sign_holder_anchor_input(&mut anchor_tx, 0, &secp).unwrap(); anchor_tx.input[0].witness = chan_utils::build_anchor_input_witness( &signer.pubkeys().funding_pubkey, &funding_sig ); (commitment_tx, anchor_tx) }, _ => panic!("Unexpected event"), }; mine_transactions(&nodes[0], &[&commitment_tx, &anchor_tx]); check_added_monitors!(nodes[0], 1); let mut holder_events = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); // Certain block `ConnectStyle`s cause an extra `ChannelClose` event to be emitted since the // best block is being updated prior to the confirmed transactions. match *nodes[0].connect_style.borrow() { ConnectStyle::BestBlockFirst|ConnectStyle::BestBlockFirstReorgsOnlyTip|ConnectStyle::BestBlockFirstSkippingBlocks => { assert_eq!(holder_events.len(), 3); if let Event::BumpTransaction(BumpTransactionEvent::ChannelClose { .. }) = holder_events.remove(0) {} else { panic!("unexpected event"); } }, _ => assert_eq!(holder_events.len(), 2), }; let mut htlc_txs = Vec::with_capacity(2); for event in holder_events { match event { Event::BumpTransaction(BumpTransactionEvent::HTLCResolution { htlc_descriptors, .. }) => { assert_eq!(htlc_descriptors.len(), 1); let htlc_descriptor = &htlc_descriptors[0]; let signer = nodes[0].keys_manager.derive_channel_keys( htlc_descriptor.channel_value_satoshis, &htlc_descriptor.channel_keys_id ); let per_commitment_point = signer.get_per_commitment_point(htlc_descriptor.per_commitment_number, &secp); let mut htlc_tx = Transaction { version: 2, lock_time: if htlc_descriptor.htlc.offered { PackedLockTime(htlc_descriptor.htlc.cltv_expiry) } else { PackedLockTime::ZERO }, input: vec![ htlc_descriptor.unsigned_tx_input(), // HTLC input TxIn { ..Default::default() } // Fee input ], output: vec![ htlc_descriptor.tx_output(&per_commitment_point, &secp), // HTLC output TxOut { // Fee input change value: Amount::ONE_BTC.to_sat(), script_pubkey: Script::new_op_return(&[]), } ] }; let our_sig = signer.sign_holder_htlc_transaction(&mut htlc_tx, 0, htlc_descriptor, &secp).unwrap(); let witness_script = htlc_descriptor.witness_script(&per_commitment_point, &secp); htlc_tx.input[0].witness = htlc_descriptor.tx_input_witness(&our_sig, &witness_script); htlc_txs.push(htlc_tx); }, _ => panic!("Unexpected event"), } } mine_transactions(&nodes[0], &[&htlc_txs[0], &htlc_txs[1]]); connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1); assert!(nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events().is_empty()); connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32); let holder_events = nodes[0].chain_monitor.chain_monitor.get_and_clear_pending_events(); assert_eq!(holder_events.len(), 3); for event in holder_events { match event { Event::SpendableOutputs { .. } => {}, _ => panic!("Unexpected event"), } } // Clear the remaining events as they're not relevant to what we're testing. nodes[0].node.get_and_clear_pending_events(); }